

Operational review for the nine months ended 31 March 2024

Solid operational performance in copper, iron ore and energy coal.

"We remain on track to meet copper, iron ore and energy coal production for the year. Copper volumes have increased by 10 per cent reflecting strong performance and additional tonnes from Copper South Australia, record year-to-date performance from Spence, and improved grades and production at Escondida.

"Western Australia Iron Ore, the lowest cost iron ore producer globally, delivered another consistent period of production despite heavy rainfall. We continue to invest in improvements to our rail and port operations, which are essential for growth in the medium term to 305 million tonnes per annum and beyond.

"At our BMA metallurgical coal operations in Queensland, significant wet weather including the impact of two tropical cyclones and operational challenges impacted production and unit costs, and we have revised guidance for the year. We successfully completed the sale of the Blackwater and Daunia mines on 2 April for a total of up to US\$4.1 bn (100%).

"In Canada, the Jansen Stage 1 project remains ahead of its initial schedule and is now 44 per cent complete. In Western Australia, we expect to announce a decision on the future of our nickel business in the coming months, where efforts to optimise operations and preserve value are underway."

Mike Henry BHP Chief Executive Officer

Summary

Operational performance

Copper production increased 10%

Increased copper production driven by record production at Spence, strong operational performance at Copper South Australia (and the contribution from Prominent Hill and Carrapateena), and improved performance and grade at Escondida.

FY24 production guidance for BMA has been lowered to 21.5 – 22.5 Mt (43 – 45 Mt at 100%). Other updates to FY24 production guidance are reflected in the table below. FY24 unit cost guidance¹ for BMA has been increased to US\$119/t – US\$125/t.

ESG

MSCI upgrade

In March 2024, ESG ratings provider MSCI upgraded BHP's overall company score based on their assessment of performance under the Social Pillar. This reflects the progress made in Brazil, including in negotiations, and our commitment to deliver full and fair remediation and compensation.

Portfolio

Completed sale of Blackwater and Daunia

We completed the strategic reshaping of our metallurgical coal business with <u>the divestment</u> of BHP Mitsubishi Alliance's (BMA) Blackwater and Daunia mines to Whitehaven Coal on 2 April for a total cash consideration of up to US\$4.1 bn (100%).

BMA now has a more focused operational footprint and a greater portion of higher quality metallurgical coal (>85%) which is expected to achieve higher relative margins in a decarbonising world.

Governance

Board update

In March, we announced the appointment of Ross McEwan and Don Lindsay as Non-executive Directors, effective 3 April 2024 and 1 May 2024 respectively. We also announced the retirement of lan Cockerill as a Non-executive Director, effective 4 April 2024.

Production	Quar	ter perform	ance	YTD perfo	rmance	FY24	FY24 production guidance		
				YTD Mar	v YTD Mar				
	Q3 FY24	v Q2 FY24	v Q3 FY23	FY24	FY23	Previous	Current		
Copper (kt)	465.9	7%	15%	1,360.3	10%	1,720 – 1,910	1,720 - 1,910		
Escondida (kt)	288.2	13%	15%	816.1	7%	1,080 – 1,180	1,080 – 1,180	Unchanged	
Pampa Norte (kt)	61.6	3%	(16%)	199.7	(9%)	210 - 250 ⁱ	210 - 250 ⁱ	Upper end	
Copper South Australia (kt)	79.0	(4%)	53%	232.7	49%	310 - 340	310 - 340	Unchanged	
Antamina (kt)	33.9	(14%)	15%	105.6	4%	120 - 140	120 - 140	Unchanged	
Carajás (kt)	3.2	78%		6.2		-	-	-	
Iron ore (Mt)	61.5	(7%)	3%	190.5	(1%)	254 - 264.5	254 - 264.5		
WAIO (Mt)	60.3	(6%)	3%	186.8	(1%)	250 - 260	250 - 260	Unchanged	
WAIO (100% basis) (Mt)	68.1	(6%)	3%	210.2	(1%)	282 - 294	282 - 294	Unchanged	
Samarco (Mt)	1.2	(10%)	12%	3.7	13%	4 - 4.5	4 - 4.5	Upper end	
Metallurgical coal - BMA (Mt)	6.0	6%	(13%)	17.4	(16%)	23 - 25	21.5 - 22.5	Lowered	
BMA (100% basis) (Mt)	12.1	6%	(13%)	34.7	(16%)	46 - 50	43 - 45	Lowered	
Energy coal - NSWEC (Mt)	4.1	8%	5%	11.6	23%	13 – 15	13 - 15	Upper end	
Nickel - Western Australia Nickel (kt)	18.8	(4%)	(4%)	58.6	1%	77 – 87	77 – 87	Lower half	

Note: changes made to FY24 production guidance since the Q2 FY24 Operational review are shown in italics.

i Production guidance for FY24 is for Spence only and excludes Cerro Colorado which produced 11 kt before ceasing production on 9 November 2023.

Segment and asset performance | FY24 YTD v FY23 YTD

Further information in Appendix 1

Detailed production and sales information for all operations in Appendix 2

Copper

Production

1,360 kt +10%

YTD Mar FY23 1,240 kt

FY24e 1,720 - 1,910 kt

Average realised price

US\$3.72/lb +5%

HY24 US\$3.66/lb

Total copper production increased by 10% to 1,360 kt. Copper production guidance for FY24 remains unchanged at between 1,720 and 1,910 kt.

Escondida 816 kt 17% (100% basis)

Increased production was primarily due to a higher concentrator feed grade of 0.85%, increasing from 0.79%, as mining progressed into areas of high grade ore as planned following the implementation of measures to manage geotechnical events. Concentrator feed grade for FY24 is expected to be between 0.85% and 0.90%, with 0.92% grade achieved in Q3 FY24. Production guidance for FY24 remains unchanged at between 1,080 and 1,180 kt.

Pampa Norte 200 kt ₱9%

Spence production increased by 3% to a nine-month record of 189 kt, driven by improved concentrator throughput and higher recoveries. Record concentrate production was partially offset by lower cathode production, in line with an expected decline in stacked feed grade. The concentrator plant modifications which commenced in August 2022 are expected to be completed in FY24.

In March 2024, Spence achieved fully autonomous mine haulage operations (ahead of the Q4 FY24 target date) and has deployed a total of 33 autonomous trucks.

FY24 production for Spence is expected to be at the upper end of the guidance range of between 210 and 250kt.

Cerro Colorado entered temporary care and maintenance in December 2023, after producing 11 kt for the period.

Copper South Australia 233 kt ★49%

Production increased by 49% due to the addition of volumes this year from Prominent Hill and Carrapateena, and strong underlying operational performance at Olympic Dam including the highest quarter of material mined in over 10 years in Q3 FY24. Strong smelter performance at Olympic Dam was supported by ongoing transfers of concentrate from Prominent Hill and initial transfers from Carrapateena in Q3 FY24, for processing to higher margin cathode. Crusher 2 at Carrapateena was commissioned in Q3 FY24 and remains on track to ramp up in Q4 FY24.

Production guidance for FY24 remains unchanged at between 310 and 340 kt.

We are continuing exploration drilling across the Copper South Australia province to enhance our resource knowledge in support of our growth studies. At Oak Dam, we are progressing the external approval process for an underground access decline to enable faster and lower cost resource definition drilling of the mineral deposit, and we expect to be able to provide an Inferred Mineral Resource for Oak Dam later this calendar year.

Other copper

At Antamina, copper production increased by 4% to 106 kt, while zinc production was 2% higher at 88 kt, both as a result of higher throughput offsetting planned lower concentrator feed grades. Production guidance remains unchanged for FY24, with copper production of between 120 and 140 kt, and zinc production of between 85 and 105 kt.

Carajás produced 6.2 kt of copper and 4.1 troy koz of gold. In Q3 FY24 operations continued to ramp back up, and shipments also resumed, following the temporary stoppage of operations between August and October 2023 due to a geotechnical event.

Iron ore

Production

190 Mt **₽**1%

YTD Mar FY23 192 Mt

FY24e 254 - 264.5 Mt

Average realised price

US\$104.53/wmt +3%

HY24 US\$103.70/wmt

Total iron ore production decreased by 1% to 190 Mt. Production guidance for FY24 remains unchanged at between 254 and 264.5 Mt.

WAIO 187 Mt **₹**1% | 210 Mt (100% basis)

Production was marginally lower due to heavy rainfall throughout Q3 FY24, the continued tie-in activity for the Rail Technology Programme (RTP1), the impacts of the ongoing ramp up of the Central Pilbara hub (South Flank and Mining Area C) and a bushfire near Yandi.

South Flank remains on track to ramp up to full production capacity of 80 Mtpa (100% basis) by the end of FY24. The Port Debottlenecking Project (PDP1) was commissioned in December 2023 and ramp up remains on track to be completed in CY24.

Production guidance for FY24 remains unchanged at between 250 and 260 Mt (282 and 294 Mt on a 100% basis).

Samarco 3.7 Mt 13% | 7.4 Mt (100% basis)

Production increased as a result of higher concentrator throughput. FY24 production is expected to be at the upper end of the 4 - 4.5 Mt guidance range.

Coal

Metallurgical coal

Production

17.4 Mt **₹**16%

YTD Mar FY23 20.5 Mt

FY24e 21.5 - 22.5 Mt

Average realised price

US\$272.09/t •6%

HY24 US\$266.43/t

BMA 17.4 Mt **1**6% | 34.7 Mt (100% basis)

Following the tragic fatality of a team member in January 2024, BMA operations were suspended for 24 hours while a safety stop was implemented across all mines, and for a further 3.5 days at Saraji.

Production has been impacted by increased planned maintenance, an extended longwall move at Broadmeadow as well as increased stripping to improve supply chain stability at our open cut operations to restore depleted inventory positions arising from extended weather impacts and labour constraints over recent years. Our focus on restoring depleted inventory will continue into CY25.

Despite improved production in Q3 FY24, the impacts of higher than planned wet weather, including two tropical cyclones in the region, and the temporary suspension of operations following the fatality at Saraji have impacted our FY24 production estimates. Production for FY24 is now expected to be between 21.5 and 22.5 Mt (43 and 45 Mt on a 100% basis). This has been lowered from 23 – 25 Mt (46 – 50 Mt on a 100% basis).

As a result, unit cost guidance for FY24¹ has increased to between US\$119/t and US\$125/t, from US\$110 – US\$116/t.

Energy coal

Production

11.6 Mt +23%

YTD Mar FY23 9.4 Mt

FY24e 13 – 15 Mt

Average realised price

US\$120.97/t +6%

HY24 US\$123.29/t

NSWEC 11.6 Mt **★23**%

Increased production as a result of continued strong operating performance as improved weather conditions enabled an uplift in truck productivity. Domestic sales under the NSW Government Coal Market Price Emergency (Directions for Coal Mines) Notice commenced in Q4 FY23, which has resulted in a lower proportion of washed coal and further contributed to the higher volumes.

Production for FY24 is expected to be at the upper end of the guidance range of between 13 and 15 Mt.

The approval process in relation to the modification request submitted to the NSW Government to extend mining approval to 30 June 2030 will continue into FY25. The approval would allow NSWEC to continue mining beyond its current mining consent that expires in 2026 and proceed with a managed process to cease mining at the asset by the end of FY30.

Group & Unallocated

Nickel

Production

Western Australia Nickel 59 kt 11%

59 kt 11%

YTD Mar FY23 58 kt

FY24e 77 - 87 kt

Average realised price

US\$18,104/t **1**1%

HY24 US\$18,602/t

Production increased, despite significant wet weather impacts in Q3 FY24. Production for FY24 is expected to be in the lower half of the guidance range of between 77 and 87 kt.

As announced in our HY24 results in February 2024, we continue to review our plans for Western Australia Nickel with a focus on preserving cash. This includes optimising operations and maintenance schedules, reviewing capital plans, and reducing contractor spend and equipment hire. Our review also includes assessing the potential to place Nickel West into a period of care and maintenance and the phasing and capital spend for the development of the West Musgrave project. We expect to provide an update on the longer-term future of Western Australia Nickel by the FY24 results in August 2024.

Quarterly performance | Q3 FY24 v Q2 FY24

Copper Iron ore

466 kt +7%

Q2 FY24 437 kt

Higher concentrator grade at Escondida and concentrator throughput at Spence, partially offset by lower volumes at Copper South Australia due to planned maintenance and the commissioning of Crusher 2 at Carrapateena in Q3 FY24.

61 Mt **₽**7%

Q2 FY24 66 Mt

Lower production at WAIO as a result of wet weather, a bushfire near Yandi and the impacts of the RTP1 tie-in activity, partially offset by improved underlying mine performance.

Metallurgical coal

6.0 Mt +6%

Q2 FY24 5.7 Mt

Production increased due to improved strip ratio and yield despite unfavourable weather. Operations were temporarily suspended for safety stops following the fatality of a team member at Saraji.

Energy coal

4.1 Mt +8%

Q2 FY24 3.9 Mt

Increased production as a result of favourable mining sequence, strong production performance and a reduced proportion of washed coal.

Nickel

19 kt #4%

Q2 FY24 20 kt

Lower volumes due to planned maintenance at the Kwinana Refinery and a severe weather event in March.

The following footnotes apply to this Operational Review:

1 FY24 unit cost guidance is based on exchange rate of AUD/USD 0.67.

Appendix 1

Average realised prices¹

	Q3 FY24	YTD Mar FY24	Q3 FY24 v Q2 FY24	YTD Mar FY24 v H1 FY24
Copper (US\$/lb) ²	3.85	3.72	5%	5%
Iron ore (US\$/wmt, FOB)	106.30	104.53	(3)%	3%
Metallurgical coal (US\$/t)	281.51	272.09	(4)%	6%
Hard coking coal (US\$/t) ³	293.94	281.98	(4)%	7%
Weak coking coal (US\$/t) ³	208.91	206.38	(2)%	2%
Thermal coal (US\$/t) ⁴	116.11	120.97	(4)%	(6)%
Nickel metal (US\$/t) ⁵	16,581	18,104	(1)%	(1)%

- Based on provisional, unaudited estimates. Prices exclude sales from equity accounted investments, third party product and internal sales, and represent the weighted average of various sales terms (for example: FOB, CIF and CFR), unless otherwise noted. Includes the impact of provisional pricing and finalisation adjustments.
- 2 Does not include sales from assets acquired through the purchase of OZL.
- 3 Hard coking coal (HCC) refers generally to those metallurgical coals with a Coke Strength after Reaction (CSR) of 35 and above, which includes coals across the spectrum from Premium Coking to Semi Hard Coking coals, while weak coking coal (WCC) refers generally to those metallurgical coals with a CSR below 35.
- 4 Export sales only. Includes thermal coal sales from metallurgical coal mines.
- 5 Relates to refined nickel metal only, excludes intermediate products and nickel sulphate.

Current year unit cost guidance

	Previous	Current	
	FY24 guidance ¹	FY24 guidance ¹	
Escondida unit cost (US\$/lb)²	1.40 – 1.70	1.40 - 1.70	Unchanged
Spence unit cost (US\$/lb)	2.00 - 2.30	2.00 - 2.30	Unchanged
WAIO unit cost (US\$/t)	17.40 - 18.90	17.40 – 18.90	Unchanged
BMA unit cost (US\$/t)	110 - 116	119 – 125	Increased

- FY24 unit cost guidance is based on exchange rates of AUD/USD 0.67 and USD/CLP 810.
- 2 Escondida unit costs for FY24 onwards exclude revenue-based government royalties.

Medium term guidance

	Production	Unit cost
	guidance	guidance ¹
Escondida ²	1,200 – 1,300 kt	US\$1.30 - \$1.60/lb ³
Spence ⁴	~250 kt	
WAIO (100% basis)	>305 Mt	<us\$17 t<="" td=""></us\$17>

- 1 Medium term unit cost guidance is based on exchange rates of AUD/USD 0.67 and USD/CLP 810.
- 2 Medium term refers to an average across FY25 and FY26.
- 3 Escondida unit costs for FY24 onwards exclude revenue-based government royalties.
- 4 Average of 250 ktpa over five years on the basis that remediation of the previously identified TSF anomalies does not impact operations.

Major projects

Commodity	Project and ownership	Project scope / capacity	Capital expenditure US\$M	First production target date	Progress
Potash	Jansen Stage 1 (Canada) 100%	Design, engineering and construction of an underground potash mine and surface infrastructure, with capacity to produce 4.15 Mtpa.	5,723	End-CY26	Project is 44% complete
Potash	Jansen Stage 2 (Canada) 100%	Development of additional mining districts, completion of the second shaft hoist infrastructure, expansion of processing facilities and addition of rail cars to facilitate production of an incremental 4.36 Mtpa.	4,859	FY29	Approval announced October 2023

Exploration

Minerals exploration and evaluation expenditure was US\$311 m for YTD March 24 (YTD Mar 23: US\$239 m) of which US\$267 m was expensed (YTD Mar 23: US\$196 m).

Appendix 2

				(Quarter ende	d		Ye	ar to date	
			Mar	Jun	Sep	Dec	Mar	Mar	Mar	Var
0	and advancement		2023	2023	2023	2023	2024	2024	2023	%
	and sales summary									
By commodity	and the second control of the second									
	ayable metal unless otherwise noted.									
	figures in italics indicate that this figure has been adj Payable metal in concentrate	kt	262.4	310.7	317.3	308.7	339.1	965.1	807.2	20%
Copper	Escondida Escondida	kt	200.8	220.5	221.3	207.7	239.2	668.2	612.2	9%
		kt		32.2	38.8		39.5		93.1	
	Pampa Norte	kt kt	32.0	19.9	23.5	32.6 27.4	23.3	110.9 74.2	93.1	19%
	Copper South Australia	kt kt	29.6	36.5	32.5	39.2	33.9	105.6	101.9	4%
	Antamina		29.0						101.9	4%
	Carajás	kt	440.5	1.6	1.2	1.8	3.2 126.8	6.2	400.4	(0)0/
	Cathode	kt	143.5	165.5	139.7	128.7		395.2	433.1	(9)%
	Escondida	kt	50.8	72.5	52.0	46.9	49.0	147.9	150.1	(1)%
	Pampa Norte	kt	41.0	36.3	39.5	27.2	22.1	88.8	127.2	(30)%
	Copper South Australia	kt	51.7	56.7	48.2	54.6	55.7	158.5	155.8	2%
	Total	kt	405.9	476.2	457.0	437.4	465.9	1,360.3	1,240.3	10%
Lead	Payable metal in concentrate	t	169	146	96	105	-	201	511	(61)%
	Antamina	t	169	146	96	105	-	201	511	(61)%
Zinc	Payable metal in concentrate	t	23,612	38,822	35,669	33,475	18,409	87,553	86,226	2%
	Antamina	t	23,612	38,822	35,669	33,475	18,409	87,553	86,226	2%
Gold	Payable metal in concentrate	troy oz	57,106	96,655	89,024	94,794	79,284	263,102	153,140	72%
	Escondida	troy oz	48,954	53,503	48,063	48,633	38,955	135,651	135,592	0%
	Pampa Norte	troy oz	8,152	9,263	3,931	2,854	1,819	8,604	17,548	(51)%
	Copper South Australia	troy oz		32,736	36,228	42,051	36,427	114,706		
	Carajás	troy oz		1,153	802	1,256	2,083	4,141		
	Refined gold	troy oz	49,086	46,479	53,028	55,828	49,128	157,984	139,550	13%
	Copper South Australia	troy oz	49,086	46,479	53,028	55,828	49,128	157,984	139,550	13%
	Total	troy oz	106,192	143,134	142,052	150,622	128,412	421,086	292,690	44%
Silver	Payable metal in concentrate	troy koz	2,556	2,592	2,582	3,074	2,620	8,276	7,886	5%
	Escondida	troy koz	1,346	1,008	1,168	1,401	1,328	3,897	4,066	(4)%
	Pampa Norte	troy koz	409	412	356	388	327	1,071	906	18%
	Copper South Australia	troy koz		201	260	310	252	822		
	Antamina	troy koz	801	971	798	975	713	2,486	2,914	(15)%
	Refined silver	troy koz	277	256	261	221	248	730	833	(12)%
	Copper South Australia	troy koz	277	256	261	221	248	730	833	(12)%
	Total	troy koz	2,833	2,848	2,843	3,295	2,868	9,006	8,719	3%
Uranium	Payable metal in concentrate	t	833	813	825	986	863	2,674	2,593	3%
	Copper South Australia	t	833	813	825	986	863	2,674	2,593	3%
Molybdenum	Payable metal in concentrate	t	636	666	612	481	824	1,917	1,496	28%
	Pampa Norte	t	407	333	329	145	203	677	657	3%
	Antamina	t	229	333	283	336	621	1,240	839	48%
Iron ore	Western Australia Iron Ore (WAIO)	kt	58,725	64,074	62,004	64,460	60,299	186,763	188,457	(1)%
	Samarco	kt	1,048	1,221	1,231	1,302	1,174	3,707	3,291	13%
	Total	kt	59,773	65,295	63,235	65,762	61,473	190,470	191,748	(1)%
Metallurgical coal ¹	BHP Mitsubishi Alliance (BMA)	kt	6,929	8,477	5,601	5,717	6,035	17,353	20,543	(16)%
		kt	3,934	4,765	3,613	3,855	4,149	11,617	9,407	23%
Energy coal	NSW Energy Coal (NSWEC)	KL	3,334							
<u>-</u>	NSW Energy Coal (NSWEC) Western Australia Nickel	kt	19.6	22.0	20.2	19.6	18.8	58.6	58.0	1%

			ales	S			
	r to date	Yea		I	uarter endec	Q	
Var	Mar	Mar	Mar	Dec	Sep	Jun	Mar
%	2023	2024	2024	2023	2023	2023	2023
12%	801.4	896.1	281.6	316.5	298.0	323.1	268.4
2%	610.0	625.2	204.0	211.7	209.5	220.3	197.3
			26.9	34.9	31.3		38.7
7%	86.7	93.1				38.6	30.7
(2)0/	1047	70.9	17.1	31.6	22.2	27.6	20.4
(2)%	104.7	102.4	31.3	38.3	32.8	34.5	32.4
(7)0/	400.4	4.5	2.3	407.0	2.2	2.1	400.0
(7)%	420.4	389.6	120.1	137.6	131.9	179.9	130.3
2%	143.2	145.7	44.3	52.2	49.2	78.0	43.8
(28)%	124.0	89.8	22.1	31.1	36.6	42.4	36.0
1%	153.2	154.1	53.7	54.3	46.1	59.5	50.5
5%	1,221.8	1,285.7	401.7	454.1	429.9	503.0	398.7
(12)%	402	353	108	91	154	143	181
(12)%	402	353	108	91	154	143	181
0%	88,798	88,563	17,559	37,092	33,912	37,629	25,851
0%	88,798	88,563	17,559	37,092	33,912	37,629	25,851
68%	153,140	257,165	70,493	98,969	87,703	108,552	57,106
0%	135,592	135,651	38,955	48,633	48,063	53,503	48,954
(51)%	17,548	8,604	1,819	2,854	3,931	9,263	8,152
		109,794	28,136	47,482	34,176	44,098	
		3,116	1,583	-	1,533	1,688	
9%	138,742	151,095	41,710	55,349	54,036	49,182	47,300
9%	138,742	151,095	41,710	55,349	54,036	49,182	47,300
40%	291,882	408,260	112,203	154,318	141,739	157,734	04,406
4%	7,605	7,896	2,431	2,938	2,527	2,409	2,523
(4)%	4,066	3,897	1,328	1,401	1,168	1,008	1,346
18%	906	1,071	327	388	356	412	409
		811	189	364	258	242	
(20)%	2,633	2,117	587	785	745	747	768
(27)%	860	629	188	222	219	270	307
(27)%	860	629	188	222	219	270	307
2%	16,070	16,421	2,619	3,160	2,746	2,679	2,830
(15)%	2,082	1,770	394	895	481	1,275	683
(15)%	2,082	1,770	394	895	481	1,275	683
8%	1,578	1,709	677	468	564	594	789
(7)%	733	684	219	162	303	367	492
21%	845	1,025	458	306	261	227	297
1%	185,957	188,654	61,868	62,606	64,180	62,926	59,204
11%	3,354	3,723	1,258	1,329	1,136	1,160	1,111
2%	189,311	192,377	63,126	63,935	65,316	64,086	60,315
(12)%	19,695	17,390	6,359	5,706	5,325	8,876	6,186
	8,970	11,489	3,932	4,250	3,307	4,894	3,667
28%							
(2)%	58.7	57.7	18.8	20.0	18.9	23.4	19.6

Production

				G	uarter ended			Yea	ar to date	
			Mar	Jun	Sep	Dec	Mar	Mar	Mar	V
			2023	2023	2023	2023	2024	2024	2023	
roduction and s	ales									
y asset										
Copper										
Metals production is	payable metal unless otherwise noted.									
scondida, Chile ¹										
	Material mined	kt	106,170	95,451	87,462	95,168	103,872	286,502	318,405	(10
	Concentrator throughput	kt	33,309	30,750	33,332	34,752	31,653	99,737	100,114	(
	Average copper grade - concentrator	%	0.78%	0.93%	0.85%	0.78%	0.92%	0.85%	0.79%	
	Production ex mill	kt	210.0	228.9	225.7	217.6	238.6	681.9	637.4	
	Payable copper	kt	200.8	220.5	221.3	207.7	239.2	668.2	612.2	,
	Copper cathode (EW)	kt	50.8	72.5	52.0	46.9	49.0	147.9	150.1	(1
	Oxide leach	kt	14.7	29.3	17.5	17.0	14.4	48.9	47.5	
	Sulphide leach	kt	36.1	43.2	34.5	29.9	34.6	99.0	102.6	(4
	Total copper	kt	251.6	293.0	273.3	254.6	288.2	816.1	762.3	
	Payable gold concentrate	troy oz	48,954	53,503	48,063	48,633	38,955	135,651	135,592	-
	Payable silver concentrate	troy koz	1,346	1,008	1,168	1,401	1,328	3,897	4,066	(4
Shown on a 100% b		BHP interest 1	00%							
ampa Norte, Chil		BHP interest 1	00%	32.2	38.8	32.6	39.5	110.9	93.1	1
ampa Norte, Chil	ie			32.2 36.3	38.8 39.5	32.6 27.2	39.5	110.9	93.1 127.2	
ampa Norte, Chil	e Payable metal in concentrate	kt	32.0							(30
	Payable metal in concentrate Cathode	kt kt	32.0 41.0	36.3	39.5	27.2	22.1	88.8	127.2	(30 (9
ampa Norte, Chil	Payable metal in concentrate Cathode	kt kt kt	32.0 41.0 73.0	36.3 68.5	39.5 78.3	27.2 59.8	22.1 61.6	88.8 199.7	127.2 220.3	(30 (9 (5)
ampa Norte, Chil copper	Payable metal in concentrate Cathode	kt kt kt troy oz	32.0 41.0 73.0 8,152	36.3 68.5 9,263	39.5 78.3 3,931	27.2 59.8 2,854	22.1 61.6 1,819	88.8 199.7 8,604	127.2 220.3 17,548	1: (30 (9 (51
ampa Norte, Chil copper cold ilver	Payable metal in concentrate Cathode	kt kt kt troy oz troy koz	32.0 41.0 73.0 8,152 409	36.3 68.5 9,263 412	39.5 78.3 3,931 356	27.2 59.8 2,854 388	22.1 61.6 1,819 327	88.8 199.7 8,604 1,071	127.2 220.3 17,548 906	(30 (9 (5)
ampa Norte, Chil opper old ilver lolybdenum	Payable metal in concentrate Cathode	kt kt kt troy oz troy koz	32.0 41.0 73.0 8,152 409	36.3 68.5 9,263 412	39.5 78.3 3,931 356	27.2 59.8 2,854 388	22.1 61.6 1,819 327	88.8 199.7 8,604 1,071	127.2 220.3 17,548 906	(30 (9 (5)
ampa Norte, Chil opper old ilver lolybdenum	Payable metal in concentrate Cathode	kt kt kt troy oz troy koz	32.0 41.0 73.0 8,152 409	36.3 68.5 9,263 412	39.5 78.3 3,931 356	27.2 59.8 2,854 388	22.1 61.6 1,819 327	88.8 199.7 8,604 1,071	127.2 220.3 17,548 906	(30 (9 (5)
ampa Norte, Chil opper old ilver lolybdenum	Payable metal in concentrate Cathode Total copper	kt kt kt troy oz troy koz t	32.0 41.0 73.0 8,152 409 407	36.3 68.5 9,263 412 333	39.5 78.3 3,931 356 329	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677	127.2 220.3 17,548 906 657	(30 (£ (5 1
ampa Norte, Chil opper old ilver lolybdenum	Payable metal in concentrate Cathode Total copper	kt kt kt troy oz troy koz t	32.0 41.0 73.0 8,152 409 407	36.3 68.5 9,263 412 333	39.5 78.3 3,931 356 329	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677	127.2 220.3 17,548 906 657	(30 (5 (5 1 (100 (99
ampa Norte, Chil opper old ilver lolybdenum	Payable metal in concentrate Cathode Total copper Material mined Ore stacked	kt kt kt troy oz troy koz t kt kt	32.0 41.0 73.0 8.152 409 407	36.3 68.5 9,263 412 333 145 3,928	39.5 78.3 3,931 356 329	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677	127.2 220.3 17,548 906 657 3,934 12,059	(30 (5 (5 1 (100 (99
ampa Norte, Chil opper old Iver olybdenum	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked	kt kt kt troy oz troy koz t kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57%	36.3 68.5 9,263 412 333 145 3,928 0.53%	39.5 78.3 3,931 356 329 - 154 0.58%	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677	127.2 220.3 17,548 906 657 3,934 12,059 0.56%	(30 (§ (5 1 (100 (99
ampa Norte, Chil opper old ilver	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked	kt kt kt troy oz troy koz t kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57%	36.3 68.5 9,263 412 333 145 3,928 0.53%	39.5 78.3 3,931 356 329 - 154 0.58%	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677	127.2 220.3 17,548 906 657 3,934 12,059 0.56%	(30 (5 (5 1 (100 (99
ampa Norte, Chil opper old liver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked	kt kt kt troy oz troy koz t kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57%	36.3 68.5 9,263 412 333 145 3,928 0.53%	39.5 78.3 3,931 356 329 - 154 0.58%	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677	127.2 220.3 17,548 906 657 3,934 12,059 0.56%	(30 (9 (5 ⁻
onmpa Norte, Chilopper old lver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Copper cathode (EW) Material mined Ore stacked	kt kt kt troy oz troy koz t kt kt kt kt kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0	36.3 68.5 9,263 412 333 145 3,928 0.53% 12.2	39.5 78.3 3,931 356 329 - 154 0.58% 9.5	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677 - 154 0.58% 11.1	127.2 220.3 17,548 906 657 3,934 12,059 0.56% 37.0	(30 (5 (5 1 (100 (99 (70
onmpa Norte, Chilopper old lver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Copper cathode (EW) Material mined Ore stacked Average copper grade - stacked	kt kt kt troy oz troy koz t kt kt kt kt kt kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0	36.3 68.5 9,263 412 333 145 3,928 0.53% 12.2	39.5 78.3 3,931 356 329 - 154 0.58% 9.5	27.2 59.8 2,854 388 145	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677 154 0.58% 11.1	127.2 220.3 17,548 906 657 3,934 12,059 0.56% 37.0	(30 (5 (5 1 (100 (99 (70
onmpa Norte, Chilopper old lver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Copper cathode (EW) Material mined Ore stacked	kt kt kt troy oz troy koz t kt kt kt kt kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0	36.3 68.5 9,263 412 333 145 3,928 0.53% 12.2 25,622 5,625	39.5 78.3 3,931 356 329 - 154 0.58% 9.5	27.2 59.8 2,854 388 145 - - 1.6 25,973 4,744	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677 154 0.58% 11.1	127.2 220.3 17,548 906 657 3,934 12,059 0.56% 37.0 78,794 15,679	(30 (5 (5 1 (100 (99 (70 (12
onmpa Norte, Chilopper old lver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Copper cathode (EW) Material mined Ore stacked Average copper grade - stacked	kt kt kt troy oz troy koz t kt kt kt kt kt kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0 24,858 4,947 0.60%	36.3 68.5 9,263 412 333 145 3,928 0.53% 12.2 25,622 5,625 0.58%	39.5 78.3 3,931 356 329 - - 154 0.58% 9.5 - 27,654 5,113 0.60%	27.2 59.8 2,854 388 145 - - 1.6 25,973 4,744 0.59%	22.1 61.6 1,819 327 203	88.8 199.7 8,604 1,071 677 154 0.58% 11.1	127.2 220.3 17,548 906 657 3,934 12,059 0,56% 37.0	(30 (5 (5 1 (100 (98 (70 (12
onmpa Norte, Chilopper old lver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Coper cathode (EW) Material mined Ore stacked Average copper grade - stacked Concentrator throughput	kt kt kt troy oz troy koz t kt kt kt kt kt kt % kt kt kt kt kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0 24,858 4,947 0.60% 7,290	36.3 68.5 9,263 412 333 145 3,928 0.53% 12.2 25,622 5,625 0.58% 6,927	39.5 78.3 3,931 356 329 - - 154 0.58% 9.5 - 27,654 5,113 0.60% 8,473	27.2 59.8 2,854 388 145 - - 1.6 25,973 4,744 0.59% 7,151	22.1 61.6 1,819 327 203 - - - - - - - - - - - - - - - - - - -	88.8 199.7 8,604 1,071 677 - 154 0.58% 11.1 69,595 15,865 0.58% 23,679	127.2 220.3 17,548 906 657 3,934 12,059 0.56% 37.0	(30 (5 (5 1 (100 (99
onmpa Norte, Chilopper old lver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Copper cathode (EW) Material mined Ore stacked Average copper grade - stacked Concentrator throughput Average copper grade - concentrator	kt kt kt troy oz troy koz t kt kt kt kt kt % kt kt kt kt kt kt kt kt kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0 24,858 4,947 0.60% 7,290	36.3 68.5 9.263 412 333 145 3.928 0.53% 12.2 25,622 5,625 0.58% 6,927 0.61%	39.5 78.3 3,931 356 329 	27.2 59.8 2,854 388 145 - - - 1.6 25,973 4,744 0.59% 7,151 0.65%	22.1 61.6 1,819 327 203 - - - - - - - - - - - - - - - - - - -	88.8 199.7 8,604 1,071 677 154 0.58% 11.1 69,595 15,865 0.58% 23,679 0.64%	127.2 220.3 17,548 90.6 657 3,934 12,059 0,56% 37.0 78,794 15,679 0,66% 21,325 0,61%	(30 (31 (12 (12 (12 (12 (12 (12 (12 (12 (12 (1
ampa Norte, Chil opper old liver olybdenum erro Colorado'	Payable metal in concentrate Cathode Total copper Material mined Ore stacked Average copper grade - stacked Copper cathode (EW) Material mined Ore stacked Average copper grade - stacked Average copper grade - stacked Average copper grade - stacked Concentrator throughput Average copper grade - concentrator Payable copper	kt kt kt troy oz troy koz t kt	32.0 41.0 73.0 8,152 409 407 172 3,567 0.57% 12.0 24,858 4,947 0.60% 7,290 0.61%	36.3 68.5 9,263 412 333 145 3,928 0,53% 12.2 25,625 0,58% 6,927 0,61% 32.2	39.5 78.3 3,931 356 329 	27.2 59.8 2,854 388 145 - - 1.6 25,973 4,744 0.59% 7,151 0.65% 32.6	22.1 61.6 1,819 327 203 - - - - - - - - - - - - - - - - - - -	88.8 199.7 8,604 1,071 677 154 0,58% 11.1 69,595 15,865 0,58% 23,679 0,64% 110.9	127.2 220.3 17,548 906 657 3,934 12,059 0.56% 37.0 78,794 15,679 0.66% 21,325 0.61%	(30°) (5°) (5°) (10°) (7°) (7°) (11°

troy koz

Payable silver concentrate

1 Cerro Colorado entered temporary care and maintenance in December 2023.

Payable molybdenum

			iles	Sa			
	r to date	Yea			uarter endec	Q	
Var	Mar	Mar	Mar	Dec	Sep	Jun	Mar
%	2023	2024	2024	2023	2023	2023	2023
2%	610.0	625.2	204.0	211.7	209.5	220.3	197.3
2%	143.2	145.7	44.3	52.2	49.2	78.0	43.8
2%	753.2	770.9	248.3	263.9	258.7	298.3	241.1
0%	135,592	135,651	38,955	48,633	48,063	53,503	48,954
(4)%	4,066	3,897	1,328	1,401	1,168	1,008	1,346
7%	06.7	02.1	20.0	24.0	21.2	20.6	20.7
	86.7 124.0	93.1 89.8	26.9 22.1	34.9 31.1	31.3 36.6	38.6 42.4	38.7 36.0
(28)% (13)%	210.7	182.9	49.0	66.0	67.9	81.0	74.7
(51)%	17,548	8,604	1,819	2,854	3,931	9,263	8,152
18%	906	1,071	327	388	356	412	409
(7)%	733	684	219	162	303	367	492
(66)%	36.4	12.5	-	3.7	8.8	14.1	10.9
7%	86.7	93.1	26.9	34.9	31.3	38.6	38.7
(12)%	87.6	77.3	22.1	27.4	27.8	28.3	25.1
(2)%	174.3	170.4	49.0	62.3	59.1	66.9	63.8
(51)%	17,548	8,604	1,819	2,854	3,931	9,263	8,152
18%	906	1,071	327	388	356	412	409
(7)0/	722	604	210	100	202	267	400

1,071

18%

3%

(7)%

						Proc	luction			
				G	uarter ende	d		Yea	ar to date	
			Mar	Jun	Sep	Dec	Mar	Mar	Mar	Va
	n.		2023	2023	2023	2023	2024	2024	2023	
Copper (contin	ued) ustralia, Australia	BHP interest 1	00%							
Copper	Payable metal in concentrate	kt		19.9	26.2	30.6	27.4	84.2		
	Cathode	kt	51.7	56.7	48.2	54.6	55.7	158.5	155.8	2
	Total copper	kt	51.7	76.6	74.4	85.2	83.1	242.7	155.8	56
	Payable metal in concentrate transfer to Olympic Dam¹	kt			(2.7)	(3.2)	(4.1)	(10.0)		
	Net copper	kt	51.7	76.6	71.7	82.0	79.0	232.7	155.8	49
old	Payable metal in concentrate	troy oz		32,736	41,424	48,051	43,209	132,684		
	Refined gold	troy oz	49,086	46,479	53,028	55,828	49,128	157,984	139,550	13
	Total gold	troy oz	49,086	79,215	94,452	103,879	92,337	290,668	139,550	108
	Payable metal in concentrate transfer to Olympic Dam¹	troy oz	.,		(5,196)	(6,000)	(6,782)	(17,978)	,	
	Net gold	troy oz	49,086	79,215	89,256	97,879	85,555	272,690	139,550	95
ilver	Payable metal in concentrate	troy koz	,	201	271	323	282	876	,	
	Refined silver	troy koz	277	256	261	221	248	730	833	(12)
	Total silver	troy koz	277	457	532	544	530	1,606	833	93
	Payable metal in concentrate transfer to Olympic Dam¹	troy koz			(11)	(13)	(30)	(54)		
	Net silver	troy koz	277	457	521	531	500	1,552	833	86
Iranium	1101 011101	t	833	813	825	986	863	2,674	2,593	3
								, ,	••••	
lympic Dam										
	Material mined	kt	2,317	2,356	2,655	2,537	2,747	7,939	6,993	14
	Ore milled	kt	2,433	2,755	2,596	2,634	2,511	7,741	7,690	1
	Average copper grade	%	1.95%	2.00%	1.96%	2.12%	1.96%	2.01%	2.06%	(2)
	Average uranium grade	kg/t	0.59	0.55	0.56	0.62	0.57	0.58	0.58	C
	Copper cathode (ER and EW)	kt	51.7	56.7	48.2	54.6	55.7	158.5	155.8	2
	Refined gold	troy oz	49,086	46,479	53,028	55,828	49,128	157,984	139,550	13
	Refined silver	troy koz	277	256	261	221	248	730	833	(12)
	Payable uranium	t	833	813	825	986	863	2,674	2,593	3
rominent Hill ²										
rominent Hill	Material mined	kt		661	1,110	1,125	1,094	3,329		
	Ore milled	kt		1,228	1,652	1,800	1,473	4,925		
	Average copper grade	%		0.77%	0.85%	0.83%	0.86%	0.85%		
	Production ex mill	kt		16.3	23.8	23.6	22.3	69.7		
	Payable copper	kt		8.2	12.1	12.9	10.9	35.9		
	Payable gold concentrate	troy oz		17,432	22,031	25,779	21,019	68,829		
	Payable silver concentrate	troy koz		44	63	65	62	190		
arrapateena²		_	_	_	_	_		_	_	
аттаратесна	Material mined	kt		880	1,201	1,310	1,232	3.743		
	Ore milled	kt		856	1,230	1,307	1,232	3,763		
	Average copper grade	%		1.52%	1,230	1,507	1,52%	1.44%		
	Production ex mill	kt		30.1	37.6	49.2	45.9	132.7		
	Payable copper	kt		11.7	14.1	17.7	16.5	48.3		
	Payable gold concentrate	troy oz		15,304	19,393	22,272	22,190	63,855		
	Payable gold concentrate Payable silver concentrate	troy 62		15,304	208	258	22,190	686		

3 2023 2024 2024 2024 2023 3 2024 2024 2				ales				
10 Sep Dec Mar 2024 2024 2024 2023 2024 2023 2024 2024		r to date	Yea			uarter endec	Q	
6 22.2 31.6 17.1 70.9 5 5 46.1 54.3 53.7 154.1 153.2 4 1 68.3 85.9 70.8 225.0 153.2 4 8 34,176 47,482 28,136 109,794 254,036 55,349 41,710 151,095 138,742 8 0 88,212 102,831 69,846 260,889 138,742 8 0 219 222 188 629 860 (2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (11 153.2 16 16 16 16 16 16 16 16 16 16 16 16 16		Mar	Mar	Mar			Jun	Mar
5 46.1 54.3 53.7 1 68.3 85.9 70.8 8 34,176 47,482 28,136 2 54,036 55,349 41,710 0 88,212 102,831 69,846 2 258 364 189 629 860 0 219 222 188 629 860 62 2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (1 5 46.1 54.3 53.7 2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1		2023	2024	2024	2023	2023	2023	2023
5 46.1 54.3 53.7 1 68.3 85.9 70.8 8 34,176 47,482 28,136 2 54,036 55,349 41,710 0 88,212 102,831 69,846 2 258 364 189 0 219 222 188 629 860 (2 2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (1) 5 46.1 54.3 53.7 154.1 153.2 153.2 2 54,036 55,349 41,710 151,095 138,742 153.2 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1)								
1 68.3 85.9 70.8 225.0 153.2 4 8 34,176 47,482 28,136 2 54,036 55,349 41,710 0 88,212 102,831 69,846 260,889 138,742 8 2 258 364 189 811 0 219 222 188 629 860 (2 2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (11) 5 46.1 54.3 53.7 2 2 54,036 55,349 41,710 151,095 138,742 6 6 219 222 188 629 860 (2) 6 394 1,770 2,082 (11) 5 46.1 54.3 53.7 154.1 153.2 6 5 481 895 394 1,770 2,082 (11)							27.6	
8 34,176 47,482 28,136 2 54,036 55,349 41,710 151,095 138,742 8							59.5	50.5
2 54,036 55,349 41,710 151,095 138,742 8 2 258 364 189 811	4	153.2	225.0	70.8	85.9	68.3	87.1	50.5
0 88,212 102,831 69,846 2 258 364 189 0 219 222 188 629 860 (2 2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (1 5 46.1 54.3 53.7 2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1			109,794	28,136	47,482	34,176	44,098	
0 88,212 102,831 69,846 2 258 364 189 0 219 222 188 629 860 (2 2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (1 5 46.1 54.3 53.7 2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1		138,742	151,095	41,710	55,349	54,036	49,182	47,300
5 46.1 54.3 53.7 2 54,036 55,349 41,710 0 219 222 188 629 860 629 1,440 860 629 1,440 860 629 1,440 860 629 1,770 2,082 61 1,770 151,095 138,742 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082 629 1,770 2,082	8	138,742	260,889	69,846	102,831		93,280	47,300
5 46.1 54.3 53.7 2 54,036 55,349 41,710 0 219 222 188 629 860 629 1,440 860 629 1,440 860 629 1,440 860 629 1,770 2,082 (1 1,770 2,082 (1 1,770 151,095 138,742 1,770 2,082 (1 1,770 2,082 (1			811	189	364	258	242	
2 477 586 377 1,440 860 6 5 481 895 394 1,770 2,082 (1 5 46.1 54.3 53.7 154.1 153.2 2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1	(2	860					270	307
5 46.1 54.3 53.7 2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1							512	307
5 46.1 54.3 53.7 2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1								
2 54,036 55,349 41,710 151,095 138,742 0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1		2.082	1,770	394	895	481	1,275	683
2 54,036 55,349 41,710 0 219 222 188 5 481 895 394 151,095 138,742 629 860 (2 1,770 2,082 (1	(1							
0 219 222 188 629 860 (2 5 481 895 394 1,770 2,082 (1	(1)			53.7	54.3	461	59.5	50.5
5 481 895 394 1,770 2,082 (1	(1)	153.2	154.1				59.5 49.182	50.5 47.300
7 84 106 65 255		153.2 138,742	154.1 151,095	41,710	55,349	54,036	49,182	47,300
7 84 106 65 255	(2	153.2 138,742 860	154.1 151,095 629	41,710 188	55,349 222	54,036 219		
7 84 106 65 255	(2	153.2 138,742 860	154.1 151,095 629	41,710 188	55,349 222	54,036 219	49,182 270	47,300 307
	(2	153.2 138,742 860	154.1 151,095 629	41,710 188	55,349 222	54,036 219	49,182 270	47,300 307
	(2	153.2 138,742 860	154.1 151,095 629 1,770	41,710 188 394	55,349 222 895	54,036 219 481	49,182 270 1,275	47,300 307
	(2	153.2 138,742 860	154.1 151,095 629 1,770	41,710 188 394	55,349 222 895	54,036 219 481 8.4	49,182 270 1,275	47,300 307
	(2	153.2 138,742 860	154.1 151,095 629 1,770	41,710 188 394	55,349 222 895	54,036 219 481	49,182 270 1,275	47,300 307
6 15,524 20,045 14,644 50,213	(2	153.2 138,742 860	154.1 151,095 629	41,710 188	55,349 222	54,036 219),182 270	49
	(2	153.2 138,742 860	154.1 151,095 629 1,770	41,710 188 394 6.5 14,644	55,349 222 895 10.6 20,045	54,036 219 481 8.4 15,524	49,182 270 1,275 15.7 28,856	47,300 307
9 13.8 21.0 10.6 45.4	(2	153.2 138,742 860	154.1 151,095 629 1,770 25.5 50,213 150	41,710 188 394 6.5 14,644 38	55,349 222 895 10.6 20,045 59	54,036 219 481 8.4 15,524 53	49,182 270 1,275 15.7 28,856	47,300 307
	(2	153.2 138,742 860	154.1 151,095 629 1,770 25.5 50,213 150	41,710 188 394 6.5 14,644 38	55,349 222 895 10.6 20,045 59	54,036 219 481 8.4 15,524 53	49,182 270 1,275 15.7 28,856 87	47,300 307

Excludes prior year production previously reported and transferred during the period

² Production and sales included from 1 May 2023, following the acquisition of OZL on 2 May 2023.

			Production								
			Quarter ended Year to date								
			Mar	Jun	Sep	Dec	Mar	Mar	Mar	Var	
			2023	2023	2023	2023	2024	2024	2023	%	
Copper (continu	ied)										
Antamina, Peru											
	Material mined	kt	57,939	62,894	63,310	61,539	56,233	181,082	190,554	(5)%	
	Concentrator throughput	kt	12,349	13,897	14,246	14,824	14,312	43,382	40,479	7%	
	Average head grade - copper	%	0.88%	0.88%	0.83%	0.90%	0.83%	0.85%	0.89%	(4)%	
	Average head grade - zinc	%	1.06%	1.25%	1.17%	1.03%	0.68%	0.96%	1.05%	(8)%	
	Payable copper	kt	29.6	36.5	32.5	39.2	33.9	105.6	101.9	4%	
	Payable zinc	t	23,612	38,822	35,669	33,475	18,409	87,553	86,226	2%	
	Payable silver	troy koz	801	971	798	975	713	2,486	2,914	(15)%	
	Payable lead	t	169	146	96	105	-	201	511	(61)%	
	Payable molybdenum	t	229	333	283	336	621	1,240	839	48%	
Carajás, Brazil¹		BHP interest 10	00%								
	Material mined	kt		103	74	115	163	352			
	Ore milled	kt		100	70	119	163	352			
	Average copper grade	%		1.71%	1.91%	1.69%	1.93%	1.84%			
	Production ex mill	kt		6.6	5.2	7.6	12.9	25.7			
	Payable copper	kt		1.6	1.2	1.8	3.2	6.2			
	Payable gold concentrate	troy oz		1,153	802	1,256	2,083	4,141			

1 Production and sales included from 1 May 2023, following the acquisition of OZL on 2 May 2023.

Iron or

Iron ore production and sales are reported on a wet tonnes basis.

WAIO, Australia										
	Newman Joint Venture	kt	11,925	14,795	13,234	15,468	15,032	43,734	42,150	4%
	Area C Joint Venture	kt	25,284	28,818	25,804	26,074	24,920	76,798	78,557	(2)%
	Yandi Joint Venture	kt	4,941	5,359	3,150	4,978	4,434	12,562	16,051	(22)%
	Jimblebar ¹	kt	16,575	15,102	19,816	17,940	15,913	53,669	51,699	4%
	Total	kt	58,725	64,074	62,004	64,460	60,299	186,763	188,457	(1)%
	Total (100%)	kt	66,163	72,717	69,448	72,670	68,131	210,249	212,590	(1)%
	Lump	kt								
	Fines	kt								
	Total	kt								
	Total (100%)	kt								

1 Shown on a 100% basis. BHP interest in saleable production is 85%.

Samarco, Brazil	BHP interest 50%	BHP interest 50%									
Total	kt	1,048	1,221	1,231	1,302	1,174	3,707	3,291	13%		

	ar to date	Yea		I	uarter endec	Q	
Va	Mar	Mar	Mar	Dec	Sep	Jun	Mar
9	2023	2024	2024	2023	2023	2023	2023
(2)9	104.7	102.4	31.3	38.3	32.8	34.5	32.4
09	88,798	88,563	17,559	37,092	33,912	37,629	25,851
(20)9	2,633	2,117	587	785	745	747	768
(12)9	402	353	108	91	154	143	181
219	845	1,025	458	306	261	227	297
		4.5 3,116	2.3 1,583	-	2.2 1,533	2.1 1,688	
000	E7.057	50.000	10.175	10.170	20.050	20.020	10.001
29	57,957	59,320 129,324	19,175	19,176	20,969	20,022	18,021
29 19	57,957 128,000 185,957	59,320 129,334 188,654	19,175 42,693 61,868	19,176 43,430 62,606	20,969 43,211 64,180	20,022 42,904 62,926	18,021 41,183 59,204

1,111

1,160

1,136

1,329

1,258

3,723

3,354

11%

						Prod	uction				
				Quarter ended				Year to date			
			Mar	Jun	Sep	Dec	Mar	Mar	Mar	Va	
			2023	2023	2023	2023	2024	2024	2023		
oal											
	ported on the basis of saleable product.										
MA, Australia		BHP interes	t 50%								
	Blackwater	kt	1,107	1,505	1,295	1,182	1,070	3,547	3,550	C	
	Goonyella	kt	2,185	2,348	827	1,736	1,824	4,387	5,962	(26)	
	Peak Downs	kt	1,251	1,424	1,121	846	1,012	2,979	4,056	(27)	
	Saraji	kt	1,007	1,326	1,010	701	759	2,470	3,270	(24)	
	Daunia	kt	607	617	545	431	524	1,500	1,372	9	
	Caval Ridge	kt	772	1,257	803	821	846	2,470	2,333	6	
	Total ¹	kt	6,929	8,477	5,601	5,717	6,035	17,353	20,543	(16)	
	Total (100%)	kt	13,858	16,954	11,202	11,434	12,070	34,706	41,086	(16)	
	Coking coal	kt									
	Weak coking coal	kt									
	Thermal coal	kt									
	Total	kt									
	Total (100%)	kt									
roduction figures	include some thermal coal.										
ISWEC, Australia		BHP interes	t 100%								
	Export	kt									
	Domestic ¹	kt									
	Total	kt	3.934	4.765	3.613	3.855	4,149	11.617	9.407	23	

Nickel production is reported on the basis of saleable product.

Western Austra	Western Australia Nickel, Australia											
Mt Keith	Nickel concentrate	kt	38.8	44.5	42.7	43.8	32.4	118.9	121.0	(2)%		
	Average nickel grade	%	16.5	16.2	16.7	16.8	15.2	16.3	16.3	0%		
Leinster	Nickel concentrate	kt	68.4	71.1	66.0	63.4	60.3	189.7	183.1	4%		
	Average nickel grade	%	8.6	8.5	8.1	8.0	7.8	8.0	9.3	(14)%		
	Refined nickel ¹	kt	13.2	13.1	13.8	12.6	8.8	35.2	41.5	(15)%		
	Nickel sulphate ²	kt	0.9	0.7	0.9	0.7	1.0	2.6	2.5	4%		
	Intermediates and nickel by-products ³	kt	5.5	8.2	5.5	6.3	9.0	20.8	14.0	49%		
	Total nickel	kt	19.6	22.0	20.2	19.6	18.8	58.6	58.0	1%		
	Cobalt by-products	t	175	246	192	182	179	553	506	9%		

1 High quality refined nickel metal, includi	ng briquettes and powder.
--	---------------------------

² Nickel sulphate crystals produced from nickel powder.

				Sa	les			
		Q	uarter ended			Yea	r to date	
	Mar	Jun	Sep	Dec	Mar	Mar	Mar	Var
	2023	2023	2023	2023	2024	2024	2023	%
	E 070	7.440		1750	E 440	44.000	40.050	(40)01
_	5,372	7,448	4,497	4,756	5,410	14,663	16,859	(13)%
_	710	1,064	529	752	927	2,208	2,037	8%
	104	364	299	198	22	519	799	(35)%
	6,186	8,876	5,325	5,706	6,359	17,390	19,695	(12)%
	12,372	17,752	10,650	11,412	12,718	34,780	39,390	(12)%
	3,667	4,693	3,087	3,942	3,558	10,587	8,970	18%
_	3,007	201	220	308	3,556	902	8,970	10%
	3,667	4,894	3,307	4,250	3,932	11,489	8,970	28%
	3,007	4,034	3,307	4,230	3,332	11,403	0,370	20%
	13.0	13.1	13.2	13.0	8.6	34.8	41.3	(16)%
_	0.9	0.8	0.8	0.7	0.8	2.3	2.2	5%
_	5.7	9.5	4.9	6.3	9.4	20.6	15.2	36%
	19.6	9.5 23.4	4.9 18.9	20.0	18.8	57.7	58.7	(2)%
_	19.6	23.4	192		179		58.7 506	(5)%
	1/5	246	192	110	1/9	481	506	(5)%

³ Nickel contained in matte and by-product streams.

Variance analysis relates to the relative performance of BHP and/or its operations during the nine months ended March 2024 compared with the nine months ended March 2023, unless otherwise noted. Production volumes, sales volumes and capital and exploration expenditure from subsidiaries are reported on a 100% basis; production and sales volumes from equity accounted investments and other operations are reported on a proportionate consolidation basis. Numbers presented may not add up precisely to the totals provided due to rounding.

The following abbreviations may have been used throughout this report: billion tonnes (Bt); cost and freight (CFR); cost, insurance and freight (CIF), carbon dioxide equivalent (CO2-e), dry metric tonne unit (dmtu); free on board (FOB); giga litres (GL); greenhouse gas (GHG); grams per cubic centimeter (g/cm3), grams per tonne (g/t); high-potential injury (HPI); kilograms per tonne (kg/t); kilometre (km); million ounces per annum (Mozpa); metres (m), million pounds (Mlb); million tonnes (Mt); million tonnes per annum (Mtpa); ounces (oz); OZ Minerals Limited (OZL); part per million (ppm), pounds (lb); thousand ounces (koz); thousand ounces per annum (kozpa); thousand tonnes (kt); thousand tonnes per annum (ktpa); thousand tonnes per day (ktpd); tonnes (t); total recordable injury frequency (TRIF); wet metric tonnes (wmt); and year to date (YTD).

In this release, the terms 'BHP', the 'Group', 'BHP Group', 'we', 'us', 'our' and 'ourselves' are used to refer to BHP Group Limited and, except where the context otherwise requires, our subsidiaries. Refer to note 30 'Subsidiaries' of the Financial Statements in BHP's 30 June 2023 Annual Report for a list of our significant subsidiaries. Those terms do not include non-operated assets. Notwithstanding that this release may include production, financial and other information from non-operated assets, non-operated assets are not included in the BHP Group and, as a result, statements regarding our operations, assets and values apply only to our operated assets unless stated otherwise. Our non-operated assets include Antamina and Samarco. BHP Group cautions against undue reliance on any forward-looking statement or guidance in this release. These forward-looking statements are based on information available as at the date of this release and are not guarantees or predictions of future performance and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control and which may cause actual results to differ materially from those expressed in the statements contained in this release.

Further information on BHP can be found at bhp.com

Authorised for lodgement by: Stefanie Wilkinson **Group Company Secretary**

Media Relations

Email: media.relations@bhp.com

Australia and Asia

Gabrielle Notley

Tel: +61 3 9609 3830 Mobile: +61 411 071 715

Europe, Middle East and Africa

Neil Burrows

Tel: +44 20 7802 7484 Mobile: +44 7786 661 683

Americas

Renata Fernandez Mobile: +56 9 8229 5357

BHP Group Limited ABN 49 004 028 077

LELWZEIWSENV61SZEKO1C28

Registered in Australia

Registered Office: Level 18, 171 Collins Street

Melbourne Victoria 3000 Australia

Tel +61 1300 55 4757 Fax +61 3 9609 3015

BHP Group is headquartered in Australia Follow us on social media

Investor Relations

Email: investor.relations@bhp.com

Australia and Asia

John-Paul Santamaria Mobile: +61 499 006 018

Europe, Middle East and Africa

James Bell

Tel: +44 20 7802 7144 Mobile: +44 7961 636 432

Americas

Monica Nettleton Mobile: +1 416 518 6293