

Decarbonising steelmaking: technology options and regional pathways

Huw McKay Chief Economist
Ben Ellis Head of Marketing Strategy and Technical Marketing
Wenjun Bao Manager Steel and Nonferrous Analysis
Lee Levkowitz Manager Energy and Technology Research

Disclaimer

Forward-looking statements

This presentation contains forward-looking statements, including statements regarding: trends in commodity prices and currency exchange rates; demand for commodities; production forecasts; plans, strategies and objectives of management; closure or divestment of certain assets, operations or facilities (including associated costs); anticipated production or construction commencement dates; capital costs and scheduling; operating costs and shortages of materials and skilled employees; anticipated productive lives of projects, mines and facilities; provisions and contingent liabilities; and tax and regulatory developments.

Forward-looking statements may be identified by the use of terminology, including, but not limited to, 'intend', 'aim', 'project', 'anticipate', 'estimate', 'plan', 'believe', 'expect', 'may', 'should', 'will', 'would', 'continue', 'annualised' or similar words. These statements discuss future expectations concerning the results of assets or financial conditions, or provide other forward-looking information.

These forward-looking statements are based on the information available as at the date of this release and are not guarantees or predictions of future performance, and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control, and which may cause actual results to differ materially from those expressed in the statements contained in this release. BHP cautions against reliance on any forward-looking statements or guidance, particularly in light of the current economic climate and the significant volatility, uncertainty and disruption arising in connection with COVID-19.

For example, our future revenues from our assets, projects or mines described in this release will be based, in part, upon the market price of the minerals, metals or petroleum produced, which may vary significantly from current levels. These variations, if materially adverse, may affect the timing or the feasibility of the development of a particular project, the expansion of certain facilities or mines, or the continuation of existing assets.

Other factors that may affect the actual construction or production commencement dates, costs or production output and anticipated lives of assets, mines or facilities include our ability to profitably produce and transport the minerals, petroleum and/or metals extracted to applicable markets; the impact of foreign currency exchange rates on the market prices of the minerals, petroleum or metals we produce; activities of government authorities in the countries where we sell our products and in the countries where we are exploring or developing projects, facilities or mines, including increases in taxes; changes in environmental and other regulations; the duration and severity of the COVID-19 pandemic and its impact on our business; political uncertainty; labour unrest; and other factors identified in the risk factors discussed in BHP's filings with the U.S. Securities and Exchange Commission (the 'SEC') (including in Annual Reports on Form 20-F) which are available on the SEC's website at www.sec.gov.

Except as required by applicable regulations or by law, BHP does not undertake to publicly update or review any forward-looking statements, whether as a result of new information or future events.

No offer of securities

Nothing in this presentation should be construed as either an offer or a solicitation of an offer to buy or sell BHP securities in any jurisdiction, or be treated or relied upon as a recommendation or advice by BHP.

Reliance on third party information

The views expressed in this presentation contain information that has been derived from publicly available sources that have not been independently verified. No representation or warranty is made as to the accuracy, completeness or reliability of the information. This presentation should not be relied upon as a recommendation or forecast by BHP.

BHP and its subsidiaries

In this presentation, the terms 'BHP', the 'Company', the 'Group', 'our business', 'organization', 'Group', 'we', 'us' and 'our' refer to BHP Group Limited, BHP Group Plc and, except where the context otherwise requires, their respective subsidiaries set out in note 13 'Related undertaking of the Group' in section 5.2 of BHP's Annual Report on Form 20-F. Those terms do not included non-operated assets. Notwithstanding that this presentation may include production, financial and other information from non-operated assets, non-operated assets are not included in the Group and, as a result, statements regarding our operations, assets and values apply only to our operated assets unless otherwise stated. Our non-operated assets include Antamina, Cerrejón, Samarco, Atlantis, Mad Dog, Bass Strait and North West Shelf.

Climate change scenarios

Our portfolio is tested across a range of futures

Steel emissions have roughly doubled in the last three decades, with rising demand dominating a major efficiency uplift

Source: Worldsteel; BHP analysis.

1. Estimated emissions from direct steelmaking process (captive sintering, pelletising, coking, ironmaking, steelmaking, casting and hot-rolling) and purchased power.

2. Regional capacity-weighted average age for the integrated steel plants. This is a sample estimate, not a census of all operations.

Decarbonising steelmaking roundtable

BAU passive abatement to barely offset demand growth to 2050

Source: BHP analysis; worldsteel.

1. Steel output increase multiplied with initial base year emissions intensity.

2. Includes technological shifts, efficiency gains and passive abatement levers such as steel metallic and power mix changes from 1990 to 2019.

 Central-case scrap availability increase and business-as-usual natural-gas DRI development in gas-rich traditional markets. Note: BAU means business-as-usual.

Decarbonising steelmaking roundtable

BHP's three stage steel decarbonisation framework

Each region will transit through these stages at its own pace, based on unique local conditions faced by steelmakers

Optimisation stage 20% CO₂ reduction vs. BAU

Energy Optimisation

- Waste heat recovery
- Blast furnace top gas recovery turbines
- Coke dry quenching

Technology Improvements

• Thin slab / strip casting

Raw Material Optimisation

- Higher quality iron ore
- Premium hard metallurgical coal
- Increased scrap-to-steel ratio

Transition stage 50-60% CO₂ reduction vs. BAU

Low Carbon Fuels

- Biomass
- BF hydrogen injection

Modified Blast Furnace

- Oxygen blast furnace
- Use of metallics

End of Pipe Solutions

- CCUS within integrated steelmaking
- CCUS with alternate technologies

Green end state 90% CO₂ reduction vs. BAU

Direct Reduction

Hydrogen based DRI

New Technologies

- Direct electrolysis
- Hydrogen flash smelting

Decarbonising steelmaking roundtable 11 November 2020

Key regions in 2050 under Central and Lower Carbon cases

Global scenarios and a bottom-up view of regional pathways

Source: BHP analysis; IEA.

Note: BHP Central Energy View (Central-case) tracks 3°C temperature increase above pre-industrial level. BHP Lower Carbon View tracks approximately 2.5°C increase. IEA State Policies Scenario (STEPS) is the baseline scenario in its Iron and Steel Technology Roadmap 2020. The IEA Sustainable Development Scenario (SDS) tracks 1.5~1.65°C temperature rise.

Decarbonising steelmaking roundtable

Appendix

Most of our commodities benefit in a decarbonising world

As decarbonisation accelerates the world will require more copper, nickel, potash and steel

Snapshot of global steelmaking as of 2019

Country / Region	Crude steel (Mt)	Global share (%)	BOF / OHF share (%)	EAF / IF share (%)	DRI in EAF (%) ²	BF plant age ³ (years)
China	996	53	90	10	1	12
India	111	6	44	56	57	18
Developed APAC	199	11	71	29	1	37
Other APAC	48 ¹	3	31	69	5	6
European Union	159	8	59	41	6	45
CIS and Other Europe	140	7	61	39	9	50
North America	120	6	32	68	14	53
South America	41	2	67	33	7	34
Middle East and Africa	61	3	10	90	87	42
Global	1,875	100	72	28	21	21

Sources: worldsteel; BHP estimates.

BOF - basic oxygen furnace; OHF - open hearth furnace; EAF - electric arc furnace; IF - induction furnace.

1. With some adjustment with possible hidden induction furnace production in Other Asia to balance global steel production and demand.

2. Estimated direct reduced iron (DRI) consumption = (production + net import) / EAF production.

3. Regional capacity-weighted average age for the integrated steel plants. This is a sample estimate, not a census of all operations.

Decarbonising steelmaking roundtable

Steel emissions by 2050 for key regions

Regional steel emissions 2019 – 2050

(Mt CO₂)

Partnering with China Baowu to address Scope 3 emissions

Supporting industry decarbonisation in line with our Scope 3 goals through partnership with one of the world's largest steel makers

Steel sector decarbonisation

- First major project under BHP's Climate Investment Program
- 5 year partnership with China Baowu focussing on:
 - Capturing emissions across the integrated steelmaking process; CCUS pilot at one of China Baowu's blast furnace facilities
 - R&D in hydrogen and oxygen enrichment in blast furnaces
 - Low carbon technologies with potential to reduce carbon emission intensity by up to 60%
 - ✓ Establishing a knowledge centre for industry stakeholders

01 Reduce Reduce emission intensity at their source through process improvement and raw material optimisation

02 Capture Capture emissions across the steel making process through application of CCUS technology

