BHP
Jansen Outbound Logistics

BHP Potash Export Facility at Fraser Surrey Docks
Rail Operations Plan
June 2018

Ausenco Doc Number: 101051-03-RPT-0018

June 28, 2018
Table of Contents

1 Introduction 1
2 Description of Rail Operations 1
 2.1 Rail Layout 1
 2.2 Receiving Unit Trains 2
 2.3 Unloading Operations 2
 2.4 Departing Unit Trains 3
 2.5 Operational Durations 4
3 Capacity 4
4 PARY Track Use 5
5 Rail Works within BHP Potash Facility and the PARY 5

Table 2-1: Train Unloading Activities and Associated Times 4
Table 3-1: On Site Unit Train Unloading Capacity, By Stage 5
Table 4-1: PARY Track Usage (Using Tracks BHP 1 to BHP 3 for Unit Trains) 5
Table 5-1: Track Lengths 6

Appendix A – Rail Drawings
Appendix B – Static Graphical Depiction of Unloading Unit Trains
ACRONYMS, ABBREVIATIONS, SYMBOLS, AND UNITS OF MEASURE

<table>
<thead>
<tr>
<th>Acronym, Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREMA</td>
<td>American Railway Engineering and Maintenance-of-way Association</td>
</tr>
<tr>
<td>BC</td>
<td>British Columbia</td>
</tr>
<tr>
<td>BHP</td>
<td>BHP Billiton Canada Inc.</td>
</tr>
<tr>
<td>CN</td>
<td>Canadian National Railway</td>
</tr>
<tr>
<td>BNSF</td>
<td>Burlington Northern and Santa Fe Railway Company</td>
</tr>
<tr>
<td>CP</td>
<td>Canadian Pacific Railway</td>
</tr>
<tr>
<td>SRY</td>
<td>Southern Railway of British Columbia</td>
</tr>
<tr>
<td>FSD</td>
<td>Fraser Surrey Docks</td>
</tr>
<tr>
<td>Project</td>
<td>proposed potash export facility</td>
</tr>
<tr>
<td>PARY</td>
<td>Port Authority Rail Yard</td>
</tr>
<tr>
<td>FGT</td>
<td>Fraser Grain Terminal</td>
</tr>
<tr>
<td>CCTV</td>
<td>Closed Circuit Television</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol, Unit of Measure</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>" or in.</td>
<td>inches</td>
</tr>
<tr>
<td>ft. or ’</td>
<td>feet</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>km/h</td>
<td>kilometers per hour</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>Mtpa</td>
<td>million tonnes per annum</td>
</tr>
</tbody>
</table>
1 Introduction

Located on the south bank of the Fraser River in Surrey, British Columbia (BC), Fraser Surrey Docks (FSD) is serviced by Class 1 railways, including BNSF, Canadian National Railway (CN), Canadian Pacific Railway (CP), and local shortline Southern Railway of BC (SRY). All rail operating and design proposals involving changes to train composition and/or rail configuration have been discussed conceptually with CN and CP prior to a project permit application.

The FSD rail yard currently operates as a flat switching yard. Loaded rail cars are set out in long parallel yard tracks in the Port Authority Rail Yard (PARY). Cuts of those loaded cars are switched by FSD locomotives for unloading and then switched again into empty car cuts for departure. Cargo types include bulk, break-bulk, container, steel, agricultural, and forest products.

FSD is currently not particularly active as a rail terminal. Container traffic of four switches per day (a decade ago) has almost completely dropped off over the last few years. Current traffic averages less than one switch per day.

The Fraser Grain Terminal (FGT), which is undergoing a permitting process, will increase traffic in the PARY and at FSD by approximately one unit train per day.

This document describes BHP’s rail operations at the FSD terminal. Planning of BHP rail operations has been completed in coordination with Fraser Surrey Docks taking into account track allocation and operations of other users at the FSD site location and PARY.

2 Description of Rail Operations

Potash unit trains will originate at the Jansen mine, located 150 km east of Saskatoon. Trains will be routed through Surrey in order to avoid conflicts with the New Westminster Bridge.

The standard train length is 2,591 m (8,500 ft.) and consists of 177 x 45 ft long railcars with three to four locomotives with each rail car holding 103 tonnes of potash. The class one service providers have indicated that the unit trains will be delivered on a direct hit basis.

2.1 Rail Layout

The unit train operations and staging of trains are managed within loop tracks on the FSD terminal and adjacent tracks within the PARY. The use of the loop track prevents BHP from needing to break trains.

The rail loop will intersect with the new rail car unloading system, and will align with the existing rail infrastructure in the PARY. The rail car system will have track-length capacity to park or hold three-unit trains onsite. The track layout and total track length will accommodate a total of three trains, to allow for one train to be unloaded, while a second train is waiting to be unloaded, and a third train is leaving the site empty. The rail loop will conform to railway industrial track standards for rail materials, track ties, and power switch stands. Refer to Appendix A for the proposed BHP potash track layout.
The rail car unloading facility will comprise an enclosed dumper pit containing the receiving hopper and rail track-grated floor, over which the train cars will pass above the pit. The dumper pit will accommodate three rail cars at a time, and will allow full unit trains of enclosed potash rail cars with automated openers and closers to discharge while in motion. The rail car unloading operation will be fully automated: potash will be discharged automatically over the dumper pit from the rail cars, and, if necessary, mechanical shakers will be used to dislodge remaining potash in the rail car. Safe access to equipment for maintenance personnel will be an important design feature.

The proposed BHP operation at FSD has been designed as a fully automated and protected unloading process, and includes the following rail systems:

- “Tower Control”, from the designated central traffic control room, of the “locontrol” (GE branded remote locomotive control), train management system through the unloading process;
- Dual control power switches controlled from the designated central traffic control room;
- Automatic Equipment Identifiers installed at loop entrance and exit;
- VHF radio system for train communications with terminal rail control centre;
- Terminal wide CCTV system to manage the safe movements of the remote-controlled trains during the unloading and staging for departure.

BHP has engaged both CN and CP requesting their feedback on the rail operating plan and design.

2.2 Receiving Unit Trains

Rail service provider’s train crews will deliver the unit trains to the terminal, and upon arrival, their movement will be controlled by the FSD terminal rail operations through the PARY and into the appropriate staging location on the FSD terminal. The train control will be turned over to the terminal operations for automated unloading. If a control turnover is not possible due to terminal congestion, then the train crew will secure the train under the direction of the terminal rail operations.

The three tracks, shown as the inbound and outbound unit trail tracks that are currently identified as PARY tracks 92, 93 and 94, will become dedicated BHP unit train loop tracks controlled by the designated central traffic control room at FSD. Refer to Section 4 for details on the PARY. The terminal will have the ability to operate on a three shift schedule with the ability to receive trains at any time.

2.3 Unloading Operations

Unit trains will unload as a complete unit and will not be broken into smaller strings. The unit trains will progress through the unloading facility using locomotive slow speed control. As the rail cars traverse the rail car unloading facility, the bottom gates will open in an automated process releasing the potash over into the receiving hopper. Once the train is completely unloaded, the train will exit the loop track through the PARY where it will be parked for hand over to the rail service provider.

The nominal unloading rate of the facility is 3,700 t/h. Therefore, product unloading will occur in 5 hours. The complete train unloading process will occur in less than 10 hours when activities associated with unloading such as train hand over are included.
2.4 Departing Unit Trains

Upon completion of automated unloading, the train will be staged for departure and handed over to the rail service provider in the PARY. The unit train will complete a pre-departure procedure, which is described as follows:

- The removal of any railcars identified as unsafe to continue in the unit train consist. The site design includes a conveniently located set-out track for this purpose.
- The unit train will be remotely moved to a designated departure location. The locomotive position will facilitate safe boarding of the locomotive.
- A pre-departure inspection of the train, by a qualified employee, to identify any unloading hatch, air system, brake shoe, and coupler issues that may have presented during the unloading procedure.
- A locomotive trip inspection, to ensure any operational issues were reported to the rail service provider and have been addressed by a qualified locomotive specialist. This inspection will also confirm fuel and fluid levels. Fluid levels could be checked by locomotive engineer called to depart the unit train.
 - Fuelling will not be required as there are no dedicated locomotive fuelling locations on site.
 - Any required mechanical maintenance issues that must to be addressed would be handled by the service provider, and access to the locomotive would be at the direction of the terminal rail operations.
- A pre-departure brake test must be performed on the locomotives.
 - The locomotive engineer or qualified person shall determine that all brakes are functional.
 - When the brake test is conducted by other than the locomotive engineer, the results of the test shall be made available to the locomotive engineer and be retained on record for 92 days, based on regulatory requirements.

It is assumed that all unit trains entering the terminal have received a No.1 or 1A brake test. This will require a continuity brake test to be performed before departing the terminal.

- A freight train having received a No.1 or 1A brake test or a continuity test may only depart a terminal if:
 - The train line brake pipe pressure on the tail end of the train is within 15 psi (100 kpa) of the locomotive brake pipe pressure, and
 - Air flow to the brake pipe does not exceed 60 ft³ (1.7 m³) per minute, as indicated by the flow indicator or brake pipe leakage does not exceed 5 psi (35 kpa) in 60 seconds.
- A physical railcar inspection will be performed to ensure no damage has occurred during the unloading process, that the air system is functioning, and that there are no mechanical issues that would affect the safe departure of the train.
- The unit train will be released by the terminal rail operations and the rail road, providing pick up service, will be contacted for a crew to be dispatched.
- The crew arriving will follow all required procedures to take possession of the train and secure authority to depart safely.
2.5 Operational Durations

Table 2-1 outlines operational activities in relation to time. A detailed operational static analysis including graphical depiction of processing from train arrival to terminal, unloading and departure is included in Appendix B.

Table 2-1: Train Unloading Activities and Associated Times

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration (hours)</th>
<th>Cumulative Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit train arrives in PARY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Detraining of crew and engagement of train control</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Positioning the train for unloading</td>
<td>0.25</td>
<td>1.75</td>
</tr>
<tr>
<td>Unloading rail cars</td>
<td>5</td>
<td>6.75</td>
</tr>
<tr>
<td>Train exiting loop and positioned on departure track</td>
<td>0.25</td>
<td>7</td>
</tr>
<tr>
<td>Apply brakes and transfer to operating mode</td>
<td>0.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Allowance for unplanned activities</td>
<td>2</td>
<td>9.5</td>
</tr>
</tbody>
</table>

3 Capacity

The FSD potash terminal will initially be operated as a 4 Mtpa facility. While operating as a 4 Mtpa facility, it will receive one train every 1.7 days or approximately 4 trains per week.

The total rail track length is 12.3 km, which includes PARY tracks. The track layout and length was designed to meet the needs of three unit trains on site with the length of each unit train between 2,496 m (8,190 ft) and 2,542 m (8,340 ft) (dependant on locomotive numbers). The design length per unit train is 2,591 m (8,500 ft) resulting in a clear length of 49 m (160 ft) to 94 m (310 ft) per unit train.

When the FSD terminal is used as an 8 Mtpa facility, the amount of unit trains being received will double to receiving one train every 0.8 days or approximately 8 trains per week. As the loop track infrastructure and operation will remain the same during the 8 Mtpa scenario, it will become essential to maintain efficiently timed operations (refer to Section 2.3) and there will be further reliance on train staging in the PARY.

Table 3-1 below summarizes the onsite unloading capacity for 4 and 8 Mtpa.
Table 3-1: On Site Unit Train Unloading Capacity, By Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Unloading Capacity (Mtpa)</th>
<th>Train Capacity (t)</th>
<th>Time toUnload a Train (hours)</th>
<th>Train Arrival Frequency (days)</th>
<th>No. of Working Days</th>
<th>Number of Trains Unloaded per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>4</td>
<td>18,231</td>
<td>9.5</td>
<td>1.7</td>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>Stage 2</td>
<td>8</td>
<td>18,231</td>
<td>9.5</td>
<td>0.8</td>
<td>362</td>
<td>438</td>
</tr>
</tbody>
</table>

4 PARY Track Use

To accommodate two inbound tracks, one outbound track and 2,591 m (8,500 ft) trains, three dedicated potash tracks in the PARY are required. PARY tracks 92, 93 and 94 have been identified as potash tracks with extensions to track 94 required to accommodate the train length. Refer to Section 5 for details on rail quantities and land impacts.

The terminal track design has taken into consideration the requirements of the other users. Unit trains arriving and departing on the dedicated potash tracks will not disrupt the operations of the other users of FSD. Any current or future users of PARY tracks 92, 93 and 94 will be relocated.

As trains will extend into the PARY when staged for unloading and for departure, the expected days of PARY operations for Stages 1 and 2 are presented in Table 4-1.

Table 4-1: PARY Track Usage (Using Tracks BHP 1 to BHP 3 for Unit Trains)

<table>
<thead>
<tr>
<th>Volume to be Unloaded (Mtpa)</th>
<th>Capacity Unit (t)</th>
<th>Using PARY Tracks 92, 93 and 94 Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. of Days</td>
</tr>
<tr>
<td>Stage 1 (4 Mtpa)</td>
<td>18,231</td>
<td>219</td>
</tr>
<tr>
<td>Stage 2 (8 Mtpa)</td>
<td>18,231</td>
<td>362</td>
</tr>
</tbody>
</table>

5 Rail Works within BHP Potash Facility and the PARY

To accommodate two inbound tracks and one outbound track with 2,591m trains, the new potash facility will use existing PARY lines 92 (currently approximately 1,600 m) as the outbound track (BHP track 3) and tracks 93 and 94 (currently approximately 1,600 m and 550 m, respectively) for
BHP inbound tracks 1 and 2. PARY track 94 will require extension to the north by approximately 1,050 m. The extension of track 94 to the north will impact the Rabanco and Chemetron properties.

Tracks 92, 93 and 94 will be extended south from the existing PARY into the site loop tracks with an additional 2,100 m for each inbound track and 2,800 m for the outbound track.

Table 5-1 shows the existing PARY track lengths, extensions and track totals. The existing PARY tracks, that are proposed to be re-used, may require re-construction pending a detailed integrity inspection by BHP.

Table 5-1: Track Lengths

<table>
<thead>
<tr>
<th>Potash Tracks</th>
<th>PARY Track Numbers</th>
<th>Existing Length</th>
<th>Extension to the North</th>
<th>Extension for Loop Track</th>
<th>Total New Track</th>
<th>Total Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inbound Track 1</td>
<td>94</td>
<td>Approx. 550 m</td>
<td>1050 m</td>
<td>2100 m</td>
<td>3150 m</td>
<td>3700 m</td>
</tr>
<tr>
<td>Inbound Track 2</td>
<td>93</td>
<td>Approx. 1600 m</td>
<td>Minor changes to connect to CN line</td>
<td>2100 m</td>
<td>2100 m</td>
<td>3700 m</td>
</tr>
<tr>
<td>Outbound Track</td>
<td>92</td>
<td>Approx. 1600 m</td>
<td>Minor changes to connect to CN line</td>
<td>2800 m</td>
<td>2800 m</td>
<td>4400 m</td>
</tr>
<tr>
<td>Onsite breakout track</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>0 m</td>
<td>230 m</td>
<td>230m</td>
<td>230 m</td>
</tr>
</tbody>
</table>

Note: Lengths are approximate and final track lengths will be determined upon detailed design.

Existing SRY tracks on site are to be demolished to accommodate the new potash facilities (rail car unloading facility, product storage building and conveyors). Demolition of the SRY tracks is included in this project application.
Appendix A – Rail Drawings
NOTES:
1. ALL DIMENSIONS ARE IN METERS UNLESS NOTED OTHERWISE.
2. TRACK ALIGNMENTS ARE DESIGNED BASED ON BC LAND SURVEYOR UNDERHILL GEOMATICS LTD. DRAWING "V-121145-01-TOPO-GROUND-R5" DATED ON JANUARY 16, 2015 AND 2016 SITE AERIAL PHOTO RECEIVED ON NOVEMBER 30, 2016.
3. LOCATION OF OVERPASSES INTO CENTRE OF LARGE LOOP TO BE DEVELOPED BASED ON PHASING OF DEVELOPMENT AND COMMODITIES.

EXISTING TRACK
PROPERTY BOUNDARY
NOT FOR CONSTRUCTION

NOTES:
2. 10 mph (16 kph) TRAIN SPEED FOR LANDING AND DEPARTING.
3. 0.3 mph (0.48 kph) TRAIN SPEED FOR RAILCAR UNLOADING.
4. 6 POTASH CAR ON SITE SET OUT TRACK CAPACITY.
5. SWITCHES ARE POWERED AND AUTOMATED.
6. TRAIN UNLOADING AUTOMATED WITH PACE SETTER MODE.

PLAN SCALE: 1:3000

LEGEND
PROPOSED BHP POTASH TRACKS
EXISTING TRACKS

NOTES:
2. 10 mph (16 kph) TRAIN SPEED FOR LANDING AND DEPARTING.
3. 0.3 mph (0.48 kph) TRAIN SPEED FOR RAILCAR UNLOADING.
4. 6 POTASH CAR ON SITE SET OUT TRACK CAPACITY.
5. SWITCHES ARE POWERED AND AUTOMATED.
6. TRAIN UNLOADING AUTOMATED WITH PACE SETTER MODE.
Appendix B – Static Graphical Depiction of Unloading Unit Trains
Revision Status

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
<th>Author</th>
<th>Position</th>
<th>Title</th>
<th>Reviewer</th>
<th>Position</th>
<th>Title</th>
<th>Approver</th>
<th>Position</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13 May 2018</td>
<td>Issued for Internal Review</td>
<td>Michael Sweeney</td>
<td>Project Engineer</td>
<td>Jeffrey Neuert</td>
<td>Rail Specialist</td>
<td>Bruce Larson</td>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>17 May 2018</td>
<td>Issued for Information</td>
<td>Michael Sweeney</td>
<td>Project Engineer</td>
<td>Jeffrey Neuert</td>
<td>Rail Specialist</td>
<td>Bruce Larson</td>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>21 June 2018</td>
<td>Issued for Information</td>
<td>Michael Sweeney</td>
<td>Project Engineer</td>
<td>Jeffrey Neuert</td>
<td>Rail Specialist</td>
<td>Bruce Larson</td>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>28 June 2018</td>
<td>Issued for Information</td>
<td>Michael Sweeney</td>
<td>Project Engineer</td>
<td>Jeffrey Neuert</td>
<td>Rail Specialist</td>
<td>Bruce Larson</td>
<td>Project Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Operating Plan</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Track Layout</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>PARY Availability</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Train Configuration</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>Train Crewing</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>Operational Timing</td>
<td>4</td>
</tr>
</tbody>
</table>

Appendix A – Static Time in Motion Schematic
1 Introduction

The proposed BHP potash facility at Fraser Surrey Docks (FSD) will consist of two inbound tracks and one outbound track. Potash trains will arrive at the port via the Port Authority Rail Yard (PARY) where track modifications will have been made to accept 2,590m trains. Potash trains will pass through the PARY on dedicated potash rail tracks and into the facility where unloading will take place on a loop track. Trains will remain intact and unloaded continuously.

Trains will not require breaking for unloading, unless an upset condition exists in a car that must be cut out before unloading or departing.

This rail operations static analysis will step through normal train operations and cycle times from train arrival in the PARY through to trains departing the facility.

2 Operating Plan

2.1 Track Layout

Layout of BHP potash tracks are as per rail layout drawing 40600-LO-DWG-00146.

2.2 PARY Availability

PARY track numbers 92, 93 and 94 will be dedicated as potash tracks. 93 and 94 will be utilized for inbound trains and 92 for outbound trains.

2.3 Train Configuration

Potash trains will be made up of 177 cars with up to 4 locomotives with total length up to 2,590m depending on loco configuration.

2.4 Train Crewing

Rail service provider’s train crews will deliver the unit trains to the facility. Upon arrival at the terminal their movement will be controlled by the FSD terminal rail operations into the appropriate staging location. The rail service provider’s crew will secure the train and turn over train control to the terminal operations for automated unloading.

Upon completion of automated unloading the train will be positioned in the appropriate staging location within the PARY and handed over to the Rail Service provider’s crew for departure.

2.5 Operational Timing

Table 1 outlines the timing of activities and unloading from train arrival at the PARY to departure. Refer to Appendix A for the rail operations schematic for a graphical representation.
<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration (hours)</th>
<th>Cumulative time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit train arrives in PARY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Detraining of crew and engagement of train control</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Positioning the train for unloading</td>
<td>0.25</td>
<td>1.75</td>
</tr>
<tr>
<td>Unloading rail cars</td>
<td>5</td>
<td>6.75</td>
</tr>
<tr>
<td>Train exiting loop and positioned on departure track</td>
<td>0.25</td>
<td>7</td>
</tr>
<tr>
<td>Apply brakes and transfer to operating mode</td>
<td>0.5</td>
<td>7.5</td>
</tr>
<tr>
<td>Rail provider handover and facility departure</td>
<td>0.5</td>
<td>8</td>
</tr>
</tbody>
</table>
Appendix A – Static Time in Motion Schematic
LEGEND:

PROPOSED BHP TRACKS

TRAIN 1

TRAIN 2

NOTE:

1. TRAIN LENGTH = 2,542m DEPICTED.

2. THIS DRAWING IS INTENDED TO SHOW TRAIN SEQUENCING AND OPERATIONAL TIMING. REFER TO DRAWING 40600-LO-DWG-00146 FOR DETAILS ON THE PROPOSED POTASH RAIL.

TIME: 00:00

TRAIN 1 ARRIVES IN PARY

PLAN
SCALE: 1:3000

NOTE:

1. TRAIN LENGTH = 2,542m DEPICTED.

2. THIS DRAWING IS INTENDED TO SHOW TRAIN SEQUENCING AND OPERATIONAL TIMING. REFER TO DRAWING 40600-LO-DWG-00146 FOR DETAILS ON THE PROPOSED POTASH RAIL.
TIME: 01:30

DETRAINING OF CREW AND
ENGAGEMENT OF AUTO TRAIN CONTROL

NOTE:
1. TRAIN LENGTH = 2,542m DEPICTED.
2. THIS DRAWING IS INTENDED TO SHOW TRAIN SEQUENCING AND
 OPERATIONAL TIMING. REFER TO DRAWING 40600-LO-DWG-00146
 FOR DETAILS ON THE PROPOSED POTASH RAIL.
TRAIN 1 IS POSITIONED FOR UNLOADING
TRAIN 2 ARRIVES IN PARY

NOTE:
1. TRAIN LENGTH = 2,542m DEPICTED.
2. TRAIN'S ARRIVAL TIME WILL VARY. DEPICTED TO SHOW MULTI
TRAIN SCENARIO.
3. THIS DRAWING IS INTENDED TO SHOW TRAIN SEQUENCING AND
OPERATIONAL TIMING. REFER TO DRAWING 40600-LO-DWG-00146
FOR DETAILS ON THE PROPOSED POTASH RAIL.

LEGEND:

PROPOSED BHP TRACKS

TRAIN 1

TRAIN 2

SCALE: 1:3000
TIME: 01:45

Legend:
- Proposed BHP Tracks
- Train 1
- Train 2

Note:
1. Train Length = 2,542m depicted.
2. Train 2 arrival time will vary. Depicted to show multi-train scenario.
3. This drawing is intended to show train sequencing and operational timing. Refer to Drawing 46000-LG-DWG-0014 for details on the proposed potash rail.

Time: 06:45

Train 1 unloading complete. Train 2 staged waiting for outbound track to clear.
TRAIN 1 STAGED ON OUTBOUND TRACK FOR HANDOVER TO RAIL SERVICE PROVIDER
TRAIN 2 WAITING FOR CLEAR OUTBOUND TRACK

TIME: 07:30

NOTE:
1. TRAIN LENGTH = 2,542m DEPICTED.
2. TRAIN 2 ARRIVAL TIME WILL VARY. DEPICTED TO SHOW MULTI-TRAIN SCENARIO.
3. THIS DRAWING IS INTENDED TO SHOW TRAIN SEQUENCING AND OPERATIONAL TIMING. REFER TO DRAWING 46000-05-DWG-00146 FOR DETAILS ON THE PROPOSED POTASH RAIL.
TIME: 08:00

TRAIN 1 DEPARTS PARY

NOTE:
1. TRAIN LENGTH = 2,542m DEPICTED.
2. TRAIN 2 ARRIVAL TIME WILL VARY. DEPICTED TO SHOW MULTI TRAIN SCENARIO.
3. THIS DRAWING IS INTENDED TO SHOW TRAIN SEQUENCING AND OPERATIONAL TIMING. REFER TO DRAWING 40600-DWG-00146 FOR DETAILS ON THE PROPOSED POTASH RAIL.

LEGEND:
- PROPOSED BHP TRACKS
- TRAIN 1
- TRAIN 2

SCALE: 1:3000

BHP Potash Storage Building
SETOUT TRACK
railcar unloading station
BHP Potash tracks
CN Rail tracks