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Executive summary 

BHP Billiton Iron Ore has undertaken a Strategic Environmental Assessment (SEA) of its proposed 

mining operations within the Pilbara Expansion. The completion of the ecohydrological 

conceptualisation and change assessment involved the development and application of new 

methodologies. This document provides detail on the supporting analysis that has been undertaken 

relating to hydroclimate variability, and the key threatening processes of groundwater drawdown, 

reduced catchment area on surface water availability, surplus water, AMD source potential and 

change in the regional groundwater resource. 
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1. Introduction 

BHP Billiton Iron Ore is undertaking a Strategic Environmental Assessment (SEA) for the Pilbara 

Expansion, which comprises construction and operation of a number of new operational iron ore hubs, 

expansion of existing operational iron ore hubs, and capacity upgrades to the main Newman to Port 

Hedland rail line and associated spur lines to existing and proposed hubs. As part of the SEA, BHP 

Billiton Iron Ore has undertaken an ecohydrological change assessment related to its current 

operations (baseline conditions), as well as proposed operations associated with 30% development 

and full development change scenarios. The change assessment provides a framework for evaluating 

the potential effects of hydrological change resulting from the Pilbara Expansion, and also cumulative 

change associated with third party operations. 

The change assessment considers the effect of the Pilbara Expansion on groundwater and surface 

regimes associated with landscape-scale ecohydrological elements and ecohydrological receptors1. A 

number of key threatening processes contributing to ecohydrological change are identified and 

evaluated including groundwater drawdown, reduced catchment area on surface water availability, 

surplus water, AMD potential and change within the regional groundwater resource. As part of the 

assessment, the inherent hydroclimatic variability of Pilbara landscapes and the resistance and 

resilience of ecosystem elements in response to this variability has also been considered2. 

This document provides detail on the supporting analysis that has been undertaken relating to: 

 Characterisation of hydroclimatic variability, and  

 Development of methodologies for evaluating ecohydrological change potential associated 

with each of the key threatening processes3  

This information constitutes supporting information for the methodology descriptions provided in the 

ecohydrological change assessment report (Rev F).  

  

                                                      

1 Defined as ecological assets with a high level of hydrological dependency and connectivity. 
2 Resistance is the property of communities or populations to remain "essentially unchanged" when subject to 
disturbance (Levin, 2009). Resilience is the capacity of a system to absorb shocks and disturbances and retain the 
same level of fundamental functions (Mori et al., 2012) 

3 ‘Ecohydrological change potential’ has been adopted as a precautionary measure of the potential for hydrological 
change to cause material environmental change in the absence of targeted management. 
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2. Hydroclimatic variability 

2.1 Climate variability 

The annual rainfall variability was assessed using the long-term rainfall record from the Scientific 

Information for Land Owners (SILO) enhanced climate database. The SILO database contains the 

historical climate records for Australia and provides daily datasets for a range of climate variables from 

1 January 1889 to current. This data is suitable for a variety of applications. The database is hosted by 

the Science Delivery Division of the Queensland Government Department of Science, Information, 

Technology, Innovation and the Arts (DSITIA). Data can be obtained from the Long Paddock website 

hosted by the Queensland Government (https://www.longpaddock.qld.gov.au/silo/). 

The SILO datasets are constructed from observational records provided by the Bureau of Meteorology. 

Raw data, which may contain missing values, is processed to derive datasets which are both spatially 

and temporally complete. The methodology used for spatial interpolation of the climate data is 

described by Jeffrey et al (2001). Additional references to the SILO interpolation techniques, 

comparisons and reviews are provided on the SILO website at 

(https://www.longpaddock.qld.gov.au/silo/publications.html#Reviews) 

For the purposes of the report, a SILO rainfall record has been obtained at Ethel Gorge (23°30’S, 

119°30’E) from the “data drill” set, consisting of interpolated data available at any point on a 0.05’ by 

0.05’ grid over mainland Australia. The SILO rainfall record was initially obtained to support the Ethel 

Gorge case study assessment; however, it also provides a representative and credible example of 

climate variability across the study area. 

2.2 Streamflow variability 

The variability in streamflow rates were assessed using actual streamflow records and interpolated 

streamflow rates. For the purpose of this assessment, streamflow records for the Upper Fortescue 

River at the DoW monitoring station No 708011 (23°24’04.9”S, 119°47’39.5”E) were used as a proxy 

for streamflow variability in the study area more generally. It is recognised that runoff coefficients vary 

between catchments within the study area, with further discussion on this variability in Appendices C to 

F. Despite the variability, streamflow rates across the study area tend to exhibit broadly similar 

characteristics; as such, the streamflow records for DoW monitoring station No 708011 are considered 

representative and credible of a large catchment area with no current mining activities. 

Streamflow records for DoW station No 708011 spanning the period 1981 through to the present were 

used in the streamflow analysis. There was some additional analysis undertaken to obtain an 

interpolated streamflow record for the SILO rainfall record (1889 to current), which involved:  

 Graphical comparing annual rainfall against annual streamflow rates for the streamflow record 

between 1981 and 2013 (Fig. 1). Both rainfall and streamflow rates are expressed in terms of 

a rainfall year that extends between 1 July and 30 June. 

 Regression analysis to represent streamflow rates as a function of yearly rainfall. The best fit 

was obtained by applying a second-order polynomial function through the data record. 

Figure 1 shows the second-order polynomial fit, the derived expression and the coefficient of 

determination (R-squared) value for the regression relationship. 

 The upper boundary was derived by applying a multiplication factor of 1.5 to the best fit and 

the lower boundary by applying a multiplication factor of 0.5 to the best fit. The boundaries 

represent a confidence limit of 81%.  
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It should be noted that HYW0003M has been influenced by dewatering since 2006, with records from 

this time forwards not considered in the analysis.  

The hydrographs were normalised with groundwater levels being set at 520 m AHD as at 18 January 

1994, in order to provide a suitable comparison of relative groundwater level changes. The 

normalisation date is associated with a period of relatively low groundwater fluctuations and where 

accurate groundwater levels were available for all three monitoring bores. 

3. Depth to groundwater 

A depth to groundwater contour map of the study area was developed as part of the stygofauna habitat 

assessment.  The methodology for developing the groundwater map is provided in a memorandum to 

BHP Billiton Iron Ore (RPS, 2014e). 

The study comprised a detailed interpretation of the regional groundwater level contours based on a 

thorough review of all available groundwater level data as maintained in the BHP Billiton Iron Ore 

ioWater database, as well as public domain groundwater level data.  

The interpreted regional groundwater surface was then subtracted from a digital terrain model to 

estimate the depth to groundwater level.  The analysis included a comprehensive review process to 

ensure the estimated groundwater depth was consistent with the topographical setting. 

The depth to regional groundwater data contours shows a clear correlation with the groundwater 

ecohydrological sensitivity map which was developed based on ecohydrological units (EHUs).  Deep 

groundwater levels (>30m) are typically associated with the upper landscape units (EHUs 1, 2, 3 and 

4, corresponding to low groundwater sensitivity).  Shallow groundwater levels (<10m) are associated 

with the lower landscape units (EHUs 7, 8 and 9, corresponding to high groundwater sensitivity).  

There are exceptions such as deep groundwater levels which do occur in some lower landscape units, 

for example in the Jimblebar mining area. 

Because of the good correlation between depth to regional groundwater levels and EHUs, the 

groundwater ecohydrological sensitivity map was developed based on EHUs, to be consistent with the 

approach and methodology of the Ecohydrological Change Assessment.  It is noted though that deep 

groundwater levels do occur in some lower landscape units and the groundwater sensitivity map is 

therefore precautionary.  

4. Groundwater drawdown 

The key aspects for determining hydrological change associated with groundwater drawdown were: 

 Generic mine types, determining the hydraulic connectivity with the regional aquifers; and 

 Groundwater drawdown extent, considering the spatial extent of regional aquifer systems. 

3.1 Generic mine types 

Hydraulic connectivity between orebody aquifers and the regional groundwater system is an important 

factor in determining the magnitude of mine dewatering, and its potential influence on key ecological 

receptors (Fig. 2). The current and proposed orebodies were categorised into generic mine types with 

consideration of ore type, extent of the orebody aquifer below the watertable, and the likely degree of 

hydraulic connection with the regional aquifer and these are described in more detail in Appendices C 

to F. Distinct models were also created for channel-iron deposit (CID) orebodies to address their linear 

shape and connectivity with surface water features. 
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saturated Tertiary detritals providing significant 
hydraulic connection. Dewatering rates between 10 
and 20 ML/day with groundwater drawdown 
extending several kilometres into the regional aquifer. 

to minimise potential impacts at sensitive 
receptors. Operations often have a significant 
water surplus requiring management. 

Fully connected  Orebodies within valley with most pit walls 
intersecting saturated Tertiary detritals and 
Paraburdoo dolomite resulting in in a high degree of 
hydraulic connection. Dewatering rates may be 
substantial, typically exceeding 20 ML/day, with 
groundwater drawdown extending more than 5 km 
into the regional aquifer.   

Mitigation measures may also be necessary 
to minimise potential impacts at sensitive 
receptors. Operations often have a large 
water surplus requiring management. 

Connected Channel 

Iron Deposits 

CID orebodies within palaeochannel systems that 
form linear aquifers, which are in hydraulic 
connection with other aquifers (calcrete or alluvium). 
They are in hydraulic connection with surface water 
features that may have sensitive riparian 
communities. Dewatering rates may exceed 
20 ML/day and groundwater drawdown may extend 
along the aquifers resulting in drawdown in the 
overlying aquifers. 

Mitigation measures may also be necessary 
to minimise potential impacts at sensitive 
receptors. Operations often have a large 
water surplus requiring management. 

Disconnected Channel 
Iron Deposits 

CID orebodies within palaeochannel systems that 
form linear aquifers surrounded by low-permeability 
lithologies. They are not in hydraulic connection with 
surface water features and are disconnected from 
sensitive riparian communities. Dewatering rates may 
exceed 20 ML/day and groundwater drawdown may 
extend along the aquifer; but not resulting in change 
in shallow, overlying aquifers. 

There is limited potential for drawdown 
impacts on sensitive receptors owing to 
limited connection. Operations often have a 
large water surplus requiring management. 

Figure 3. Generic mine types for Marra Mamba and Brockman deposits (from RPS, 2014a and 

2014b) 
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3.2.2 Estimated extents for 30% and full development change scenarios   

The estimation of groundwater drawdown is based largely on the generic mine type, as detailed in 

Section 3.1. For each generic mine type, an analytical approach was adopted to approximate the key 

hydrogeological processes that influence dewatering volumes. This approach is a modified version of 

the method developed by Cashman & Preen (2013) and provides a reasonable approximation of the 

groundwater flow field related to a mine by taking into consideration: 

 circular or square pits as effectively large-diameter wells with a radius that provides an 

equivalent surface area to the average below watertable area of the pit. The groundwater flow 

field for such pits can be approximated using radial flow equations; however, such pits are rare 

across BHP Billiton Iron Ore’s existing and proposed operations; and 

 pits developed along a strike-axis  which are rectangular in shape, the long walls were 

approximated by parallel flow effects and pit ends were approximated by radial flow effects. 

The majority of BHP Billiton Iron Ore’s current and proposed operations are within this 

category. 

The following equations were applied to the evaluation of the flow fields summarised above: 

 radial flow has been assessed using the Thiem Equation for unconfined radial flow (Thiem 

1906). 

 the radius of influence of dewatering will extend over time as a function of aquifer parameters 

and time only (i.e. the radius of influence is independent of dewatering discharge). The 

expansion of the radius of influence has been assessed with the Cooper Jacob Equation 

(Cooper and Jacob, 1946) with the adoption of an appropriate aquifer storage value, as 

suggested by Cashman and Preene (2013), to reflect semi-confined conditions experienced in 

most of the Pilbara. 

 parallel flow was assessed using the Darcy Equation; whereas, the zone of influence was 

assessed using a modified form of the Darcy equation as presented in Cashman and Preene 

(2013), and Armstrong (undated). 

 For both radial and parallel flow, the expansion of the zone of influence has been calculated 

for annual increments for a maximum of ten years (i.e. the area affected by dewatering 

increases for each year mining occurs below the water table for ten years). Where dewatering 

continues beyond ten years, the area affected by dewatering after 10 years is considered the 

maximum extent of drawdown. 

 Both equations that have been used to estimate flow rates (Theim for radial flow and Darcy for 

parallel flow) assume steady-state conditions. Thus, once the zone of influence has been 

calculate for a one year increment, steady-state conditions were assumed for that year. This 

means dewatering rates and the zone of influence expand as a series of discrete annual steps 

rather than continuously. 

 The steady-state equations described above were then used to calculate where 1 m 

drawdown would occur. The estimate of the extent of the 1m drawdown zone was 

corroborated against dimensionless nomograms describing the ratio of drawdown and 

distance from the mine as described by Rao (1973) for parallel flow, and Powrie and Preene 

(1994) for radial flow. 

The method is summarised in Figure 5 (RPS, 2014c). 

Aquifer parameters used in these equations are consistent with the hydrogeology of each key element: 

 regional aquifer along-strike transmissivity of 1200 m2/day representing the dolomite/valley-fill 

aquifer; 
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 alluvial aquifer/hanging wall transmissivity 25, 50 and 250 m2/day (medium, high and very high 

cases with transmissivity varying largely as a function of pit wall saturated thickness and 

geology - this is also used to estimate the across-strike transmissivity of the regional aquifer); 

 basement transmissivity of 5 to 7 m2/day reflecting the low permeability; 

 storage coefficient is assumed to be 0.05 for all geological units subjected to dewatering; and 

 estimated dewatering pumping takes account of: 

 pumping of groundwater stored within the orebody; 

 inflow to the orebody through the foot and hanging walls (using the transmissivity for the foot 

and hanging walls); and 

 inflow at the pit ends was approximated by radial flow equations (using a transmissivity that is 

the harmonic mean of the along-strike and across-strike transmissivity for the regional aquifer). 

The zone of influence of pumping (which is a function of time) and the propagation of the 1 m 

drawdown contour develops as a function of both time and discharge. The 1 m contour has been 

adopted as an indicator of significant change to the hydrogeological regime. 

The overall schedule of dewatering, years below the watertable and so forth are based on the SEA full 

development mine schedule. The ‘typical mine‘ is based on an active mining area below the watertable 

of 300 m by 2000 m with a vertical rate of advance of 12 m/year. This approach takes no account of 

advanced dewatering. 

A water balance was also calculated at the whole of mining-area and orebody level. Water demands 

for each operation are obtained from the LoA and based on BHP Billiton Iron Ore’s operating 

experience in terms of water abstracted (kL) per tonne of ore production. Dewatering estimates 

derived from the analytical approach are consistent with dewatering volumes presented in the Central 

and Eastern Pilbara conceptualisations (RPS, 2014a and 2014b). 

The methodology did not considered the need for additional water supply pumping in areas of water 

deficit, as there may be potential opportunities for integrated water supply across the region and 

between mining areas. Similarly, there was no consideration for the possible artificial recharge of 

surplus water. 

There was no account of water level recovery following the cessation of dewatering, owing to the high 

complexity of recharge processes. In general, groundwater recharge rates are likely to be modest 

(other than in proximity to Ophthalmia Dam) and therefore natural water level recovery is likely to be 

slow suggesting timescales of many decades to centuries. Despite water levels around pits rebounding 

quickly as the watertable equilibrates, recovery is unlikely reach pre-mining levels requiring centuries 

for natural recharge processes to gradually replenish the catchment. However, areas of 

ecohydrological significance are likely to receive preferential recharge through surface water infiltration 

along creek lines and may be expected to recover more quickly than catchment-scale systems. 

The inclusion of water storage replenishment, short and long-term water level recovery and footprint 

reduction was too complex for the adopted analytical approach; however, this will be better assessed 

using a numerical modelling approach as part of ongoing validation studies under the adaptive 

management framework. This would also include the assessment of potential closure scenarios and 

management options in the context of integrated water management. As such, the groundwater 

drawdown extent presented for the full development scenario is considered inherently precautionary.  

Verification 

The analytical approach was verified with respect to four existing mines (Orebodies 23 and 25; 

Deposits C and E in the MAC mining area) that have detailed observations and/or predictions of 
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drawdown from a numerical model. The comparison between analytical extent of 1 m drawdown and 

numerical modelling are shown in Figure 5 for Orebodies 23 and 25, and Figure 6 for the MAC mining 

area. While there are constraints in the degree of detail using the analytical approach, the overall 

extent affected by at least 1 m of drawdown is of a similar order of magnitude when comparing both 

methods. 
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Figuree 5. Groundwateer drawdown: Meethod outline andd equations  
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Figure 6. Drawdown extent verification surrounding Orebodies 23 and 25 
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Figure 7. Drawdown extent verification at MAC mining area 
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RPS (2014d) suggested that a reduction in catchment runoff volume of less than 10% would be 

unlikely to be noticeable or measureable. Taking a more conservation approach, it was considered that 

less than 5% reduction in catchment runoff would have no material effect on inflow volumes to key 

ecological receptors. For the purpose of this change assessment, areas that experienced less than 5% 

reduction in surface water availability are considered to have no potential for hydrological change as 

this is within the error range of current measurement systems and an order of magnitude lower than 

natural variations.  

The determination of the upper limit or threshold for high-level change requires further hydrological 

studies. The analysis by RPS (2014) showed that the 5 year moving average runoff value has a 

standard deviation of around 50% suggesting the natural system experiences wide variation in surface 

water flows.  

The limited data on the response to variation in flow required a precautionary level of a 20% change to 

be adopted as the high classification of hydrological change for surface water. As there was no 

quantitative rationale for further segregation between 5% and 20% reduction in surface water 

availability, these areas have been rated as having a low hydrological change (Table 2). 

Table 2. Hydrological change associated with reduction in surface water availability 

Reduction in surface water availability 

(% catchment area affected) 

Hydrological change 

0 to 5 None 

5 to 20 Low 

>20 High 

4.4 Extent of hydrological change 

The degree of surface water change is expressed as a ratio of disturbance area and the upstream 

contributing catchment (footprint and downstream shadow catchment) areas inclusive of the 1 km 

buffer area. The footprint area includes open pits and OSAs, but does not consider infrastructure 

corridors such as railroads.  

A high degree of change was assigned to areas up to 1 km downstream of mining disturbance areas, 

based on the assumption that water from the upper catchment is diverted and returned to the 

downstream catchment at a distance of 1 km down-gradient being consistent with business-as-usual 

management practices. Further downstream, the degree of change was expressed as the ratio of 

ground disturbance area to catchment area. 

The following approach was applied in assigning degree of surface water change: 

 Surface water change of all major water features (Fortescue Marsh, Lake Robinson, and effect 

of the Ophthalmia Dam) was calculated based on impacted areas. 

 Surface water change classification for some catchments downstream of impacted footprints 

was based on visual estimation of the footprint area versus upstream catchment areas (if it 

was clear that the footprint was much smaller than the feeding catchment). When this was not 

the case, an estimate was applied based on GIS-based determination of the size of the 

feeding upstream catchment and the size of the affected area (footprint plus downstream 

shadow catchments within 1 km buffer around the footprint). 

 Points along the downstream creeks and streams where surface water impact changes from 

high to moderate and/or moderate to low were preferably based on locations where larger 

tributaries with low surface water change connected to the given drainage. If no such point 

was identifiable, a one-third rule was applied. 
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The process of assigning the degree of surface water change was: 

 Assign a “high” degree of surface water change to the disturbance area and 1 km downstream 

of the disturbance area 

 Assume that water from the upper catchment will be diverted and into the downstream 

catchment 1 km downstream of the disturbance area 

 Classify the surface water change at 1 km downstream of the disturbance area -> footprint 

area + downstream shadow catchment within 1 km buffer/upper catchment area 

 Where the degree of surface water change is “none” assign “none” to the remainder of the 

downstream creek lines 

 Where the degree of surface water change is low or high, do the following 

o Evaluate the degree of surface water change at the downstream portion of the 

catchment, 

o Identify the point where degree of surface change changes from high to low or low to 

none, and 

o Scale the high/low/no degree of change along the downstream creek length. 

5. Surplus water  

5.1 Background 

BHP Billiton Iron Ore currently operates two main surplus water management schemes namely: 

 Release of surplus water from the Whaleback and Eastern Ridge mining areas to Ophthalmia 

Dam MAR scheme, and  

 Release of surplus water from the Yandi mining area to the Marillana Creek. 

There are also a number of surplus water management trials including: 

 MAR through groundwater injection bores at Jimblebar mining area, 

 MAR through groundwater injection bores at MAC mining area, and  

 Release of surplus water from the Jimblebar mining area into Jimblebar Creek. 

In addition to the BHP Billiton Iron Ore Operations, a number of third party mining operations are also 

producing surplus water, which is being managed by means of controlled release to the surface water 

environment (e.g. RTIO’s Hope Downs 1 and Yandicoogina mining areas) and by means of 

groundwater injection bores (e.g. FMG’s Cloudbreak and Christmas Creek mining areas). HPPL’s Roy 

Hill is planning to manage surplus water through evaporation ponds. 

Ophthalmia Dam MAR surplus water management scheme 

The Ophthalmia Dam MAR surplus water management plan comprises the managed release of 

surplus water from a number of operations to the Ophthalmia Dam and four recharge ponds, from 

where the water infiltrates and recharges the underlying aquifers. The surplus water management plan 

has been in operation since 2006, has historically received surplus water from OB23 and currently 

receives surplus water from OB25 and Whaleback operations. The surplus water volume for FY 2013 

was 8 GL. BHP Billiton Iron Ore is planning to manage surplus water from other operations in the 

Eastern Pilbara region within the Ophthalmia Dam MAR surplus water management scheme, including 

OB31 and Jimblebar mining area.  

 

 



 

Page 19 

Marillana Creek surplus water management scheme 

The Marillana Creek surplus water management plan comprises the controlled release of surplus 

water from the Yandi mining area to the ephemeral Marillana Creek. The surplus water management 

plan has been in operation since 1991 and surplus water is currently being discharged at the Central 

and Eastern Discharge Points. Surplus water is released directly in the creek where it ponds on the 

creek bed before infiltrating and recharging the underlying aquifers.  

5.2 Methodology 

Indicative water balances were developed for each of the BHP Billiton Iron Ore deposits to identify 

which operations are likely to have a water deficit (water negative) and those likely to have surplus 

water (water positive) over the development of the Pilbara Expansion. Water balances were developed 

at the mining area scale in recognition that deficit and surplus water regimes are managed between 

operations following normal business management practices. 

The water balances were developed based on the best available information including: 

 Detailed water balance studies supported by numerical hydrological modelling for active mine 

sites; 

 Conceptual water balance studies supported by indicative mine plans but only conceptual 

understanding of the hydrological system (30% development scenario); and 

 Conceptual water balance studies supported by conceptual mine plans and understanding of 

the hydrological system (full development scenario). 

The water balance for each operation was calculated as: 

Water balance (surplus or deficiency) = Inflows (Abstraction) - Outflows (Usage) 

Positive values indicate water surplus operations for the specific time period; whereas, negative values 

indicate deficiencies and additional water will be required to meet demand. 

5.2.1 Groundwater abstraction 

Dewatering requirements were estimated as part of the analytical approach used to determine 

hydrological change associated with groundwater drawdown for the respective operations. 

Groundwater abstraction, represented as inflow into the pits, was considered in terms of inflow rate for 

a ‘generic mine type’ (Section 3.1) and the number of years of active below-the-watertable mining.  

The inflow rates for the different generic mine types were assigned as follows: 

 Isolated - less than 2 ML/day, 

 Partially connected - 2 to10 ML/day, 

 Connected - 10 to 20 ML/day, and 

 Fully connected - more than 20 ML/day. 

There was no account of the need for additional water supply options, where water balance indicate 

water deficit; impacts from artificial recharge in nearby aquifers; and advanced dewatering. 

5.2.2 Groundwater usage 

Groundwater usage was estimated based on the typical water demand of a mining operation, in terms 

of total material movement and ore movement. There was no consideration of water demand related to 

ore beneficiation (as no beneficiation has been incorporated in the SEA LoA mine schedule) and 

construction water supplies. Water demand has therefore been attributed as follows: 
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 48 ML/yr per Mtpa for ore processing, and dust suppression of the stockyard and train load-

out; and 

 18 ML/yr per Mtpa for total movement associated with dust suppression at the mine, and water 

supplies for the village and workshop. 

Water balances were developed for each of the mining areas considering the dewatering water usage 

requirement for each of the proposed orebodies. 

5.2.3 Third-party estimates 

The surplus water estimates for third-party operations were derived from public available information 

as follows: 

Surplus water = predicted dewatering rates - operations water requirements 

The details of third party abstraction and demand, obtained from a range of publicly-available 

references, are summarised in Table 3. 
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Table 3. Surplus water estimates for third party operations 
 

Operations Operator Region 2014 
Dewater 

2014-2030 
Dewater 

Water 
Demand 
(GLyr) 

Reference 
based on 

Comments 

Christmas 
Creek 

Fortescue 
Metals Group 

Fortescue 
Marsh  

29.3 N/A 7.5 Hydrogeological 
Assessment 
(FMG, 2010) 

 

Christmas 
Creek 
Expansion 

Fortescue 
Metals Group 

Fortescue 
Marsh  

0 110 25 Referral of 
revised proposal 
(FMG, 2013) 

No schedule for dewatering 
is provided. Assumed 
revised dewatering and 
water requirement rates 
apply to 2020 conditions – 
likely overstated. MAR not 
considered in assessment 

Cloudbreak 
Injection 
Increase 

Fortescue 
Metals Group 

Fortescue 
Marsh  

99 66 10 Hydrogeological 
assessment 
(FMG, 2013) 

MAR not considered in 
assessment. Increased 
dewatering rates due to 
recirculation from MAR not 
considered in assessment 

Hope Downs Hamersley 
Hope 
Management 
Services 

Central 
Region 

40 36 6 Estimate based 
on Johnson and 
Wright (2001)  

 

Hope Downs 4 Hamersley 
HMS Pty Ltd 

Fortescue 
Marsh  

2.8 8.9 3.6 PER (Strategen, 
2010) 

 

Iron Valley Iron Ore 
Holdings 

Marillana 
Creek  

0 0 N/A  No dewatering anticipated – 
AWT mining 

Koodaideri Rio Tinto Iron 
Ore 

Fortescue 
Marsh  

0 N/A 6 PER (RTIO, 
2013) 

No dewatering estimates 
stated in PER – assumed 
water deficit as large part of 
mine will be AWT 

Marillana Brockman 
Resources 

Fortescue 
Marsh  

0 7.3 7.3 LOM water 
balance 
(Aquaterra, 2010) 

Assumed mining will 
commence in 2016 

Nyidinghu Fortescue 
Metals Group 

Fortescue 
Marsh  

0 0 10 Referral (FMG, 
2012) 

No dewatering anticipated – 
AWT mining 

Roy Hill Hancock 
Prospecting 

Fortescue 
Marsh  

0 7.5 5.5 Stage 1 PER 
(Roy Hill, 2009) 

Dewatering for Stage 2 
(year 11) increase to 22 
GL/a 

Yandicoogina Pilbara Iron Marillana 
Creek  

9.5 9.5 1.0 Groundwater 
management 
Plan (Pilbara 
Iron, 2006) 

No predicted dewatering 
rates included in document. 
Dewatering estimates 
based on schematic water 
management plan  

Yandi JSW 
Oxbow 

Rio Tinto Iron 
Ore 

Marillana 
Creek  

13.4 13.4 4.0 PER (RTIO, 
2011) 

Only cumulative dewatering 
over 12 years provided – 
used average for “Option 1 
(161 GL over 12 years”. 
Water demands based on 
statement “about 30% of 
dewatering will be used for 
dust suppression, potable 
supply and processing” 

West Angelas Robe River 
Mining 

Central  
Pilbara 

N/A N/A 6 PER (EPA, 1999) Assumed water deficit 
operation as water 
requirements are met from 
borefield 

Yandi Pocket 
Billiard South 

Rio Tinto Iron 
Ore 

Marillana 
Creek  

30 30 N/A Referral (RTIO, 
2014) 

Total for Yandicoogina 53 
GL/a with 83 GL/a over 2 
years 
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6. Acid and Metalliferous Drainage (AMD) 

6.1 Risk assessment fundamentals applied to AMD risk assessment 

A risk assessment is the process used to evaluate the likelihood that adverse ecological effects may 

occur or are occurring as the result of exposure to one or more stressors, such as AMD. Risk 

assessments provide a framework for integrating and presenting scientific data and conclusions about: 

 Source of stressors - contaminants and/or physical effects that are present, 

 Pathways - the adverse influence of stressors on receptors, and 

 Receptors - environmental receptors (i.e. groundwater, surface water bodies, flora and fauna) 

that are affected by the stressors. 

A risk can only occur if at any point in time sources and receptors are linked by pathways. 

The assessment of potential AMD impacts was based upon a conceptual understanding of the factors 

that contribute to overall AMD risk. The assessment is concerned principally with the assessment of 

the source term in the source-pathway-receptor model. At this time, uncertainties around pathways 

and receptors preclude their inclusion in the regional model. This is in part due to the iterative nature of 

risk assessment and selection of appropriate overburden management strategies, which are in part 

based upon the outcomes of the source risk assessment process.  

Many deposits do not have the planning details for pathways and receptors to be characterised at this 

time, or data in support of the characterisation is currently being gathered, or data is not yet in a 

suitable format for inclusion in this preliminary risk assessment. These uncertainties are currently 

being addressed as part of BHPBIO’s overarching ecohydrological change assessment.   

The AMD risk assessment specifically assesses the likelihood of encountering potentially acid forming 

(PAF) mine overburden, or exposed PAF surfaces within the excavated mine voids. Such material is 

likely to present as high risk material in AMD assessment in terms of leaching of constituents of 

interest particularly acidity, metals and salinity. PAF material is therefore of particular interest as when 

disturbed it presents the source of risk for potential ecohydrological change.  

The characteristics of disturbed geological material that were considered to be the basis of AMD risk 

were:  

 leachable content of AMD in the source term, and 

 potential for leaching to occur based on the materials properties.  

The characteristics of the material may be divided into the following key attributes of the material and 

the disturbance created when the material is mined (Table 4).  

Table 4. Factors controlling consequence and likelihood of AMD risk 

Consequence Term – Leachable Content  Likelihood Term – Release Potential 

Magnitude of disturbance (tonnes) Residual reactivity (degree of in-situ weathering, qualitative 

assessment)  

Leachable solid concentration of COI (mg/kg) Change in environment (undisturbed to disturbed condition, 

qualitative assessment)  

Kinetics of release (mg/y, or qualitative assessment) 

Note that COI = constituent of interest to AMD studies (e.g. metals, sulfate). 
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6.2 Input data  

Input data available for use in the risk assessment were: 

 deposit type (BKM, MM, CID), 

 tonnes of material mined, 

 ore and overburden classifications, 

 preliminary PAF classifications, based upon total sulfur content of 0.2% S from assay, and  

 information on whether material was mined from above or below the watertable.  

6.3 Additional supporting information 

Site and area specific AMD risk assessments have been undertaken across existing BHP Billiton Iron 

Ore operations to assess the likelihood of AMD generation. Summary outcomes of these studies are 

outlined in Table 5.  

Table 5. Key attributes and measures of AMD source risk 

Attribute Significance Measure applied to strategic review 

Magnitude of disturbance.  For similar rock types, a larger magnitude of 
disturbance will produce a larger quantity of 
overburden and exposed pit will rock, with 
potentially leachable and reactive content, 
compared to a deposit with a smaller 
magnitude of disturbance.  

Tonnage of mined material (overburden and ore); 
providing a measure of the quantum of overburden  
that will remain on site and the scale of the mine void 
wall exposure. 

Leachability of 
constituents of concern 
(acidity, salinity, elements 
of environmental 
importance). 

Rock types vary in their chemical content and 
the leachability of those chemicals. 

Iron ore resources are categorised into three primary 
host rock types (Brockman, Marra Mamba or Channel 
Iron Deposit); these rock types have varying chemical 
content and leachability (e.g., Brockman deposits can 
be associated with Mount McRae Shale which may be 
highly reactive and leachable).  

Reactivity of disturbed 
material (degree of 
weathering). 

Unweathered (unoxidised) mined overburden 
and exposed pit wall rock is more reactive 
than weathered (oxidised) material, having a 
greater potential for release of acid, metals 
and dissolved salts. 

Tonnage of below watertable mined material; 
overburden and exposed pit wall rock from below the 
watertable is generally unweathered (unoxidised). 

 

The studies also provided a useful validation of likely ratings by analysing the percentage of material 

classified as PAF within the existing mining models with respect to the different host rock types. The 

following AMD risk assessments were considered as part of the assessment: 

 Earth Systems (2013) - Preliminary Acid and Metalliferous Drainage Risk Assessment for 

Orebodies 17 / 18 Mining Operations; 

 Earth Systems (2014) - Preliminary AMD Risk Assessment at Orebody 19; 

 Earth Systems (2014) - Preliminary AMD Risk Assessment at Orebody 31; 

 ERM (2012) - Jimblebar Hub: Preliminary Acid and Metalliferous Drainage Risk for the 

Development of the South Jimblebar, Hashimoto, and Wheelarra Hill Deposits, Pilbara, WA; 

 GHD (2014) - Draft Yandi Operations Preliminary Risk Assessment for Acid and Metalliferous 

Drainage; 

 Klohn Crippen Berger (2014) – MAC mining area, Preliminary AMD Risk Assessment; 
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 SRK (2013) - Orebodies 29, 30 and 35: Preliminary Acid and Metalliferous Drainage Risk 

Assessment; and 

 SRK (2014) - Draft Orebodies 23 and 25: Preliminary Acid and Metalliferous Drainage Risk 

Assessment. 

6.4 Generation of risk criteria and variables for the risk assessment 

Following a review of the available data, supporting evidence and following expert peer review (Golder, 

2014); the assessment of AMD risk considered two key risk criteria/variables: 

 tonnage of material disturbed below the watertable (as a proxy for total leachable content, or 

consequence)  

 host deposit type (as a proxy for relative PAF/high AMD risk, or likelihood). 

The rational for the use of each variable, and the scaling used to define the ‘significance’ of each 

variable is described below.  

Leachable content was assessed to be a function of the magnitude of disturbance of the material of 

interest and the leachable content of AMD (concentration) in the source the material. This is likened to 

the consequence term of a risk assessment (Table 8).  

No assessment of relative leachability of rock type was included, because data is currently not 

available at the regional scale. The leachable content of PAF material is assumed to be sufficiently 

high to merit the assumption of high source-term risk in AMD risk assessments. Therefore the scalar 

for leachable content of PAF material is based upon the tonnage of disturbed material (ore and 

overburden) only. 

The leachable content of the rock is reduced by the degree to which the material has already leached 

in situ, termed the degree of weathering. An assumption that weathered material contains markedly 

less leachable content than fresh, unweathered material has been made. Material in the oxidised zone 

/ weathered zone; therefore, has been assumed to represents lower risk material in AMD risk 

assessments; this is based on the general trends in AMD studies of overburden. The assessment of 

magnitude of disturbance therefore considers tonnages of ore and overburden mined below the 

watertable only as the consequence term. 

The degree of weathering was approximated from the pre-mining condition with respect to the 

watertable - material from below the watertable was used as a proxy for un-weathered, and therefore 

material with higher AMD risk. 
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• a particular deposit type generates different magnitudes of AMD risk, based on the amount of 

PAF classified material likely to be disturbed  

• potentially acid forming (PAF) material is likely to represent high AMD risk material since 

leachability of constituents of concern (e.g. metals, sulfate) are enhanced under acidic 

conditions. 

The deposit type has been used to provide an estimate of the proportion of PAF material that will be 

present.  

6.7 Derivation of the significance scale for host geology 

The review of data from the WAIO mine models provided information on which a significance scale for 

percentage (%) of PAF material could be based. The data is displayed in Figure 14. 

Figure 15. Relationship between % PAF material and host geology of deposit. 

From the data review, the following conclusions were drawn for the likelihood of encountering PAF 

overburden and summarised in Table 7.  

 Brockman Formation: Range of PAF in AMD risk assessments were 0.03 to 6% (most mines will 

have Possible AMD potential) 

 Marra Mamba Formation: Range of PAF in AMD risk assessments were 0.3 to 6% (most mines will 

have Unlikely AMD potential) 

 CID: Range of PAF in AMD risk assessments were 0 to 0.01% (most mines will have Rare 

potential) 
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Table 7. PAF characteristics of host rock geology 

Likelihood of acid generation Descriptor Host rock geology 

High May happen Brockman 

Medium May happen sometime Marra Mamba 

Low May happen in extreme circumstances Channel Iron Deposit 
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7. Ability to manage potential pit lake impacts through backfilling  

7.1 Background 

As part of normal business overburden optimisation, a portion of overburden is typically placed in the 

mine void, which is referred to as infilling. Provided that is does not interfere with the mining 

operations, infilling is typically more economical than placing the overburden outside the mine pit 

(referred to as ex-pit overburden). The proportion of normal business infilling varies from pit to pit and 

depends on many factors such as the geometry of the mine void and mine scheduling, but typically, 

between 30% and 60% of overburden material are used for infilling.  

After the cessation of dewatering operations, groundwater levels will recover to pre-mining 

groundwater levels. In many cases, normal business infilling will be at an elevation higher than pre-

mining groundwater levels and as a result, there will be no potential for pit lake development. In other 

cases, normal business infilling will be at an elevation lower than pre-mining groundwater levels and 

the natural recovery of groundwater levels will result in the formation of a pit lake.  

Backfilling, in addition to normal business infilling, may be considered to meet closure objectives. One 

of the closure objectives could be the prevention of pit lake formation if there is a potential for 

unacceptable impact on the environment.  

A detailed understanding of the source, pathway and receptor components are required to assess the 

potential pit lake impacts. Similar to the AMD assessment, many deposits do not have the planning 

details for pathways and receptors to be characterised at this time, or data in support of the 

characterisation is currently being gathered, or data is not yet in a suitable format for inclusion in this 

preliminary risk assessment. These uncertainties are currently being addressed as part of BHP Billiton 

Iron Ore’s overarching ecohydrological change assessment 

The pit lake assessment is concerned principally with the assessment of the source term in the source-

pathway-receptor model. For the purposes of the study, BHP Billiton Iron Ore assessed the ability to 

manage potential pit lake impacts through backfilling, in addition to normal business infilling.  

For many of the proposed pits where there is a potential for pit lake formation, there are enough ex-pit 

overburden material to backfill the mine void to an elevation above pre-mining groundwater levels. For 

others, there may be insufficient ex-pit overburden material to backfill the mine to above groundwater 

levels and overburden from other parts of the mining area may be used for backfilling to meet mine 

closure objectives. In some cases, there may be insufficient overburden across the whole mining area 

to backfill mine voids to above pre-mining groundwater levels. 

Based on the above, BHP Billiton Iron Ore identified five categories in terms of the ability to manage 

potential pit lake impacts through backfilling (Table 8). 
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Table 8. Ability to manage potential pit lake impacts through backfilling 

Category Description Potential for pit lake formation 

Above the watertable mine 
voids. 

Mining will only occur above the watertable and the 
watertable will not be intercepted during mining.  

No potential for pit lake formation. 

Infilled pit void through normal 
business overburden 
scheduling. 

Mining will take place below the watertable, but the 
mine void will be infilled with overburden to an 
elevation above pre-mining water levels through 
normal business overburden scheduling.  

No potential for pit lake formation through 
normal business overburden scheduling. 

Adequate ex-pit overburden 
available to infill pit void. 

Mining will take place below the watertable and 
normal business infilling will be to an elevation below 
the pre-mining water levels. However, there is 
adequate ex-pit overburden material to infill the mine 
void to above pre-mining water levels if required to 
meet the closure objectives. 

Potential for pit lake formation. Sufficient ex-
pit overburden is available to backfill the 
mine void and prevent pit lake formation, if 
required to meet the closure objectives. 

Mining area based overburden 
scheduling required to backfill 
pit void. 

Mining will take place below the watertable and 
normal business infilling will be to an elevation below 
the pre-mining water levels. Mining area based 
overburden scheduling is required to infill the mine 
void to above pre-mining water levels if required to 
meet the closure objectives. 

Potential for pit lake formation. Mining area 
based overburden scheduling is required to 
infill pit void and prevent pit lake formation, if 
required to meet the closure objectives. 

Insufficient overburden 
available in mining area to 
backfill pit void.  

Mining will take place below the watertable and 
normal business infilling will be to an elevation below 
the pre-mining water levels. There is not adequate 
overburden in the mining area to infill the mine void to 
above pre-mining water levels if required to meet the 
closure objectives. 

Potential for pit lake formation. There is not 
adequate overburden in the mining area to 
prevent pit lake formation. 

In the context of BHP Billiton Iron Ore pit lake management framework, increased management focus 

is required at mining areas where there is not adequate overburden material available to infill / backfill 

mine voids and prevent the formation of pit lakes, if required to meet the closure objectives. 

7.2 Methodology 

Input data available for use in the assessment were: 

• tonnes of material mined at each deposit, 

• ore and overburden classifications, 

• BWT and AWT classifications, and 

• Density of the ore and overburden at each of the deposits. 

Figure 15 shows the conceptualisation of the methodology applied to assess the ability to manage 

potential pit lake impacts through infilling.  
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8. Regional change in groundwater resources  

Consumptive water use in the Pilbara is largely dependent on the development and utilisation of 

groundwater resources. Most groundwater abstraction is related to mine dewatering and is primarily 

used for ore processing, beneficiation and dust suppression.  

There are substantial stored groundwater resources within the regional aquifer comprising saturated 

detrital and weathered dolomite of the Wittenoom Formation. Outside of this regional aquifer, 

groundwater resources are highly localised within fractured and mineralised zones that are more 

difficult to estimate at a regional scale. As groundwater recharge is intermittent, variable and site-

specific, it is readily exceeded by groundwater abstraction resulting in progressive depletion of 

groundwater storage at a catchment level. 

A methodology was developed to provide a regional appreciation of groundwater storage depletion on 

groundwater resources. The measure of storage depletion considers volumetric change within the 

groundwater resource. This provides an order-of-magnitude understanding rather than a site-specific 

impact, as this is addressed in the groundwater drawdown approach (discussed in Section 3.1).  

8.1 Stored groundwater resources 

Stored groundwater resources were estimated for the regional aquifer using the areal extent multiplied 

with a saturated thickness of 50 m and a specific yield of 0.05 (or 5%). The areal extent of the regional 

aquifer was based on aquifer mapping by RPS (2014a and 2014b), as well as 1:250 000 geological 

data obtained from Geological Survey of Western Australia. The additional data was required to 

delineate the aquifer in the Fortescue Marsh and Marillana Creek Regions. The saturated thickness 

was determined from interpreted cross sections in RPS (2014a and 2014b), and MWH (2014a); while, 

the specific yield was estimated from aquifer parameters provided in the same reports. 

Groundwater storage in the regional aquifer for each region is provided in Table 9. This estimate is 

only related to the regional aquifer and is considered conservative with respect to stored groundwater 

resources across the entire development area. 

Table 9. Groundwater storage in the regional aquifer  

Region  Regional aquifer area (km2)  Regional aquifer storage (GL) 

Central Pilbara  1039   2 600 

Eastern Pilbara  1873   4 700 

Fortescue Marsh  5360  13 400 

Marillana Creek   523   1 300 

Total  22 000 

8.2 Change in groundwater storage 

The change in groundwater storage has been assessed in terms of a water balance with inflows 

associated with recharge and 50% return of surplus water, and outflows associated with dewatering 

abstraction and any additional water required to address deficiencies. This can be summarised as: 

Change in storage = Inflows (Recharge + 50% Surplus) - Outflows (Dewatering Abstraction + 

Deficiency) 

Using this approach, a positive change in groundwater storage indicates that the groundwater 

resource will not be impacted but rather has potential for additional recharge or inputs; whereas, a 
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negative change suggests groundwater storage depletion. This storage depletion in each region has 

been expressed in terms of a percentage change with respect to regional aquifer storage for 2014 

(baseline conditions) to 30% development scenario and 2014 (baseline conditions) to full development 

scenario. 

A summary of the methodology used to estimate the individual components of the water balance is 

provided below. 

8.2.1 Groundwater recharge 

Despite the intermittent and variable nature of groundwater recharge, there has been an attempt to 

determine likely volume of recharge contribution. This approach utilised data from the water balance 

calculations detailed in RPS (2014a and 2014b) for Central and Eastern Pilbara regions, and MWH 

(2014b) for Fortescue Marsh region. Whereas, recharge estimation for the Marillana Creek region was 

determined using a streamflow infiltration approach owing to an inconsistent methodology applied by 

Golder Associates (2014).  

Groundwater recharge was only included in the water balance for years when there was active mining 

in the respective area. It was estimated for the different regions as follows:  

Central Pilbara 

RPS (2014a) suggested that diffuse groundwater recharge from rainfall was minimal and that only 

recharge associated with streamflow events in key receiving areas could be estimated. They estimated 

groundwater recharge associated with Coondewanna Flat at 2.8 GL/yr and Weeli Wolli Spring at 

2.7 GL/yr.  

Eastern Pilbara 

Groundwater recharge in the Eastern Pilbara region occurs in a number of ways. Based on the water 

balance in RPS (2014b), there is direct recharge along Fortescue River and Homestead Creek of 

5 GL/yr for both systems; seepage from Ophthalmia Dam is 18.25 GL/yr; discharge to the infiltration 

ponds is 3.6 GL/yr; and diffuse recharge throughout the broader catchment is 0.7 GL/yr. 

Marillana Creek 

The water balance for Marillana Creek by Golder Associates (2014) utilised a different methodology of 

recharge estimation and was considered not representative. It was decided that groundwater recharge 

could be estimated using an infiltration approach that has been previously used for Marillana Creek 

(BHP Billiton, 2014b). Recharge was estimated at 1.8 GL/yr, based on a 10 m aquifer width multiplied 

by a 44 000 m aquifer length, four days of infiltration and an infiltration rate of 1 m/day. 

Fortescue Marsh 

The water balance presented in MWH (2014a) suggested there is 21 GL/yr of groundwater throughflow 

from the Chichester Range (over a 170 km length) and 7 GL/yr of groundwater throughflow from the 

Hamersley Range (over a 125 km length) that contributes towards Fortescue Marsh. Groundwater 

throughflow can be considered as a proxy for groundwater recharge, as it represents groundwater 

infiltration at the margins and coincides with the proposed mining areas. 

As the proposed Roy Hill operation covers 42 km long of the Chichester Range, recharge can be 

estimated at 5.2 GL/yr being 42 km of the 170 km multiplied by 21 GL/yr. Using the same approach for 

the proposed operations along the Hamersley Range, groundwater recharge related to Marillana is 

1.1 GL/yr (being 20 km of the 125 km multiplied by 7 GL/yr); Mindy is 1.1 GL/yr (20 km) and Coondiner 

is 0.6 GL/yr (10 km). 
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8.2.2 Groundwater abstraction  

Annual volumes of groundwater abstraction were determined for each region using the approach 

outlined in Section 5.2.  

8.2.3 Water surplus and deficiency 

Annual volumes of water surplus and deficiency were determined by deducting groundwater 

abstraction from groundwater usage. Situations of surplus water occur where abstraction is greater 

than usage, and the reverse is the case for periods of water deficiency. These periods of water 

deficiency represent an outflow or loss from the water balance, and suggest that an additional water 

source will be required.  

8.2.4 Third-party requirements 

The water demand related to existing and proposed third-party operations were determined from 

publically-available reports and documents. Table 10 details the likely water requirements for these 

third-party operations and length of abstraction to provide an estimate of water demand for the periods 

for 2014 (baseline conditions) to 30% development scenario and 2014 (baseline conditions) to full 

development scenario. The estimates were used to provide a cumulative perspective on potential 

change in the regional groundwater regime throughout time. 
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Table 10. Estimated water demand for third-party operations - 2014 (baseline conditions) to 30% development scenario and 2014 (baseline conditions) to full 

development scenario 

Operations Operator Region Water 
Requirement 

(GL/yr) 

Year of 
closure 

Depletion - 
2014 to 30% 
development

(GL) 

Central 
Pilbara 
region 

Fortescue 
Marsh 
region 

Marillana 
Creek 
region 

Depletion - 
2014 to full 

development 
(GL) 

Central 
Pilbara 
region 

Fortescue 
Marsh 
region 

Marillana 
Creek 
region 

Christmas Creek FMG Fortescue Marsh 7.5 2018 30 30 30  30  

Christmas Creek 
Expansion 

FMG Fortescue Marsh 25 2026 300 
 

300 
 

300  300  

Cloudbreak 
Injection Increase 

FMG Fortescue Marsh 10 2025 110 
 

110 
 

110  110  

Hope Downs 1 HDMS Central Pilbara 6 2026 72 72 
  

72 72   

Hope Downs 4 HDMS Fortescue Marsh 3.6 2031 0 0 0  0  

Iron Valley IOH Marillana Creek n/a 0 0   0 

Koodaideri RTIO Fortescue Marsh 6 2044 96 96 180  180  

Marillana BRL Fortescue Marsh 7.3 2034 116.8 116.8 146  146  

Nyidinghu FMG Fortescue Marsh 10 2034 160 160 200  200  

Roy Hill HPPL Fortescue Marsh 5.5 2034 88 88 110  110  

Yandicoogina 
(including Oxbow 
and Billiards) 

RTIO Marillana Creek 30 2032 480 
  

480 540   540 

West Angelas RTIO Central Pilbara 6 2028 84 84 84 84   

Totals 
 

1536.8 156 900.8 480 1772 156 1076 540 
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