TABLE OF CONTENTS

1 SCOPE ... 2
 1.1 Responsible ODC personnel ... 3
 1.2 Review and modification .. 3
2 DETAILED PROCEDURE ... 5
 2.1 Tailings storage facility ... 5
 2.2 Evaporation ponds ... 9
 2.3 Mine water disposal pond ... 9
 2.4 Site and Olympic Village sewage ponds .. 10
 2.5 Resource Recovery Centre .. 10
 2.6 Miscellaneous hazardous wastes ... 11
 2.7 Low-level radioactive waste ... 12
 2.8 Rock storage facility ... 13
3 COMMITMENTS .. 14
 3.1 Reporting .. 14
 3.2 Summary of commitments ... 14
4 DEFINITIONS AND REFERENCES .. 15
 4.1 Definitions .. 15
 4.2 References .. 15
 4.3 Bibliography ... 15
5 APPENDIX A: AMENDMENTS TO MONITORING PROGRAM – WASTE FY13 16
1 SCOPE

This Monitoring Program (MP) describes environmental monitoring activities undertaken by BHP Billiton Olympic Dam Corporation Pty Ltd (ODC) for the purpose of quantifying any change in the extent or significance of impacts of the Olympic Dam operation on soil and groundwater from waste facilities, assessing the performance of the control measures employed to limit these impacts, and meeting relevant legal and other requirements.

This MP addresses a number of distinct elements of waste monitoring. For each element, the MP sets out some background information, the purpose of the monitoring and the deliverables which are produced as a result of the monitoring. The MP also includes a description of the methods for measuring achievement of compliance criteria and the movement of trends towards leading indicators (where applicable).

This MP addresses the monitoring of environmental aspects such as the release of contaminants to land and groundwater from site waste facilities, which through their interaction with the environment have the potential to cause impacts. The process of quantifying any change in the extent or significance of impacts of the Olympic Dam operation on groundwater is described in the Groundwater Monitoring Program.

The definition of waste within this MP is any solid, liquid or gas (or combination thereof) that is left over, surplus or an unwanted by-product from business or domestic activity, regardless of economic value. Olympic Dam produces a number of solid and liquid waste streams, some of which are characterised by significant metal concentrations, low-level radioactivity and/or low pH values. The facilities to manage these waste streams are described in Table 1-1.

Table 1-1: Summary of Olympic Dam waste management facilities

<table>
<thead>
<tr>
<th>Waste management facility</th>
<th>Facility description</th>
<th>Waste stream(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailings Storage Facility (TSF)</td>
<td>Three cells (Cells 1, 2, 3) totalling 190 hectares (ha) in area and 28.5-30m in height</td>
<td>Miscellaneous hazardous and low-level radioactive wastes (LLRW).</td>
</tr>
<tr>
<td></td>
<td>One cell (Cell 4) totalling 190ha in area and 24 metres (m) in height</td>
<td>Tailings slurry from the metallurgical plant.</td>
</tr>
<tr>
<td></td>
<td>One cell (Cell 5 East) totalling 260 ha in area and 8 m in height</td>
<td>Miscellaneous hazardous and LLRW.</td>
</tr>
<tr>
<td>Evaporation Ponds (EPs)</td>
<td>Five ponds (EP 1, 2, 3, 4 and 5) comprising 8 cells and totalling an area of 144 ha.</td>
<td>Excess liquor from the TSF and the metallurgical plant.</td>
</tr>
<tr>
<td></td>
<td>The ponds range in depth from 4.2 to 5.5 m</td>
<td></td>
</tr>
<tr>
<td>Mine Water Disposal Pond (MWDP)</td>
<td>One cell totalling 35 ha in area and 3 m in depth</td>
<td>Excess saline groundwater pumped from the mine dewatering system.</td>
</tr>
<tr>
<td>Site sewage ponds</td>
<td>Two anaerobic ponds.</td>
<td>Sewage</td>
</tr>
<tr>
<td>Olympic Village sewage ponds</td>
<td>One HDPE lined primary lagoon, four anaerobic ponds and two evaporation ponds.</td>
<td>Sewage</td>
</tr>
<tr>
<td></td>
<td>The facility was upgraded during FY13.</td>
<td></td>
</tr>
<tr>
<td>Waste management facility</td>
<td>Facility description</td>
<td>Waste stream(s)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Resource Recovery Centre (RRC)</td>
<td>Landfill.</td>
<td>Industrial and general solid wastes which are not practicable or cost-effective to reuse or recycle.</td>
</tr>
<tr>
<td></td>
<td>Designated recycling storage areas.</td>
<td>Recoverable materials for reuse and recycling.</td>
</tr>
<tr>
<td>Pilot Plant</td>
<td>Laboratory waste and PPE storage area.</td>
<td>Laboratory waste and PPE</td>
</tr>
<tr>
<td>Temporary contaminated waste storage area</td>
<td>Approved LLRW temporary storage area adjacent to the RRC.</td>
<td>Contaminated plant and equipment not suitable for disposal in the TSF or landfill.</td>
</tr>
<tr>
<td>Rock Storage Facility (RSF)</td>
<td>Rock stockpiles for the storage of mine rock, currently limited to prestrip material, sands and unconsolidated clays.</td>
<td>Waste rock from open pit.</td>
</tr>
</tbody>
</table>

(State 17a)

1.1 **Responsible ODC personnel**

The Olympic Dam Asset President is responsible for ensuring that all legal and other requirements described in this MP are met.

ODC employs a Statutory Radiation Safety Officer acceptable to the Radiation Protection Division of the Environment Protection Authority (EPA), to establish, maintain and fulfil the requirements of this MP, thereby fulfilling its obligation with respect to clause 2.10.1(d) of the Code of Practice and Safety Guide for Radiation Protection and Radioactive Waste Management in Mining and Mineral Processing (2005) (MC 2.10.1d, MC 2.10.1f). ODC also employs other staff with the necessary experience and qualifications to fulfil the requirements of this MP.

1.2 **Review and modification**

This MP is reviewed annually. Major changes or amendments following the review are documented in the Appendix A (see section 5) of this MP.
Figure 1-1: Location of Olympic Dam waste management facilities
2 DETAILED PROCEDURE

2.1 Tailings storage facility

2.1.1 Background
Tailings generated from the hydrometallurgical plant are pumped as a slurry from the tailings disposal surge tanks to the TSF. The tailings are discharged onto the TSF cells via spigot off-takes from the tailings distribution pipework located at the crest of the perimeter embankments of each cell of the TSF. Other miscellaneous hazardous or LLRW are also delivered to the TSF as a solid, slurry or liquid.

External perimeter embankments of the TSF are constructed using clayey soil, sand, crushed rock and tailings. The outer face is covered with rock armouring for erosion protection and the crest is covered with a crushed road base material to provide a trafficable surface. The design, construction and operation of the TSF ensure stability under seismic loading, minimise seepage of liquor as far as practicable and minimise erosion on the outer face.

2.1.2 Purpose
- Monitor the operation and performance of the TSF to identify potential for adverse environmental impact on soil and groundwater quality.
- Monitor the pond areas on TSF cells to minimise the area of available habitat, reducing the overall attractiveness of the TSF to migratory birds (Aus 20).

2.1.3 Deliverable(s)
- Monitoring data showing the size and location of the supernatant liquor ponds in each TSF cell on a monthly basis (Aus 5g) (EPA 31543.500-433).
- Monitoring data showing the rate of rise of tailings in each TSF cell.
- Monitoring data showing the pore pressures within tailings adjacent to the external walls of the TSF.
- A review of the water balance on an annual basis (EPA 31543.500-435).

2.1.4 Method
The monitoring of tailings deposition is conducted in accordance with the TRS Operation, Maintenance and Surveillance Manual (BHP Billiton, 2011) and the Tailings Retention System Management Plan FY12–FY13 (BHP Billiton, 2011).

The Tailings Management Plan incorporates:
- detailed description of the TRS;
- Production Plan;
- Tailings Storage Plan;
- Liquor Management Plan;
- Monitoring and Surveillance Plan;
- Licensing Plan;
- Decommissioning and Closure Plan.

A detailed estimate of the location and area of the supernatant liquor pond in each TSF cell is carried out monthly. Quarterly and annual aerial imagery, provides accurate pond area calculations and pond locations (Aus 5h, 5i) (EPA 31543.500-433).

The rate of rise of tailings is determined using tailings deposition records and quarterly surveys of the tailings beach at the perimeter of each TSF cell prior to each tailings embankment raise.

Piezometers are monitored to assess the pore pressures within the tailings adjacent to the TSF embankments. Piezometers are monitored monthly or more frequently as required. Piezometers used include standpipe and vibrating wire piezometers. Additional or replacement piezometers are installed.
from time to time as required. The locations of existing piezometers are shown in Figure 2-1 and Figure 2-2 below.

It is noted that pore pressures vary depending on the location and depth of the piezometers and over the life of the facility as the height of the tailings beach is progressively increased. Pore pressures are monitored and reviewed on a regular basis by operations personnel and during the annual desktop geotechnical review and operational review by an independent tailings consultant. Any abnormal trends identified by operations personnel or the tailings consultant are investigated and, where required, additional slope stability analysis is carried out to confirm compliance with ANCOLD guidelines.

An annual water balance is calculated from monthly data for the TSF to assess the ongoing liquor disposal requirements. Data used includes estimates of tailings production and average tailings slurry density, daily volumes of supernatant liquor decanted to the EPs, daily records of rainfall and pan evaporation, flows into and within the EPs and daily liquor levels in the EPs (EPA 31543.500-435).

An annual operational audit is performed for the TSF by an independent tailings consultant. The audit includes a geotechnical assessment of the facility and a water balance (EPA 31543.500-435).

(State 17ki, 17kii, 17kiv, 17kv)
Figure 2-1: Location of piezometers on TSF Cells 1, 2, 3 and 4
Figure 2-2: Location of piezometers on TSF Cell 5 East
2.2 Evaporation ponds

2.2.1 Background

ODC operates five EPs. Their principal function is the storage and evaporation of surplus tailings liquor decanted from the TSF.

The crests of the EPs are profiled so that there is a uniform cross fall from the outer edge to the inner edge of each cell and a constant level is maintained around the perimeter of each cell. A bund is included on the outer edge as a contingency to contain any liquor that overtops the ponds due to wind and wave action.

Liquor evaporates and concentrates in the evaporation cells, resulting in precipitation of solids, principally iron sulphate. Precipitation of solids can be reduced by circulation of liquor through the pond and this is currently being implemented on a number of the EPs. EP1, EP2 and EP3A were taken out of service due to a high level of precipitated solids resulting in inadequate freeboard for their continued operation. The walls of EP1 and EP2 have been raised by two metres and the EPs have been returned to service.

2.2.2 Purpose

- Monitor the operation and performance of the EPs to confirm that they are operating as designed, and to prevent adverse impact on soil and groundwater quality.
- Monitor the liquor inventory in the EPs to assess the evaporation capacity of the ponds and assist in liquor management within the TRS.
- Monitor the liquor depth in EPs to confirm minimum depths that reduce the overall attractiveness of EPs to wading birds. (Aus 20)

2.2.3 Deliverable(s)

- Monitoring data showing the liquor level in each cell of the EPs.
- Monitoring data showing the overall (solids and liquor) inventory in the EPs.
- Monitoring data showing the minimum pond depth for operational EPs (Aus 5g).
- Results of a liquor balance for each EP cell.

2.2.4 Method

EP levels are measured using a combination of laser, radar and manual survey measurements, depending on the level of solids build-up in the cell and access provisions in each cell (e.g. stilling wells or jetty). EPs are inspected and liquor levels recorded daily. Stored volume (liquor and solids) is calculated from daily liquor level measurements to enable freeboard and overall EP (solids and liquor) inventory to be determined.

Minimum pond depth for operational EPs is measured on a monthly basis to monitor compliance. (Aus 5h, 5i)

A liquor balance is performed to highlight cells with potential significant leaks by comparison of the apparent evaporation from each cell of each EP.

(State 17ki, 17kii, 17kiv, 17kv)

2.3 Mine water disposal pond

2.3.1 Background

Water pumped from the Olympic Dam underground workings originates predominantly from the Tent Hill aquifer, which is fractured in its lower sections and yields water into the mine ventilation shafts, decline, haulage shafts and drill holes. The ore-body and its host rocks generate little or no groundwater flows into the workings.

Water collected from the mine is pumped to the mine water settling ponds to let the slimes and fine particles settle. Water levels of the ponds are monitored via Citect. Settled sludge is removed and disposed of to the TSF and the settled water is reused on-site for dust suppression, soil conditioning during construction and underground mining activities or is discharged to the MWDP for subsequent
evaporation and recharging of the Andamooka Limestone aquifer (BHP Billiton, 2009). A majority of the water contained within the MWDP is water that has been pumped from the open pit dewatering system located south of the mine. Where possible the extracted water is used to substitute high-quality GAB water. Excess is discharged to the MWDP for evaporation or recovery for use in dust suppression activities. A Managed Aquifer Recharge (MAR) scheme is being developed for sustainable disposal of excess saline water extracted from the open pit dewatering system that is beyond the demand for saline water for dust suppression and construction purposes. The MAR site is located 25km north of the mine site, with three bores currently under construction for extended injection trials. The injection bores are connected to the dewatering system via a pipeline along Borefield Road that was established in 2008. It is anticipated that extended MAR trials will commence in 2013.

2.3.2 Purpose
To provide data related to the operation and performance of the MWDP.

2.3.3 Deliverable(s)
- Records of ground water levels in the vicinity of the MWDP.
- Records of quantities of water disposed of into the MWDP.

2.3.4 Method
The MWDP is inspected daily to monitor water levels. Quantities disposed of into the pond are monitored in Citect and Ajenti and captured in the Mine Water Balance.

(State 17ki, 17kii, 17kiv, 17kv)

2.4 Site and Olympic Village sewage ponds

2.4.1 Background
Olympic Dam operates two separate sewage facilities. The onsite sewage facility consists of two anaerobic ponds. The facility at Olympic Village consists of a lined primary lagoon and six anaerobic ponds. Their principal function is to contain and facilitate the anaerobic treatment of sewage from the metallurgical plant, mine and Olympic Village.

2.4.2 Purpose
Monitor the operation of the sewage ponds to minimise impact on soil and groundwater quality.

2.4.3 Deliverable(s)
- Records of pond levels and pond wall condition.

2.4.4 Method
Sewage ponds are monitored regularly to identify potential for adverse environmental impact. Pond walls are inspected for any abnormalities and pond levels are measured and recorded. Samples are also taken monthly to ensure sewer ponds are operating effectively.

(State 17ki, 17kii, 17kiv, 17kv)

2.5 Resource Recovery Centre

2.5.1 Background
Industrial and general waste materials generated at Olympic Dam are managed through the Resource Recovery Centre (RRC), which is located north-west of the smelter and south of the quarry (see Figure 1.1).

Dedicated areas within the RRC allow waste streams to be segregated and certain items to be reused or recycled. Recovered material is cleaned and undergoes a formal radiation clearance procedure before leaving the site.

Material which cannot be reused or recycled is disposed of to the landfill facility, which is also located within the RRC. At the landfill face, waste materials are deposited and covered with clean fill material to facilitate containment of waste. The RRC is enclosed on all sides by either a two-metre-high mesh
fence topped with strands of barbed wire or a bund at least 1.5 m high. This is designed to restrict unauthorised access and function as a secondary litter containment control.

Hazardous waste unsuitable for disposal within the Special Mining Lease (SML) is transported off-site to an appropriate waste depot for further treatment, recycling or disposal, as discussed in section 2.6.

2.5.2 Purpose
Monitor the disposal and recovery of industrial and general wastes to identify opportunities to minimise the use of natural resources.

2.5.3 Deliverable(s)
- Records of quantities of general and industrial waste disposed of to landfill.
- Records of quantities of material recovered for reuse and recycling.

2.5.4 Method
Waste materials generated across site are collected by the waste management contractor in a dedicated vehicle for recovery or disposal. At the time of collection, the vehicle operator records the quantity of the material and collection location, where appropriate. In cases where material is delivered to the RRC by operations personnel, the quantity, type and source of the material is recorded at the RRC office before being placed in storage for recovery or disposed of to landfill.

The waste management contractor manages the processes associated with the reception, storage, recovery and disposal of waste materials and the control and operation of the RRC facilities.

Olympic Dam maintains systems to record quantities of industrial and general waste generated, quantities recovered for reuse or recycling and quantities disposed of to landfill. The waste management contractor is responsible for maintaining such records, which are entered into an electronic register. These include:
- cardboard collected;
- general waste collected;
- number of used tyres collected;
- materials sent off-site for recycling.

A landfill audit is conducted biennially (next audit will be completed during FY14) to determine the composition of waste disposed of to landfill. Wastes from different areas of the plant are separated into various predetermined categories and volumes of each category are recorded. The audit results can be used to assess the performance of reuse and recycling initiatives and to identify new opportunities for reuse or recycling.

The quantities of wastes collected are compared to relevant regulatory guidelines where such guidelines exist (for example, for the storage of waste tyres), and appropriate management actions are undertaken to ensure compliance with the relevant storage criteria.

(State 17ki, 17kii, 17kiv, 17kv)

2.6 Miscellaneous hazardous wastes

2.6.1 Background
Miscellaneous hazardous wastes such as laboratory chemicals, process chemicals and process waste materials are generated on an ongoing basis at Olympic Dam and require appropriate disposal.

Olympic Dam maintains systems and processes to control and administer the disposal of hazardous waste. Designated HSEC personnel provide advice on the disposal of hazardous wastes and authorise waste disposal within the SML, primarily to the TSF. Hazardous waste unsuitable for disposal within the SML is transported off-site to an appropriate waste depot for further treatment, recycling or disposal. For off-site disposal, hazardous waste categorised as listed waste (within the meaning of the Environment Protection Act) is transported by an EPA licensed transporter to an EPA licensed waste depot in accordance with EPA guidelines for waste transport and tracking.
2.6.2 Purpose

- Provide data to assist in the management of miscellaneous hazardous wastes in an appropriate manner.

2.6.3 Deliverable(s)

- Records of categories, quantities and location of hazardous waste materials disposed of within the SML.
- Records to provide evidence that listed waste is appropriately managed, specifically:
 - that listed waste is stored, contained and treated in a manner that does not cause environmental harm or nuisance or present risks to human health and safety;
 - that all listed waste storage containers are of a suitable strength and durability, are clearly marked and contain appropriate safety warnings;
 - that all listed wastes do not contact soils or stormwater, and that measures to prevent and recover spillages are implemented as necessary.

2.6.4 Method

Olympic Dam maintains systems to record categories, quantities and location of hazardous waste materials disposed of within the SML. The waste management contractor is responsible for maintaining such records, which are entered into an electronic register.

The location, type and quantity of hazardous waste disposed of to the TSF are recorded on the register.

The transport of hazardous waste off-site is documented through the EPA waste transport and tracking system as required, providing assurance to regulators that wastes are managed appropriately.

(State 17ki, 17kii, 17kiv, 17kv)

2.7 Low-level radioactive waste

2.7.1 Background

There are two general forms of radioactive waste produced at Olympic Dam being: waste process material, process residues or samples that contain radionuclides from the orebody and plant equipment or materials that have been contaminated with radionuclides from the ore body. Each of these categories is managed differently.

Materials that contain radionuclides are generally disposed of in the TSF. However, some bulk samples are managed separately.

Contaminated plant and equipment is currently stored in an approved temporary LLRW storage facility located near to the RRC. Laboratory waste and PPE has EPA approval to be temporarily stored at the Pilot Plant. A permanent LLRW storage facility will be commissioned during FY14, and all material in temporary storage areas will be progressively moved to this permanent facility (MC 2.8.2(e)).

2.7.2 Purpose

- Provide data to assist in the management of LLRW from the Olympic Dam Operation.

2.7.3 Deliverable(s)

- Records of the categories, quantities and location of LLRW disposed of within the SML.

2.7.4 Method

Olympic Dam maintains systems to record categories, quantities and locations of LLRW disposed of or stored within the SML. The waste management contractor is responsible for maintaining such records, which are entered into an electronic register.

The location, type and quantity of material and its disposal is recorded.

(State 17ki, 17kii, 17kiv, 17kv)
2.8 Rock storage facility

2.8.1 Background
As part of the Expansion, the construction of a Rock Storage Facility (RSF) from overburden and waste rock has commenced. Mined overburden material that is not able to be reused for other purposes will be placed in the RSF. It is anticipated that no further material will be placed in the RSF during the period of this EPMP.

The location of the pre-strip RSF is presented in Figure 1.1.

2.8.2 Purpose
Provide data related to the performance of the RSF.

2.8.3 Deliverable(s)
- Monitoring data showing the quantity and type of rock deposited in the RSF annually.
- Monitoring data showing the size, height and overall wall angle of each stockpile in the RSF annually.

2.8.4 Method
The monitoring of the RSF is conducted in accordance with the RSF Management Plan and Operational Manual, Document No. 111272. The RSF Management Plan and Operational Manual incorporates:
- design parameters and requirements for the RSF
- a detailed description of the RSF;
- Production Plan;
- Monitoring and Surveillance Plan;
- Licensing Plan;
- Decommissioning and Closure Plan.

Assessment of the size, height and overall wall angle of each stockpile is conducted annually by a surveyor.

(State 17ki, 17kii, 17kiv, 17kv)
3 COMMITMENTS

3.1 Reporting

3.2 Summary of commitments
(State 17ki, 17kiv)

Table 3-1: Summary of commitments

<table>
<thead>
<tr>
<th>Action</th>
<th>Parameter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor</td>
<td>EP liquor levels</td>
<td>Daily</td>
</tr>
<tr>
<td>Monitor</td>
<td>Sewage ponds to identify potential for adverse environmental impact</td>
<td>Daily</td>
</tr>
<tr>
<td>Monitor</td>
<td>MWDP water levels</td>
<td>Daily</td>
</tr>
<tr>
<td>Monitor</td>
<td>Minimum pond depth for operational EPs</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Overall (solids and liquor) inventory in EPs</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Size and location of the supernatant liquor pond in each TSF cell</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Tailings pore pressures</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Sewage Pond sampling to ensure effective operation</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Size of solid waste inventories against relevant regulatory guidelines and criteria</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Quantity of rock deposited in the RSF.</td>
<td>Monthly</td>
</tr>
<tr>
<td>Monitor</td>
<td>Rate of rise of tailings in each TSF cell</td>
<td>Annually</td>
</tr>
<tr>
<td>Monitor</td>
<td>Size of each stockpile in the RSF.</td>
<td>Annually</td>
</tr>
<tr>
<td>Calculate</td>
<td>Liquor balance for each evaporation cell</td>
<td>Monthly</td>
</tr>
<tr>
<td>Calculate</td>
<td>Water balance for the TSF</td>
<td>Annually</td>
</tr>
<tr>
<td>Conduct</td>
<td>Independent audit of the TSF</td>
<td>Annually</td>
</tr>
<tr>
<td>Conduct</td>
<td>Landfill audit detailing composition of waste</td>
<td>Biennially</td>
</tr>
<tr>
<td>Maintain</td>
<td>Register of industrial and general waste disposal and recovery</td>
<td>Continuous</td>
</tr>
<tr>
<td>Maintain</td>
<td>Register of hazardous waste disposal (for wastes disposed of within the SML)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Maintain</td>
<td>Register of LLRW for disposal (for wastes disposed of within the SML)</td>
<td>Continuous</td>
</tr>
<tr>
<td>Report</td>
<td>Monitoring results in the annual EMMR to the Indenture Minister</td>
<td>Annually</td>
</tr>
<tr>
<td>Review</td>
<td>The Waste MP and modify as appropriate</td>
<td>Annually</td>
</tr>
</tbody>
</table>
4 DEFINITIONS AND REFERENCES

4.1 Definitions
Throughout the EPMP some terms are taken to have specific meaning. These are indicated in bold text in the documentation and are defined in the glossary in section 5 of the EMM. Defined terms have the same meaning wherever they appear in bold text. Some other terms and acronyms are also defined in the glossary, but do not appear in bold text.

4.2 References

4.3 Bibliography
5 APPENDIX A: AMENDMENTS TO MONITORING PROGRAM – WASTE FY13

Where applicable a summary of major changes to this MP is provided. Individual changes have not been itemised.

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Change Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2.8.4</td>
<td>Removal of requirement to monitor exposed area and average uranium grade of material in each stockpile in the RSF.</td>
<td>Updated to reflect changed Olympic Dam operational scope.</td>
</tr>
</tbody>
</table>