SARAJI EAST MINING LEASE PROJECT

Environmental Impact Statement

AppendixJ-1

Traffic and Transport Impact Assessment

Prepared for BM Alliance Coal Operations Pty Ltd ABN: 67096412752

Environmental Impact Assessment

Appendix J-1 Traffic and Transport Impact Assessment

27-Oct-2023 Saraji East Mining Lease Project

Environmental Impact Assessment

Appendix J-1 Traffic and Transport Impact Assessment

Client: BM Alliance Coal Operations Pty Ltd ABN: 67096412752
Prepared by
,
27-Oct-2023
Job No.: 60507031
AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.
© (AECOM). All rights reserved.
AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Environmental Impact Assessment

Ref 60507031

Date 27-Oct-2023

Originator Dan Akers

Checker/s Mark Jones

Verifier/s

Revision History

Rev	Revision Date	Details	Аррі	oved
T.CV	Trevision Bate	Dotailo	Name/Position	Signature
A	08-Jun-2018	Draft for Internal Review	Elke Watts Project Manager	Original signed
В	31-Aug-2018	Draft for Client Comment	Gabriel Wardenburg Project Manager	Original signed
С	13-Feb-2019	Response to Client Comment	Gabriel Wardenburg Project Manager	Original signed
0	23-August- 2020	Final	Gabriel Wardenburg Project Manager	Original signed
D	19-Oct-2020	Response to DTMR Comments	Project Manager	Original signed
1	04-Nov-2020	Final - response to DTMR comments	Gabriel Wardenburg Project Manager	Gowodenburg
0G	20-Feb-2023	Final	Project Manager	

AECOM

This page has been left blank intentionally.

Table of Contents

	tive Summa	ary	i iv		
1.0	Introduc	ation	1		
1.0	1.1	Project description	1		
	1.1	Objectives	1		
2.0					
2.0		of assessment	3 3 3 3		
	2.1	Overview	3		
	2.2	Road infrastructure	3		
	2.3	Rail infrastructure			
	2.4	Port infrastructure	3		
	2.5	Airport infrastructure			
3.0		tion and policy	4		
	3.1	Transport Infrastructure Act 1994	4		
	3.2	Transport Operations (Road Use Management) Act 1995	4		
	3.3	Local Government Act 2009	4		
	3.4	Guide to Traffic Impact Assessment	4		
	3.5	Australian Level Crossing Assessment Model	4		
	3.6	Planning Act 2016 and Planning Regulation 2016	5		
4.0	Method	ology	6		
	4.1	Assessment horizon and assessment years	6		
	4.2	Traffic impact assessment	6		
		4.2.1 Access	7		
		4.2.2 Intersections	7		
		4.2.3 Highway link capacity	8		
		4.2.4 Pavements	8		
		4.2.5 Road Safety	9		
	4.3	Rail impact assessment	10		
	4.4	Port infrastructure	10		
	4.5	Airport infrastructure	10		
5.0		tion of environment values	11		
	5.1	Development context	11		
		5.1.1 Site location	11		
		5.1.2 Project road transport routes	11		
		5.1.3 Project rail transport route	11		
		5.1.4 Project air transport route	11		
		5.1.5 Project air transport route	11		
		5.1.6 Road transport network	13		
	5.2	Development details	20		
	5.3	Traffic volumes	21		
	5.5				
		5.3.1 Background traffic 5.3.2 Construction traffic	21 24		
	5 4	5.3.3 Operation traffic	28		
	5.4	Development traffic	31 34		
	5.5	Total traffic			
	5.6	Crash history			
	5.7	Scheduled road improvement projects	37 37		
	5.8	School bus routes			
	5.9	· · · · · · · · · · · · · · · · · · ·			
		5.10 Air transport networks			
	5.11	Sea and shipping transport networks	37		
6.0		al impacts	38		
	6.1	Overview	38		
	6.2	Road transport	38		
		6.2.1 Intersection assessments	38		
		6.2.2 Highway Link assessments	69		

		6.2.3 Level crossing assessments	74
		Assessment of regional road network	76
		Pavement impact assessment	79
		Emergency services operations	82
		6.2.4 Road safety	82
	6.3	Rail transport	85
	6.4	Air transport	85
	6.5	Sea transport	86
7.0		n measures	88
	7.1	Intersection 1 – Saraji Road / Lake Vermont Road	89
	7.2	Saraji Road Intersection A – Saraji Road / Saraji East Mine Entrance	89
	7.3	Intersection 3 – Peak Downs Mine Access / Peak Downs Mine Road / Saraji	
		Road	90
	7.4	Air transport	90
	7.5	Sea transport	91
	7.6	Proposed Level Crossing A	91
	7.7	Road use management plan	91
	7.8	Summary of mitigation measures	91
8.0	Residual	·	93
	8.1	Intersection 1 – Saraji Road / Lake Vermont Road	93
	8.2	Intersection 3 – Peak Downs Mine Access / Peak Downs Mine Road / Saraji	00
		Road	93
	8.3	Air transport	93
	8.4	Proposed Level Crossing A	93
0.0	8.5	Summary of residual impacts	93
9.0	Conclusi		95
	9.1	Traffic impact assessment	95
		9.1.1 Traffic volumes	95
		9.1.2 Intersection assessments	96
		9.1.3 Highway link assessment	97
		9.1.4 Level crossing assessments	98
		9.1.5 Pavement impact assessment	98
		9.1.6 Emergency services operations	98
		9.1.7 Road safety	98
	0.0	9.1.8 Potential impacts and mitigation measures	98
	9.2 9.3	Rail impact assessment	99
	9.3 9.4	Port impact assessment	99 99
10.0	9.4 Reference	Air impact assessment	100
10.0	Kelelelic	es	100
Appendi	хА		Α
	Backgrou	und Traffic	Α
Annondi	v R		В
Appendi	Regional	Traffic	В
	Regional	Trailic	Ь
Appendi	хС		С
	Developr	ment Traffic	С
Annandi	v D		Ь
Appendi	x บ Total Tra	ffic	D D
	TULAI TTA	IIIC	D
Appendi	хЕ		Ε
	SIDRA		Е
المممما:	v E		_
Appendi	x F Crash Da	ata	F F
		ala	٢
Appendi	x G		G-A
	Level Cro	ossina Concept Desian	G-A

List of tables

Table 1	Transport Impact Assessment Terms of Reference	2
Table 2	Level of Service	8
Table 3	Austroads Risk Matrix	9
Table 4	Frequency / probability of crash	9
Table 5	Severity of crash	9
Table 6		22
Table 7	Background traffic (2018) – intersections	22
Table 8	Percentage change in AADT on Peak Down Highway and Saraji Road (2019	
	reference year)	22
Table 9	Future background traffic – highway links	23
Table 10	Future background traffic – intersections	23
Table 11		25
Table 12		25
Table 13	Quantities for construction materials and equipment	26
Table 14	Construction materials and equipment traffic	28
Table 15	Construction traffic summary	28
Table 16	Operation workers traffic	29
Table 17	Quantities for operation materials and equipment	30
Table 18	Operation materials and equipment traffic	30
Table 19		30
Table 20	Development traffic	31
Table 21		32
Table 22		32
Table 23		33
Table 24		33
Table 25	1	34
Table 26		34
Table 27		35
Table 28	• • • • • • • • • • • • • • • • • • • •	35
Table 29	`	36
Table 30	,	36
Table 31		36
Table 32		37
Table 33	Percentage of development traffic in the total traffic at identified intersections	-
		38
Table 34	Percentage of development traffic in the total traffic at identified intersections	•
1 4510 0 1		38
Table 35	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for 2018	00
14510 00		40
Table 36	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2021	
14510 00		40
Table 37	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2021	
14510 07	,	41
Table 38	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2023	71
Table 30	,	41
Table 39	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2023	
Table 33	· · · · · · · · · · · · · · · · · · ·	, 42
Table 40	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2040	72
i abie 40	,	42
Table 41	· · · · · · · · · · · · · · · · · · ·	42
Table 41	SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for 2040 / Year 20 (operation) total traffic (ordinary day)	43
Table 42		+3
Table 42	SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for	45
Table 43	2018 background traffic SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY	
I abic 40		45
	ZUZ I DAUNYIUUIU II AIIIU	Tυ

Table 44	SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2021 / Year 1 (construction) total traffic (ordinary day) 4	16
Table 45	SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY	
Table 46	SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY	16
Table 47	SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY	17 17
Table 48	SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY	17
Table 49	SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road /	18
Table 50	SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road /	50
Table 51	SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2021 / Year 1 (construction) total traffic (shift	50
Table 52	SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road /	51
Table 53	Peak Downs Mine Entrance) for FY 2023 background traffic 5 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road /	52
	Peak Downs Mine Entrance) for FY 2023 / Year 3 (construction / operation) total	52
Table 54	SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road /	53
Table 55	SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2040 / Year 20 (operation) total traffic (shift	
Table 56	SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine	54 56
Table 57	SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine	56
Table 58	SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine	57
Table 59	SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine	
Table 60	SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2023 / Year 3 (operation / construction) total traffic (shift changing	57
Table 61	day) 5 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine	8
Table 62	Road) for FY 2040 background traffic 5 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine	8
	Road) for FY 2040 / Year 20 (operation) total traffic (shift changing day) 5	59
Table 63	SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for 2018 background traffic 6	31
Table 64	SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access	31
Table 65	SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access	
Table 66	SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access	52
Table 67	SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2023 / Year 3 (construction / operation) total traffic (shift changing	3
Table 68	SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access	3
Table 69	Road) for FY 2040 background traffic 6 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access	64
. 45.5 66	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	35

Table 70	SIDRA assessment for Proposed Intersection A (Saraji Road / the Project Site	
	Entrance) for FY 2021 / Year 1 (construction) total traffic (shift changing day)	67
Table 71	SIDRA assessment for Proposed Intersection A (Saraji Road / the Project Site	
	Entrance) for FY 2023 / Year 3 (construction / operation) total traffic (shift	
	changing day)	67
Table 72	SIDRA assessment for Proposed Intersection A (Saraji Road / the Project Site	
	Entrance) for FY 2040 / Year 20 (operation) total traffic (shift changing day)	68
Table 73	Percentages of development traffic in the total traffic on identified highway links	
	(ordinary day)	70
Table 74	Percentages of development traffic in the total traffic on identified highway links	
	(shift changing day)	70
Table 75	V/C ratio for background traffic	71
Table 76	V/C ratio for development traffic (ordinary day)	72
Table 77	V/C ratio for development traffic (shift changing day)	72
Table 78	V/C ratio for total traffic (ordinary day)	73
Table 79	V/C ratio for total traffic (shift changing day)	74
Table 80	Estimated vehicle queue lengths at level crossings	75
Table 81	Development traffic as a percentage of background traffic on regional road	
	network (ordinary day)	76
Table 82	Development traffic as a percentage of background traffic on regional road	
	network (shift changing day)	76
Table 83	Volume / capacity ratio for total traffic on regional road network (ordinary day)	78
Table 84	V/C ratio for total traffic on regional road network (shift changing day)	79
Table 85	Preliminary pavement impact assessment results – development traffic (loaded)	80
Table 86	Preliminary pavement impact assessment results – development traffic	
	(unloaded)	81
Table 87	Number of workers at Moranbah Airport on shift changing day	85
Table 88	Capacity of coal terminals	86
Table 89	Number of additional ships during maximum production of 8 Mtpa	86
Table 90	Summary of resultant risks and mitigation measures	92
Table 91	Summary of residual risks	94
Table 92	Project traffic generation	95
Table 93	Worst traffic condition in identified intersections	96
Table 94	Worst traffic conditions on identified highway links	97
	g ,	
List of figure	e e	
List of figure	3	
Figure 1	Regional Context	12
Figure 2	Road network study area	14
Figure 3	Railway level crossings	15
Figure 4	SIDRA layout for Intersection 1	39
Figure 5	SIDRA layout for Intersection 2	44
Figure 6	SIDRA layout for Intersection 3	49
Figure 7	SIDRA layout for Intersection 4	55
Figure 8	SIDRA layout for Intersection 5	60
Figure 9	SIDRA layout for Proposed Intersection A	66
Figure 10	Regional road network	77
Figure 11	Concept Proposed Intersection A – Saraji Road / Saraji East Mine Entrance	84
Figure 12	Coal terminals	87

Executive Summary

This Traffic and Transport Impact Assessment Report has been prepared by AECOM Australia Pty Ltd (AECOM) on behalf of BM Alliance Coal Operations Pty Ltd (BMA) to assess the traffic and transport impacts associated with the Saraji East Mining Lease Project (the Project) as part of an Environmental Impact Statement (EIS). This assessment has been completed to address the traffic and transport matters specified in the Saraji East Mining Lease Project: Final terms of reference for an environmental impact statement (Department of Environment and Heritage Protection (DEHP), 2017).

The Project is a greenfield single-seam underground mine development with the capacity to mine up to 11 million tonnes per annum (Mtpa) of run-of-mine (ROM) coal and produce up to eight Mtpa of product coal.

The Project will be divided into construction and operation stages. The construction period is assumed to be in the order of three years, with the majority of construction work occurring over Year 2 and Year 3 of construction. Mining operation is expected to commence in Year 3 of construction and will continue operating for approximately 20 years. The total length of the Project considering both the construction and operation phases is expected to be approximately 22 years.

This assessment was originally undertaken with the understanding that construction of the Project commenced in 2021. As a result, the assessment years of Financial Year (FY) 2021, FY2023 and FY2040 were selected as being years in which the maximum development traffic was anticipated. Given the length of the EIS process to date and the uncertainty of actual timing, the Project will be assessed based on the timing assumptions adopted to date for impact assessment purposes. This assessment has been carried out in accordance with the Project's Terms of Reference (ToR) and updated in response to submissions on the Draft EIS.

BMA will only be able to commence construction following grant of relevant approvals and a business decision and financial investment to proceed with the Project. Should the remainder of the Project assessment process be resolved quickly, with Project construction can be assumed to commence this year (Year 1), and mining assumed to commence in 2025 (Year 3), with full operation anticipated in the third year of operations (Year 3) through to end of mining (Year 20). Prior to construction, BMA will undertake a revised Traffic and Transport Impact Assessment with new traffic counts and updated assessment years prior to construction to inform secondary approval requirements.

Methodology

The major mode of transport potentially impacted by the Project is the Queensland road network and was the focus of this impact assessment. Other transport modes, including air, rail and sea, have been considered to identify their relevance to the Project.

The assessment of road impacts has been undertaken based on the *Guide to Traffic Impact Assessment (GTIA)* released by the Department of Transport and Main Roads (DTMR) in 2018. The GTIA outlines the principles and framework for undertaking traffic impact assessments for the State-Controlled Road (SCR) network. It also provides advice on mitigation strategies to address impacts.

The assessment methodology adopted for this component of this report is summarised in the following key tasks:

- broadly identify the existing transport infrastructure which may be impacted by the Project
- estimate the traffic generation associated with the construction and operation phase of the Project and the distribution of this traffic on the identified road network
- assess the potential impact of the Project on the surrounding transport infrastructure (highway link capacity and intersection assessment) during the construction and operation phase
- identify potential mitigation and management strategies to be implemented during the construction and operation phase to offset the impact of the proposed Project (if required).

The methodology adopted for assessments of other transport modes included desktop reviews of the current infrastructure and services including port facilities, aircraft capacity, train movements and rail

ii

infrastructure (level crossings). It identified level of demands of the transport modes, potential impacts, safety issues and mitigation measures.

Traffic Impact Assessment

The assessment shows that Project traffic is anticipated to exceed 5 per cent of the background traffic volumes. While this level of traffic is considered material, the assessment concluded that all highway links and intersections are anticipated to operate within capacities and without significant congestion, delays or queuing. Therefore, the impact to efficiency and operation of the road network is predicted to be minimal.

Level crossing assessments were undertaken to understand the potential impacts to road traffic, specifically vehicle queuing due to activation of the level crossings during peak traffic periods and the impact thereof on adjacent closely spaced intersections. The assessment concluded that Level Crossing A on the Saraji East Mine access roads may not have sufficient storage to contain the estimated vehicle queues.

This assessment proposed several mitigation measures including:

- auxiliary turn lanes on Saraji Road to store vehicles
- stagger the workers' rosters to minimise number of vehicles at the level crossings
- vertical realignment of Saraji Road to increase queuing distance between Saraji Road and Goonyella Rail alignment.

It is noted that the rail authority may undertake Australian Level Crossing Assessment Model (ALCAM) assessments for all affected level crossings during the detailed design stage to determine the required level of safety protection.

A road safety assessment was also performed. The assessment identified several intersections and highway upgrades on Saraji Road and Lake Vermont Road. It is also recommended that a Road Safety Audit be undertaken for the proposed road infrastructure upgrades during the detailed design stage. The upgrades are considered necessary, and implementation would contribute to maintaining the long term safety of road users.

Given the length of the EIS process to date and the uncertainty of actual timing, BMA will make the following commitments in relation to the Project's Traffic Impact Assessment (TIA) and road safety audit:

- During the detailed design phase and no later than 6 months prior to construction, in consultation with DTMR, BMA will prepare an updated Traffic Impact Assessment including, amongst other things a Road Use Management Plan, in accordance with Section 7.6 of the GTIA and in consultation with DTMR, and implement agreed management and / or mitigation measures.
- During the detailed design phase and no later than 6 months prior to construction, in consultation with DTMR, BMA will undertake a road safety audit in accordance with Part C section 9 of the GTIA and implement identified mitigation measures.

Pavement Impact Assessment

The assessment concluded that the significant Equivalent Standard Axle (ESA) loads generated by the Project traffic warrant a Pavement Impact Assessment (PIA). It should be undertaken during the detailed design stage with full consultation with DTMR and Isaac Regional Council (IRC). The conclusion of the PIA will inform the level of contribution and/or pavement improvement works required.

Emergency services operations

The assessment concluded that Project heavy vehicles are typically road trains and articulated vehicles and it is not expecting any Over-Size-Over-Mass (OSOM) vehicles. Therefore, it is anticipated that vehicle manoeuvring should not be restricted on the road network. It is concluded that the Project will not impede emergency services operations.

Air transport

The assessment concluded that it is anticipated that the demand for air travel for workers will increase during the construction and operation stages of the Project. During operations, the Project will result in up to 15 additional trips per week. This increase can be accommodated within the existing capacity of the Moranbah airport.

Sea transport

Product coal from the Project will be exported via either Hay Point Coal Terminal or Abbot Point Coal Terminal. The product coal shipped via these ports will be within the approved port and shipping capacity and throughput limits, as such no additional impacts to the surrounding environment are expected as a result. The preferred coal export terminal will be a part of commercial discussions between BMA and the relevant port authorities.

Rail transport

It is not expected that rail transport will be utilised during the construction stage. For operations, it is intended than 100 per cent of coal mined will be transported to port facilities along the existing Goonyella Rail system to a port facility for export. When operating at peak production, the Project is anticipated to generate up to three additional trains per day on the Norwich Park Branch rail line. It has been confirmed by BMA that the rail network has available capacity to support the additional demand required by the Project. The volume of coal to be transported via the network will be within Aurizon's existing approval limits. As such, no additional impacts above those already approved are expected.

Abbreviations

AADT Annual Average Daily Traffic
AECOM AECOM Australia Pty Ltd
AUL Auxiliary Left-turn Treatment
BAL Basic Left-turn Treatment

BMA BM Alliance Coal Operations Pty Ltd
CHL Channelised Left-turn Treatment
CHPP Coal Handling and Preparation Plant

CHR Channelised Right-turn Lane

DoS Degree of Saturation

EIS Environmental Impact Statement

ESA Equivalent Standard Axle

FIFO Fly-In-Fly-Out FY Financial Year

GTIA Guide to Traffic Impact Assessment

IRC Isaac Regional Council LGA Local Government Area

LoS Level of Service

MIA Mine Infrastructure Area

Mtpa Million tonnes per annum

ML Mining Lease

MLA Mining Lease Application
OSOM Over-Size-Over-Mass

Project Saraji East Mining Lease Project
PIA Pavement Impact Assessment
QAS Queensland Ambulance Service

QFES Queensland Fire and Emergency Services

QPS Queensland Police Service
RMP Road-use Management Plan

ROM Run-of Mine

SCR State Controlled Road

SEMLP Saraji East Mining Lease Project

SES State Emergency Service

SIDRA Signalised and unsignalised Intersection Design and Research Aid

TIA Traffic Impact Assessment

DTMR Queensland Department of Transport and Main Roads

V/C Volume / Capacity Ratio

1

1.0 Introduction

This Traffic and Transport Impact Assessment Report has been prepared by AECOM Australia Pty Ltd (AECOM) on behalf of BM Alliance Coal Operations Pty Ltd (BMA) to assess the traffic and transport impacts associated with the Saraji East Mining Lease Project (the Project) as part of an Environmental Impact Statement (EIS). This assessment has been completed to address the traffic and transport matters specified in the Saraji East Mining Lease Project: Final terms of reference for an environmental impact statement (Queensland Government, 2017).

1.1 Project description

The Project is a greenfield single-seam underground mine development with a capacity to mine up to 11 million tonnes per annum (Mtpa) of run-of-mine (ROM) coal.

The location of the Project is adjacent to the existing Saraji Mine on Saraji Road, near Dysart. It is within the Isaac Regional Council (IRC) Local Government Area (LGA) approximately 170 kilometres (km) south-west of Mackay.

The Project will be divided into construction and operation stages. The construction period is assumed to be in the order of three years, with most construction work occurring over Year 2 and Year 3 of construction. Mining operation is expected to commence in Year 3 of construction and will continue operating for approximately 20 years. The total length of the Project considering both the construction and operation phases is expected to be approximately 22 years.

Should the remainder of the Project assessment process be resolved quickly, with Project construction can be assumed to commence this year (Year 1), and mining assumed to commence in 2025 (Year 3), with full operation anticipated in the third year of operations (Year 3) through to end of mining (Year 20).

BMA will only be able to commence construction following grant of relevant approvals and a business decision and financial investment to proceed with the Project. Prior to construction, BMA will undertake a revised Traffic and Transport Impact Assessment with new traffic counts and updated assessment years prior to construction to inform potential impacts, mitigations and secondary approval requirements.

This assessment has been updated in response to submissions but as the Project start date is currently unknown, further assessment and consultation will be undertaken during detailed design stage.

This assessment was originally undertaken with the understanding that construction of the Project commenced in 2021. As a result, the assessment years of Financial Year (FY) 2021, FY2023 and FY2040 were selected as being years in which the maximum development traffic was anticipated. Given the length of the EIS process to date and the uncertainty of actual timing, the Project will be assessed based on the timing assumptions adopted to date for impact assessment purposes. This assessment has been carried out in accordance with the Project's Terms of Reference (ToR) and updated in response to submissions on the Draft EIS.

1.2 Objectives

As set out in the Project's Terms of Reference (ToR) the objectives of the traffic and transport assessment are as follows:

The construction and operation of the Project will aim to:

- maintain the safety and efficiency of all affected transport modes for the project workforce and other transport system users
- assess, avoid and mitigate impacts on the condition of transport infrastructure
- ensure any required works are compatible with existing infrastructure and future transport corridors.

The information requirements specific to the assessment are stated in Table 1 along with references to the relevant sections of this report where the specific requirements have been met.

Table 1 Transport Impact Assessment Terms of Reference

Reference	Requirements	Relevant Section/s of this Report
8.11.1	The EIS should include a clear summary of the total transport task for the project, including workforce, inputs and outputs, during the construction and operational phases. Proponents should make appropriate modal choices to ensure transport efficiency and minimise impacts on the community.	Section 9.0
8.11.2	Present the transport assessment in separate sections for each project affected mode (road, rail, air and sea) as appropriate for each phase of the project. Provide sufficient information to allow an independent assessment of how existing transport infrastructure will be affected by project transport at the local and regional level (e.g. local roads and state-controlled roads).	Section 5.0 and Section 6.0
8.11.3	Include details of the adopted assessment methodology: for impacts on roads: the road impact assessment report in accordance with the Guidelines for Assessment of Road Impacts of Development (Department of Main Roads, 2006), with traffic data in DTMR-suitable formats for impacts on rail level crossings: the Australian Level Crossing Assessment Model.	Section 4.0
8.11.4	Discuss and recommend how identified impacts will be mitigated so as to meet the above objectives for each transport mode. Mitigation strategies may include works, contributions or management plans strategies that can be documented in a Road-use Management Plan 28 and are to be prepared in close consultation with relevant transport authorities (including local government). Strategies should consider those transport authorities' works program and forward planning, and be in accordance with the relevant methodologies, guidelines and design manuals.	Section 7.0 and Section 8.0
8.11.5	Discuss impacts on the delivery of emergency services operations within the project area and any impacts this may have on the nearby community. Outline feasible alternatives and mitigation for these operations if adverse impacts are, or are likely, to occur.	Section 6.0

2.0 Scope of assessment

2.1 Overview

The major mode of transport potentially impacted by the Project is the Queensland road network and this was the focus of this assessment. Other transport modes, including air, rail and sea, have been considered to identify their relevance to the Project.

2.2 Road infrastructure

Transport of personnel, materials and equipment is anticipated to be undertaken using the existing local government and State-Controlled road (SCR) networks. The road transport requirements of the Project have been addressed through the preparation of a Traffic Impact Assessment (TIA) in accordance with the *Guide to Traffic Impact Assessments (GTIA)* (The State of Queensland (Department of Transport and Main Roads), 2018) developed by the Department of Transport and Main Roads (DTMR).

The TIA component of this report identifies and quantifies the impact of the Project on the SCR network and proposes mitigation measures to address significant impacts.

2.3 Rail infrastructure

Product coal will be loaded on site and will connect to the existing Goonyella rail system via a new balloon loop and rail spur; the Goonyella rail system will transport the coal to ship loading facilities. A desktop review of the rail infrastructure servicing the area in the vicinity of the Project was conducted as part of the assessment. This review consisted of identifying existing rail infrastructure within the vicinity of the Project and determining the extent of any possible impacts on the rail lines.

2.4 Port infrastructure

The coal produced by the Project will be exported through existing port(s) to overseas markets. A desktop review of the current Queensland sea ports of relevance to the Project, including existing port infrastructure and future expansionary projects was conducted as part of the assessment. The preferred combination of identified coal export terminal(s) will be a part of commercial discussions between BMA and the relevant port authorities.

2.5 Airport infrastructure

As part of the scope of assessment, a desktop review of existing airports in the vicinity of the Project was undertaken. This review consisted of identifying the major aviation infrastructure in the area and determining the extent of any potential impacts such as increased flights for the transport of workers as a result of the Project.

3.0 Legislation and policy

3.1 Transport Infrastructure Act 1994

The *Transport Infrastructure Act 1994* (TI Act) allows the Queensland Government to have a strategic overview of transport infrastructure in Queensland. On behalf of the Government, DTMR is responsible for the construction, maintenance and operation of the SCR network. The TI Act's objectives include the promotion of safety, the efficiency of the road network and the reduction of environmental impacts.

Section 49 of the TI Act specifies requirements for impact assessments to be carried out for developments that may cause environmental impacts to the SCR network. After the assessment, DTMR may give directions about the use of the roads to lessen the impacts or require the development proponent to carry out works to lessen the impacts.

3.2 Transport Operations (Road Use Management) Act 1995

The *Transport Operations (Road Use Management) Act 1995* (Transport Operations Act) aims to provide a regulatory framework whose overall objective is to provide for the effective and efficient management of the use of Queensland state road network. The Transport Operations Act provides a scheme which promotes the effective movement of goods and people, improves road safety and also contributes to the strategic management of the road network in ways consistent with the TI Act.

3.3 Local Government Act 2009

The *Local Government Act 2009* (LG Act) gives power to local government to control all roads in its Local Government Area (LGA). This includes:

- making local laws to regulate the use of roads and the movement of traffic
- imposing obligations on the owners of land that adjoins local roads.

Section 72 of the LG Act specifies requirements for impact assessments to be carried out for development that may cause environmental impact to the local road network. After the assessment, the local government may give directions about the use of the roads to lessen the impacts or require the development proponent to carry out works to lessen the impacts.

3.4 Guide to Traffic Impact Assessment

The *Guide to Traffic Impact Assessment* (GTIA) (The State of Queensland (Department of Transport and Main Roads), 2018) provides guidance for development proponents how to assess the traffic impacts of a proposed development on the SCR network.

The GTIA outlines the principles and the framework for undertaking a traffic impact assessment and provides advice on mitigation strategies to address traffic impacts. The guide provides advice for both development proposals assessable under the *Planning Act 2016*, as well as for major development assessed under other assessment frameworks (usually subject to an environmental impact statement, or a notifiable road use).

3.5 Australian Level Crossing Assessment Model

The Australian Level Crossing Assessment Model (ALCAM) is the Australian and New Zealand standard for assessing level crossings. ALCAM is an assessment tool designed to prioritise level crossing safety improvement works as well as assisting in the determination of the most effective treatment at each of the potentially affected level crossings.

All public level crossings on the Government supported non-commercial rail network in Queensland have been risk assessed using ALCAM.

When assessing level crossings for required upgrades, ALCAM looks at many factors at the crossing such as:

road geometry

- road and rail traffic volume and speed
- visibility
- existing protection measures at crossing.

The outcomes of the ALCAM assessment are then used to identify priority level crossings for safety upgrades.

A railway safety assessment incorporating comparative ALCAM assessments are likely to be undertaken for the impacted railway level crossings, with and without the Project. DTMR will arrange for the ALCAM assessments to be undertaken by the railway manager (Aurizon). The outcomes of the ALCAM assessments may identify the mitigation measures required to address any identified railway safety issues.

3.6 Planning Act 2016 and Planning Regulation 2016

Under the framework of the Queensland Planning Act 2016 and Planning Regulation 2016, benchmarks are defined for assessment of state matters in the State Development Assessment Provisions (SDAP).

The SDAP State code 2: development in a railway environment and State code 6: Protection of state transport networks set assessment benchmarks to protect railway corridors, rail transport infrastructure and safety of railways.

To ensure the Project does not adversely impact the structural integrity or physical condition or operating condition of railways, rail transport infrastructure or other rail infrastructure within a railway corridor, the Project will be designed and developed to comply with performance outcomes, including:

- Development does not result in a material worsening of flooding impacts within a railway corridor
- Drainage infrastructure does not create a safety hazard in a railway corridor
- Construction activities do not cause ground movement or vibration impacts in a railway corridor
 BMA will progress detailed design to demonstrate these performance outcomes are met.

4.0 Methodology

4.1 Assessment horizon and assessment years

The construction of the Project is expected to commence this year (FY 2023) and continue until FY 2025. The operation of the mine is assumed to commence in FY 2025 and continue until FY 2044 with operations winding down during FY 2043 and FY 2044. Based on these timeframes, the Project is anticipated to have a one year period where the construction phase and operations phase overlap, being FY 2025.

However, this assessment was originally undertaken with the understanding that construction of the Project would be commenced in 2021. Given the length of the EIS process to date and the uncertainty of actual timing, the Project will be assessed based on the timing assumptions adopted to date for impact assessment purposes. As a result, the assessment years of Financial Year (FY) 2021, FY2023 and FY2040 were selected as being years in which the maximum development traffic was anticipated.

It is noted that construction will commence following the grant of relevant approvals and BMA's decision to proceed with the Project. The actual timing for Project commencement will be determined based on progress of mining and commercial market drivers. Given the length of the EIS process to date and the uncertainty of actual timing, BMA will make the following commitments in relation to the Project's Traffic Impact Assessment (TIA) and road safety audit:

- During the detailed design phase and no later than 6 months prior to construction, in consultation
 with DTMR, BMA will prepare an updated Traffic Impact Assessment, background traffic counts,
 and Road Use Management Plan, in accordance with section 7.6 of the GTIA and in consultation
 with DTMR and implement agreed management and / or mitigation measures.
- During the detailed design phase and no later than 6 months prior to construction, in consultation with DTMR, BMA will undertake a road safety audit in accordance with Part C – section 9 of the GTIA and implement identified mitigation measures.

4.2 Traffic impact assessment

To inform the Traffic impact assessment (TIA), an inspection of the existing road network was undertaken in September 2021. In addition to the inspection, data pertaining to the existing condition of various roads has been sourced from DTMR and IRC. This includes data relating to existing traffic volumes, the existing pavement condition, existing school bus routes and historic crashes, as well as information pertaining to planned future road works. To supplement the information received from the road authorities, traffic counts were also independently undertaken at a number of intersections in April 2018.

Traffic count data collected in 2018 and subsequently used in this assessment was compared against more recent DTMR traffic count data (2019) used in the Lake Vermont Meadowbrook Project EIS (published in 2022) to verify its accuracy and relevance to existing traffic volumes.

This comparison identified that AADT traffic volume counts and heavy vehicle percentages collected in 2018 are comparable to baseline traffic volumes collected in 2019. As a result, the 2018 traffic count data is considered appropriate for the purposes of this assessment. BMA will undertake a new traffic count prior to construction to inform secondary approval requirements.

The TIA component of this report has been prepared with reference to the GTIA (The State of Queensland (Department of Transport and Main Roads), 2018) which supersedes the Guidelines for Assessment of Road Impacts of Development 2006 (GARID) referenced in the Project's ToR.

The GTIA outlines the principles and framework for undertaking traffic impact assessments for the SCR network. It also provides advice on mitigation strategies to address impacts.

It is intended to be used in preparing TIAs, as well as for DTMR departmental staff to assess them. The principles and strategies in the GTIA are written specifically for the SCR network; however, local governments may choose to adopt the GTIA for assessment of impacts to the local government road network.

The assessment methodology adopted for the TIA component of this report is summarised in the following key tasks:

- broadly identify the existing transport infrastructure which may be impacted by the Project
- estimate the traffic generation associated with the construction and operation phase of the Project and the distribution of this traffic on the identified road network
- assess the potential impact of the Project on the surrounding transport infrastructure during the construction and operation phase
- identify potential mitigation and management strategies to be implemented during the construction and operation phase to offset the impact of the proposed Project (if required).

As outlined above, the adopted methodology centres on establishing a background "without development" traffic scenario for the identified transport routes and comparing this with a scenario including the Project generated traffic, i.e. the "with development" scenario.

The process allows for the assessment of the traffic impacts of the Project in terms of access, intersections, link capacity, pavement and road safety. Further detail regarding the assessment of each of these impact types is provided below.

Following the impact assessment, if required, potential mitigation and management measures would be formulated to address the potential traffic impacts caused by the proposed Project.

4.2.1 Access

As the majority of the SCRs have a primary function of catering for through traffic, vehicular and access management is a key consideration for ensuring the SCR network maintains this function. Therefore, accesses to the SCR network should be minimised where safe and efficient alternative access points can be provided via the local government road network.

The location and configuration of accesses from adjacent development or its roads can affect the safety and efficiency of SCRs by providing another location where turning vehicle movements conflict with through vehicle movements. In addition, development of land fronting a SCR requires that configuration of that frontage to be consistent with the current or intended form of the SCR.

4.2.2 Intersections

An intersection is where two or more roads cross or converge at a single location. Vehicles travelling through an intersection may be required to stop or slow down. When these manoeuvres take place, delays and queuing may occur.

Delays and queuing are undesirable outcomes. The following methods are typical ways to measures performance for intersections with further descriptions are provided below:

- Degree of Saturation (DoS)
- Level of Service (LoS)
- Queuing and Delay.

For the purpose of this assessment, signalised and unsignalised Intersection Design and Research Aid (SIDRA) was used to analyse intersection performance, including intersections between roads and intersections between road and rail infrastructure.

The intersection analyses were carried out for the existing traffic conditions and for the traffic conditions expected during the Project. Comparison of these results quantifies the impact to the intersection as a result of the Project.

4.2.2.1 Degree of Saturation

DoS is the ratio of traffic volume to the capacity of an intersection approach. It is expressed as a percentage with 100 per cent meaning that demand has reached the approach capacity and no further traffic will be able to progress through the intersection.

4.2.2.2 Level of Service

LoS is a qualitative measure of intersection performance which, in this assessment, is based on vehicle delay as summarised in Table 2.

Table 2 Level of Service

Level of Service	Delay (seconds)
А	Less than 10 seconds
В	Between 10 and 15 seconds
С	Between 15 to 25 second
D	Between 25 to 35 seconds
Е	Between 35 to 50 seconds
F	More than 50 seconds

4.2.2.3 Delay and queuing

Delay is the difference between interrupted and uninterrupted travel times at an intersection. Delay, measured in seconds, is the sum of Geometry Delay and Queuing Delay. Geometry Delay is the delay caused by vehicles negotiating or manoeuvring corner radius. Queuing Delay is the delay caused by gap acceptance at priority intersections or red time at signalised intersections.

SIDRA uses Back of Queue to measure queuing at intersections. It is the maximum extent of queue (in metres and vehicle length) for the vehicle movements.

4.2.3 Highway link capacity

A highway link is a connection between an origin and a destination. There are several ways to measure performance including travel time, speed, delay and safety. As stated in the latest GTIA, the assessment of road link capacity impacts is based on the incremental worsening of LoS. It further states, road operation capacity impacts are only considered for major developments and link capacity assessments are not required unless new State-Controlled Road (SCR) road links are needed to be constructed to service the development. For the purpose of this assessment, volume / capacity (v/c) ratios have been used to assess the performance of the highway links with and without the traffic generated by the Project.

4.2.4 Pavements

Road pavements are designed to carry vehicle loads over an expected life. Developments which generate significant heavy vehicle traffic cause pavement impacts which shorten the pavement life expectancy compared to DTMR's maintenance schedules.

A preliminary desktop pavement impact assessment (PIA) was undertaken to determine the potential impacts to the pavement caused by heavy vehicles generated by the Project. It is based on determining Equivalent Standard Axle (ESA) load and payloads for heavy vehicles using the road network. An ESA is a unit measurement which converts the wheel loads of traffic to an equivalent number of standard loads which is usually expressed in terms of the equivalent number of 80 kilo-Newtons (kN) single axle load.

The ESA for the background heavy vehicle component was calculated based on an average 3.2 ESAs per heavy vehicle, which is based on a DTMR-approved PIA calculation tool. The heavy vehicle traffic volumes generated by the Project were converted into ESA based on the assumed heavy vehicle (HV) classes used on the Project and the appropriate ESA/HV rate for each vehicle class.

Where the number of ESA of the additional Project generated traffic equals or exceeds five per cent of the background ESA, the pavement is considered to be impacted based on the requirements of GTIA. Therefore, further assessment of applicable mitigation measures, including possible compensation contributions, is required.

4.2.5 Road Safety

Safety is one of the principal objectives in road infrastructure. Traffic accidents pose significant burdens and economic loss to the community. Therefore, it is a key consideration in assessing development proposals. DTMR requires that developments should ensure safety is not significantly worsened and that any safety issues should be addressed and mitigated.

In addition, the GTIA requires developments to address all pre-existing high-risk safety issues due to the expectation that additional traffic will exacerbate poor existing safety conditions.

Road safety risks associated with the traffic generated by the Project, including resultant and residual road safety risks, were evaluated with the results described in Sections 6.2.4 and 8.0. Risks were classified and ranked as low, medium, high or intolerable based on the risk matrix in Table 3 taken from Austroads *Guide to Road Safety Part 6: Road Safety Audit* (2009).

Table 3 Austroads Risk Matrix

Risk Matrix	Frequent	Probable	Occasional	Improbable
Catastrophic	Intolerable	Intolerable	Intolerable	High
Serious	Intolerable	Intolerable	High	Medium
Minor	Intolerable	High	Medium	Low
Limited	High	Medium	Low	Low

Road safety risk has been evaluated based on frequency and severity of accidents. The frequency is presented in Table 4, which describes how likely it is for an accident to occur. The severity is presented in Table 5, which describes how serious the consequences of the accident are, including personal injury and property damage.

Table 4 Frequency / probability of crash

Frequency / probability	Description
Frequent	Once or more per week
Probable	Once or more per year (but less than once a week)
Occasional	Once every five or ten years
Improbable	Less often than once every ten years

Table 5 Severity of crash

Severity	Description	Example
Catastrophic	Likely multiple deaths	High-speed, multi-vehicle crash on a freeway
		Car runs into crowded bus stop
		Bus and petrol tanker collide
		Collapse of a tunnel
Serious	Likely death or serious injury	High or medium-speed vehicle/vehicle collision
		High or medium-speed collision with a fixed roadside object
		Pedestrian or cyclist struck by a car
Minor	Likely minor injury	Some low-speed vehicle collisions
		Cyclist falls from bicycle at low speed

Severity	Description	Example		
		Left-turn rear-end crash in a slip lane		
Limited	Likely trivial injury or property damage only	Some low-speed vehicle collisions		
		Pedestrian walks into object (no head injury)		
		Car reverses into post		

4.3 Rail impact assessment

The rail impact assessment involves the identification of the proposed routes and the existing rail infrastructure, including level crossings. The assessment estimates the existing usage of the rail infrastructure, in comparison to the additional demand as a result of the Project.

4.4 Port infrastructure

The approach adopted for assessing the impacts to port infrastructure included the identification of existing port infrastructure and existing usage, an estimation of the additional demand caused as a result of the Project, and an impact assessment as a result of the Project.

The preferred coal export terminal will be a part of commercial discussions between BMA and the relevant port authorities.

4.5 Airport infrastructure

The approach adopted for assessing the impacts to airport infrastructure included the identification of existing airport infrastructure and existing usage, an estimation of the additional demand caused as a result of the Project, and an impact assessment as a result of the Project.

5.0 Description of environment values

This section of the report presents the key transport networks and infrastructure considered relevant to the Project. The environmental values related to traffic include congestion, travel time, road safety and sustainable travel. The road assessment has focused on safety and efficiency for the identified intersections and highway links in the Traffic Impact Assessment Area.

5.1 Development context

5.1.1 Site location

The location of the Project is adjacent to the existing Saraji Mine on Saraji Road, Dysart. It is within the LGA under the jurisdiction of the IRC approximately 170 km southwest of Mackay as shown in Figure 1.

5.1.2 Project road transport routes

The following section provides information regarding the two regional routes which would be utilised for transporting materials and equipment to the Project Site.

Transport route from Rockhampton, south of the Project Site:

- Capricorn Highway (16A and 16B)
- Fitzroy Development Road (85C)
- Dysart-Middlemount Road (519).
- Saraji Road (R44)

Transport route from Mackay, north of the Project Site:

- Peak Downs Highway (33A)
- Peak Downs Mine Road
- Saraji Road (R44).

It is anticipated that the following transport routes would be utilised for staff vehicles traveling to the Project Site:

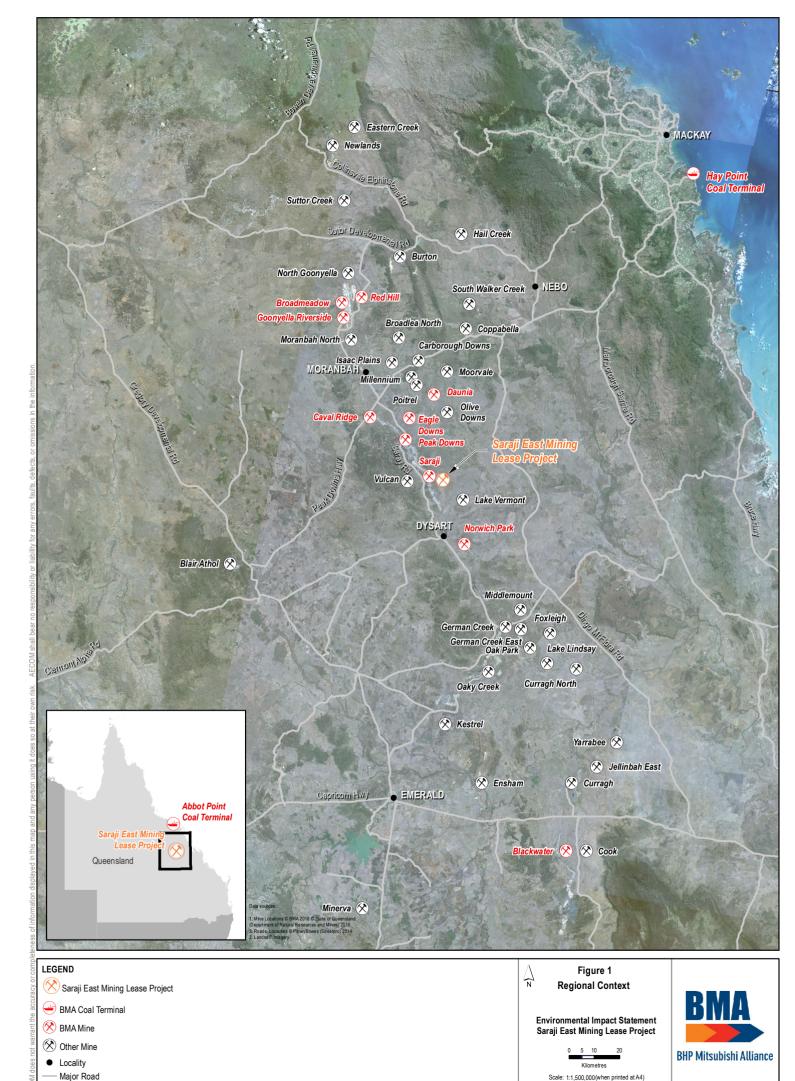
Transport route from Dysart, south of the Project Site:

Saraji Road (R44).

Transport route from Moranbah, north of the Project Site:

- Moranbah Access Road
- Peak Downs Highway (33A)
- Peak Downs Mine Road
- Saraji Road (R44).

5.1.3 Project rail transport route


The existing Goonyella rail system (specifically the Norwich Park Branch Line) which is owned and operated by Aurizon runs adjacent to the Saraji Mine.

5.1.4 Project air transport route

Moranbah Airport is located 35 km north of the Project Site. The route from the Project Site to the airport follows Saraji Road, Peak Downs Mine Road, Peak Downs Highway and Moranbah Access.

5.1.5 Project port transport route

Product coal from the Project will be exported via either Hay Point Coal Terminal or Abbot Point Coal Terminal. The coal will be transported to these ports via the Goonyella rail system.

Projection: Map Grid of Australia - Zone 55 (GDA94)

DATE: 21/07/2023 VERSION: 3

5.1.6 Road transport network

For the purpose of this assessment, parts of Saraji Road, Peak Downs Mine Road, Peak Downs Highway and Lake Vermont Road as highlighted in blue in Figure 2 have been identified as within the Traffic Impact Assessment Area. It is anticipated that these roads will carry the increased traffic associated with the Project during the construction and operation stages.

The assessment of highway link efficiency has been undertaken at specific points shown on Figure 2 and are listed below:

Highway Link 1 Saraji Road south of Lake Vermont Road

Highway Link 2
 Saraji Road between Lake Vermont Road and

Intersection A

Highway Link 3
 Peak Downs Mine Road south of Peak Downs Highway

Highway Link 4
 Peak Downs Highway east of Moranbah Access Road.

The selection of road links was based on estimated trip distribution. As the location of the development is adjacent to the existing Saraji Mine on Saraji Road, Dysart; it is anticipated that the above road links would be utilised for transporting materials and equipment and movement for workers to and from the site during construction and operation stages. The study area includes all road links where the development traffic exceeded 5% of the base traffic in either direction on the link's annual average daily traffic in the year of opening of each stage, as stated in the GTIA.

Intersections expected to be utilised by Project traffic are shown in Figure 2 and are listed below:

Intersection 1 Saraji Road / Lake Vermont Road

Intersection 2 Saraji Road / Existing Saraji Mine Entrance

Intersection 3 Saraji Road / Peak Downs Mine Road / Existing

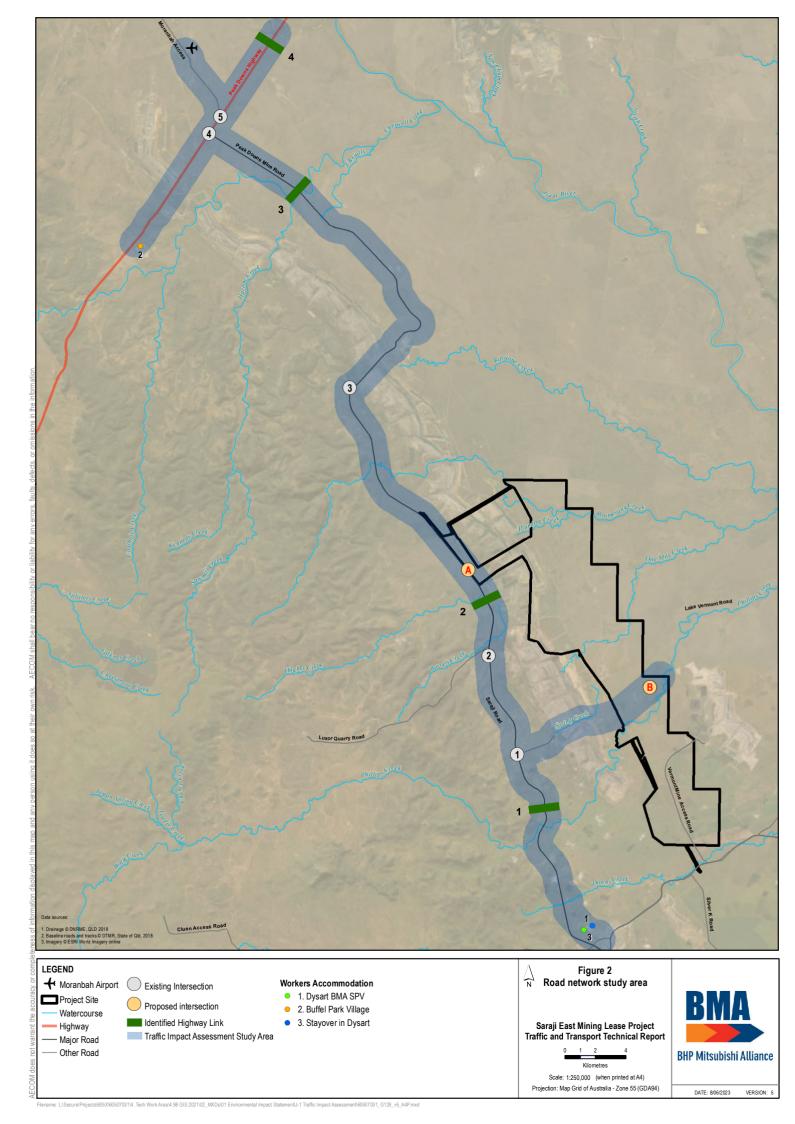
Peak Downs Mine Entrance

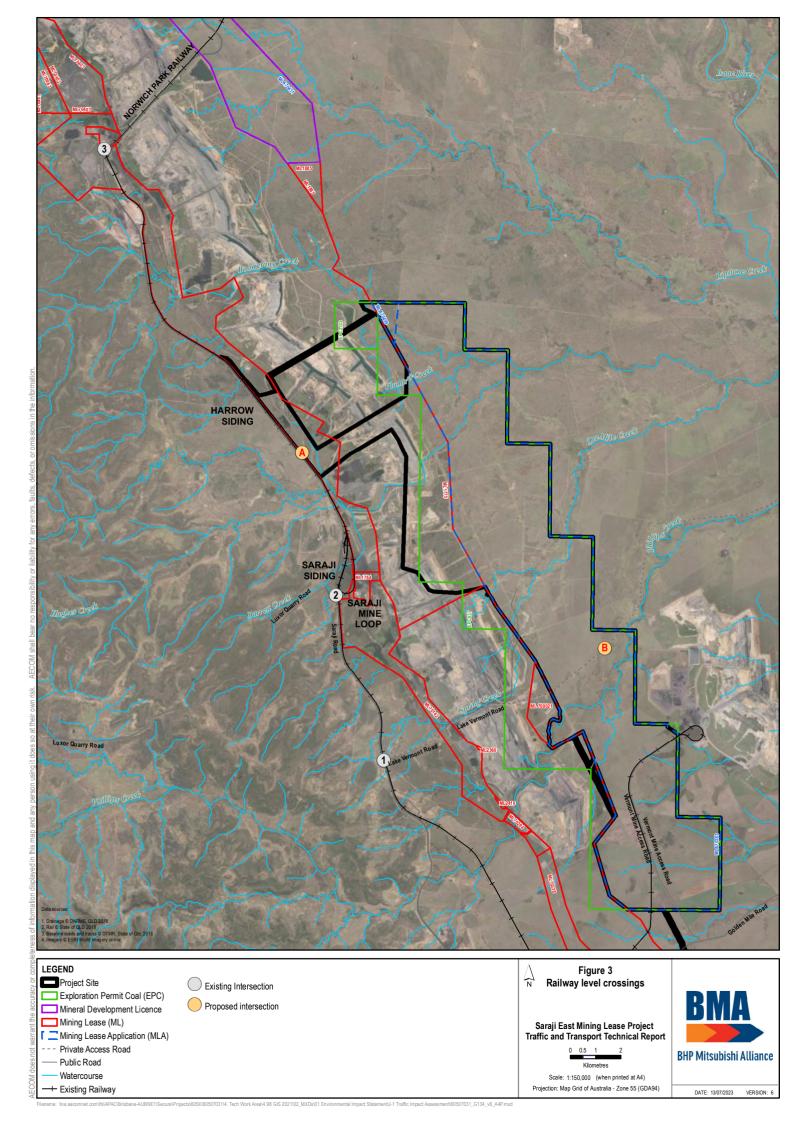
Intersection 4 Peak Downs Highway / Saraji Road

Intersection 5
 Peak Downs Highway / Moranbah Access Road

Proposed Intersection A Saraji Road / Proposed access to the Project Site

Proposed Intersection B Lake Vermont Road / Accommodation village access.


There are also a number of level crossings within the study area that may be impacted by Project traffic, which are shown in Figure 3 and are listed below:


Level Crossing 1 Lake Vermont Road / Norwich Park Branch Line

Level Crossing 2
 Saraji Road / Norwich Park Branch Line

Proposed Level Crossing A Proposed access to the Project Site / Norwich Park Branch

Line.

5.1.6.1 Description of road links

5.1.6.1.1 Saraji Road (R44)

Saraji Road is a single carriageway, two-lane two-way sealed road providing a connection between Peak Downs Mine and Dysart. The road is approximately 8m wide and the speed limit is generally 100 km/h with reduced limits applied near critical intersections.

The road link between the intersection with the Peak Downs Mine and the entrance to Dysart is a local government road managed by IRC. To the south of Dysart, the road name changes to Dysart-Middlemount Road and is part of the SCR network managed by DTMR.

5.1.6.1.2 Peak Downs Mine Road

Peak Downs Mine Road is a single carriageway, two-lane two-way sealed road providing a connection between Peak Downs Mine and Peak Downs Highway. The road is approximately 7m to 8m wide and the speed limit is generally 100 km/h. The road link between Peak Downs Mine and Peak Downs Highway is a local government road managed by IRC.

5.1.6.1.3 Peak Downs Highway (33A)

Peak Downs Highway (33A) is a SCR linking Mackay on the Whitsunday coast and Clermont in the central west region of Queensland. It is a single carriageway two-lane two-way sealed road. The road is approximately 10m wide and the speed limit is generally 50 km/h in built-up areas and 100 km/h in rural areas. It is classified as a Type 1 Road Train route.

5.1.6.1.4 Lake Vermont Road

Lake Vermont Road is a single carriageway unsealed rural road approximately 5 m to 6 m wide and is privately owned by BMA. There is no posted speed limit therefore the general rural limit of 100 km/h applies along with the requirement on an unsealed road to drive to the conditions. Existing traffic volumes on this road are very low and are either associated with a small number of rural residences or exploration activities for the existing Saraji Mine. An accommodation village for the construction workforce is proposed to be constructed on a new access road off Lake Vermont Road. Therefore, Lake Vermont Road will be utilised for transporting workers between the Project and the village.

5.1.6.2 Description of intersections

5.1.6.2.1 Intersection 1 - Saraji Road / Lake Vermont Road

The intersection between Saraji Road and Lake Vermont Road is a give way priority T-intersection with Basic Left-turn Treatment (BAL). The throat of the side road is sealed and the intersection is unlit.

The Norwich Park Branch rail line runs parallel with Saraji Road with an offset of approximately 34 m at the intersection. This allows for 34 m of vehicle storage on Lake Vermont Road when a train is passing, and vehicles must stop. Vehicle queues in excess of 34 m will encroach on the through lanes of Saraji Road.

Plate 1 Saraji Road / Lake Vermont Road intersection

Lake Vermont Road will be utilised for transporting workers between the Project and the constructionphase accommodation village; therefore all staff buses will pass through Intersection 1 between the Project and the village.

5.1.6.2.2 Intersection 2 – Saraji Road / Saraji Mine Entrance

The intersection between Saraji Road and the entrance to Saraji Mine is a give way priority T-intersection under IRC jurisdiction. As heavy vehicles are expected frequently, it has been constructed to include a Channelised Right-turn Lane (CHR) for approximately 660 m and an Auxiliary Left-turn Treatment (AUL) for approximately 110 m. Intersection lighting is installed. The Norwich Park Branch rail line runs parallel with Saraji Road with an offset of approximately 34 m at this intersection. This allows for 34 m of vehicle storage on the Saraji Mine access when a train is passing and vehicles must stop. Vehicle queues in excess of 34 m will encroach on the through lanes of Saraji Road.

Plate 2 Saraji Road / Saraji Mine Entrance intersection

5.1.6.2.3 Intersection 3 – Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance

The intersection between Saraji Road, Peak Downs Mine Road and the entrance to Peak Downs Mine is a give way priority T-intersection with Basic Left-turn Treatment (BAL) as shown in the following photos. Peak Downs Mine Road and the entrance to the Peak Downs mine are the eastern and western legs, respectively. Saraji Road is the minor leg, approaching from the south. Currently the intersection does not have lighting installed.

Plate 3 Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance intersection

Even though the give-way control is located on the Saraji Road south approach, it is noted that the main traffic movement is the right-turn from Saraji Road (southern leg) and left turn from Peak Downs Mine Road (eastern approach).

5.1.6.2.4 Intersection 4 – Peak Downs Highway / Peak Downs Mine Road

The intersection between Peak Downs Highway and Peak Downs Mine Road is a give way priority T-intersection with a staged right turn for vehicles exiting Peak Downs Mine Road (seagull). It has an approximately 190 m CHR and an approximately 120 m Channelised Left-turn Treatment (CHL) on the Peak Downs Highway. The intersection has an acceleration lane on Peak Downs Highway northbound for the staged right-turn movement from Peak Downs Mine Road. Intersection lighting is installed.

Plate 4 Peak Downs Highway / Peak Downs Mine Road intersection

5.1.6.2.5 Intersection 5 – Peak Downs Highway / Moranbah Access Road

The intersection between Peak Downs Highway and Moranbah Access is a give way priority T-intersection with a staged right turn for vehicles exiting Moranbah Access (seagull). It has an approximately 60 m CHR and approximately 140 m CHL on the Peak Downs Highway. The intersection has an acceleration lane on Peak Downs Highway southbound for the staged right-turn movement from Moranbah Access. Intersection lighting is installed.

Plate 5 Peak Downs Highway / Moranbah Access Road intersection

5.1.6.2.6 Proposed Road Intersection A - Saraji Road / access road to the Project

The proposed intersection A will be located approximately 4 km north of the existing entrance to the Saraji Mine as shown in Figure 2.

The proposed configuration of proposed Intersection A will be very similar to the existing entrance to the Saraji Mine. The intersection is expected to include a CHR and an AUL.

The Norwich Park Branch rail line runs parallel with Saraji Road with an offset of approximately 30 m at this proposed intersection. Concept designs for this intersection propose a 10 m horizontal realignment of Saraji Road to the west which would increase the available space and will allow for 40 m of vehicle storage on the Project access road when a train is passing and vehicles must stop. Vehicle queues in excess of 40 m will encroach on the through lanes of Saraji Road.

5.1.6.2.7 Proposed Road Intersection B - Lake Vermont Road / Accommodation village access

A new intersection is proposed on Lake Vermont Road for an access road to the proposed construction accommodation village. It is anticipated all staff buses between the Project and the village will use this intersection if the village is required. Design of this intersection will be undertaken in the detailed design stage of the Project.

5.1.6.3 Description of level crossings

5.1.6.3.1 Level Crossing 1 - Lake Vermont Road / Norwich Park Branch rail line

The Norwich Park Branch rail line runs parallel with Saraji Road approximately 34 m east on Lake Vermont Road from Saraji Road / Lake Vermont Road intersection. The intersection of the rail line and Lake Vermont Road is a passive level crossing with stop sign control.

5.1.6.3.2 Level Crossing 2 – Peak Downs Mine Road / Norwich Park Branch rail line

The Norwich Park Branch rail line runs parallel with Saraji Road at Level Crossing 2 approximately 40 m east on Saraji Mine Access Road from the Saraji Road / Saraji Mine Access Road intersection. The intersection is an active level crossing with boom barriers and flashing lights controls.

5.1.6.3.3 Proposed Level Crossing A – the Project Site access road / Norwich Park Branch rail line

The proposed level crossing between the Project Site access road and Norwich Branch rail line is approximately 40 m offset from Saraji Road when accounting for the proposed horizontal realignment of Saraji Road. The detailed design of this level crossing will be undertaken in the detailed design stage. Concept designs of this level crossing are presented in Appendix G.

5.2 Development details

BMA proposes to develop the Project, a greenfield single-seam underground mine development on Mining Lease Application (MLA) 70383 and MLA 70459 commencing from within Mining Lease (ML) 1775. The Project proposal also comprises a Coal Handling and Preparation Plant (CHPP), a coal transport conveyor network, a Mine Infrastructure Area (MIA) and a new rail spur and balloon loop; which are proposed to be located on the site of the existing adjacent Saraji Mine. Additionally, a new transport and infrastructure corridor will be constructed on MLA 70383.

Product coal will be transported along the existing rail system that currently runs along the western boundary of the Saraji Mine ML 70142. A new rail spur, balloon loop and signalling system will be required to connect to the existing rail network. The balloon rail loop will be approximately 4.4 km in length and located on ML 70142 and adjacent to the existing rail line. The balloon rail loop will be a narrow gauge electrified line.

One new access intersection (Intersection A) will be constructed on Saraji Road. Design of the intersection will be undertaken during the detailed design stage. However, it is proposed that it will include the following design elements:

- CHR on Saraji Road
- AUL on Saraji Road
- Active level crossing with boom gates and flashing lights control on Norwich Park Branch rail line.

Concept designs for the proposed intersection (Intersection A) are presented in Appendix G.

One accommodation village is proposed to be constructed in the construction stage to accommodate construction workers. It is proposed to be located on a new access road off Lake Vermont Road. Access to the village will be via Saraji Road, Lake Vermont Road and the new access road.

A new intersection (Proposed Road Intersection B) on Lake Vermont Road will also be required for transporting workers to and from the accommodation village and the Project if required. Design of this intersection will be undertaken during the detailed design stage of the Project.

As part of the Project, upgrades will be made to the existing Saraji Mine Access Road level crossing (level crossing 2) to accommodate the increased traffic. Design of this upgrade will be undertaken during the detailed design stage of the Project, however concepts can be seen in Appendix G.

5.3 Traffic volumes

The Project will be divided into construction and operation stages. At each stage, traffic generation will include workers traveling to and from the Project Site and the delivery of materials and equipment. Estimates of the traffic volumes generated by the Project in the construction and operation stages will be described in this section.

5.3.1 Background traffic

The estimate of existing (2018) and future traffic volumes on the identified road network is based on the following input data:

- Intersection traffic counts undertaken at the five intersections in the Traffic Impact Assessment Area
- Annual Average Daily Traffic (AADT) segment reports provided by DTMR for the Peak Downs Highway and Saraji Road.

Traffic counts were undertaken at the following intersections on Wednesday 21 March 2018:

- Intersection 1 Saraji Road / Lake Vermont Road
- Intersection 2 Saraji Road / Existing Saraji Mine Entrance
- Intersection 3 Saraji Road / Peak Downs Mine Road / Existing Peak Downs Mine Entrance
- Intersection 4 Peak Downs Highway / Peak Downs Mine Road
- Intersection 5 Peak Downs Highway / Moranbah Access Road.

A review of the traffic flows indicated maximum traffic volumes occurred approximately during the following hourly periods:

- 5am to 6am (AM peak hour)
- 5pm to 6pm (PM peak hour).

The peak hour flows from the traffic count data for the highway links are presented in Table 6 with the total intersection volumes presented in Table 7. Flow diagrams are included in Appendix A.

Table 6 Background traffic (2018) - highway links

Llighway link	Location	Direction	Traffic flow (vehicles per hour)	
Highway link	Location		AM Peak Hour	PM Peak Hour
(1) Saraji Road	South of Lake Vermont Road	Northbound	390	161
		Southbound	67	229
	Intersection A	Northbound	148	91
(2) Saraji Road		Southbound	42	104
(3) Peak Downs Mine Road	South of Peak Downs Highway	Northbound	25	136
		Southbound	247	125
(4) Peak Downs Highway	East of Moranbah Access Road	Eastbound	172	118
		Westbound	84	195

Table 7 Background traffic (2018) - intersections

Intersection	Number of vehicles	Number of vehicles		
intersection	2018 AM (5am – 6am)	2018 PM (5pm – 6pm)		
1	460	403		
2	513	462		
3	390	388		
4	495	483		
5	646	674		
А	190	195		

A review of the 2019 AADT segment reports for the Peak Downs Highway and Saraji Road showed a general trend of continuous decline in traffic volumes for the historic one-year period, five-year period and ten-year period as summarised in Table 8.

Table 8 Percentage change in AADT on Peak Down Highway and Saraji Road (2019 reference year)

Highway Link	Direction	1 Year Historic Growth	5 Year Historic Growth	10 Year Historic Growth
Peak Downs Highway	Eastbound	0.12%	5.42%	1.89%
	Westbound	-1.98%	5.14%	1.55%
Tiigiiway	Average	-0.94%	5.28%	1.72%
Dysart-Middlemount Road	Eastbound	NA	-1.70%	-4.56%
	Westbound	NA	-2.04%	-4.74%
	Average	NA	-1.87%	-4.65%

The results show a decline in the ten-year growth for Dysart-Middlemount Road (approx. 4.65% decrease p.a.) and an increase in the ten-year growth for Peaks Down Highway (approx. 1.72%). However, this assessment has adopted a positive growth rate of one per cent per annum as a conservative approach to estimate future background traffic volumes. Flow diagrams for AADT and relevant data from DTMR are included in Appendix B.

The adopted growth rate of one per cent per annum has been applied to the 2018 background traffic to estimate future background traffic in the nominated assessment years. Table 9 and Table 10 summarise the future background traffic for the identified highway links and intersections, respectively. Flow diagrams are included in Appendix B.

Table 9 Future background traffic - highway links

(1) Background	traffic			Traffic	flow (Nun	nber of ve	hicles)	
			FY 2021		FY 2	2023	FY 2	2040
Highway link	Location	Direction	AM	PM	AM	PM	АМ	PM
g			5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm
(1) Saraji Road	South of Lake	Northbound	406	168	414	171	490	202
(1) Saraji Kuau	Vermont Road	Southbound	70	238	71	243	84	288
(0) O :: D d	Intersection A	Northbound	154	95	157	97	186	114
(2) Saraji Road	intersection A	Southbound	44	108	45	110	53	131
(3) Peak	South of Peak	Northbound	26	142	27	144	31	171
Downs Mine Road	Downs Highway	Southbound	257	130	262	133	311	157
(4) Peak East of Downs Moranbah Highway Access Road	Eastbound	179	123	183	125	216	148	
		Westbound	87	203	89	207	106	245

Table 10 Future background traffic - intersections

(1) Background traffic	Traffic flow	(Number of v	ehicles)				
	FY 2021		FY 2023		FY 2040		
Intersections	AM (5am - 6am)	PM (5pm - 6pm)	AM (5am - 6am)	PM (5pm - 6pm)	AM (5am - 6am)	PM (5pm - 6pm)	
1	479	419	488	428	578	507	
2	534	481	545	490	645	581	
3	406	404	414	412	490	488	
4	515	503	525	513	622	607	
5	672	701	686	715	812	847	
А	198	203	202	207	239	245	

5.3.2 Construction traffic

The following sections describe the generation and distribution of traffic associated with the construction phase of the Project, including the movement of workers and the delivery of materials and equipment.

5.3.2.1 Construction workers traffic

It is anticipated that 500 workers will be required during the construction stage in Year 1 with construction activities ramping up to require 1,000 workers in Year 2 and Year 3 of construction.

The following assumptions form the basis for the estimate of traffic volumes for the construction workers:

- construction schedule comprises works across 24 hours per day, seven days per week, 365 days per year
- two twelve hour shifts per day
- rosters based on seven days on, seven days off alternating with six nights on, eight nights off
- ten per cent of the workforce have been assumed to be based locally, adopting an equal split between Moranbah and Dysart
- local workforce will travel by cars, with an assumed occupancy rate of one person per vehicle
- 90 per cent of the workforce have been assumed to be fly-in, fly-out (FIFO) to Moranbah Airport
- FIFO workforce will be transported between the Moranbah Airport, Project Site and the construction accommodation village by bus (48 seat capacity)
- FIFO workers will reside at the construction accommodation village
- at the start of the roster, FIFO workers will be transported by bus from the Moranbah Airport directly to the Project site to commence shift
- at the shift changeovers (two per day), FIFO workers will be transported between the Project Site and the construction accommodation village by bus
- at the end of the roster, FIFO workers will be transported directly from the Project Site to the Moranbah Airport by bus.

For the purpose of this assessment, it was conservatively assumed that the shifts would changeover at the existing peak hour periods of 5am - 6am in the morning and 5pm - 6pm in the evening.

Vehicle movements associated with the FIFO workforce will vary across the week due to the rostered on and off periods. This assessment has considered two different days which represent different traffic conditions as a result of the rosters, including:

- Shift change day
 - FIFO workers at the end of shift are also at the end of the roster and are transported directly from the Project Site to the Moranbah Airport
 - FIFO workers about to commence their shift are also at the start of the roster and are transported from the Moranbah Airport to the Project Site.
- Ordinary day
 - FIFO workers are transported between the Project Site and the construction accommodation village at the start and end of the shift.

On a shift change day, there will be higher traffic volumes to the north of the Project Site than on an ordinary day, due to the bus movements to and from the Moranbah Airport. On an ordinary day, there will be higher traffic volumes to the south of the Project Site than on a shift change day, due to the bus movements to and from the construction accommodation village. The same number of vehicle movements will occur on the shift changing day and ordinary day, but will be distributed differently on the road network.

Based on the above assumptions, Table 11 shows the number of vehicles (buses and cars) estimated for construction workers traffic.

Table 11 Construction workers traffic

(2A) Construction Workers Traffic		Number of vehicles (buses and cars)							
Voor (EV)	Workers	AM (5am - 6am)		PM (5pm – 6pm)		Average Daily			
Year (FY)		IN	OUT	IN	OUT	IN	OUT		
Year 1	500	30	30	30	30	60	60		
Year 2	1,000	60	60	60	60	120	120		
Year 3	1,000	60	60	60	60	120	120		

It is concluded that the construction workers traffic is expected to range from 30 to 60 vehicles per hour and 60 to 120 vehicles per day.

5.3.2.2 Construction materials and equipment traffic

A major component of the transport task for the construction phase will be heavy vehicle traffic for the delivery of construction materials, the removal of waste and the delivery of equipment. The vehicle fleet anticipated for the construction phase of the Project is presented in Table 12. The material quantities and estimate heavy vehicle movements across the construction period as well as for the peak construction year are listed in Table 13.

Table 12 Quantities for construction materials and equipment

Type of equipment	No.	Type of equipment	No.
Road trains	6	110t Outrigger crane	1
Body trucks	4	Rough terrain crane	1
Articulated dump trucks	4	Franna cranes	4
Road header	1	Elevated work platforms	6
Rock bolting machine	1	Scissor lifts	6
Bulldozers	3	Air compressors	2
Excavators	4	Welders	2
Backhoes	2	Winches	2
Graders	3	Bitumen sprayer	1
Scrapers	2	Concrete pump	2
Roller compactors	2	Diesel generators	4
Water trucks	4	Tamping machine	1
Concrete trucks	6	Grinding machine	1
Ballast train	1		

Table 13 Quantities for construction materials and equipment

			Material Quanti	ties		Heavy Vehicle	volume (one way	·)
Material	Units	Origin / Destination	Total Construction Requirement	Year 2 and 3 (construction)	Vehicle Type	Total Construction Deliverables	Year 2 and 3 (construction)	Daily peak hour
Construction Equipment	Т	Mackay	7,200	2,400	Various	480	160	2
Base & Sub base materials	m ³	Local Quarry	1,500,000	1,175,000	B Double	43,150	34,320	10
Concrete	m ³	Local / Dysart	18,000	6,975	Articulated Truck	2,900	1,137	3
Structural steel	Т	Mackay	4,600	1,000	24T trailer	254	42	1
Mechanical steel	Т	Mackay	54	27	24T trailer	2	1	0
Pipe work - steel	m	Mackay	1,650	225	Truck	15	5	1
Pipe work - steel with lining	m	Sydney	10,000	5000	Truck	50	25	1
Pipe work - PE	m	Brisbane	60,010	10,005	Truck	187	13	1
Electrical reticulation cable	m	Mackay	23,9028	64,014	Truck	107	76	1
Electrical reticulation poles	ea	Mackay	545	95	Truck	470	20	1
Conveyor belts	km	Sydney	11	6	18t Trailer	133	13	1
Pumps & compressors	Т	Local	150	75	Truck	10	0	0
Process equipment	Т	Brisbane	200	100	Truck	20	10	1
Other equipment*	Т	Local	3,467	2000	Truck	367	287	2
Asphalt	m ³	Local	950	750	Truck	1	0	0
Bulk Bitumen	m ³	Local	900	700	Truck	1	0	0
Prefabricated buildings	m²	Mackay	68,000	32,197	Truck	1,998	955	7
Fuel	kL	Mackay	1,925	1,140	B Double	39	23	1
Waste oil, sludge & grease	Т	Local	25	15	Truck	1	0	0
Hydraulic fluid	Т	Local	91	15	Truck	31	10	1

			Material Quantit	ies		Heavy Vehicle volume (one way)		
Material	Units	Destination Construction (construction	Total Construction Deliverables	Year 2 and 3 (construction)	Daily peak hour			
General & recyclable waste*	Т	Local	7,020	2,340	Truck	468	156	2
Hydraulic hoses	Т	Local	0.9	0.3	Truck	75	25	1
Oil filters	Т	Local	0.3	0.1	Truck	30	10	1
Rail Line	km	Mackay	5	5	Single Articulated	226	1	1
TOTAL TRIPS (worst case scenario)								39

^{*}Other equipment and General & Recyclable waste items include workforce consumables and wastes associated with the workforce accommodations on site.

Based on the above information, it is anticipated that 39 heavy vehicles per hour during peak conditions and 102 heavy vehicles per day will likely be required during the peak hours as summarised in Table 14

Table 14 Construction materials and equipment traffic

(2B) Construction materials and equipment traffic	Number of heavy vehicles							
Construction year	AM (5am	– 6am)	PM (5pm	– 6pm)	Average Daily			
Construction year	IN	OUT	IN	OUT	IN	OUT		
Year 1	39	39	39	39	102	102		
Year 2	39	39	39	39	102	102		
Year 3	39	39	39	39	102	102		

It is anticipated that delivery vehicles will originate from local areas such as Moranbah (north) and Dysart (south) as well as from regional centres such as Rockhampton (south-west) and Mackay (northeast). Vehicles will either travel to/from the east using Peak Downs Highway or to/from the south along Dysart-Middlemount, Fitzroy Development Road and the Capricorn Highway.

For the purpose of this assessment, an equal distribution between these routes has been applied, that is, 50 per cent of delivery vehicles are expected to use Peak Downs Highway and 50 per cent are expected to use Saraji Road to travel to and from destinations to the south of the Project.

5.3.2.3 Summary of construction traffic

For the purpose of this assessment, the construction traffic is defined as the sum of the construction workers traffic and the construction materials and equipment traffic as summarised in Table 15.

Table 15 Construction traffic summary

(2) Construction Traffic	Number	Number of vehicles (buses, heavy vehicles and cars)							
Construction year	AM (5am	AM (5am – 6am)		PM (5pm – 6pm)		Average Daily			
	IN	OUT	IN	OUT	IN	OUT			
Year 1	69	69	69	69	162	162			
Year 2	99	99	99	99	222	222			
Year 3	99	99	99	99	222	222			

Therefore, it is concluded that the construction traffic ranges from 69 to 99 vehicles per hour during peak conditions and 162 to 222 vehicles per day. The majority of construction traffic resulting from the Project is expected to occur during the AM and PM peak hours, with minimal activity occurring outside of these hours.

Operation traffic

The following sections describe the generation and distribution of traffic associated with the operations phase of the Project, including the movement of workers and the delivery of materials and equipment.

5.3.3.1 Operation workers traffic

The operations phase workforce is anticipated to fluctuate during the life of the Project. Between Year 3 and Year 4 of operation, it is expected 260 workers will be required with a gradual increase to 500 workers during Year 5 to Year 20, before reducing back to 260 workers in the final two years of the Project.

The following information forms the basis for the estimate of traffic volumes for the operation workers:

- proposed operating schedule 24 hours per day, seven days per week, 365 days per year
- three shifts per day of ten hours with overlapping periods between shifts
- rosters based on seven days on, seven days off alternating with six nights on, eight nights off

- 40 per cent of the workforce have been assumed to be locally based, adopting an equal split between Moranbah and Dysart
- local workforce will travel by car, with an assumed occupancy rate of one person per vehicle
- 60 per cent of the workforce have been assumed to be FIFO to Moranbah Airport
- FIFO workforce will be transported between Moranbah Airport, Project Site and accommodation village by bus (48 seat capacity)
- FIFO workers will reside at existing accommodation villages adopting an equal split between
 Moranbah and Dysart. The existing villages that may be used include Moranbah SPV, Dysart SPV
 and Dysart Ausco (Stayover). For the purpose of this assessment, the number of vehicles
 associated with FIFO workers will be equally assigned on Saraji Road between Moranbah and
 Dysart.
- at the end of the roster, FIFO workers will be transported directly from the Project Site to Moranbah Airport by bus.

As there are three shifts proposed per day, it is only possible for one of the shift changeovers to coincide with the peak hour periods for the background traffic, that is, the overlap will occur in either the AM or the PM peak hour. However, the shift changeover times have not yet been set, so this assessment has conservatively assessed both the AM and PM peak periods assuming overlap between the operations shift changeovers and the background traffic peak periods.

Vehicle movements associated with the FIFO workforce will vary across the week due to the rostered on and off periods. This assessment has considered two different days which represent different traffic conditions as a result of the rosters, including:

- Shift change day
 - FIFO workers at the end of shift are also at the end of the roster and are transported directly from the Project Site to the Moranbah Airport
 - FIFO workers about to commence their shift are also at the start of the roster and are transported from the Moranbah Airport to the Project Site.
- Ordinary day
 - FIFO workers are transported between the Project Site and the existing operation accommodation villages.

On a shift change day, there will be higher traffic volumes to the north of the Project Site than on an ordinary day, due to the bus movements to and from the Moranbah Airport. On an ordinary day, buses will move to and from operational accommodation in Dysart and Moranbah. The same number of vehicle movements will occur on the shift changing day and ordinary day but will be distributed differently on the road network.

Based on the above assumptions, Table 16 shows the number of vehicles (buses and cars) estimated for operations workers traffic. Therefore, it is concluded that the operational work force traffic is expected to range from 37 to 70 vehicles per hour and 111 to 210 vehicles per day.

Table 16 Operation workers traffic

(3A) Operation workers traffic		Number of vehicles (buses and cars)							
Operational year	No. of workers	AM (5am – 6am)		PM (5pm – 6pm)		Average Daily			
		IN	OUT	IN	OUT	IN	OUT		
Year 3 to Year 4	260	37	37	37	37	111	111		
Year 5 to Year 20	500	70	70	70	70	210	210		
Year 21 and Year 22	260	37	37	37	37	111	111		

5.3.3.2 Operation materials and equipment traffic

Based on the information from BMA, vehicle movements associated with operation phase materials and equipment is shown in Table 17. Vehicle movements of Project consumables and wastes associated with the workforce accommodation have not been included in the calculations of materials and equipment, as these movements are considered to be indirectly accounted for in the conservative approach taken to calculating heavy vehicle peak period estimates. It is noted that the operations accommodation villages are expected to be existing accommodation villages within Dysart and Moranbah.

Table 17 Quantities for operation materials and equipment

Materials	Approximate quantities (tonnes per annum)	Vehicle type	Annual deliveries (number of heavy vehicles)	Peak period (number of heavy vehicles)
Magnetite	8,000	B-doubles	202	1
Flocculant	1,000	Trucks	214	1
Coalyeaulant	1,000	Trucks	225	1
Diesel	720	Road Trains	16	1
MIBC	360	Semi-trailers	18	1
Fuel & additives	32,000	Road Trains	642	1

Materials and equipment will be transported by heavy vehicles to and from the Project and source of origins. Based on information from BMA, it is anticipated that six heavy vehicles per hour will likely represent a conservative estimate of peak hour traffic during the operation stage as summarised in Table 18.

Table 18 Operation materials and equipment traffic

(3B) Operation materials and equipment traffic	Number of heavy vehicles						
Operational year	AM (5am – 6am)		PM (5pm – 6pm)		Average Daily		
	IN	OUT	IN	OUT	IN	OUT	
Year 3 to Year 22	6	6	6	6	12	12	

Therefore, it is concluded that the operation materials and equipment traffic is estimated to be six heavy vehicles per hour and 12 heavy vehicles per day.

5.3.3.3 Summary of operation traffic

For the purpose of this assessment, operation traffic is defined as the sum of operational work force traffic and operation materials and equipment traffic as summarised in Table 19.

Table 19 Operation traffic

(3) Operation traffic	(3) Operation traffic		Number of vehicles (buses, heavy vehicles and cars)							
Operational year	Number of workers	AM (5am – 6am)		PM (5pm – 6pm)		Average Daily				
		IN	OUT	IN	OUT	IN	OUT			
Year 3 to Year 4	260	43	43	43	43	123	123			
Year 5 to Year 20	500	76	76	76	76	222	222			
Year 21 and Year 22	260	43	43	43	43	123	123			

Therefore, it is concluded that the operation traffic is expected to range from 43 to 76 vehicles per hour and 123 to 222 vehicles per day.

5.4 Development traffic

The total road transport task for the Project is the combined traffic volumes for the construction phase and the operation phase. The peak hour and daily traffic volumes for the development traffic over the assessment horizon are summarised in Table 20. During the life of the project, no OSOM vehicles are expected.

Table 20 Development traffic

	Number o	of vehicles (buses, hea	vy vehicles	and cars)	and cars)			
Stage	AM (5am	– 6am)	PM (5pm	– 6pm)	Average I	Daily			
	IN	OUT	IN	OUT	IN	OUT			
Year 1 (construction)	69	69	69	69	162	162			
Year 2 (construction)	69	69	69	69	162	162			
Year 3 (construction/operation)	142	142	142	142	345	345			
Year 4 (operation)	76	76	76	76	222	222			
Year 5 (operation)	76	76	76	76	222	222			
Year 6 (operation)	76	76	76	76	222	222			
Year 7 (operation)	76	76	76	76	222	222			
Year 8 (operation)	76	76	76	76	222	222			
Year 9 (operation)	76	76	76	76	222	222			
Year 10 (operation)	76	76	76	76	222	222			
Year 11 (operation)	76	76	76	76	222	222			
Year 12 (operation)	76	76	76	76	222	222			
Year 13 (operation)	76	76	76	76	222	222			
Year 14 (operation)	76	76	76	76	222	222			
Year 15 (operation)	76	76	76	76	222	222			
Year 16 (operation)	76	76	76	76	222	222			
Year 17 (operation)	76	76	76	76	222	222			
Year 18 (operation)	76	76	76	76	222	222			
Year 19 (operation)	76	76	76	76	222	222			
Year 20 (operation)	76	76	76	76	222	222			
Year 21 (operation)	43	43	43	43	123	123			
Year 22 (operation)	43	43	43	43	123	123			

As the development traffic shows, the number of vehicles fluctuates during the life of the Project. During the early stage of construction, 69 vehicles per hour are expected during the peak hours. It gradually increases to 142 vehicles per peak hour during the period FY 2023 when both construction and operation occur concurrently. The traffic associated with the operation phase is lower than the traffic in the construction phase. After the construction ends in FY 2023, the project traffic comprises only the operation phase between FY2024 and 2042 which is estimated to be 43 to 76 vehicles per hour. Table 21 and Table 22 summarise the development traffic on the identified highway links.

Table 21 Development traffic - highway links (ordinary day)

			Traffic flow (Number of vehicles)						
Highway	Location	Direction	Year 1 (Constru	Year 1 (Construction)		Year 3 (Operation)		on)	
Link			AM (5am – 6am)	PM (5pm – 6pm)	AM (5am – 6am)	PM (5pm – 6pm)	AM (5am – 6am)	PM (5pm – 6pm)	
	South of	Northbound	33	33	67	67	39	39	
(1) Saraji Lake Road Vermont Road	Southbound	33	33	67	67	39	39		
(2) Saraji	Intersection	Northbound	38	38	77	77	39	39	
Road	Α	Southbound	38	38	77	77	39	39	
(3) Saraji	South of	Northbound	32	32	66	66	39	39	
Road	. · · · · · · Peak Downs	Southbound	32	32	66	66	39	39	
(4) Peak East of	Eastbound	19	19	22	22	3	3		
Downs Highway	Moranbah Access Road	Westbound	19	19	22	22	3	3	

Table 22 Development traffic – highway links (shift changing day)

			Traffic flow (Number of vehicles)						
Highway	Location	Direction	Year 1 (Constru	Year 1 (Construction)		Year 3 (Operation)		n)	
Link			AM (5am – 6am)	PM (5pm – 6pm)	AM (5am – 6am)	PM (5pm – 6pm)	AM (5am – 6am)	PM (5pm – 6pm) 37 37 37 37	
	South of	Northbound	33	33	66	66	37	37	
(1) Saraji Road	(1) Saraji Lake Road Vermont Road	Southbound	33	33	66	66	37	37	
(2) Saraji	Intersection	Northbound	33	33	66	66	37	37	
Road	Α	Southbound	33	33	66	66	37	37	
(3) Saraji	South of	Northbound	37	37	77	77	40	40	
Road	· · · · · · · · Peak Downs	Southbound	37	37	77	77	40	40	
(4) Peak East of	Eastbound	19	19	22	22	3	3		
Downs Highway	Moranbah Access Road	Westbound	19	19	22	22	3	3	

The traffic volumes generated by the Project are relatively low. At the peak of the construction in construction Year 3, it is expected that 77 vehicles per hour will pass through highway link 3 (Peak Downs Mine Road south of Peak Downs Highway) during a shift changing day. Flow diagrams for the development traffic are included in Appendix C and Table 23 summarise the development traffic at identified intersections.

Table 23 Development Traffic - intersections (ordinary day)

(4) Development Traffic	Number of	Number of vehicles (buses, heavy vehicles and cars)					
	Year 1 (construct	Year 1 (construction)		nstruction)	Year 20 (op	eration)	
Intersections	AM	PM	AM	PM	AM	PM	
	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	
1	76	76	154	154	78	78	
2	76	76	154	154	78	78	
3	64	64	132	132	77	77	
4	64	64	132	132	77	77	
5	64	64	132	132	77	77	
Α	140	140	286	286	156	156	

Table 24 Development Traffic – intersections (shift changing day)

(4) Development Traffic	Number of	Number of vehicles (buses, heavy vehicles and cars)						
	Year 1 (construction)		Year 3 (construction	/operation)	Year 20 (operation)			
Intersections	AM	PM	AM	PM	AM	PM		
	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm		
1	66	66	132	132	74	74		
2	66	66	132	132	74	74		
3	74	74	154	154	80	80		
4	74	74	154	154	80	80		
5	74	74	154	154	80	80		
Α	140	140	286	286	154	154		

At the peak of the construction in FY 2023 / construction Year 3, it is expected that 286 vehicles per hour are expected to use Intersection A during the ordinary day. Flow diagrams for the Development Traffic are included in Appendix C.

5.5 Total traffic

For the purpose of this assessment, total traffic is defined as the sum of development traffic and background traffic. Table 25 and Table 26 show the total traffic on the identified highway links. Flow diagrams are included in Appendix D.

Table 25 Total traffic – highway links (ordinary day)

(5) Total traffic		Traffic flow (Number of vehicles)						
Highway ,		FY 2021 (constru			FY 2023 / Year 3 (construction/oper ation)		Year 20 n)	
link	Location	Direction	AM	PM	AM	PM	AM	PM
		5am- 6am	5pm- 6pm	5am- 6am	5pm- 6pm	5am- 6am	5pm- 6pm	
(1) Saraji	South of Lake	Northbound	439	201	481	238	529	241
Road Vermont Road	Southbound	103	271	138	310	123	327	
(2) Saraji		Northbound	192	133	234	174	225	153
Road	Intersection A	Southbound	82	146	122	187	92	170
(3) Peak	South of Peak	Northbound	58	174	92	210	70	210
Downs Mine Road	Downs Highway	Southbound	289	162	328	199	349	196
(4) Peak	East of	Eastbound	198	142	205	147	219	151
Downs Highway	Moranbah Access Road	Westbound	106	222	111	229	109	248

Table 26 Total traffic - highway links (shift changing day)

Total traffic		Traffic flow (Number of vehicles)							
Highway			FY 2021 (constru	/ Year 1 iction)		FY 2023 / Year 3 (construction/oper ation)		FY 2040 / Year 20 (operation)	
Link	Location	Direction	AM	РМ	AM	PM	AM	PM	
		5am- 6am	5pm- 6pm	5am- 6am	5pm- 6pm	5am- 6am	5pm- 6pm		
(1) Saraji	South of Lake	Northbound	439	201	480	237	527	239	
Road		Southbound	103	271	137	309	121	325	
(2) Saraji		Northbound	187	128	223	163	223	151	
Road	Intersection A	Southbound	77	141	111	176	90	168	
(3) Peak	South of Peak	Northbound	63	179	103	221	71	211	
Downs Mine Road	Downs Highway	Southbound	294	167	339	210	350	197	
(4) Peak	East of	Eastbound	198	142	205	147	219	151	
Downs Highway	Moranbah Access Road	Westbound	106	222	111	229	109	248	

The above tables show total traffic in the study area is anticipated to be moderate. At the peak of the construction, it is expected that 619 vehicles per hour will pass through highway link 1 (Saraji Road south of Lake Vermont Road) in the 2023 AM peak during ordinary days.

Table 27 and Table 28 show the total traffic on identified intersections.

Table 27 Total traffic - intersections (ordinary day)

Total traffic	Number of	Number of vehicles					
Intersections	FY 2021 / Y (constructi		FY 2023 / Y (constructi n)	ear 3 on/operatio	FY 2040 / Year 20 (operation)		
intersections	AM	PM	АМ	PM	АМ	PM	
	5am-6am	5pm-6pm	5am-6am	5pm-6pm	5am-6am	5pm-6pm	
1	555	495	642	582	656	585	
2	610	557	699	645	723	659	
3	470	468	546	544	568	565	
4	579	567	657	645	700	685	
5	736	765	818	847	889	925	
А	338	343	488	493	394	401	

Table 28 Total traffic – intersection (shift changing day)

Total traffic	Number of	Number of vehicles					
Intersections	FY 2021 / Year 1 (construction)		FY 2023 / Y (constructi n)	ear 3 on/operatio	FY 2040 / Y (operation)		
intersections	AM	PM	AM	PM	AM	PM	
	5am-6am	5pm-6pm	5am-6am	5pm-6pm	5am-6am	5pm-6pm	
1	545	485	620	560	652	581	
2	600	547	677	623	719	655	
3	480	478	568	566	570	568	
4	589	577	679	667	702	687	
5	746	775	840	869	892	927	
A	338	343	488	493	393	399	

The above tables show total traffic in the study area is anticipated to be moderate. At the peak of the construction, it is expected that 847 vehicles per hour will use Intersection 5 between Peak Downs Highway and Moranbah Access Road during shift changing day in FY 2023 PM peak.

5.6 Crash history

A review of the latest available crash data in the area showed a total of 18 crashes were recorded in the past five years between January 2017 and December 2021. The following tables summarise the severity, locations and crash types.

Table 29 Severity of crashes

Severity Number of crashes		Percentage of total crashes
Minor injury	1	6%
Medical treatment	6	33%
Hospitalisation	9	50%
Fatal	2	11%

Table 29 summarises the severity of the accidents. It shows the majority are serious accidents with 33 per cent requiring medical treatments at the scene and 50 per cent resulting in hospital treatments. Table 30 summarises the locations of the accidents within the study area. It shows the majority of the accidents occurred on Saraji Road (61 per cent), followed by Peak Downs Highway (28 per cent).

Table 30 Location of crashes

Location	Number of crashes	Percentage of total crashes
Peak Downs Highway	5	28%
Saraji Road \ Peak Downs Mine Road	11	61%
Moranbah Access Road	1	6%
Garnham Drive	1	6%

Table 31 Crash types

Crash type	Number of crashes	Percentage of total crashes
Off carriageway on straight / off carriageway on straight hit object	7	39%
Out of control on straight / out of control on straight	3	17%
Head on	2	11%
Rear end	2	11%
Other	4	22%

Table 31 summarises the accident types based on Definition of Coding Accident. It shows the majority of the accidents involved vehicles going off the carriageway on straight sections (39 per cent), out of control on straight (17 per cent), followed by head on and rear end crashes (11 per cent each) and other crashes (22 per cent).

5.7 Scheduled road improvement projects

Queensland Transport and Roads Investment Program (QTRIP) 2022-23 to 2025-26 (The State of Queensland (Department of Transport and Main Roads), 2017c) sets out the current and planned investments in transport and road infrastructure for the next four years. A review of QTRIP was undertaken to identify any planned upgrades to sections of the road network expected to be used by traffic associated with the Project.

Table 32 summarises the three planned improvements in the vicinity of the Project Area that are listed in QTRIP 2022-23 to 2025-26.

Table 32 Relevant planned road improvements in Project Area

Investment name / Location	Location description	Work description
Peak Downs Highway (Clermont - Nebo)	Wuthung Road - Caval Ridge	Widen pavement
Saraji Road	Saraji Road	Rehabilitate pavement
Peak Downs Mine Road	Peak Downs Mine Road	Pavement rehabilitation

5.8 School bus routes

School bus routes currently use the Peak Downs Highway and Moranbah Access Road to service schools in Moranbah, and Saraji Road and Peak Downs Mine Road to service schools in Dysart. School bus routes typically operate outside of shift start and end times for mine workers and are therefore not anticipated to be affected.

5.9 Rail transport networks

The existing Goonyella rail system (specifically the Norwich Park Branch Line) which is owned and operated by Aurizon, runs adjacent to the Saraji Mine. The Goonyella rail system consists of 477 km of track length which services the coal mining area in the Bowen Basin, carrying coal to a number of port locations, including Hay Point Coal Terminal and Abbot Point Coal Terminal.

The product coal will be transported approximately 250 km to ship loading facilities at the Hay Point Coal Terminal or approximately 400 km to the Abbot Point Coal Terminal. The total amount of coal railed will be up to 110 Mt over the life of the Project, with an annual average of 6.2 Mt equating to an additional two trains per day. The maximum coal production is 8 Mtpa, equating to an additional three trains per day. Existing rail level crossings are described in Section 5.1.6.3.

5.10 Air transport networks

The closest major commercial airport to the Project is Moranbah Airport, which is located 35 km north of the Project Site. Moranbah Airport is currently served by QantasLink with direct flights between Brisbane and Moranbah. The airport averages 36 QantasLink flights each week, most of these being Dash-8 (or equivalent) aircraft. The aircraft has capacity for approximately 60 passengers. The airport is operated by BMA and has one runway 1,524 m long.

5.11 Sea and shipping transport networks

Product coal from the Project will be exported via either:

- Hay Point Coal Terminal: located approximately 40 km south of Mackay and 155 km north-east of the Project. The terminal is owned and operated by BMA.
- Abbot Point Coal Terminal: located approximately 266 km north of the Project Site and 25 km north of Bowen on the Central Queensland coast.

The average shipping size through the Hay Point Coal Terminal and Abbot Point Coal Terminal is 93,000 t. This equates to an annual average of 67 additional ships per year of operation and up to 88 ships in peak production. The product coal shipped via these ports will be within the approved port and shipping capacity and throughput limits.

6.0 Potential impacts

6.1 Overview

Potential impacts to transport infrastructure are assessed for each mode of transport, including road, air, rail and sea.

Impacts to road transport are considered as per the requirements of GTIA 2018, including:

- intersections and access
- highway link capacity
- level crossing vehicle queues
- pavements
- safety.

6.2 Road transport

6.2.1 Intersection assessments

Table 33 and Table 34 summarise the development traffic impact as a percentage of the total traffic at the identified intersections for the assessment years.

Table 33 Percentage of development traffic in the total traffic at identified intersections (ordinary day)

Intersections	FY 2021 / Y		FY 2023 / (construction)	Year 3 tion/operatio	FY 2040 / Year 20 (operation)		
Intersections	AM	PM	AM	PM	AM	PM	
	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	
1	14%	15%	24%	26%	12%	13%	
2	12%	14%	22%	24%	11%	12%	
3	14%	14%	24%	24%	14%	14%	
4	11%	11%	20%	20%	11%	11%	
5	9%	8%	16%	16%	9%	8%	
А	41%	41%	59%	58%	39%	39%	

Table 34 Percentage of development traffic in the total traffic at identified intersections (shift changing day)

	FY 2021 / (construc		FY 2023 / (construc n)	Year 3 ction/operatio	FY 2040 / Year 20 (operation)		
Intersections	AM	PM	AM	PM	AM	РМ	
	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	
1	12%	14%	21%	24%	11%	13%	
2	11%	12%	20%	21%	10%	11%	
3	15%	15%	27%	27%	14%	14%	
4	13%	13%	23%	23%	11%	12%	
5	10%	10%	18%	18%	9%	9%	
A	41%	41%	59%	58%	39%	39%	

The results show the development traffic at the identified intersections is anticipated to exceed 5% of the total traffic in FY 2021 / Year 1 (construction), FY 2023 / Year 3 (construction/operation) and FY 2040 / Year 20 (operation). Therefore, SIDRA assessment is required.

As the traffic is distributed differently during the ordinary days and shift changing days, the following list summarises the scenarios for which the maximum traffic occurs at the intersections. The SIDRA assessments were undertaken based on the following scenarios at each intersection:

- Intersection 1 Ordinary day
- Intersection 2 Ordinary day
- Intersection 3 Shift changing day
- Intersection 4 Shift changing day
- Intersection 5 Shift changing day
- Proposed Intersection A Shift changing day.

The development of the SIDRA models were based on aerial images. All geometric input into the models were based on measurements from aerial images.

6.2.1.1 Intersection 1 - Saraji Road / Lake Vermont Road

The following diagram shows the layout of Intersection 1.

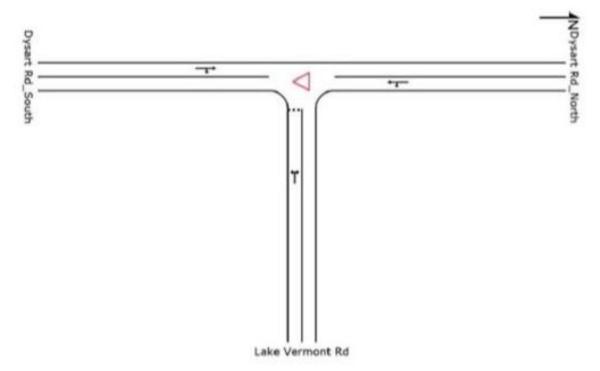


Figure 4 SIDRA layout for Intersection 1

The following tables show the results of the SIDRA analysis for the background traffic and the total traffic for Intersection 1.

Table 35 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for 2018 background traffic

Intersection 1	tersection 1 2018 AM background traffic						2018 PM background traffic					
	Dograp of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing			
Approach Degree of Saturation (DoS)		Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance		
	(DoS)	(Sec) (LoS)		_oS) (No.)		(DoS)	(Sec)	(LoS)	(No.)	(m)		
Saraji Road South	0.204	0.1	NA	0	0.2	0.086	0.1	NA	0	0.1		
Lake Vermont Road	0.004	8	А	0	0.1	0.024	7.9	А	0.1	0.7		
Saraji Road North	0.035	0.1	NA	0	0	0.118	0	NA	0	0		
All vehicles	0.204	0.1	NA	0	0.2	0.118	0.4	NA	0.1	0.7		

Table 36 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2021 background traffic

Intersection 1	FY 2021 AM b	FY 2021 AM background traffic					FY 2021 PM background traffic					
	Dograp of	Average	Level of	Queuing		Dograp of	Average	Level of	Queuing			
Approach	Degree of Saturation	Average Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance		
	(DoS)	(Sec)	Sec) (LoS)		(No.) (m)		(Sec)	(LoS)	(No.)	(m)		
Saraji Road South	0.212	0.1	NA	0	0.2	0.089	0.1	NA	0	0.1		
Lake Vermont Road	0.004	8.1	А	0	0.1	0.025	8	Α	0.1	0.8		
Saraji Road North	0.037	0.1	NA	0	0	0.123	0	NA	0	0		
All vehicles	0.212	0.1	NA	0	0.2	0.123	0.4	NA	0.1	0.8		

Table 37 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2021 / Year 1 (construction) total traffic (ordinary day)

Intersection 1	FY 2021 / Yea	r 1 (constructio	n) AM total t	raffic		FY 2021 / Year 1 (construction) PM total traffic					
	Degree of	Average	Level of	Queuing		Dograe of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.) (m)		(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.236	0.1	NA	0	0.2	0.113	0	NA	0	0.1	
Lake Vermont Road	0.018	11.6	В	0.1	0.7	0.039	9.3	А	0.1	1.3	
Saraji Road North	0.065	0.6	NA	0	0	0.151	0.2	NA	0	0	
All vehicles	0.236	0.3	NA	0.1	0.7	0.151	0.6	NA	0.1	1.3	

The SIDRA results show the impact of the development traffic at Intersection 1 in FY 2021 / Year 1 (construction) is anticipated to be insignificant with minimal changes in queuing and delay when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Lake Vermont Road with an average delay of approximately 12 seconds estimated in the FY 2021 / Year 1 (construction) AM peak for the total traffic. This represents an increase of approximately 43 per cent (8.1 seconds to 11.6 seconds) in delay.

Table 38 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2023 background traffic

Intersection 1	FY 2023 AM background traffic					FY 2023 PM background traffic					
	Degree of	Average	Level of	Queuing		Dograo of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.217	0.1	NA	0	0.2	0.092	0.1	NA	0	0.1	
Lake Vermont Road	0.004	8.2	А	0	0.1	0.025	8	А	0.1	0.8	
Saraji Road North	0.037	0.1	NA	0	0	0.126	0	NA	0	0	
All vehicles	0.217	0.1	NA	0	0.2	0.126	0.4	NA	0.1	0.8	

Table 39 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2023 / Year 3 (construction / operation) total traffic (ordinary day)

Intersection 1	FY 2023 / Yea	r 3 (constructio	n / operation) AM total tra	ffic	FY 2023 / Year 3 (construction / operation) PM total traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.259	0.1	NA	0	0.2	0.134	0	NA	0	0.1	
Lake Vermont Road	0.038	14	В	0.1	1.4	0.058	10.8	В	0.2	2	
Saraji Road North	0.089	0.8	NA	0	0	0.177	0.4	NA	0	0	
All vehicles	0.259	0.5	NA	0.1	1.4	0.177	0.8	NA	0.2	2	

The SIDRA results show the impact of the development traffic at Intersection 1 in FY 2023 / Year 3 (construction/operation) is anticipated to be insignificant with minimal changes in queuing and delay when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Lake Vermont Road with an average delay of approximately 14 seconds estimated in the FY 2023 AM peak for the total traffic. This represents an increase of approximately 71 per cent (8.2 seconds to 14 seconds) in delay from future year 2023 base AM peak hour conditions.

Table 40 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for FY 2040 background traffic

Intersection 1	FY 2040 AM background traffic					FY 2040 PM background traffic					
	Degree of	Average	Level of	Queuing		Dograp of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.257	0.1	NA	0	0.2	0.108	0	NA	0	0.1	
Lake Vermont Road	0.005	8.9	А	0	0.1	0.035	8.6	А	0.1	1.1	
Saraji Road North	0.044	0.1	NA	0	0	0.148	0	NA	0	0	
All vehicles	0.257	0.1	NA	0	0.2	0.148	0.5	NA	0.1	1.1	

Table 41 SIDRA results for Intersection 1 (Saraji Road / Lake Vermont Road) for 2040 / Year 20 (operation) total traffic (ordinary day)

Intersection 1	FY 2040 / Yea	r 20 (operation)	ffic	FY 2040 / Year 20 (operation) PM total traffic						
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.) (m)		(DoS)	(Sec)	(LoS)	(No.)	(m)
Saraji Road South	0.278	0.1	NA	0	0.2	0.13	0	NA	0	0.1
Lake Vermont Road	0.005	9.6	А	0	0.2	0.039	9.3	А	0.1	1.2
Saraji Road North	0.066	0.1	NA	0	0	0.17	0	NA	0	0
All vehicles	0.278	0.1	NA	0	0.2	0.17	0.4	NA	0.1	1.2

The SIDRA results show the impact of the development traffic at Intersection 1 in FY 2040 / Year 20 (operation) is anticipated to be insignificant with minimal change in queuing and delay when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Lake Vermont Road with an average delay of 10 seconds estimated in the FY 2040 / Year 20 (operation) AM peak for the total traffic. This represents an increase of approximately 8 per cent (8.9 seconds to 9.6 seconds) in delay.

The SIDRA assessment concludes that, even though the Project increases traffic volumes at Intersection 1 by more than 5 per cent, the intersection is anticipated to operate within capacity without significant impacts to vehicle delay and queuing. The incremental worsening in LoS is considered insignificant. Full SIDRA results are included in Appendix E.

6.2.1.2 Intersection 2 – Saraji Road / Saraji Mine Entrance

The following diagram shows the layout of Intersection 2.

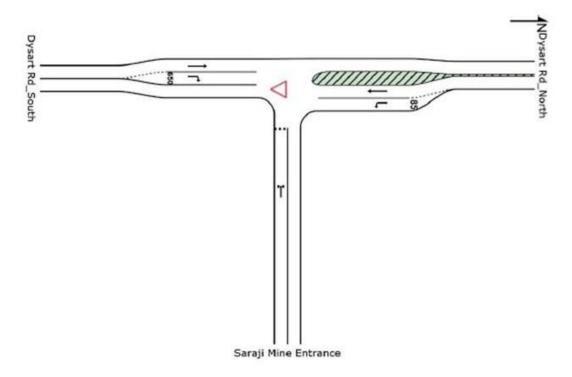


Figure 5 SIDRA layout for Intersection 2

The following tables show the results of the SIDRA analysis for the background traffic and the total traffic for Intersection 2.

Table 42 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for 2018 background traffic

Intersection 2	2018 AM back	ground traffic				2018 PM background traffic					
	Degree of	Average	Level of	Queuing		Dograp of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	Sec) (LoS)		(No.) (m)		(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.182	3.5	NA	0.8	6	0.075	3.2	NA	0.3	2.3	
Saraji Mine Entrance	0.075	6.4	А	0.3	2	0.181	6.3	Α	0.7	5.4	
Saraji Road North	0.013	3.4	NA	0	0	0.045	0.2	NA	0	0	
All vehicles	0.182	4	NA	0.8	6	0.181	4	NA	0.7	5.4	

Table 43 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2021 background traffic

Intersection 2	FY 2021 AM background traffic					FY 2021 PM background traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.) (m)		(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.189	3.5	NA	0.9	6.3	0.079	3.3	NA	0.3	2.4	
Saraji Mine Entrance	0.078	6.4	А	0.3	2.1	0.189	6.3	А	0.8	5.6	
Saraji Road North	0.014	3.4	NA	0	0	0.046	0.2	NA	0	0	
All vehicles	0.189	4	NA	0.9	6.3	0.189	4	NA	0.8	5.6	

Table 44 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2021 / Year 1 (construction) total traffic (ordinary day)

Intersection 2	FY 2021 / Yea	r 1 (constructio	n) AM total t	raffic		FY 2021 / Yea	r 1 (constructio	n) PM total t	total traffic				
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing				
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance			
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)			
Saraji Road South	0.198	3.4	NA	0.9	6.6	0.083	2.8	NA	0.3	2.5			
Saraji Mine Entrance	0.085	6.9	А	0.3	2.3	0.202	6.7	А	0.8	6			
Saraji Road North	0.037	1.7	NA	0	0	0.074	0.1	NA	0	0			
All vehicles	0.198	3.6	NA	0.9	6.6	0.202	3.6	NA	0.8	6			

The SIDRA results show the impact of the development traffic at Intersection 2 in FY 2021 is anticipated to be insignificant with minimal changes in delay and queuing when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on the Saraji Mine Entrance with an average delay of approximately 7 seconds estimated in the FY 2021 AM peak for the total traffic. This represents approximately 8 per cent (from 6.4 seconds to 6.9 seconds) increase in delay.

Table 45 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2023 background traffic

Intersection 2	FY 2023 AM b	ackground traf	fic			FY 2023 PM b	ackground traf	fic		
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Saraji Road South	0.194	3.5	NA	0.9	6.5	0.08	3.3	NA	0.3	2.4
Saraji Mine Entrance	0.081	6.5	А	0.3	2.2	0.192	6.3	А	0.8	5.7
Saraji Road North	0.014	3.4	NA	0	0	0.047	0.2	NA	0	0
All vehicles	0.194	4	NA	0.9	6.5	0.192	4	NA	0.8	5.7

Table 46 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2023 / Year 3 (construction / operation) total traffic (ordinary day)

Intersection 2	FY 2023 / Yea	r 3 (constructio	on / operation	n) AM total Ti	affic	FY 2023 / Yea	r 3 (constructio	n / operation) PM total Tra	affic
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Saraji Road South	0.212	3.2	NA	1	7.1	0.095	2.5	NA	0.4	2.6
Saraji Mine Entrance	0.095	7.3	А	0.3	2.5	0.219	7.1	А	0.9	6.5
Saraji Road North	0.06	1.1	NA	0	0	0.099	0.1	NA	0	0
All vehicles	0.212	3.4	NA	1	7.1	0.219	3.4	NA	0.9	6.5

The SIDRA results show the impact of the development traffic at Intersection 2 in FY 2023 / Year 3 (construction / operation) is anticipated to be insignificant with minimal changes in delay and queuing when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on the Saraji Mine Entrance with an average delay of approximately 7 seconds estimated in the FY 2023 / Year 3 (construction / operation) AM and PM peaks for the total traffic. This represents approximately 12 per cent (from 6.5 seconds to 7.3 seconds) increase in delay.

Table 47 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2040 background traffic

Intersection 2	FY 2040 AM b	ackground traf	fic			FY 2040 PM b	ackground traf	fic		
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Saraji Road South	0.231	3.6	NA	1.1	8.1	0.097	3.3	NA	0.4	3
Saraji Mine Entrance	0.102	6.8	А	0.4	2.8	0.237	6.5	А	1	7.3
Saraji Road North	0.017	3.4	NA	0	0	0.057	0.2	NA	0	0
All vehicles	0.231	4	NA	1.1	8.1	0.237	4.1	NA	1	7.3

Table 48 SIDRA assessment for Intersection 2 (Saraji Road / Saraji Mine Entrance) for FY 2040 / Year 20 (operation) total traffic (ordinary day)

Intersection 2	FY 2040 / Yea	Y 2040 / Year 20 (operation) AM total traffic					r 20 (operation)	PM total tra	al traffic				
	Degree of	Average	Level of	Queuing	Queuing		Average	Level of	Queuing				
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Degree of Saturation	Delay	Service	Vehicles	Distance			
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)			
Saraji Road South	0.241	3.4	NA	1.2	8.4	0.102	2.9	NA	0.4	3.1			
Saraji Mine Entrance	0.11	7.2	А	0.4	3	0.251	6.9	А	1.1	7.7			
Saraji Road North	0.032	1.9	NA	0	0	0.079	0.2	NA	0	0			
All vehicles	0.241	3.8	NA	1.2	8.4	0.251	3.8	NA	1.1	7.7			

The SIDRA results show the impact of the development traffic at Intersection 2 in FY 2040 / Year 20 (operation) is anticipated to be insignificant with minimal changes in queuing and delay when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on the Saraji Mine Entrance with an average delay of approximately 7 seconds estimated in the FY 2040 / Year 20 (operation) AM and PM peaks for the total traffic. This represents approximately 6 per cent (from 6.8 seconds to 7.2 seconds) increase in delay.

The SIDRA assessment concludes that, even though the Project increases traffic volumes at Intersection 2 by more than 5 per cent, the intersection is anticipated to operate within capacity without significant impacts to vehicle delay and queuing. The incremental worsening in Level of Service is considered insignificant. Full SIDRA results are included in Appendix E.

6.2.1.3 Intersection 3 – Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance

The following diagram shows the layout of Intersection 3.

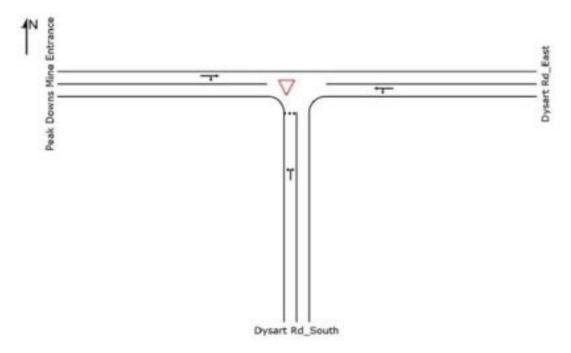


Figure 6 SIDRA layout for Intersection 3

The following tables show the results of the SIDRA analysis for the background traffic and the total traffic for Intersection 3.

Table 49 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for 2018 background traffic

Intersection 3	2018 AM back	ground traffic				2018 PM back	ground traffic			
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Saraji Road South	0.119	6.3	А	0.5	3.5	0.079	6.3	А	0.3	2.2
Peak Downs Mine Road East	0.117	1.3	NA	0	0	0.064	2.2	NA	0	0
Peak Downs Mine Entrance West	0.016	6.9	NA	0.1	0.4	0.106	7.8	NA	0.4	3.1
All vehicles	0.119	3.6	NA	0.5	3.5	0.106	5.8	NA	0.4	3.1

Table 50 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2021 background traffic

Intersection 3	FY 2021 AM b	ackground traf	fic			FY 2021 PM b	ackground traf	fic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing				
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance			
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)			
Saraji Road South	0.124	6.4	А	0.5	3.6	0.083	6.4	А	0.3	2.3			
Peak Downs Mine Road East	0.121	1.3	NA	0	0	0.066	2.2	NA	0	0			
Peak Downs Mine Entrance West	0.016	6.7	NA	0.1	0.4	0.11	7.8	NA	0.4	3.2			
All vehicles	0.124	3.6	NA	0.5	3.6	0.11	5.8	NA	0.4	3.2			

Table 51 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2021 / Year 1 (construction) total traffic (shift changing day)

Intersection 3	FY 2021 / Yea	r 1 (constructio	on) AM total t	raffic		FY 2021 / Year 1 (construction) PM total traffic						
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing			
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance		
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)		
Saraji Road South	0.176	6.8	А	0.7	5.6	0.141	7.1	A	0.5	4.3		
Peak Downs Mine Road East	0.15	2.3	NA	0	0	0.095	3.6	NA	0	0		
Peak Downs Mine Entrance West	0.017	6.8	NA	0.1	0.4	0.113	8	NA	0.4	3.3		
All vehicles	0.176	4.3	NA	0.7	5.6	0.141	6.3	NA	0.5	4.3		

The SIDRA results show the impact of the development traffic at Intersection 3 in FY 2021 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on the Peak Downs Mine Entrance with an average delay of approximately 8 seconds estimated in the FY 2021 PM peak for the total traffic. This represents approximately 3 per cent (from 7.8 seconds to 8 seconds) increase in delay.

Table 52 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2023 background traffic

Intersection 3	FY 2023 AM b	ackground traf	fic			FY 2023 PM b	ackground traf	fic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing				
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance			
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)			
Saraji Road South	0.127	6.4	А	0.5	3.7	0.084	6.4	А	0.3	2.3			
Peak Downs Mine Road East	0.125	1.3	NA	0	0	0.067	2.2	NA	0	0			
Peak Downs Mine Entrance West	0.016	6.7	NA	0.1	0.4	0.113	7.8	NA	0.4	3.3			
All vehicles	0.127	3.6	NA	0.5	3.7	0.113	5.9	NA	0.4	3.3			

Table 53 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2023 / Year 3 (construction / operation) total traffic (shift changing day)

Intersection 3	FY 2023 / Yea	r 3 (constructio	n / operation) AM total tra	affic	FY 2023 / Yea	r 3 (constructio	n / operation	on) PM total traffic				
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing				
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance			
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)			
Saraji Road South	0.23	7	А	0.9	7.5	0.194	7.4	А	0.7	6.1			
Peak Downs Mine Road East	0.179	2.9	NA	0	0	0.122	4.2	NA	0	0			
Peak Downs Mine Entrance West	0.017	7	NA	0.1	0.5	0.117	8.1	NA	0.5	3.5			
All vehicles	0.23	4.8	NA	0.9	7.5	0.194	6.5	NA	0.7	6.1			

The SIDRA results show the impact of the development traffic at Intersection 3 in FY 2023 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on the Peak Downs Mine Entrance with an average delay of approximately 8 seconds estimated in the FY 2023 PM peak for the total traffic. This represents approximately 4 per cent (from 7.8 seconds to 8.1 seconds) increase in delay.

Table 54 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2040 background traffic

Intersection 3	FY 2040 AM I	packground tra	FY 2040 PM background traffic							
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Saraji Road South	0.156	6.6	А	0.6	4.6	0.104	6.6	А	0.4	2.9
Peak Downs Mine Road East	0.147	1.3	NA	0	0	0.081	2.2	NA	0	0
Peak Downs Mine Entrance West	0.02	7	NA	0.1	0.5	0.136	7.9	NA	0.5	4.1
All vehicles	0.156	3.7	NA	0.6	4.6	0.136	6	NA	0.5	4.1

Table 55 SIDRA assessment for Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance) for FY 2040 / Year 20 (operation) total traffic (shift changing day)

Intersection 3	FY 2040 / Yea	r 20 (operation)	AM total tra	ffic		FY 2040 / Yea	r 20 (operation)	PM total tra	fic				
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing				
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance			
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)			
Saraji Road South	0.202	6.8	А	0.8	6.1	0.155	7	А	0.6	4.4			
Peak Downs Mine Road East	0.17	2.1	NA	0	0	0.104	3.3	NA	0	0			
Peak Downs Mine Entrance West	0.02	7.1	NA	0.1	0.5	0.139	8.1	NA	0.6	4.2			
All vehicles	0.202	4.2	NA	0.8	6.1	0.155	6.2	NA	0.6	4.4			

The SIDRA results show the impact of the development traffic at Intersection 3 in FY 2040 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on the Peak Downs Mine Entrance with an average delay of approximately 8 seconds estimated in the FY 2040 PM peak for the total traffic. This represents approximately 3 per cent (from 7.9 seconds to 8.1 seconds) increase in delay. The SIDRA assessment concludes that, even though the Project increases traffic volumes at Intersection 3 by more than 5 per cent, the intersection is anticipated to operate within capacity without significant impacts to vehicle delay and queuing. The incremental worsening in Level of Service is considered insignificant. Full SIDRA results are included in Appendix E.

6.2.1.4 Intersection 4 – Peak Downs Highway / Peak Downs Mine Road

The following diagram shows the layout of Intersection 4.

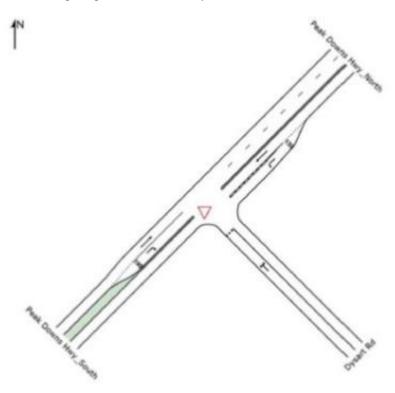


Figure 7 SIDRA layout for Intersection 4

The following tables show the results of the SIDRA analysis for the background traffic and the total traffic for Intersection 4.

Table 56 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for 2018 background traffic

Intersection 4	2018 AM background traffic				2018 PM background traffic					
Approach	Degree of Saturation	Avenage	Level of	Queuing		Degree of	Average	Level of	Queuing	
		Average Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Mine Road	0.039	8.6	А	0.1	1.2	0.185	8.1	А	0.8	5.6
Peak Downs Highway North	0.141	3.3	NA	0	0	0.068	3.6	NA	0	0
Peak Downs Highway South	0.029	0.3	NA	0	0.1	0.086	0.3	NA	0	0.2
All vehicles	0.141	3.3	NA	0.1	1.2	0.185	3.7	NA	0.8	5.6

Table 57 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2021 background traffic

Intersection 4	FY 2021 AM background traffic				FY 2021 PM background traffic					
Approach	Degree of Saturation	A		Queuing		Dawwaa af	A.,	Lovelet	Queuing	
		Average Delay	Level of Service	Vehicles	Vehicles Distan ce	Degree of Saturation	Average Delay	Level of Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Mine Road	0.042	8.8	А	0.2	1.2	0.195	8.2	А	0.8	5.9
Peak Downs Highway North	0.147	3.3	NA	0	0	0.07	3.6	NA	0	0
Peak Downs Highway South	0.03	0.3	NA	0	0.1	0.09	0.3	NA	0	0.2
All vehicles	0.147	3.3	NA	0.2	1.2	0.195	3.8	NA	0.8	5.9

Table 58 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2021 / Year 1 total traffic (shift changing day)

Intersection 4	FY 2021 / Year 1 (construction) AM total traffic					FY 2021 / Year 1 (construction) PM total traffic					
Approach	Degree of Saturation	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
		Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Peak Downs Mine Road	0.132	11.1	В	0.5	4.9	0.278	9.3	А	1.2	9.8	
Peak Downs Highway North	0.176	3.5	NA	0	0	0.099	4	NA	0	0	
Peak Downs Highway South	0.03	0.3	NA	0	0.1	0.09	0.3	NA	0	0.2	
All vehicles	0.176	4.1	NA	0.5	4.9	0.278	4.6	NA	1.2	9.8	

The SIDRA results show the impact of the development traffic at Intersection 4 in FY 2021 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Peak Downs Mine Road with an average delay of approximately 11 seconds estimated in the FY 2021 AM peak for the total traffic. This represents approximately 26 per cent (from 8.8 seconds to 11.1 seconds) increase in delay.

Table 59 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2023 background traffic

Intersection 4	FY 2023 AM background traffic					FY 2023 PM background traffic					
Approach	Degree of Saturation		Level of	Queuing		Degree of	Averes	Level of	Queuing		
		Average Delay	Service	Vehicles Dista	Distan ce	Saturation	Average Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Peak Downs Mine Road	0.042	8.9	А	0.2	1.2	0.201	8.3	А	0.8	6.1	
Peak Downs Highway North	0.149	3.3	NA	0	0	0.072	3.6	NA	0	0	
Peak Downs Highway South	0.031	0.3	NA	0	0.1	0.091	0.3	NA	0	0.2	
All vehicles	0.149	3.3	NA	0.2	1.2	0.201	3.8	NA	0.8	6.1	

Table 60 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2023 / Year 3 (operation / construction) total traffic (shift changing day)

Intersection 4	FY 2023 / Year 3 (operation / construction) AM total traffic				FY 2023 / Year 3 (operation / construction) PM total traffic					
Approach	Degree of Saturation	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
		Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Mine Road	0.216	11.5	В	0.9	7.9	0.366	10.7	В	2	16
Peak Downs Highway North	0.204	3.7	NA	0	0	0.127	4.3	NA	0	0
Peak Downs Highway South	0.031	0.3	NA	0	0.1	0.091	0.3	NA	0	0.2
All vehicles	0.216	4.6	NA	0.9	7.9	0.366	5.4	NA	2	16

The SIDRA results show the impact of the development traffic at Intersection 4 in FY 2023 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Peak Downs Mine Road with an average delay of approximately 12 seconds estimated in the FY 2023 AM peak for the total traffic. This represents approximately 29 per cent (from 8.9 seconds to 11.5 seconds) increase in delay.

Table 61 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2040 background traffic

Intersection 4	FY 2040 AM background traffic				FY 2040 PM background traffic					
Approach	Degree of Saturation	Average Leve	Level of	Queuing	Degree of		Average	Level of	Queuing	
		Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Mine Road	0.057	9.7	А	0.2	1.7	0.261	9.1	А	1.1	8.1
Peak Downs Highway North	0.177	3.3	NA	0	0	0.086	3.6	NA	0	0
Peak Downs Highway South	0.036	0.4	NA	0	0.1	0.108	0.3	NA	0	0.2
All vehicles	0.177	3.3	NA	0.2	1.7	0.261	4.1	NA	1.1	8.1

Table 62 SIDRA assessment for Intersection 4 (Peak Downs Highway / Peak Downs Mine Road) for FY 2040 / Year 20 (operation) total traffic (shift changing day)

Intersection 4	FY 2040 / Yea	r 20 (operation) AM total tra	ffic		FY 2040 / Year 20 (operation) PM total traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distan ce	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Peak Downs Mine Road	0.137	10.5	В	0.5	4.1	0.335	10.1	В	1.7	12.4	
Peak Downs Highway North	0.201	3.5	NA	0	0	0.109	3.9	NA	0	0	
Peak Downs Highway South	0.036	0.4	NA	0	0.1	0.108	0.3	NA	0	0.3	
All vehicles	0.201	3.9	NA	0.5	4.1	0.335	4.8	NA	1.7	12.4	

The SIDRA results show the impact of the development traffic at Intersection 4 in FY 2040 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Peak Downs Mine Road with an average delay of approximately 11 seconds in the FY 2040 AM peak for the total traffic. This represents approximately 8 per cent (from 9.7 seconds to 10.5 seconds) increase in delay. The SIDRA assessment concludes that, even though the project increases traffic volumes at Intersection 4 by more than 5 per cent, the intersection is anticipated to operate within capacity without significant impacts to vehicle delay and queuing. The incremental worsening in Level of Service is considered insignificant. Full SIDRA results are included in Appendix E.

6.2.1.5 Intersection 5 – Peak Downs Highway / Moranbah Access Road

The following diagram shows the layout of Intersection 5.

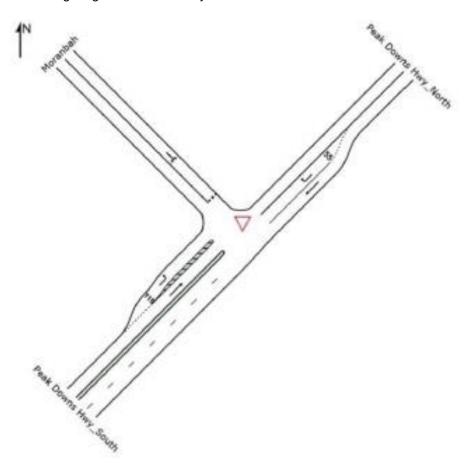


Figure 8 SIDRA layout for Intersection 5

The following tables show the results of the SIDRA analysis for the background traffic and the total traffic for Intersection 5.

Table 63 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for 2018 background traffic

Intersection 5	2018 AM bac	kground traffic				2018 PM bac	kground traffic	;		
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Highway North	0.03	2.2	NA	0.1	0.7	0.134	4.9	NA	0.6	4.1
Moranbah Access Road	0.527	7.7	А	4.1	30.8	0.262	8.1	А	1.1	8.7
Peak Downs Highway South	0.031	1.7	NA	0	0	0.135	4.8	NA	0	0
All vehicles	0.527	6.3	NA	4.1	30.8	0.262	5.8	NA	1.1	8.7

Table 64 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2021 background traffic

Intersection 5	FY 2021 AM	background tr	affic			FY 2021 PM	background tra	affic		
	Degree of	Average	Level of	Level of Queuing		Degree of		Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Highway North	0.042	2.9	NA	0.2	1.5	0.163	5.3	NA	0.7	5.4
Moranbah Access Road	0.581	8.8	А	5.7	43.3	0.301	8.4	А	1.3	10.6
Peak Downs Highway South	0.032	1.7	NA	0	0	0.141	4.8	NA	0	0
All vehicles	0.581	7.2	NA	5.7	43.3	0.301	6.1	NA	1.3	10.6

Table 65 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2021 / Year 1 (construction) total traffic (shift changing day)

Intersection 5	FY 2021 / Yes	ar 1 (construct	ion) AM total	traffic		FY 2021 / Year 1 (construction) PM total traffic						
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing			
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance		
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)		
Peak Downs Highway North	0.048	1.9	NA	0.1	0.8	0.149	4.8	NA	0.6	4.5		
Moranbah Access Road	0.623	10.3	В	6.9	51.5	0.337	9.5	А	1.7	12.9		
Peak Downs Highway South	0.048	2.1	NA	0	0	0.152	4.6	NA	0	0		
All vehicles	0.623	7.8	NA	6.9	51.5	0.337	6.1	NA	1.7	12.9		

The SIDRA results show the impact of the development traffic at Intersection 5 in FY 2021 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Moranbah Access Road with an average delay of approximately 10 seconds estimated in the FY 2021 AM peak for the total traffic. This represents approximately 17 per cent (from 8.8 seconds to 10.3 seconds) increase in delay.

Table 66 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2023 background traffic

Intersection 5	FY 2023 AM	background tr	affic			FY 2023 PM	background tr	affic		
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing	
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Saturation Delay		Vehicles	Distance
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)
Peak Downs Highway North	0.053	3.3	NA	0.2	2.1	0.186	5.6	NA	0.8	6.5
Moranbah Access Road	0.614	9.5	А	6.8	51.8	0.328	8.7	А	1.5	12.4
Peak Downs Highway South	0.033	1.7	NA	0	0	0.143	4.8	NA	0	0
All vehicles	0.614	7.7	NA	6.8	51.8	0.328	6.3	NA	1.5	12.4

Table 67 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2023 / Year 3 (construction / operation) total traffic (shift changing day)

Intersection 5	FY 2023 / Yes	ar 3 (construction	on / operatio	n) AM total tı	affic	FY 2023 / Year 3 (construction / operation) PM total traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Peak Downs Highway North	0.051	1.9	NA	0.1	0.9	0.163	5	NA	0.7	4.9	
Moranbah Access Road	0.712	12.6	В	9.9	74.7	0.434	11.5	В	2.7	20.8	
Peak Downs Highway South	0.051	2.9	NA	0	0	0.177	4.7	NA	0	0	
All vehicles	0.712	9.4	NA	9.9	74.7	0.434	6.9	NA	2.7	20.8	

The SIDRA results show the impact of the development traffic at Intersection 5 in FY 2023 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Moranbah Access Road with an average delay of approximately 13 seconds estimated in the FY 2023 AM peak for the total traffic. This represents approximately 33 per cent (from 9.5 seconds to 12.6 seconds) increase in delay.

Table 68 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2040 background traffic

Intersection 5	FY 2040 AM b	packground traf	fic			FY 2040 PM background traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Peak Downs Highway North	0.054	3	NA	0.2	2	0.215	5.8	NA	0.9	7.3	
Moranbah Access Road	0.737	12.3	В	11.9	90.3	0.401	10.2	В	2.3	18.6	
Peak Downs Highway South	0.039	1.7	NA	0	0	0.169	4.8	NA	0	0	
All vehicles	0.737	9.8	NA	11.9	90.3	0.401	6.8	NA	2.3	18.6	

Table 69 SIDRA assessment for Intersection 5 (Peak Downs Highway / Moranbah Access Road) for FY 2040 / Year 20 (operation) total traffic (shift changing day)

Intersection 5	FY 2040 / Yes	ar 20 (operatior	n) AM total tra	affic		FY 2040 / Year 20 (operation) PM total traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Vehicles Distance		Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Peak Downs Highway North	0.04	2.3	NA	0.1	1	0.193	5.5	NA	0.8	5.9	
Moranbah Access Road	0.763	13.1	В	13.4	99.3	0.448	11.2	В	2.8	21.8	
Peak Downs Highway South	0.041	2.8	NA	0	0	0.191	4.9	NA	0	0	
All vehicles	0.763	10.3	NA	13.4	99.3	0.448	7	NA	2.8	21.8	

The SIDRA results show the impact of the development traffic at Intersection 5 in FY 2040 is anticipated to be insignificant with minimal changes in queuing and delays when comparing the background traffic analysis to the total traffic analysis. The longest delay is anticipated to occur on Moranbah Access Road with an average delay of approximately 13 seconds estimated in the FY 2040 AM peak for the total traffic. This represents approximately 7 per cent (from 12.3 seconds to 13.1 seconds) increase in delay.

The SIDRA assessment concludes that, even though the Project increases traffic volumes at Intersection 5 by more than 5 per cent, the intersection is anticipated to operate within capacity without significant impacts to vehicle delay and queuing. The incremental worsening in Level of Service is considered insignificant. Full SIDRA results are included in Appendix E.

6.2.1.6 Proposed Intersection A – Saraji Road / Saraji East Mine Entrance

The following diagram shows the layout of Proposed Intersection A.

Figure 9 SIDRA layout for Proposed Intersection A

The following tables show the results of the SIDRA analysis for the total traffic for Intersection A.

Table 70 SIDRA assessment for Proposed Intersection A (Saraji Road / the Project Site Entrance) for FY 2021 / Year 1 (construction) total traffic (shift changing day)

Intersection A	FY 2021 / Yea	r 1 (constructio	n) AM total t	raffic		FY 2021 / Year 1 (construction) PM total traffic					
	Degree of	Average	Level of	Queuing		Degree of	Average	Level of	Queuing		
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.082	1.2	NA	0.1	1.4	0.051	1.9	NA	0.1	1.5	
Saraji East Mine Entrance	0.105	8.4	А	0.4	4.4	0.108	8.6	А	0.4	4.5	
Saraji Road North	0.029	2.9	NA	0	0	0.058	1.6	NA	0	0	
All vehicles	0.105	3.1	NA	0.4	4.4	0.108	3.1	NA	0.4	4.5	

Table 71 SIDRA assessment for Proposed Intersection A (Saraji Road / the Project Site Entrance) for FY 2023 / Year 3 (construction / operation) total traffic (shift changing day)

Intersection A	FY 2023 / Ye	ear 3 (constru	ction / oper	ation) AM to	otal traffic	FY 2023 / Year 3 (construction / operation) PM total traffic						
	Degree of	Average	Level of	Que	uing	Degree of	Average	Level of	Que	uing		
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance		
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)		
Saraji Road South	0.084	2	NA	0.3	2.3	0.068	2.9	NA	0.3	2.5		
Saraji East Mine Entrance	0.206	8.5	А	0.8	8	0.211	8.7	А	0.9	8.2		
Saraji Road North	0.055	3.9	NA	0	0	0.06	2.5	NA	0	0		
All vehicles	0.206	4.3	NA	0.8	8	0.211	4.4	NA	0.9	8.2		

Table 72 SIDRA assessment for Proposed Intersection A (Saraji Road / the Project Site Entrance) for FY 2040 / Year 20 (operation) total traffic (shift changing day)

Intersection A	FY	2040 / Year 20	(operation) A	.M total traffi	С	FY 2040 / Year 20 (operation) PM total traffic					
	Degree of	Average	Level of	Que	uing	Degree of	Average	Level of	Que	uing	
Approach	Saturation	Delay	Service	Vehicles	Distance	Saturation	Delay	Service	Vehicles	Distance	
	(DoS)	(Sec)	(LoS)	(No.)	(m)	(DoS)	(Sec)	(LoS)	(No.)	(m)	
Saraji Road South	0.099	1	NA	0.1	0.9	0.062	1.5	NA	0.1	0.9	
Saraji East Mine Entrance	0.09	7.2	А	0.3	2.7	0.093	7.4	А	0.4	2.7	
Saraji Road North	0.03	2.5	NA	0	0	0.07	1.4	NA	0	0	
All vehicles	0.099	2.6	NA	0.3	2.7	0.093	2.6	NA	0.4	2.7	

The SIDRA results show the proposed Intersection A is expected to operate within capacity. The longest delay is anticipated to occur on the Project Site Entrance with an average delay of approximately 7 seconds in FY 2040 AM and PM peaks. The SIDRA assessments show that the proposed layout is adequate for the anticipated development traffic. Full SIDRA results are included in Appendix E.

6.2.1.7 Intersections utilised by Operational Workforce

The following intersections would be used by the operational workforce to access existing off-site operational worker accommodation:

- Dysart Middlemount Road / Dysart Clermont Road intersection
- Garnham Drive / Workers' accommodation camp access road intersection
- Peak Downs Highway / Workers' accommodation camp access road intersection

Potential traffic impacts relevant to these intersections have been considered and are assessed below.

6.2.1.7.1 Dysart - Middlemount Road / Dysart Clermont Road intersection

The Dysart – Middlemount Road / Dysart Clermont Road intersection is a 4-arm priority intersection. The main through movement is on the Dysart – Middlemount Road approaches with stop sign controls on Dysart Clermont Road approach and Garnham Drive approach.

The intersection has an Auxiliary Left-turn (AUL) treatment approximately 150m long installed on Dysart – Middlemount Road north approach and a Basic Left-turn (BAL) treatment installed on Dysart Clermont Road approach.

Turn movements at this intersection will increase very slightly due to traffic movements for the workforce residing at worker's accommodation camp in Dysart. The Project is proposing to accommodate some of the workforce within the existing capacity of the camp and does not intend to increase the camp capacity. Therefore, it is anticipated that the intersection should be able to operate satisfactorily, and safety should not be significantly impacted in the assessment years.

6.2.1.7.2 Garnham Drive / Workers' accommodation camp access road intersection

The Garnham Drive / Workers' accommodation camp access road intersection is a 3-arm priority intersection. The main through movements are on Garnham Drive approaches with a give-way control on the Workers' accommodation camp approach.

The intersection has a channelised Right-turn treatment approximately 20m long installed on Garnham Drive north approach and a Basic Left-turn treatment installed on the Workers' accommodation camp approach.

It is expected that the access intersection was originally designed to cater for traffic movements for the camp when operating at full capacity. The Project is proposing to accommodate some of the workforce within the existing capacity of the camp and does not intend to increase the camp capacity. Therefore, the existing intersection is anticipated that the intersection should be able to operate satisfactorily, and safety should not be significantly impacted in the assessment years.

6.2.1.7.3 Peak Downs Highway / Workers' accommodation camp access road intersection

The Peak Downs Highway / Workers' accommodation camp access road intersection is a 3-arm priority intersection. The main through movements are on Peak Downs Highway approaches with a give-way control on the Workers' accommodation camp approach.

The intersection has a channelised Right-turn treatment approximately 180m long installed on Peak Downs Highway south approach and an Auxiliary Left-turn treatment approximately 160m long installed on Peak Downs Highway north approach. It also has a Basic Left-turn treatment installed on the Workers' accommodation camp approach.

It is expected that the access intersection was originally designed to cater for traffic movements for the camp when operating at full capacity. The Project is proposing to accommodate some of the workforce within the existing capacity of the camp and does not intend to increase the camp capacity. Therefore, it is anticipated that the intersection should be able to operate satisfactorily, and safety should not be significantly impacted in the assessment years.

Highway Link assessments

Table 73 and Table 74 summarise the development traffic impact as a percentage of the total traffic on the identified highway links during the assessment years.

Table 73 Percentages of development traffic in the total traffic on identified highway links (ordinary day)

Percentages of development traffic / total traffic												
			FY 2021		FY 2023		FY 2040					
Highway link	Location	Direction	AM	РМ	AM	PM	AM	РМ				
g			5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm				
(1) Saraji	South of Lake	Northbound	8%	16%	14%	28%	7%	16%				
Road	Vermont Road	Southbound	32%	12%	49%	22%	32%	12%				
(2) Saraji		Northbound	20%	29%	33%	44%	17%	25%				
Road	Intersection A	Southbound	47%	26%	63%	41%	43%	23%				
(3) Peak	South of Peak	Northbound	55%	18%	71%	31%	55%	19%				
Downs Mine Road	Downs Highway	Southbound	11%	20%	20%	33%	11%	20%				
(4) Peak	East of	Eastbound	10%	13%	11%	15%	1%	2%				
Downs Highway	Moranbah Access Road	Westbound	18%	9%	20%	10%	3%	1%				

Table 74 Percentages of development traffic in the total traffic on identified highway links (shift changing day)

rercemages o	of development tra	anic / total tran	ic				1		
			FY 2021		FY 2023		FY 2040	FY 2040	
Highway link	Location	Direction	AM	PM	AM	PM	AM	PM	
g,		2	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	
() /	South of Lake	Northbound	8%	16%	14%	28%	7%	15%	
	Vermont Road	Southbound	32%	12%	48%	21%	31%	11%	
(2) Saraji		Northbound	18%	26%	30%	41%	17%	24%	
Road	Intersection A	Southbound	43%	23%	60%	37%	41%	22%	
(3) Peak	South of Peak	Northbound	59%	21%	74%	35%	56%	19%	
Downs Mine Road	Downs Highway	Southbound	13%	22%	23%	37%	11%	20%	
(4) Peak Downs Highway	East of	Eastbound	10%	13%	11%	15%	1%	2%	
	Moranbah Access Road	Westbound	18%	9%	20%	10%	3%	1%	

The assessments show the development traffic on the identified highway links is anticipated to exceed 5 per cent of the background traffic.

Whilst the majority of assessed road links have exceeded the 5% threshold, given the low background traffic in the network, it is anticipated that delay or congestion on the road links is unlikely to occur and the road links would operate within an acceptable Level of Service.

As stated in the GTIA, road operation capacity impacts are only considered for major developments and link capacity assessments are not required unless new State-Controlled Road (SCR) road links need to be constructed to service the development.

It is confirmed that the Project will not require new State-Controlled Road (SCR) road links to be constructed to service the development. Therefore, additional road operation capacity assessment is not necessary as part of this assessment.

6.2.2.1 Highway link capacity assessment

The *Highway Capacity Manual* (2016) from the Transportation Research Board of the United States of America suggests a road capacity of 1,700 passenger vehicles per hour for a 3.6 m wide lane. However, to account for the heavy vehicles and property accesses along the identified highway links, this assessment developed a factor based on the 2019 AADT data to reduce the suggested road capacity.

A review of the AADT data shows the proportions of heavy vehicles on Peak Downs Highway and Saraji Road are 26 per cent and 31 per cent respectively. In addition, a further five per cent reduction in road capacity has been applied to account for the property accesses. Therefore, the revised road capacities for the two roads are shown below.

- Peak Downs Highway (-31 per cent) 1,173 vehicles per hour per lane
- Saraji Road (-36 per cent) 1,088 vehicles per hour per lane.

For the purpose of comparison, the *Design Manual for Roads and Bridges: Advice Note TA 79/99 Traffic Capacity of Urban Roads* (The Highways Agency 1999) from the United Kingdom suggests a lane capacity of 1,320 vehicles per hour for an Urban All-Purposes Road (UAP1) of high standard single carriageway (6.75 m width) carrying predominantly through traffic with limited access and speed limit of 64 km/h.

The comparison is similar in terms of road geometry with the exception that The Highways Agency standards specified a lower speed of 64 km/h in urban environment whereas the speed limits on Saraji Road and Peak Downs Highway are in the region of 100 km/h. Therefore, it is considered that the estimated capacities are conservative.

Table 75 shows the V/C ratios for background traffic on the identified highway links using the estimated capacities.

Table 75	V/C ratio f	or background	traffic
----------	-------------	---------------	---------

Backgroui	Background traffic / capacity		Volume / d	Volume / capacity ratio							
			0	FY 2021		FY 2023		FY 2040			
Highway	Location	Direction	Capacity	AM	РМ	AM	PM	AM	РМ		
link			(Vehicle / hour)	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm		
	South of	Northbound	1,088	37%	15%	38%	16%	45%	19%		
(1) Saraji Road	Lake Vermont Road	Southbound	1,088	6%	22%	7%	22%	8%	26%		
(2) Saraji	Intersection A	Northbound	1,088	14%	9%	14%	9%	17%	11%		
Road		Southbound	1,088	4%	10%	4%	10%	5%	12%		
(3) Peak	South of	Northbound	1,088	2%	13%	2%	13%	3%	16%		
Downs Mine Road	Peak Downs Highway	Southbound	1,088	24%	12%	24%	12%	29%	14%		
(4) Peak	East of Moranbah Access Road	Northbound	1,173	15%	10%	16%	11%	18%	13%		
Downs Highway		Southbound	1,173	7%	17%	8%	18%	9%	21%		

The capacity table (Table 75) shows the background traffic volumes range from two per cent to 45 per cent of the road capacity on the identified highway links. This level of traffic is considered low to moderate. Table 75 shows the V/C ratios for the development traffic (ordinary day) on the identified highway links using the estimated capacities.

Table 76 V/C ratio for development traffic (ordinary day)

Developm	Development traffic / capacity		Volume / d	Volume / capacity ratio								
			Canacitu	Year 1		Year 3		Year 20				
Highway	Location	Direction	Capacity	AM	РМ	AM	РМ	AM	РМ			
link			(Vehicle / hour)	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm			
	South of	Northbound	1,088	3%	3%	6%	6%	4%	4%			
(1) Saraji Road	Lake Vermont Road	Southbound	1,088	3%	3%	6%	6%	4%	4%			
(2) Saraji	Intersection	Northbound	1,088	3%	3%	7%	7%	4%	4%			
Road	Α	Southbound	1,088	3%	3%	7%	7%	4%	4%			
(3) Peak	South of	Northbound	1,088	3%	3%	6%	6%	4%	4%			
Downs Mine Road	Peak Downs Highway	Southbound	1,088	3%	3%	6%	6%	4%	4%			
(4) Peak	East of Moranbah Access Road	Northbound	1,173	2%	2%	2%	2%	0%	0%			
Downs Highway		Southbound	1,173	2%	2%	2%	2%	0%	0%			

The development traffic (ordinary day) capacity table shows the development traffic volumes range from zero per cent to seven per cent of the road capacity on the identified highway links. This level of traffic is considered low.

Table 77 shows the V/C ratios for development traffic (shift changing day) on the identified highway links using the estimated capacities.

Table 77 V/C ratio for development traffic (shift changing day)

Developm	Development traffic / capacity		Volume / d	Volume / capacity ratio							
			0	Year 1		Year 3		Year 20			
Highway	Location	Direction	Capacity	AM	РМ	AM	PM	AM	РМ		
link			(Vehicle / hour)	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm		
	South of	Northbound	1,088	3%	3%	5%	5%	3%	3%		
(1) Saraji Road	Lake Vermont Road	Southbound	1,088	3%	3%	5%	5%	3%	3%		
(2) Saraji	Intersection	Northbound	1,088	3%	3%	5%	5%	3%	3%		
Road	A	Southbound	1,088	3%	3%	5%	5%	3%	3%		
(3) Peak	South of	Northbound	1,088	3%	3%	6%	6%	3%	3%		
Downs Mine Road	Peak Downs Highway	Southbound	1,088	3%	3%	6%	6%	3%	3%		
(4) Peak	East of	Northbound	1,173	2%	2%	2%	2%	0%	0%		
Downs Highway	Moranbah Access Road	Southbound	1,173	2%	2%	2%	2%	0%	0%		

The development traffic (shift changing day) capacity table shows the development traffic volumes range from 0 per cent to 6 per cent of the road capacity on the identified highway links. This level of traffic is considered low.

Table 78 shows the V/C ratios for total traffic (ordinary day) on the identified highway links using the estimated capacities.

Table 78 V/C ratio for total traffic (ordinary day)

Total traffi	Total traffic / capacity		Volume / d	Volume / capacity ratio							
			Consoitu	FY 2021	/ Year 1	FY 2023 / Year 3		FY 2040 / Year 3			
Highway	Location	Direction	Capacity	AM	PM	AM	PM	AM	PM		
link			(Vehicle / hour)	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm		
(1) Saraji	South of Lake	Northboun d	1,088	40%	18%	44%	22%	49%	22%		
Road	Vermont Road	Southboun d	1,088	9%	25%	13%	29%	11%	30%		
(2) Saraji	Intersection	Northboun d	1,088	18%	12%	22%	16%	21%	14%		
Road	A	Southboun d	1,088	8%	13%	11%	17%	8%	16%		
(3) Peak Downs	South of Peak	Northboun d	1,088	5%	16%	8%	19%	6%	19%		
Mine Road	Downs Highway	Southboun d	1,088	27%	15%	30%	18%	32%	18%		
(4) Peak	East of Moranbah	Northboun d	1,173	17%	12%	17%	13%	19%	13%		
Downs Highway	Access Road	Southboun d	1,173	9%	19%	9%	20%	9%	21%		

The total traffic (ordinary day) capacity table shows the total traffic volumes range from five per cent to 49 per cent of the road capacity on the identified highway links. This level of traffic is considered low to moderate. Table 79 shows the V/C ratios for total traffic (shift changing day) on the identified highway links using the estimated capacities.

Table 79 V/C ratio for total traffic (shift changing day)

Total traffi	c / capacity		Volume / d	Volume / capacity ratio							
			Capacity	FY 2021 / Year 1		FY 2023 / Year 3		FY 2040 20) / Year		
Highway link	Location	Direction	. ,	AM	РМ	AM	PM	AM	PM		
			(Vehicle / hour)	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm	5am – 6am	5pm – 6pm		
	South of	Northbound	1,088	36%	16%	39%	19%	43%	20%		
(1) Saraji Road	Lake Vermont Road	Southbound	1,088	8%	22%	11%	25%	10%	27%		
(2) Saraji	Intersection	Northbound	1,088	15%	10%	18%	13%	18%	12%		
Road	Α	Southbound	1,088	6%	12%	9%	14%	7%	14%		
(3) Peak	South of	Northbound	1,088	5%	15%	8%	18%	6%	17%		
Downs Mine Road	Peak Downs Highway	Southbound	1,088	24%	14%	28%	17%	29%	16%		
(4) Peak	East of	Northbound	1,173	16%	11%	16%	12%	18%	12%		
Downs Highway	Moranbah Access Road	Southbound	1,173	9%	18%	9%	18%	9%	20%		

The total traffic (shift changing day) capacity table shows the total traffic volumes range from 5 per cent to 43 per cent of the road capacity on the identified highway links. This level of traffic is considered low to moderate. Therefore, upgrading the highway links are not considered necessary.

Level crossing assessments

There are three level crossings within the Traffic Impact Assessment Area as shown in Figure 3 in Section 5.1.6. It is anticipated that these level crossings will be impacted due to an increase in vehicle and/or train volumes associated with the Project.

The level crossings relevant to the Project are listed below:

- Level Crossing 1 Lake Vermont Road / Norwich Park Branch rail line
- Level Crossing 2 Peak Downs Mine Road / Norwich Park Branch rail line
- Proposed Level Crossing A Proposed access to the Project Site / Norwich Park Branch rail line.

The level crossing assessment has considered the potential impacts to road traffic, specifically vehicle queuing due to activation of the level crossings during AM and PM peak periods. The assessment made a conservative assumption that one train will arrive at the level crossing during the AM and PM peak hour periods. The expected queue lengths are listed in Table 80 for each approach to the level crossings.

Table 80 Estimated vehicle queue lengths at level crossings

		95% (Queue						
Level Crossing	Approach	FY 2021 / Year 1		FY 2023 / Year 3		FY 2040 / Year 20		Available queue space (m)	
		AM	PM	AM	PM	AM	PM	- p	
Level Crossing 1 - Lake Vermont Road	East approach - Lake Vermont Road east from the Norwich Park Branch rail line	6	16	10	20	2	15	>500m	
	West approach - Lake Vermont Road between Saraji Road and Norwich Park Branch rail line	6	5	10	10	2	1	34m	
Level Crossing 2 -	South-east approach – Peak Downs Mine Road between Peak Downs Mine and Norwich Park Branch rail line	45	115	72	149	41	126	>500m	
Peak Downs Mine Road	North-west approach – Peak Downs Mine Road between Peak Downs Highway and Norwich Park Branch rail line	199	111	239	145	234	122	>500m	
Proposed Level Crossing A - Proposed Access	East approach – Saraji East Mine access road east from Norwich Park Branch rail line	56	56	104	104	45	45	>500m	
	West approach – Saraji East Mine access road between Saraji Road and Norwich Park Branch rail line	56	56	104	104	45	45	40m	

Level Crossing 1 on Lake Vermont Road is close to the intersection of Saraji Road / Lake Vermont Road. The available queue distance between the level crossing and the road intersection is 34 m. The queue length results show that the maximum queue length (10m) at the level crossing does not exceed the available space of 34 m. Therefore, no adverse impact on queuing is expected as a result of the Project traffic. A copy of SIDRA results is included in Appendix E.

The proposed new level crossing (Level crossing A) on the access road into the Project will be close to the adjacent intersections with Saraji Road. The short stacking requirement for this intersection is a minimum distance of 48 m between the edge line of the roadway to the nearest rail line. In the area nominated for a new access, Chainage 41, the road and rail run parallel with a constant offset of 43 m between the edge line and the nearest rail. There is no location in the vicinity of the proposed access where the road and rail diverge enough to accommodate the required short stacking distance. As a result, the concept design for Level Crossing A includes a horizontal alignment shift of the existing roadway in order to meet the minimum short stacking distance of 48 m (including boom gate clearance, stop line set back and factor of safety for short stacking).

Based on the Level Crossing A concept designs the available queue distance between the level crossing and the road intersection (not including boom gate clearance and stop line setbacks) is estimated to be approximately 40 m. The queue length identified that the queue at the level crossing in FY2023 (45 m to 104 m) is expected to exceed the available space of 40 m. This may result in vehicles waiting in the auxiliary lanes on Saraji Road while the level crossing is activated. Insufficient queuing length on the proposed Project access roads may overflow the vehicle queue onto Saraji Road. Therefore, the risk of vehicle collisions may exist.

While this situation is not ideal, it is only anticipated to occur for a relatively short period of time. This assessment conservatively assumed that one train will cross during the peak traffic hour, which is not expected to occur every day. The operations phase vehicle queues are expected to be able to be safely contained in the available space between the Saraji Road intersection and the level crossing.

Insufficient queuing length on the Project Site access roads may overflow the vehicle queue onto Saraji Road. Therefore, risk of vehicle collisions may exist. Based on the risk matrix, the probability of an

accident is considered 'occasional' and the severity is considered as 'minor'. Therefore, the resultant risk is classified as medium.

Road authorities may need to refer a development application, including the TIA, to the relevant railway manager (Aurizon) for a rail safety assessment incorporating ALCAM assessments. An ALCAM assessment would be undertaken for each railway level crossing impacted on by a development proposal.

Assessment of regional road network

As traffic associated with delivery of materials and equipment during the construction and operation stages will use the regional road network of Peak Downs Highway to Mackay and Dysart-Middlemount Road to the Capricorn Highway, this report has undertaken an assessment of these regional roads as shown in Figure 10.

The assessment was based on the 2016 AADT data which was factored by the adopted one per cent background traffic growth rate to estimate future background traffic for the assessment years. The future background traffic was then compared to the daily development traffic on the regional road network. Table 81 and Table 82 summarise the development traffic volumes as a percentage of the background traffic volumes on Peak Downs Highway and Dysart-Middlemount Road on the regional road network.

Table 81 Development traffic as a percentage of background traffic on regional road network (ordinary day)

Percentage of development traffic / background traffic	Peak Downs Highway	Saraji Road
Year 1 (construction)	3%	25%
Year 3 (construction/operation)	6%	53%
Year 20 (operation)	3%	29%

The comparison shows the percentage of the development traffic (ordinary day) exceeds 5 per cent of the background traffic on Dysart-Middlemount Road in FY 2021, FY 2023 and FY 2040 and on Peak Downs Highway in FY 2023. Flow diagrams for the development and background traffic are included in Appendix B.

Table 82 Development traffic as a percentage of background traffic on regional road network (shift changing day)

Percentage of development traffic / background traffic	Peak Downs Highway	Saraji Road
Year 1 (construction)	7%	10%
Year 3 (construction/operation)	16%	20%
Year 20 (operation)	8%	11%

The comparison shows the percentage of the development traffic (shift changing day) exceeds 5 per cent of the background traffic on Peak Downs Highway and Dysart-Middlemount Road in FY 2021, FY 2023 and FY 2040. Flow diagrams for the development and background traffic are included in Appendix B.

As Saraji Road is managed by IRC, consultation with the Council is considered necessary and will be undertaken ahead of the construction phase of the Project.

An assessment of V/C ratio has been undertaken based on the following daily road capacities on Peak Downs Highway and Dysart-Middlemount Road:

Peak Downs Highway
 Dysart-Middlemount Road
 29,784 vehicles per day per lane
 29,376 vehicles per day per lane.

Table 83 shows the V/C ratios for total traffic (ordinary day) based on the development traffic and the background traffic on Peak Downs Highway and Dysart-Middlemount Road.

Table 83 Volume / capacity ratio for total traffic on regional road network (ordinary day)

Percentage of total traffic / capacity		Peak Downs H (Number of vel		Dysart-Middler (Number of vel	
		Eastbound	Westbound	Northbound	Southbound
Year	Capacity (Vehicles / day)	29,784	29,784	29,376	29,376
	Background traffic	2071	2048	723	741
FY 2021	Development traffic	44	44	119	119
/ Year 1	Total traffic	2115	2091	841	859
	Volume / capacity ratio	7%	7%	3%	3%
	Background traffic	1621	1632	709	703
FY 2023	Development traffic	93	93	252	252
/ Year 3	Total traffic	1714	1725	961	955
	Volume / capacity ratio	6%	6%	3%	3%
	Background traffic	1920	1933	839	832
FY 2040	Development traffic	60	60	162	162
/ Year 20	Total traffic	1980	1993	1002	995
	Volume / capacity ratio	7%	7%	3%	3%

The total traffic capacity table (ordinary day) shows the regional road network of Peak Downs Highway and Dysart-Middlemount Road are anticipated to operate within available capacities. The total traffic volumes are approximately 3 per cent to 7 per cent of the road capacities in FY 2040. It is concluded that travel time and vehicle travelling speed are not expected to be significantly affected by the increase in traffic due to the Project.

Table 84 shows the V/C ratios for total traffic (shift changing day) based on the development traffic and the background traffic on Peak Downs Highway and Dysart-Middlemount Road.

Table 84 V/C ratio for total traffic on regional road network (shift changing day)

Percentage of total traffic / capacity		Peak Downs (Number of v	Highway vehicles per day)	Dysart-Middlemount Road (Number of vehicles per day)		
		Eastbound	Westbound	Northbound	Southbound	
Year	Capacity (Vehicles / day)	29,784	29,784	29,376	29,376	
	Background traffic	1589	1600	695	689	
FY 2021 /	Development traffic	116	116	46	46	
Year 1	Total traffic	1706	1716	740	735	
	V/C Ratio	6%	6%	3%	3%	
	Background traffic	1621	1632	709	703	
FY 2023 /	Development traffic	248	248	97	97	
Year 3	Total traffic	1869	1880	806	800	
	V/C Ratio	6%	6%	3%	3%	
	Background traffic	1920	1933	839	832	
FY 2040 /	Development traffic	160	160	62	62	
Year 20	Total traffic	2080	2092	902	895	
	V/C Ratio	7%	7%	3%	3%	

The total traffic capacity table (shift changing day) shows the regional road network of Peak Downs Highway and Dysart-Middlemount Road are anticipated to operate within available capacities. The total traffic volumes are approximately 3 per cent to 7 per cent of the road capacities in FY 2040. It is concluded that travel time and vehicle travelling speed are not expected to be significantly affected by the increase in traffic due to the Project.

Pavement impact assessment

Road pavements are designed to carry vehicle loads over an expected life. Heavy vehicles contribute to the deterioration of the pavement and shorten the pavement life expectancy. A Pavement Impact Assessment (PIA) is a process to determine impacts to pavement loading caused by heavy vehicles. It is based on determining ESA load and payloads for heavy vehicles using the road network. A comparison between ESA loads for existing heavy vehicle traffic on the road and the ESA loads for a specific development or project are used as the basis to determine the value of pavement impact contributions.

The completion of the PIA is based on a DTMR approved methodology which states that developments should ensure no worsening to the SCR pavements as a result of the increased traffic from developments.

Table 85 and Table 86 summarise the preliminary PIA for the identified highways based on the anticipated heavy vehicles when loaded and unloaded.

Table 85 Preliminary pavement impact assessment results – development traffic (loaded)

		Equivalent Standard Axle (ESA)						Percentage of Equivalent Standard Axle			
Highway link		Background traffic			Development traffic (Loaded)			Development traffic (Loaded) / background traffic			
	Location	FY2021	FY2023	FY2040	Year 1 (Constructi on)	Year 3 (Constructi on /operation)	Year 20 (Operation)	FY2021 / Year 1 (Constructi on)	FY2023 / Year 3 (Constructi on /operation)	FY2040 / Year 20 (Operation)	
Peak Downs Highway	East of Moranbah Access Road	393,344	401,250	475,203	113,853	117,712	3,860	28.94%	29.34%	0.81%	
Peak Downs Highway	Between Moranbah Access Road and Saraji Road	533,975	544,708	645,100	116,947	131,345	17,820	21.90%	24.11%	2.76%	
Peak Downs Mine Road	Between Peak Downs Highway and Peak Downs Mine	171,100	174,539	206,708	116,947	131,345	17,820	68.35%	75.25%	8.62%	
Saraji Road	Between Peak Downs Mine and Intersection, A	171,100	174,539	206,708	116,947	131,345	17,820	68.35%	75.25%	8.62%	
Saraji Road	Between Intersection A and Lake Vermont Road	180,523	184,151	218,091	132,478	160,551	15,035	73.39%	87.18%	6.89%	
Saraji Road	South of Vermont Road	180,523	184,151	218,091	113,853	117,712	3,860	63.07%	63.92%	1.77%	

Table 86 Preliminary pavement impact assessment results – development traffic (unloaded)

		Equivalent Standard Axle (ESA)						Percentage of Equivalent Standard Axle Development traffic (Loaded) / background traffic		
Highway link		Background traffic			Development traffic (Unloaded)					
	Location	FY2021	FY2023	FY2040	Year 1 (Constructi on)	Year 3 (Constructi on /operation)	Year 20 (Operation)	FY2021 / Year 1 (Constructio n)	FY2023 / Year 3 (Construc tion /operatio n)	FY2040 / Year 20 (Operatio n)
Peak Downs Highway	East of Moranbah Access Road	393,344	401,250	475,203	9,869	10,227	358	2.51%	2.55%	0.08%
Peak Downs Highway	Between Moranbah Access Road and Saraji Road	533,975	544,708	645,100	10,430	12,696	2,886	1.95%	2.33%	0.45%
Peak Downs Mine Road	Between Peak Downs Highway and Peak Downs Mine	171,100	174,539	206,708	10,430	12,696	2,886	6.10%	7.27%	1.40%
Saraji Road	Between Peak Downs Mine and Intersection, A	171,100	174,539	206,708	10,430	12,696	2,886	6.10%	7.27%	1.40%
Saraji Road	Between Intersection A and Lake Vermont Road	180,523	184,151	218,091	13,243	17,986	2,382	7.34%	9.77%	1.09%
Saraji Road	South of Vermont Road	180,523	184,151	218,091	9,869	10,227	358	5.47%	5.55%	0.16%

The assessment shows the ESAs generated by the Project traffic are significant when compared to the background traffic ESAs. The ESAs from the development traffic range from 1 per cent to 88 per cent of the background traffic ESAs when the Project heavy vehicles are fully loaded. Therefore, it is concluded that the significant development traffic ESAs would warrant a PIA and estimate of contribution and/or pavement improvement works to mitigate the expected impacts.

The process of the PIA will require a considerable amount of road data (roughness, sealed width, etc.) and specific details of the heavy vehicles (payloads, axle loads and ESA loads, etc.) that will be used in the Project. Therefore, it is recommended that the PIA for the Traffic Impact Assessment Area should be undertaken six months before commencement of construction in consultation with DTMR and IRC. The conclusion of the PIA will inform the level of contribution and/or pavement improvement works required.

Emergency services operations

Emergency services in Queensland consist of Queensland Fire and Emergency Services (QFES), Queensland Police Service (QPS), State Emergency Service (SES) and Queensland Ambulance Service (QAS). Fire stations, police stations and medical facilities are located in Moranbah and Dysart.

The assessment concluded that the volume of the Project traffic will be low during the life of the Project with additional delays minimal. Heavy vehicles during the construction and operation stages are typically road trains, articulated vehicles and trucks. In addition, the fleet is not expecting OSOM vehicles. Therefore, it is anticipated that manoeuvring by Project vehicles should not be restricted at intersections and road structures. Emergency vehicles should therefore be able to overtake the Project road trains or articulated vehicles without obstructing traffic movement. Therefore, it is concluded that the Project will not impede emergency services operations.

6.2.4 Road safety

Safety issues that are likely to be introduced or exaggerated by the Project were identified to include:

- unsealed Lake Vermont Road for approximately 11 km from Saraji Road
- no intersection lighting at Intersection 1 (Lake Vermont Road / Saraji Road)
- Proposed Intersection A on Saraji Road
- no intersection lighting at Intersection 3 (Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road).

Each issue is described in the following sections.

6.2.4.1 Unsealed Lake Vermont Road

Lake Vermont Road is currently an unsealed road from Saraji Road eastward. As it will be used as the main access road to the proposed construction accommodation villages, upgrading is considered necessary if a decision is made to proceed with the accommodation village.

It is believed that an unsealed surface is one of the likely contributing factors to accidents involving vehicles overturning or leaving the carriageway when travelling at high speed. Consequences may include personal injury and property damage. Therefore, based on the risk matrix, the probability of an accident is estimated as 'occasional' and the severity is considered as 'minor'. Therefore, the resultant risk is classified as medium.

6.2.4.2 No road lighting at Intersection 1 (Saraji Road / Lake Vermont Road)

The geometric layout of the Saraji Road / Lake Vermont Road intersection is believed to be adequate for the Project traffic. However due to the potential bus schedule for workers traveling to and from the villages in low light conditions, for safety reasons this assessment proposes lighting be installed at the intersection to improve visibility.

It is believed that lack of road lighting on rural roads during night-time travel is one of the contributors to accidents involving head-on collision or vehicles leaving the carriageway. Consequences may include fatality and property damage. Therefore, based on the risk matrix, the probability of an accident is

estimated as 'occasional' and the severity is considered as 'minor'. Therefore, the resultant risk is classified as <u>medium</u>.

6.2.4.3 Proposed Intersection A (Saraji Road / the Project Site entrance)

A new intersection (Intersection A) on Saraji Road will be required to gain access to the Project Site. The design and configuration are required to meet the traffic demand and safety for heavy vehicles during the construction and operation stage. In addition, a level crossing will be included in the design. A copy of the suggested concept design is included in Figure 11.

6.2.4.4 No road lighting at Intersection 3 (Saraji Road / Peak Downs Mine Road / Peak Downs Mine entrance)

The geometric layout of the Saraji Road / Peak Downs Mine Road / Peak Downs Mine intersection is believed to be adequate. However, the intersection is not lit at present. Even though no accidents had been recorded in the past five years, a risk is perceived due to the increase in traffic due to the Project. In addition, the intersection geometry is such that the movement of vehicles between Peak Downs Mine Road and Saraji Road is not the priority movement in both directions which is not readily perceived at night.

It is believed that lack of lighting on rural roads during night-time travel is one of the contributing factors to accidents involving head-on collision or vehicles leaving the carriageway. Consequences may include serious personal injury or property damage. Therefore, based on the risk matrix, the probability of an accident is estimated as 'occasional' and the severity is considered as 'minor' (as the speed environment in the intersection is below 100 km/h). Therefore, the resultant risk is classified as <u>medium</u>.

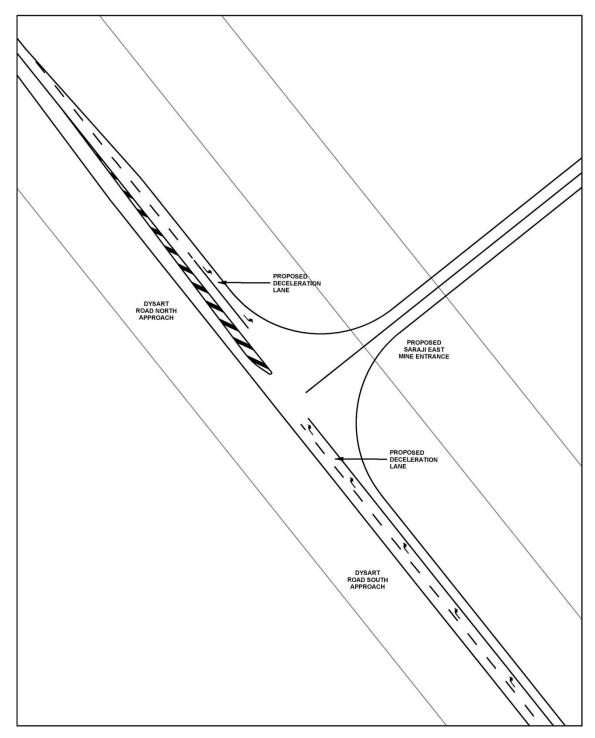


Figure 11 Concept Proposed Intersection A – Saraji Road / Saraji East Mine Entrance

6.3 Rail transport

It is not expected that rail transport will be utilised during the construction stage.

For operations, it is intended than 100 per cent of coal mined will be transported to port facilities along the existing Goonyella Rail system to a port facility for export. Aurizon owns the Norwich Park Branch rail line which runs parallel to Saraji Road near the Project Site and links to the overall Goonyella Rail system. The Project proposes to construct a new balloon loop and train load out facility to connect to the existing rail system. All coal will then be transported by rail to one of the Abbot Point and Hay Point Terminals. This corresponds to transport using the rail network over distances of 400 km to Abbot Point and 250 km to Hay Point.

The new balloon loop and train load out facility will be located north of the existing level crossings at the Saraji Mine access. Trains will travel north from the new balloon loop to the port facilities. Therefore, trains generated by the Project are not expected to increase at Level Crossing 1 on Lake Vermont Road. The additional trains associated with the Project will increase daily train numbers at the level crossing on Peaks Downs Mine Road (Level Crossing 2).

The maximum production of the Project is estimated to be 8 Mtpa of product coal for an export market over a life of approximately 20 years. The average train length is approximately 100 wagons with a total payload of approximately 8,500 ts. Therefore, when operating at peak production, the Project is anticipated to generate up to three additional trains per day on the Norwich Park Branch rail line. The annual average of coal production is 6.2 Mtpa, equating to up to two additional trains per day whilst in early months of operations it is expected that there will be only one additional train per day.

It has been confirmed by BMA that the rail network has available capacity to support the additional demand required by the Project. The volume of coal to be transported via the network will be within Aurizon's existing approval limits. As such, no additional impacts above those already approved are expected.

6.4 Air transport

The existing Moranbah Airport will be utilised for the transportation of the Project workforce. It is anticipated that the demand for air travel for workers will increase during the construction and operation stages of the Project. During operations, the Project will result in up to 15 additional trips per week. This increase can be accommodated within the existing capacity of the Moranbah Airport.

Table 87 summarises the peak number of workers expected to pass through the Moranbah Airport on the shift changing day (this assumes as minimum of 10 per cent of the workforce will reside locally during construction and 40 per cent during operation stage).

Table 87 Number of workers at Moranbah Airport on shift changing day

Assessment Year	Number of workers in construction stage	Number of workers in operation stage	Number of workers to Moranbah Airport	Number of workers from Moranbah Airport
Year 1 (Construction)	500	0	450	450
Year 3 (construction / operation)	1,000	260	1,059	1,059
Year 20 (operation)	0	500	303	303

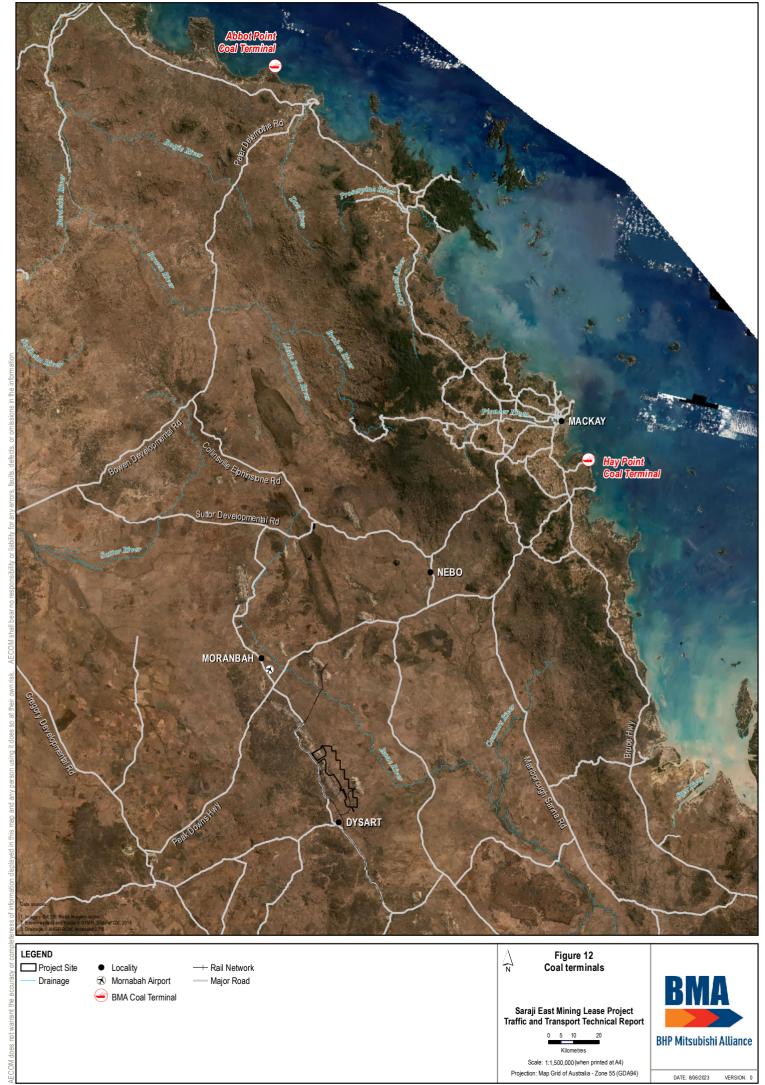
6.5 Sea transport

Coal from the Project will be exported from Australia by ship. Product coal from the Project will be exported to international markets via either Hay Point Coal Terminal or Abbot Point Coal Terminal. The locations of these port facilities are shown in Figure 12.

The Project is expected to produce a maximum 8 Mtpa of product coal for export and will require approximately 88 ships per year to transport this product to market. Annual average production is 6.2 Mt which correlates to 67 ships per year. The existing port facilities are able to service a range of ships including Handymax, Panamax, Small Cape, and Large Cape vessels with corresponding sizes of 50,000 dead weight tons (dwt), 80,000 dwt, 150,000 dwt, and 220,000 dwt respectively.

It is anticipated that the nominated ports will continue using these types of vessels across the Project's design life. Basic information about the two ports is presented in Table 88.

Table 88 Capacity of coal terminals


Port	Terminal capacity (Mtpa)	Throughput 2016/17 (Mtpa)	Number of berths
Hay Point Coal Terminal	55	43.4	3
Abbot Point Coal Terminal	50	25.4	2
Total	105	68.8	5

The product coal shipped via these ports will be within the approved port and shipping capacity and throughput limits, as such no additional impacts to the surrounding environment are expected as a result. This assessment shows that, based on the maximum throughput of 8 Mtpa product coal, the coal produced by the Project corresponds to approximately eight per cent of the combined terminal capacities of 105 Mtpa. It is considered that the impact to the combined terminal capacity is minimal.

The approximate number of additional ships per year of operation is outlined in Table 89.

Table 89 Number of additional ships during maximum production of 8 Mtpa

Calendar year	Additional number of ships per year			
3 years of construction	0			
20 years of operation	88			

7.0 Mitigation measures

The assessment concluded that most of the road links have exceeded the 5% threshold. However given the low background traffic in the network, it is anticipated that substantial delays or congestion on the road links is unlikely to occur.

Therefore, immediate mitigation measures at the assessed road links are not required. While no immediate mitigation is required, it is recommended to continue to undertake traffic surveys on the road links to monitor and assess traffic conditions. In the event that traffic conditions have worsened, a new traffic impact assessment is recommended to identify appropriate mitigations.

When considering future road safety, the following mitigation measures are proposed to address the issues identified in this assessment, with further details provided in subsequent sections:

- provide intersection lighting at Intersection 1 (Lake Vermont Road / Saraji Road)
- construct proposed Intersection A on Saraji Road
- provide intersection lighting at Intersection 3 (Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road)

It is noted that the investments committed by DTMR and listed in QTRIP 2022-23 to 2025-26 (The State of Queensland (Department of Transport and Main Roads), 2017c) were considered in developing the mitigation measures proposed.

7.1 Intersection 1 – Saraji Road / Lake Vermont Road

The geometric layout of the Saraji Road / Lake Vermont Road intersection is believed to be adequate for the development traffic. However due to the potential bus schedule for workers traveling to and from the villages in low light conditions, for safety reasons this assessment proposes lighting be installed at the intersection to improve visibility.

Plate 6 Intersection 1 (Saraji Road / Lake Vermont Road intersection)

Therefore, this assessment recommends that road lighting be installed at the Saraji Road / Lake Vermont Road to improve visibility in low light conditions.

7.2 Saraji Road Intersection A – Saraji Road / Saraji East Mine Entrance

An additional intersection (Intersection A) on Saraji Road will be required to gain access to the Project Site. The design and configuration are required to meet the traffic demand and safety for heavy vehicles during the construction stage. Therefore, it is proposed to include deceleration lanes on the north and south approaches to the intersection on Saraji Road. Concept designs for Intersection A are presented in Appendix G.

Plate 7 Road corridor at the proposed location of Intersection A (Saraji Road / the Project Site Entrance intersection)

At the proposed location Saraji Road runs parallel with the railway line. Therefore, it is recommended that the new intersection should include active devices such as boom barriers and flashing lights. In addition, road lighting at the intersection is also proposed. Concept signalised boom gate designs for Intersection A are presented in Appendix G.

7.3 Intersection 3 – Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road

The geometric layout of the Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road intersection is believed to be adequate. However, the intersection is not lit at present. Even though no accidents had been recorded in the past five years, the high percentage of heavy vehicles generated by the Project and the give-way control on Saraji Road present a safety risk.

Therefore, this assessment proposes road lighting to be installed at the Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road to improve visibility in low light conditions.

7.4 Air transport

The assessment concluded that a peak of approximately 1,059 workers will be travelling through Moranbah Airport on the shift changing day. Even though these estimates are considered conservative and the airport has sufficient capacity, this assessment recommends the optimisation of workers' rosters to minimise air travel peak demands.

7.5 Sea transport

The export of coal product using the identified coal export terminal is covered by existing approvals held by the ports. The preferred port(s) will be determined through commercial discussions between BMA and the relevant port authorities.

7.6 Proposed Level Crossing A

It is expected all coal produced by the Project will be transported by rail along the existing Norwich Park Branch rail line. This assessment concluded that proposed Level Crossing A may not have sufficient queue length to contain the long vehicles expected during the construction and operation stages.

This issue is expected to arise for a short time period during peak hours only and assumes that a train crosses the level crossing during the peak hours. This assessment proposes the following mitigation measures to address the queue length issue.

- Design auxiliary turn lanes and horixontal alignment shift on Saraji Road to include appropriate storage lengths considering the potential overflow queue from the level crossing. Appendix G presents the level crossing concept design.
- Stagger the shift changeover times for the construction and operations workforces to occur at different hours of the day to reduce the number of vehicles at the crossing during the peak hour.
- Safety education for heavy vehicle drivers in relation to the use of the level crossings.

During the detailed design stage of the Project, ALCAM assessments will be required by the rail authority. These assessments will be conducted on all affected level crossings in order to finalise the required treatment options.

7.7 Road use management plan

It is recommended that a Road Use Management Plan be prepared in the detailed design phase. The objective of the Plan is to demonstrate how road impacts of the Project traffic, particularly for heavy vehicles, will be managed during the construction and operation stages with an emphasis on avoiding or managing impacts through low or no-cost strategies. It should be prepared in accordance with consultation and engagement with DTMR.

The proposed mitigation measures within this report are based on available information and estimations of future traffic. However, it is expected that the Project will be progressed to the consultation stage with DTMR, where specific requirements for the mitigation measures will become available. Hence the Road-use Management Plan will provide the opportunity to revise the proposed mitigation measures based on the latest information.

The outcomes of this TIA should form the basis of consultation with relevant stakeholders, including DTMR and IRC, to reach agreement regarding the proposed measures to mitigate impacts. Following the consultation period, preparation of a Road-use Management Plan is proposed to update the assessments and document the final mitigation measures in the next stage of this TIA process.

7.8 Summary of mitigation measures

This assessment considered the scheduled road resurfacing on Saraji Road and Peak Downs Highway as stated in QTRIP 2022-23 to 2025-26 (The State of Queensland (Department of Transport and Main Roads), 2017c). It is believed that the maintenance works will not interfere with the proposed mitigation measures. Table 90 summarises the proposed mitigation measures for the safety issues identified in this assessment. It is concluded that the issues are manageable and with the implementation of the proposed mitigation measures, it is anticipated that risks will be reduced to an acceptable level.

Table 90 Summary of resultant risks and mitigation measures

Location	Issue	Possible accident	Frequency / probability	Severity / consequence	Resultant risk	Proposed mitigation measures
Lake Vermont Road	Unsealed road surface	Vehicles overturning or come off carriageway	Occasional	Minor	Medium	Sealing Lake Vermont Road and replace tunnel under railway line
Intersection 1 (Saraji Road / Lake Vermont Road)	No road lighting	Head-on collision or vehicles come off carriageway	Occasional	Minor	Medium	Install road lighting
Intersection A (Saraji Road / Saraji East Mine Entrance)	No access to Saraji East Mine	-	-	-	-	Construct intersection
Intersection 3 (Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road)	No road lighting	Head-on collision or vehicles come off carriageway	Occasional	Minor	Medium	Install road lighting
Moranbah Airport	High demand for air travel	Minor aircraft incident	Occasional	Minor	Medium	Optimise workers' roster
Level Crossing A	Insufficient queuing space	Vehicles collisions	Occasional	Minor	Medium	Auxiliary turn lanes on Saraji Road and optimise workers' roster (refer to Appendix G)

8.0 Residual impacts

8.1 Intersection 1 – Saraji Road / Lake Vermont Road

The lack of road lighting at Intersection 1 – Saraji Road and Lake Vermont Road is believed to be one of the contributing factors to potential accidents involving head-on collision or vehicles leaving the carriageway. However, if the proposed road lighting is installed, it is believed that the probability of such incidents will likely be reduced to Improbable. Therefore, the residual risk will be reduced to <u>low</u>.

8.2 Intersection 3 – Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road

The lack of road lighting at Intersection 3 – Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road is believed to be one of the contributing factors to potential accidents involving head-on collision or vehicles leaving the carriageway. However, if the proposed road lighting is installed, it is believed that the probability of such incidents will be reduced to Improbable. Therefore, the residual risk will be reduced to low.

8.3 Air transport

The high air travel demand is expected to increase air traffic using Moranbah Airport. However, if the proposed management measure is implemented, the air travel demand will be able to reduce to an acceptable level. Therefore, the probability of an aircraft incident will be reduced to improbable. Therefore, the residual risk will be reduced to low.

8.4 Proposed Level Crossing A

Insufficient queuing length on the Project Site access roads may result in overflow vehicles queuing onto Saraji Road. The assessment proposed several mitigation measures such as auxiliary turn lanes on Saraji Road to store vehicles on Saraji Road and a horizontal alignment shift of Saraji Road to accommodate the short stacking distance between Saraji Road and the Goonyella System Rail Line. If implemented, it is estimated that the probability of an accident will be reduced to Improbable. Therefore, the residual risk will be reduced to Low-Noncept designs for the proposed Level Crossing A are presented in Appendix G.

8.5 Summary of residual impacts

Table 91 summarises the residual risks if the proposed mitigation measures are implemented. As previously concluded the issues are manageable and with implementation of the proposed measures it is anticipated that risks will be reduced to an acceptable level.

Table 91 Summary of residual risks

Location	Issue	Possible accident	Resultant risk	Proposed mitigation measures	Frequency / probability after mitigation	Severity / consequence after mitigation	Residual risk
Intersection 1 (Saraji Road / Lake Vermont Road)	No road lighting	Head-on collision or vehicles come off carriageway	Medium	Install road lighting	Improbable	Minor	Low
Proposed Intersection A (Saraji Road / Saraji East Mine Entrance)	No access to Saraji East Mine	-	-	Construct intersection	-	-	-
Intersection 3 (Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road)	No road lighting	Head-on collision or vehicles come off carriageway	Medium	Install road lighting	Improbable	Minor	Low
Moranbah Airport	High demand for air travel	Minor aircraft incident	Medium	Optimise workers' roster	Improbable	Minor	Low
Proposed Level Crossing A	Insufficient queuing space	Vehicles collisions	Medium	Auxiliary turn lanes on Saraji Road, horizontal alignment shift of Saraji Road and optimise workers' roster	Improbable	Minor	Low

9.0 Conclusion

AECOM was commissioned by BMA to prepare an assessment of traffic and transport impacts for the Project.

The Project will be divided into two stages – construction and operation. The construction period is assumed to be in the order of three years, with the majority of construction work occurring over 18 months between Year 1 and Year 2 of construction. While the Project is under construction, mining operation is expected to commence in FY 2023, and will continue until approximately FY 2042.

It is noted that construction will commence following the grant of relevant approvals and BMA's decision to proceed with the Project. The actual timing for Project commencement will be determined based on progress of mining and commercial market drivers. For EIS-related impact assessment purposes, construction is assumed to commence FY 2023 (Year 1) and production beginning during Year 3 of construction.

The major mode of transport potentially impacted by the Project is the Queensland road network and was hence the focus of this traffic and transport impact assessment. Other transport modes, including air, rail and sea, have been considered to identify their relevance to the Project.

9.1 Traffic impact assessment

The Project is expected to generate additional traffic on the adjacent road network. This report includes an assessment of the impacts to the safety and efficiency of the road network based on the requirements of GTIA (The State of Queensland (Department of Transport and Main Roads), 2018).

9.1.1 Traffic volumes

Background traffic volumes for the relevant road network were based on AADT segment reports from DTMR and traffic surveys undertaken in March 2018. Future background traffic volumes were estimated based on a low one per cent per annum growth rate.

Traffic volumes generated by the Project were estimated based on the information available from BMA regarding the workforce, construction schedule and anticipated materials and equipment. The traffic generated by the development across the construction and operation of the Project is shown in Table 92.

Table 92 Project traffic generation

Development traffic		Number of vehicles						
Year	Stage	AM (5am	AM (5am – 6am)		PM (5pm – 6pm)		Average Daily	
		IN	OUT	IN	OUT	IN	OUT	
Year 1	Construction	69	69	69	69	162	162	
Year 2	Construction	69	69	69	69	162	162	
Year 3	Construction + Operation	142	142	142	142	345	345	
Year 4	Operation	76	76	76	76	222	222	
Year 5	Operation	76	76	76	76	222	222	
Year 6	Operation	76	76	76	76	222	222	
Year 7	Operation	76	76	76	76	222	222	
Year 8	Operation	76	76	76	76	222	222	
Year 9	Operation	76	76	76	76	222	222	
Year 10	Operation	76	76	76	76	222	222	
Year 11	Operation	76	76	76	76	222	222	

Development traffic		Number of vehicles						
·	Stage	AM (5am – 6am)		PM (5pm – 6pm)		Average Daily		
Year		IN	OUT	IN	OUT	IN	OUT	
Year 12	Operation	76	76	76	76	222	222	
Year 13	Operation	76	76	76	76	222	222	
Year 14	Operation	76	76	76	76	222	222	
Year 15	Operation	76	76	76	76	222	222	
Year 16	Operation	76	76	76	76	222	222	
Year 17	Operation	76	76	76	76	222	222	
Year 18	Operation	76	76	76	76	222	222	
Year 19	Operation	76	76	76	76	222	222	
Year 20	Operation	76	76	76	76	222	222	
Year 21	Operation	43	43	43	43	123	123	
Year 22	Operation	43	43	43	43	123	123	

9.1.2 Intersection assessments

SIDRA intersection assessments were undertaken for five existing intersections and one proposed intersection. The SIDRA assessments concluded that the intersections are anticipated to operate within capacity and without significant queuing and delay during the life of the Project. The assessments also concluded that, the aggregate delays for the intersections are insignificant. Table 93 summarises the anticipated intersection performances. The worst traffic condition occurs at Intersection 2 with 14 seconds of delay anticipated in FY 2040.

Table 93 Worst traffic condition in identified intersections

	Intersection	Year & scenario	Approach	Degree of	Average Delay	Queuing	
ID				Saturation		Vehicle s	Distanc e
				(DoS)	(Sec)	(No.)	(m)
1	Saraji Road / Lake Vermont Road	FY 2021 / Year 1 (construction) AM total traffic (ordinary day)	Lake Vermont Road	0.018	12.5	0.1	0.7
2	Saraji Road / Saraji Mine Entrance	FY 2040 / Year 20 (operation) PM total traffic (ordinary day)	Saraji Mine Entrance	0.11	14.1	0.4	3
3	Saraji Road / Peak Downs Mine Road / Peak Downs Mine Entrance	FY 2023 / Year 3 (construction/oper ation) AM total traffic (shift changing day)	Peak Downs Mine Entrance	0.017	8.5	0.1	0.5
4	Peak Downs Highway / Peak Downs Mine Road	FY 2023 / Year 3 (construction/oper ation) PM total traffic (shift changing day)	Dysart Road	0.216	11.7	0.9	7.9

ID	Intersection	Year & scenario	Approach	Degree of Saturation	Average Delay	Queuing	
						Vehicle s	Distanc e
				(DoS)	(Sec)	(No.)	(m)
5	Peak Downs Highway / Moranbah Access Road	FY 2040 / Year 20 (operation) AM total traffic (shift changing day)	Moranbah Access Road	0.765	13.9	13.4	99.3
А	Saraji Road / Saraji East Mine Entrance	FY 2023 / Year 3 (construction/oper ation) PM total traffic (ordinary day)	Saraji East Mine Entrance	0.211	10.5	0.9	8.2

9.1.3 Highway link assessment

The assessment of V/C ratios concluded that the highway links are anticipated to operate within capacity during the life of the Project. Table 94 summarises the anticipated highway link performance. The worst traffic condition occurs on Saraji Road south of Lake Vermont Road with development traffic volumes at 43 per cent of the road capacity in FY 2040.

Table 94 Worst traffic conditions on identified highway links

Highway Link	Location	Year and Scenario	Direction	V/C Ratio
(1) Saraji	South of Lake	FY 2040 / Year 20 (operation) AM Total (Ordinary day / Shift changing day)	Northbound	43%
Road	Vermont Road	FY 2040 / Year 20 (operation) PM Total (Ordinary day / Shift changing day)	Southbound	27%
(2) Saraii Dand	(construction/o Total (Ordinary day) FY 2023 / Year		Northbound	19%
(2) Saraji Road			Southbound	15%
(0) De els Deceses	Could of Pools	FY 2040 / Year 20 (operation) PM Total (Shift changing day)	Northbound	18%
(3) Peak Downs Mine Road	South of Peak Downs Highway	FY 2040 / Year 20 (operation) AM Total (Ordinary day / Shift changing day)	Southbound	29%
(4) Peak Downs Highway			Eastbound	18%
		FY 2040 / Year 20 (operation) PM Total	Westbound	20%

Highway Link	Location	Year and Scenario	Direction	V/C Ratio
		(ordinary day / Shift changing day)		

An assessment of the regional road network of Peak Downs Highway and Saraji Road showed that the development traffic is anticipated to exceed five per cent of the background traffic. However, the V/C ratios show the road network will operate within capacities and travel time and vehicle travelling speed will not be affected. Therefore, it is concluded that the impact of the Project on the operation of the regional road network is minimal.

9.1.4 Level crossing assessments

SIDRA assessments were undertaken for the level crossings which may be impacted by additional road traffic. This assessment concluded that proposed Level Crossing A on the Project access road may not have sufficient storage to contain the estimated vehicle queues. This assessment proposed several mitigation measures including auxiliary turn lanes on Saraji Road to store vehicles, a horizontal alignment shift of Saraji Road to create more space for queueing between the rail line and Saraji Road and stagger the workers' rosters to minimise number of vehicles at the level crossings.

It is noted that the rail authority may undertake ALCAM assessments for all affected level crossings during the detailed design stage.

9.1.5 Pavement impact assessment

A preliminary PIA was undertaken to compare the background traffic ESAs to the Project traffic ESAs. The assessment concluded the ESA loads generated by the Project traffic are significant and appropriate mitigation measures will be required. Therefore, a full PIA is warranted in consultation with the road authorities. The process of the PIA will require a considerable amount of road data and specific details of the heavy vehicles that will be used in the Project. Therefore, it is recommended that the PIA should be undertaken during the detailed design stage with full consultation with DTMR and IRC. The conclusion of the PIA will inform the level of contribution and/or pavement improvement works required.

9.1.6 Emergency services operations

Various fire stations, police stations and medical facilities are located in Moranbah and Dysart. The assessment concluded that heavy vehicles during the Construction and Operation stages are typically road trains, articulated vehicles and trucks and the fleet is not expecting any OSOM vehicles. Therefore, manoeuvring of the Project vehicles will not be restricted at intersections and road structures. Vehicles will be able to overtake the Project road trains or articulated vehicles without obstructing traffic movement. Therefore, it is concluded that the Project will not impede emergency services operations.

9.1.7 Road safety

Safety issues that are likely to be introduced or exaggerated by the Project include:

- no intersection lighting at Intersection 1 (Lake Vermont Road / Saraji Road)
- proposed intersection A on Saraji Road
- no intersection lighting at Intersection 3 (Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road).

These issues were subject to a safety risk assessment and mitigation measures were proposed. It is recommended that a Road Safety Audit be undertaken for the proposed road infrastructure upgrades during the detailed stage.

9.1.8 Potential impacts and mitigation measures

The assessment proposed mitigation measures to respond to the road safety issues identified in the Project Area. The issues are related to road lighting and unsealed road surface. Based on road safety, the following mitigation measures are proposed to address the issues identified in this assessment:

 provide intersection lighting at Intersection 1 (Lake Vermont Road / Saraji Road) to improve visibility in low light conditions

- construct proposed Intersection A on Saraji Road, which would include deceleration lanes on the
 north and south approaches to the intersection on Saraji Road, and active devices such as boom
 barriers and flashing lights in addition to road lighting at the intersection
- provide intersection lighting at Intersection 3 (Peak Downs Mine Access / Peak Downs Mine Road / Saraji Road) to improve visibility in low light conditions.

The assessment concluded that the safety issues are manageable. With the implementation of the proposed mitigation measures, the safety risks will be reduced to an acceptable level.

9.2 Rail impact assessment

It is expected all coal produced by the Project will be transported by rail along the existing Goonyella rail system, specifically the Norwich Park Branch rail line. It has been confirmed by BMA that the rail network has available capacity to support the additional demand required by the Project. The volume of coal to be transported via the network will be within Aurizon's existing approval limits. As such, no additional impacts are expected.

9.3 Port impact assessment

The Project is expected to require approximately 88 ships per year in peak production to transport this product to market via port facilities in Abbot Point and Hay Point. This assessment shows that the annual maximum production rate of the Project corresponds to approximately eight per cent of the combined terminal capacities. It is considered that the impact to the combined terminal capacity is minimal.

9.4 Air impact assessment

It is anticipated that the demand for air travel will increase as a portion of workers are expected to originate from outside the local region. This assessment recommends optimising workers' rosters to minimise peak air travel demand.

10.0 References

Austroads. 2009. Guide to Road Safety Part 6: Road Safety Audit. Austroads, Sydney.

Austroads. 2015. Guide to Road Safety Part 8: Treatment of Crash Locations. Austroads, Sydney.

Austroads. 2017. Guide to Road Design Part 4A: Unsignalised and Signalised Intersections. Austroads, Sydney.

The Highways Agency. 1999. Design Manual for Roads and Bridges: Advice Note TA 79/99 Traffic Capacity of Urban Roads. London: The Highways Agency.

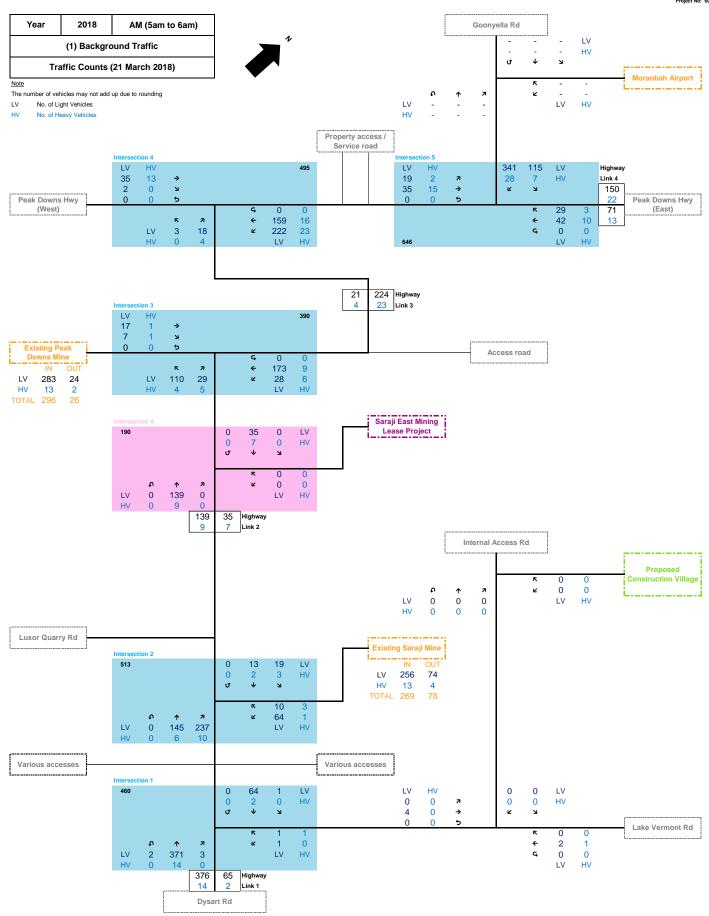
The State of Queensland (Department of Environment and Heritage Protection). 2017. Saraji East Mining Lease Project: Final terms of reference for an environmental impact statement. Brisbane: Department of Environment and Heritage Protection.

The State of Queensland. 2017a. Queensland Local Government Act 2009. Brisbane.

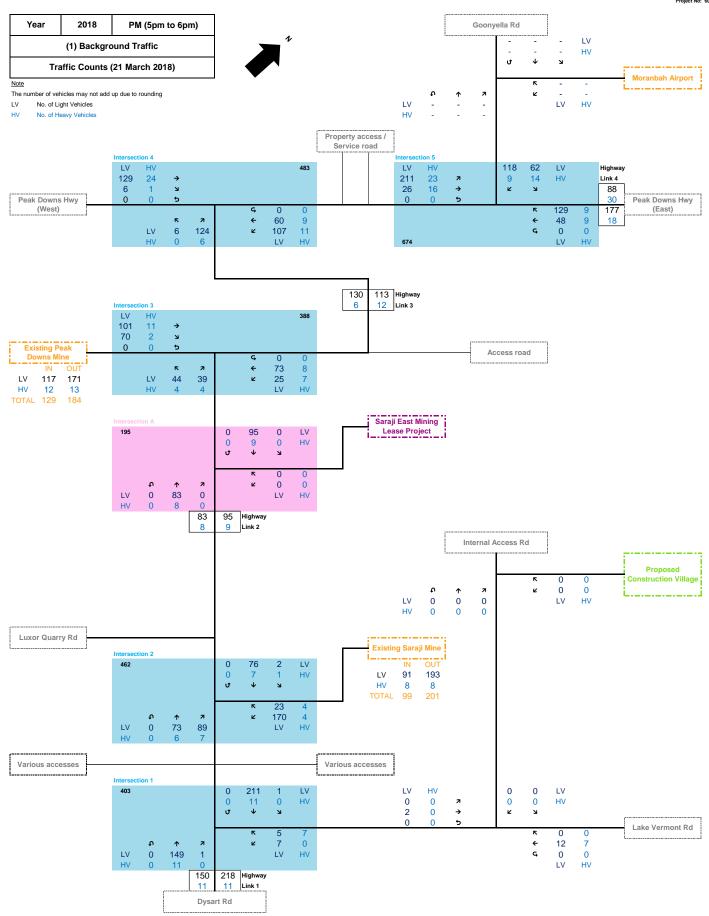
The State of Queensland. 2017b. Transport Infrastructure Act 1994. Brisbane.

The State of Queensland (Department of Transport and Main Roads). 2018. *Guide to Traffic Impact Assessment*. Brisbane: Department of Transport and Main Roads.

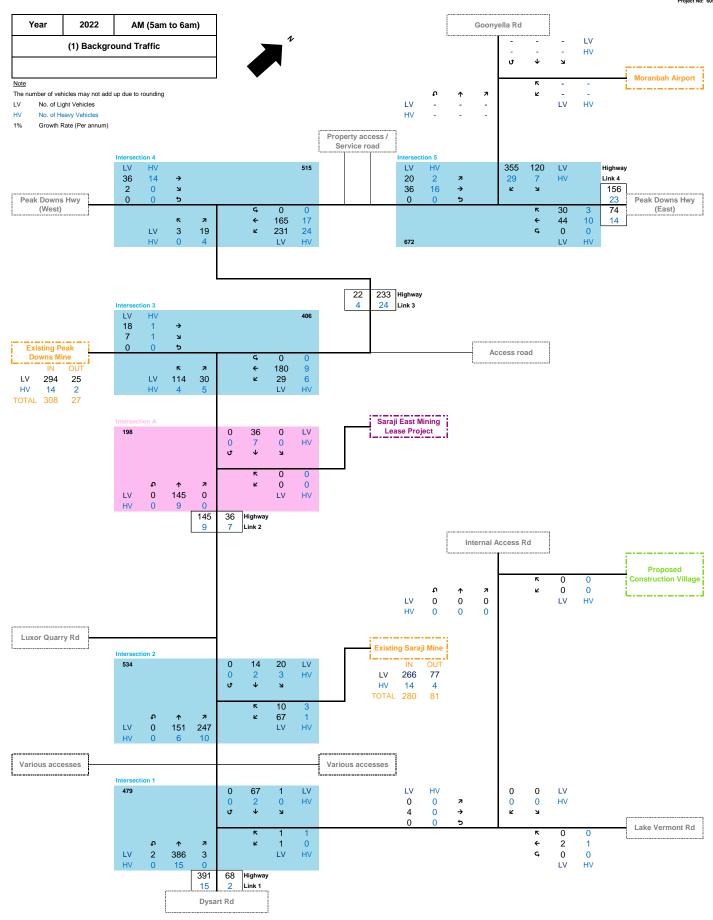
The State of Queensland (Department of Transport and Main Roads). 2017b. *Interim Guideline for preparing a Road-use Management Plan (RMP)*. Brisbane: Department of Transport and Main Roads.

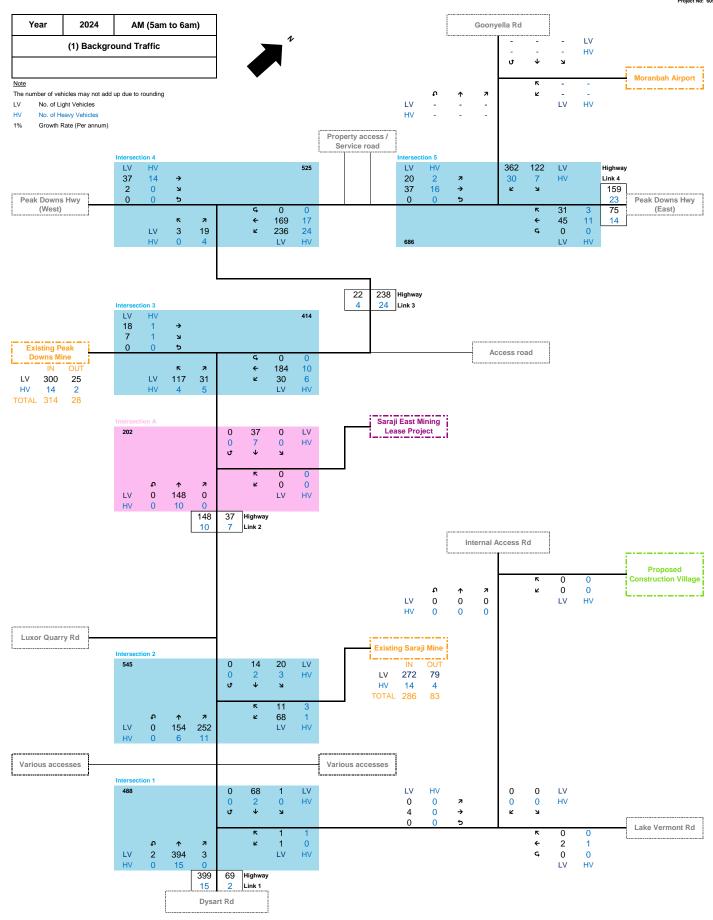

The State of Queensland (Department of Transport and Main Roads). 2017c. Queensland Transport and Roads Investment Program (QTRIP) 2022-23 to 2025-26. Brisbane: Department of Transport and Main Roads.

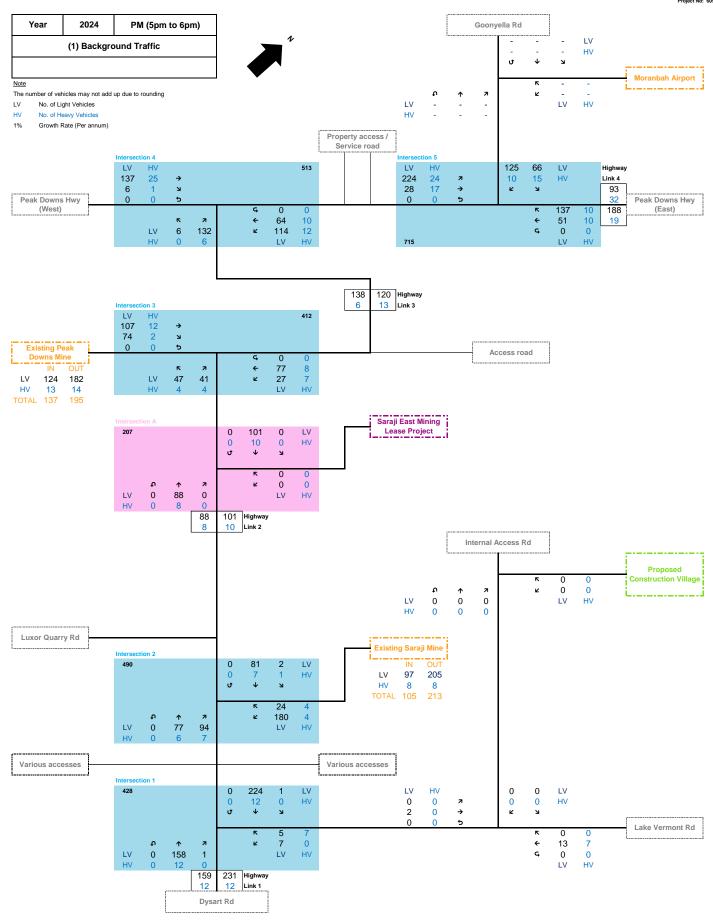
Transportation Research Board. 2016. *Highway Capacity Manual*. 6th edition. Washington, Transportation Research Board.

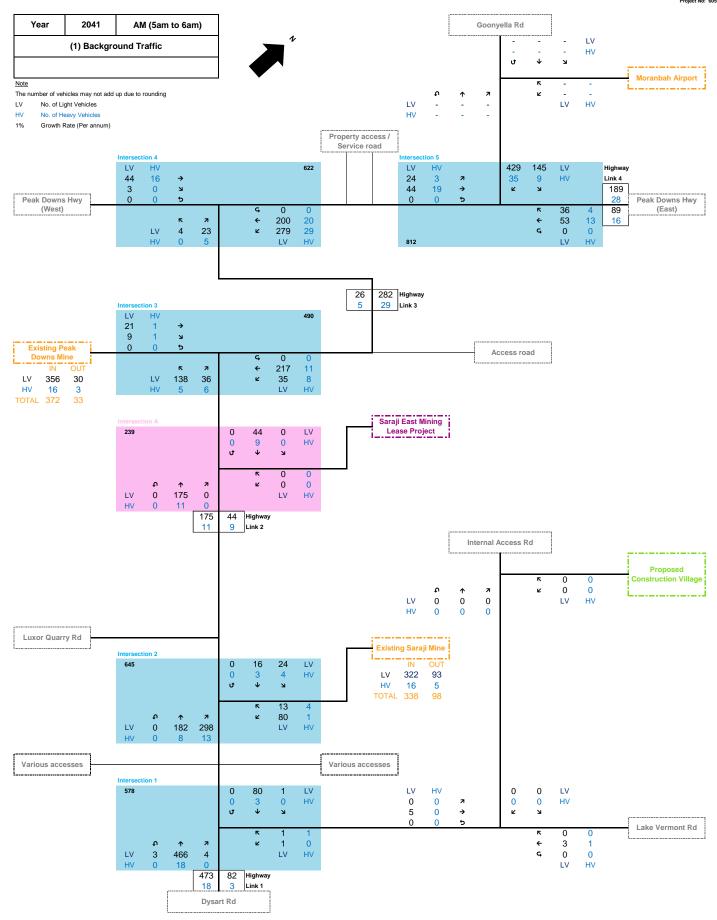

Appendix A

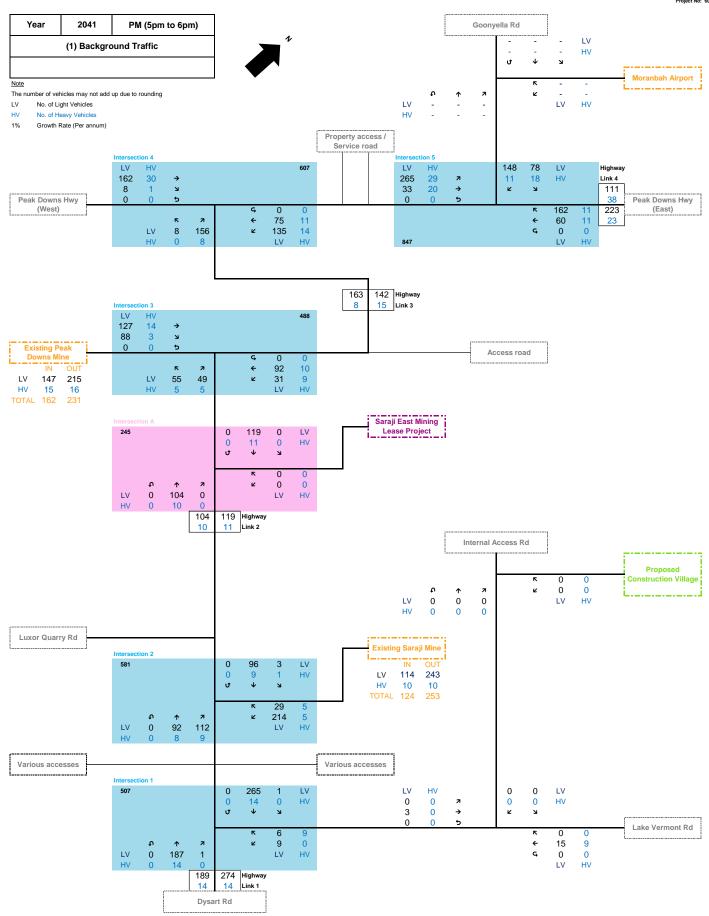
Background Traffic

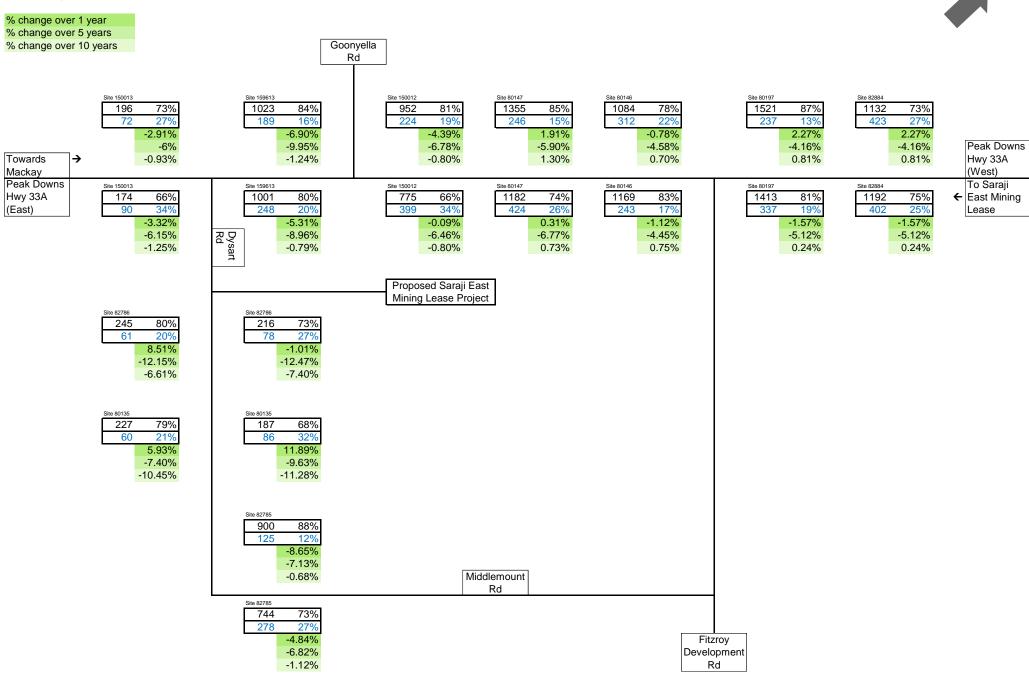




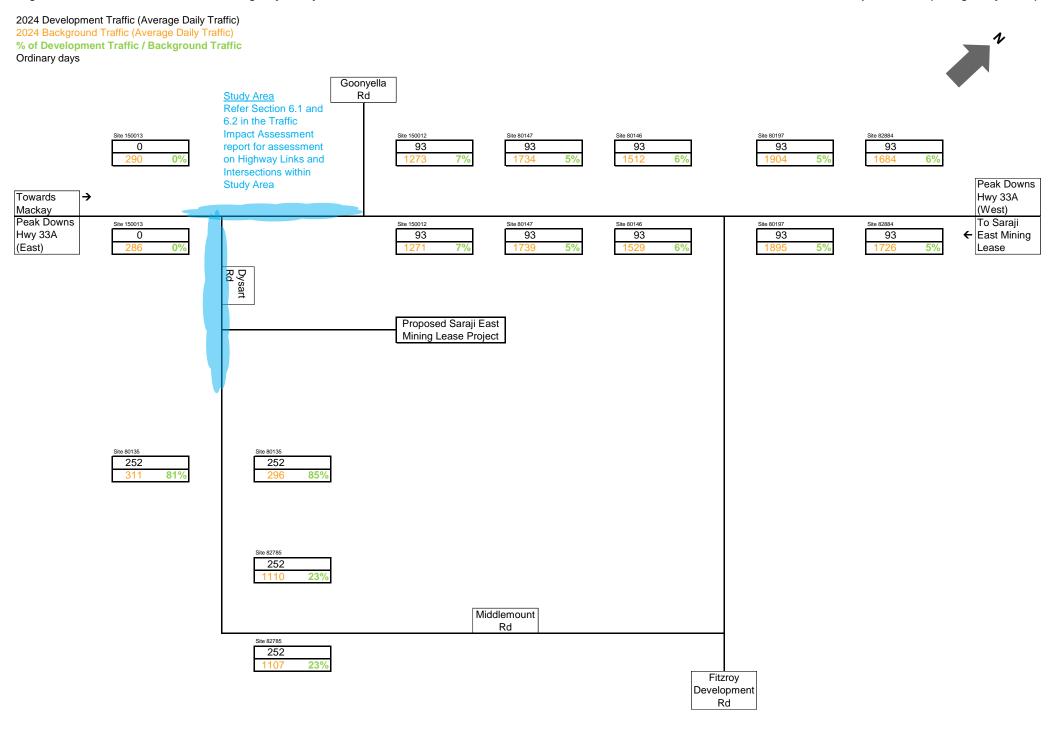


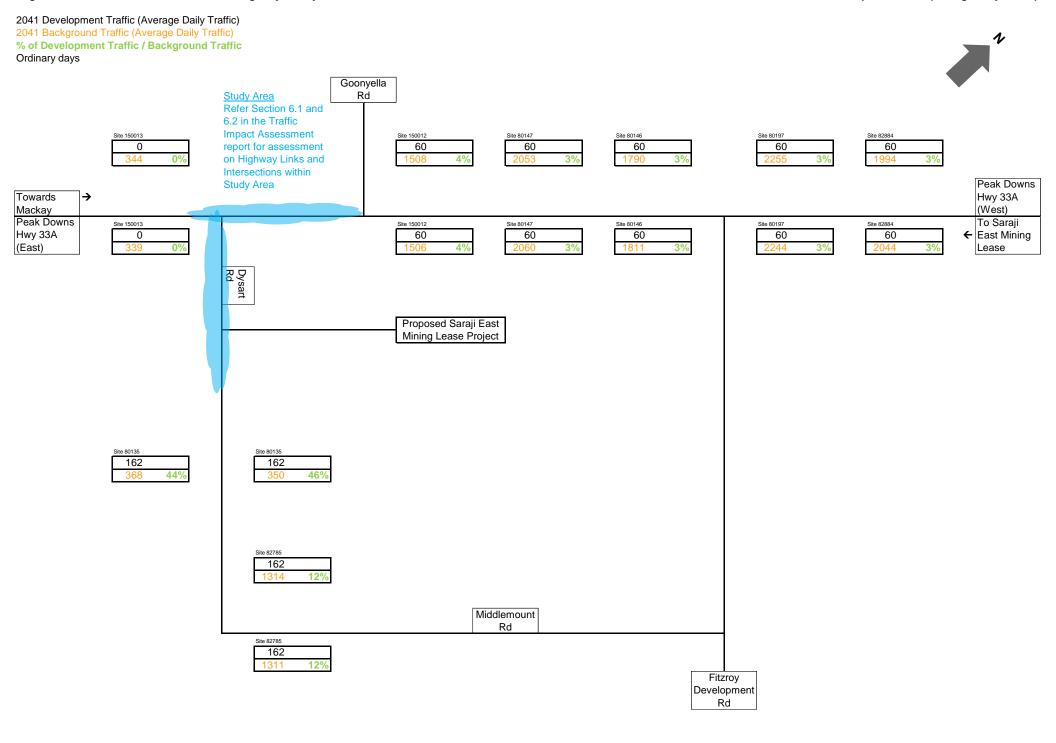






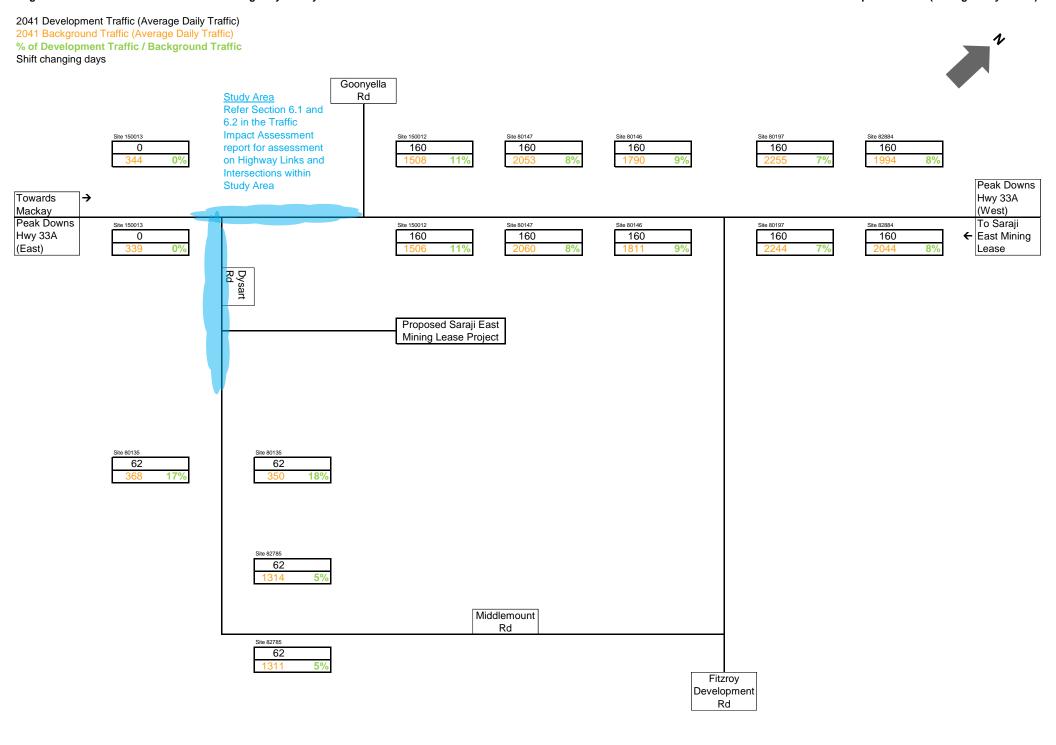
Appendix B


Regional Traffic


2016 Annual Average Daily Traffic (AADT)

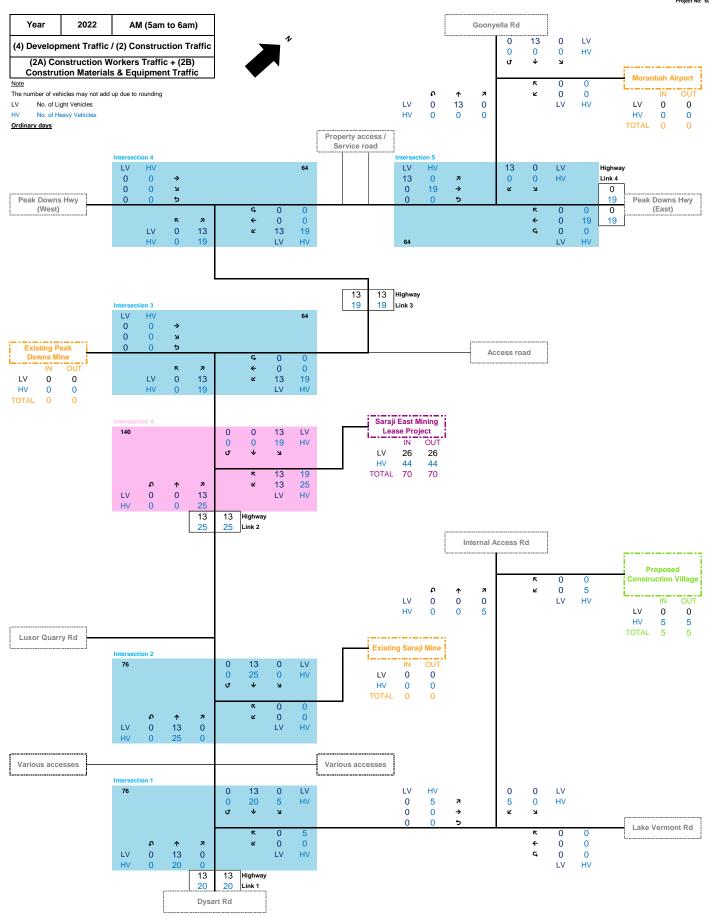
No. of Light Vehicles No. of Heavy Vehicles

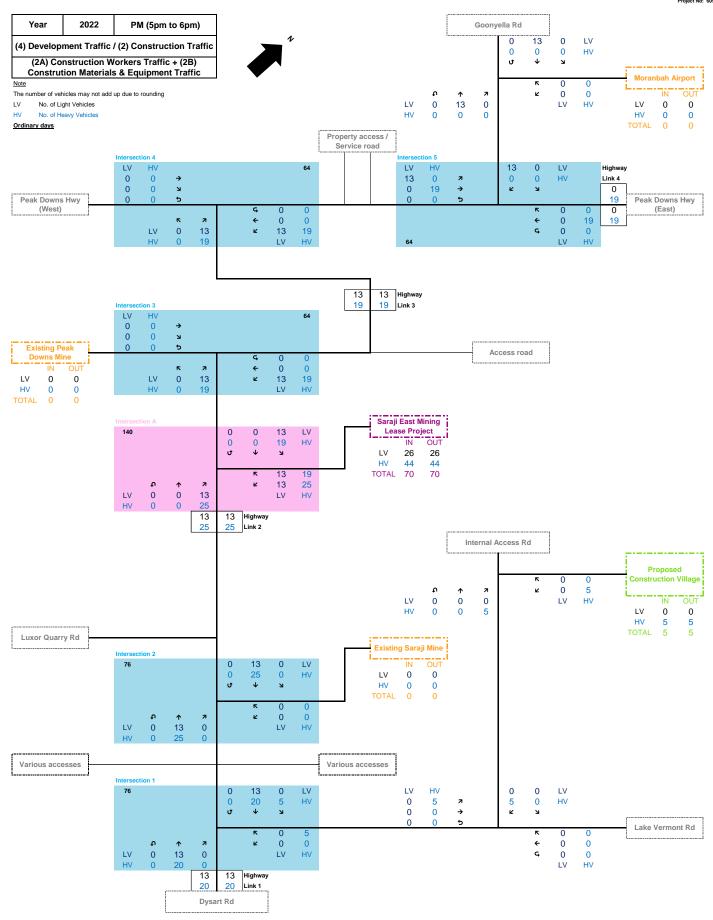
2022 Development Traffic (Average Daily Traffic) 2022 Background Traffic (Average Daily Traffic) % of Development Traffic / Background Traffic Ordinary days Goonyella Rd Study Area Refer Section 6.1 and 6.2 in the Traffic Impact Assessment Site 150013 Site 150012 Site 80147 Site 80146 Site 80197 Site 82884 report for assessment 44 44 44 44 0 44 on Highway Links and Intersections within Peak Downs Study Area Towards Hwy 33A (West) Mackay Peak Downs Site 150013 Site 150012 Site 80147 Site 80146 To Saraji Site 80197 Site 82884 Hwy 33A 0 44 44 44 44 44 ← East Mining (East) Lease Proposed Saraji East Mining Lease Project Site 80135 Site 80135 119 119 119 Middlemount Rd Site 82785 119 Fitzroy Development Rd



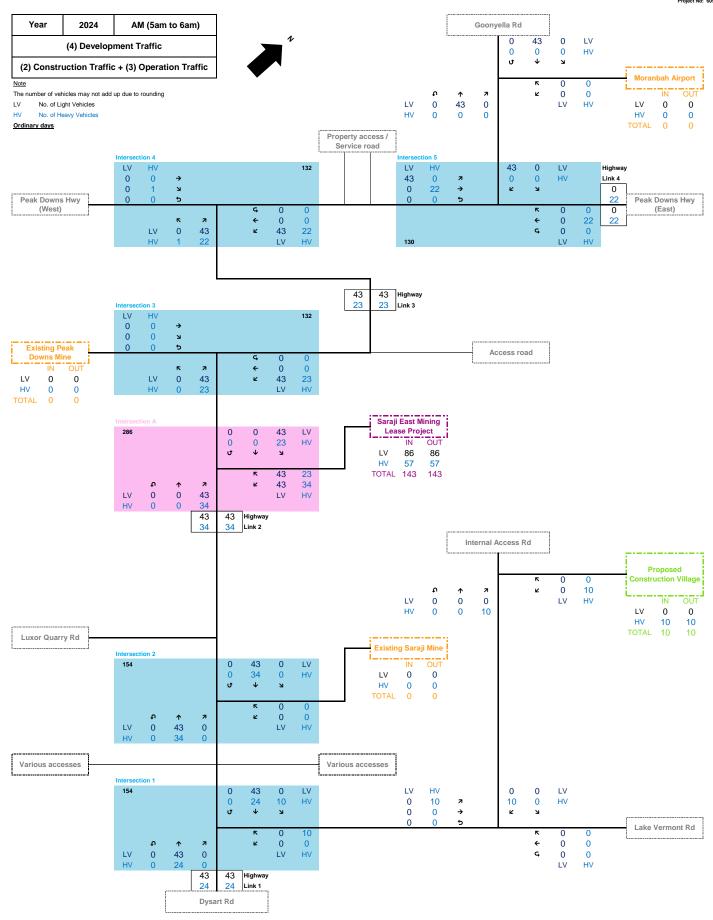
2022 Development Traffic (Average Daily Traffic) 2022 Background Traffic (Average Daily Traffic) % of Development Traffic / Background Traffic Shift changing days Goonyella Rd Study Area Refer Section 6.1 and 6.2 in the Traffic Impact Assessment Site 150013 Site 150012 Site 80147 Site 80146 Site 80197 Site 82884 report for assessment 116 116 116 116 116 0 on Highway Links and Intersections within Peak Downs Study Area Towards Hwy 33A (West) Mackay Peak Downs Site 150013 Site 150012 Site 80147 Site 80146 To Saraji Site 80197 Site 82884 Hwy 33A 116 0 116 116 116 116 ← East Mining (East) Lease Proposed Saraji East Mining Lease Project Site 80135 Site 80135 46 46 16% 46 Middlemount Rd Site 82785 46 Fitzroy Development Rd

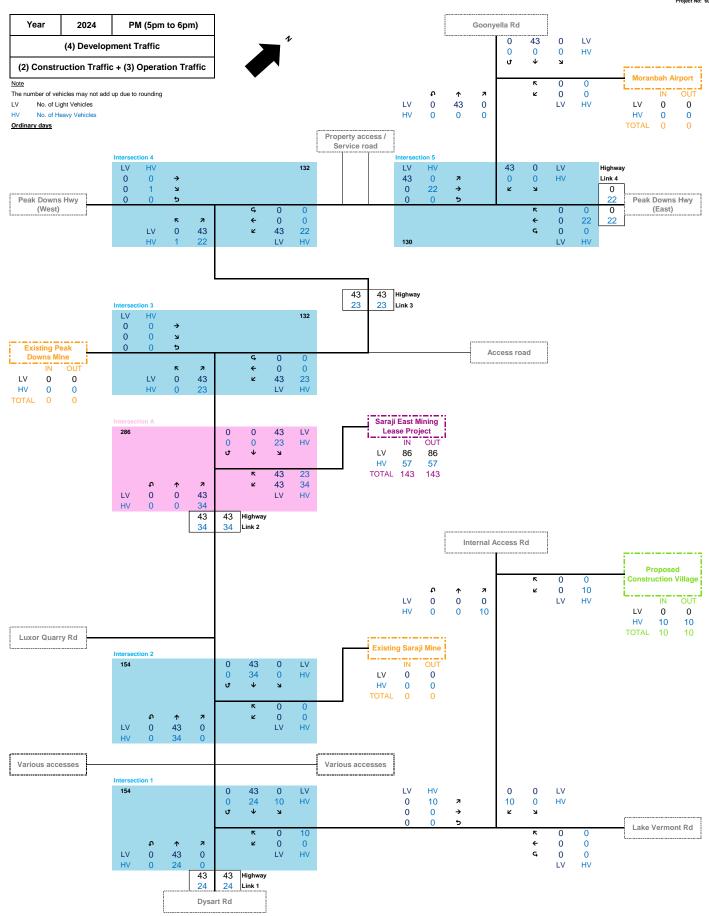
2024 Development Traffic (Average Daily Traffic)

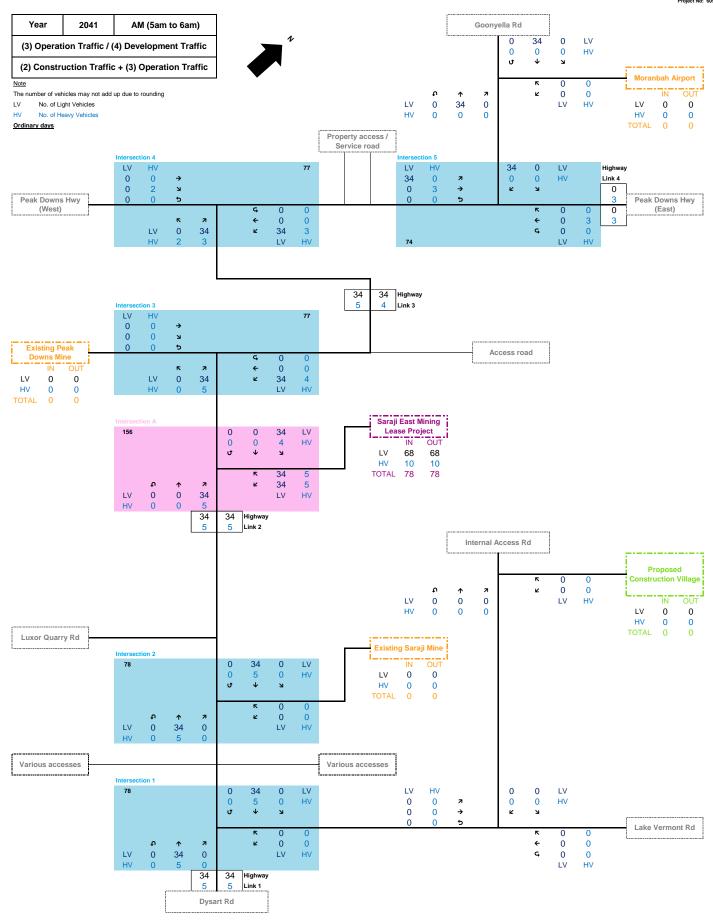

2024 Background Traffic (Average Daily Traffic) % of Development Traffic / Background Traffic Shift changing days Goonyella Rd Study Area Refer Section 6.1 and 6.2 in the Traffic Impact Assessment Site 150013 Site 150012 Site 80147 Site 80146 Site 80197 Site 82884 report for assessment 248 248 248 248 248 0 on Highway Links and 16% 15% Intersections within Peak Downs Study Area Towards Hwy 33A (West) Mackay Peak Downs Site 150013 Site 150012 Site 80147 Site 80146 To Saraji Site 80197 Site 82884 Hwy 33A 248 248 248 248 0 248 ← East Mining (East) Lease Proposed Saraji East Mining Lease Project Site 80135 97 97 97 Middlemount Rd Site 82785 97 Fitzroy Development Rd

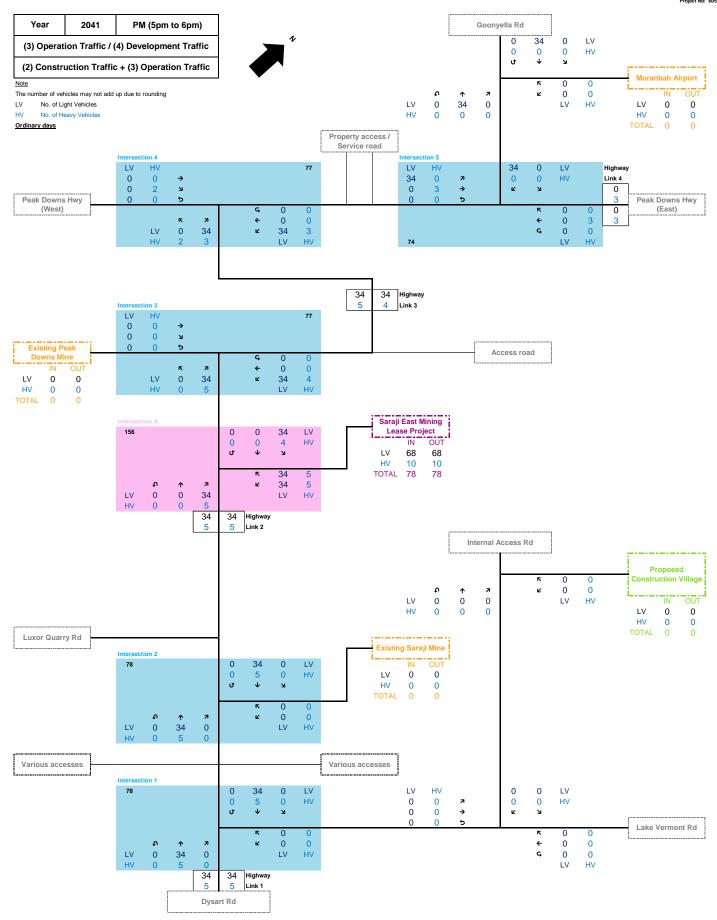

Appendix C

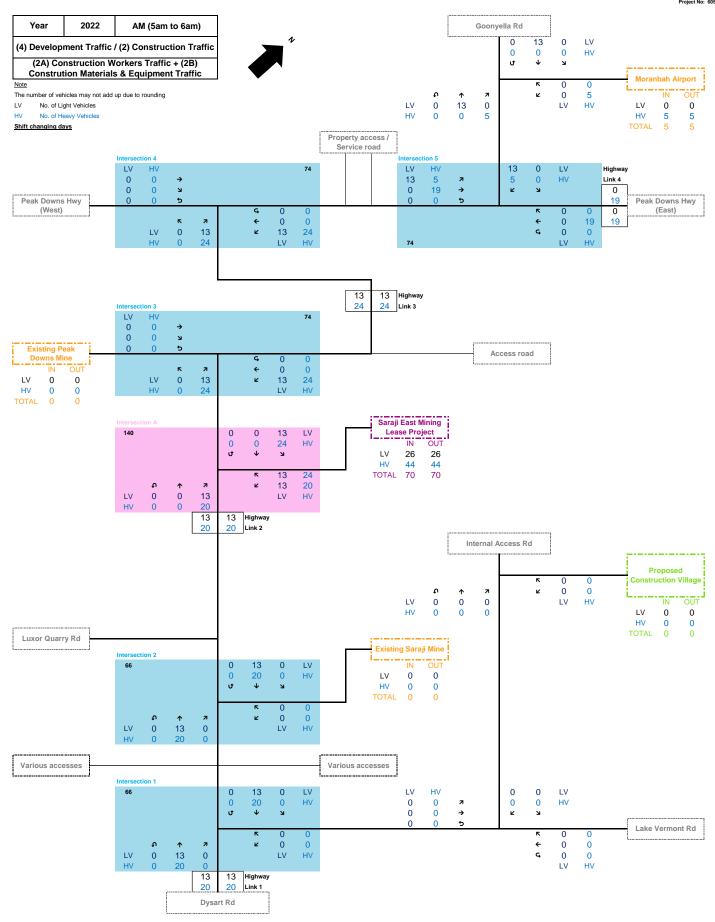
Development Traffic

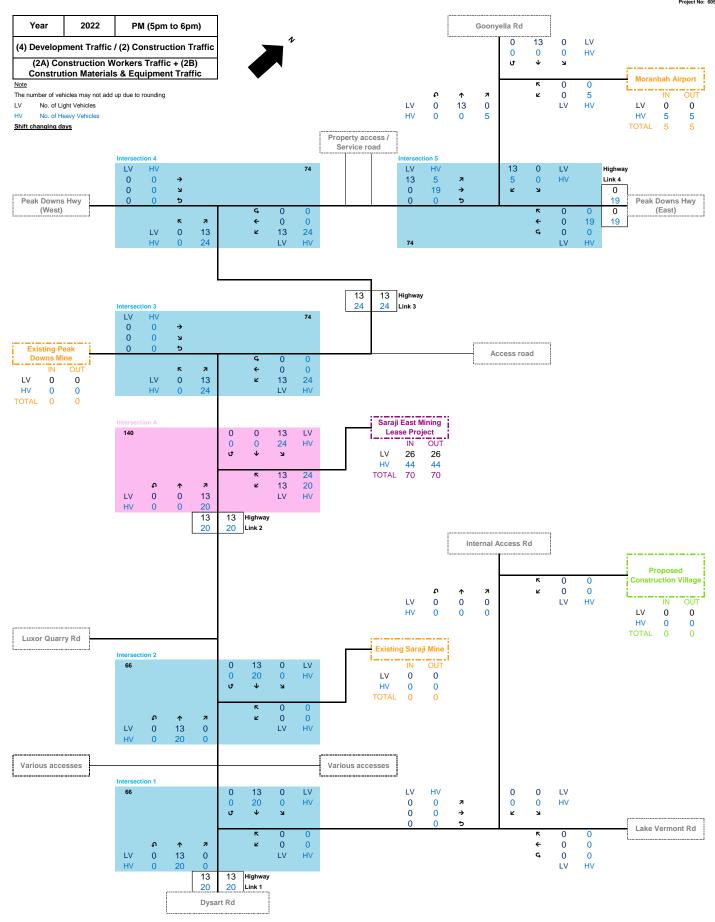


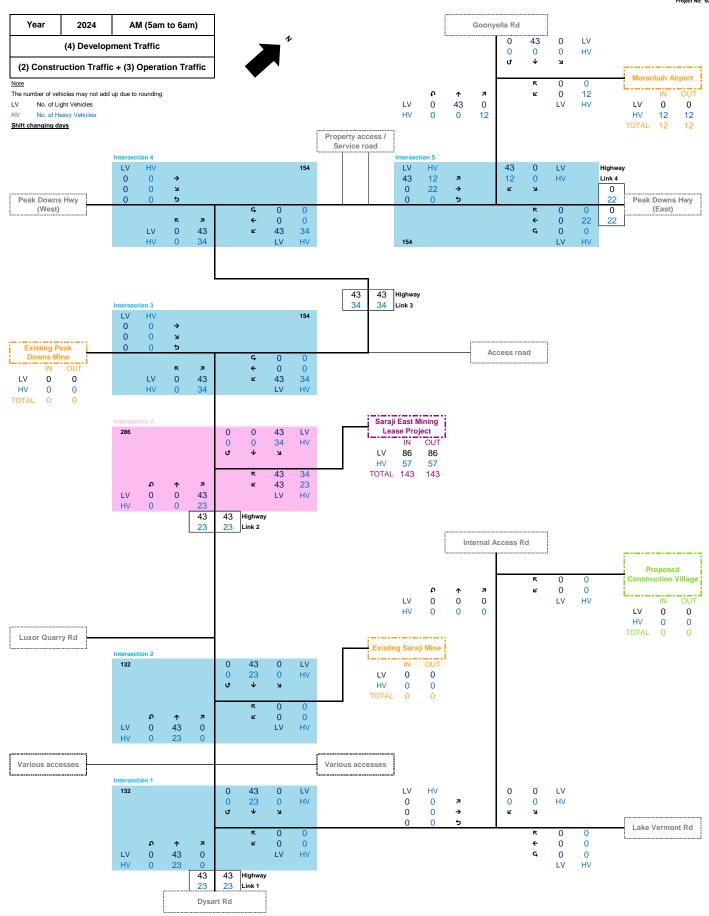


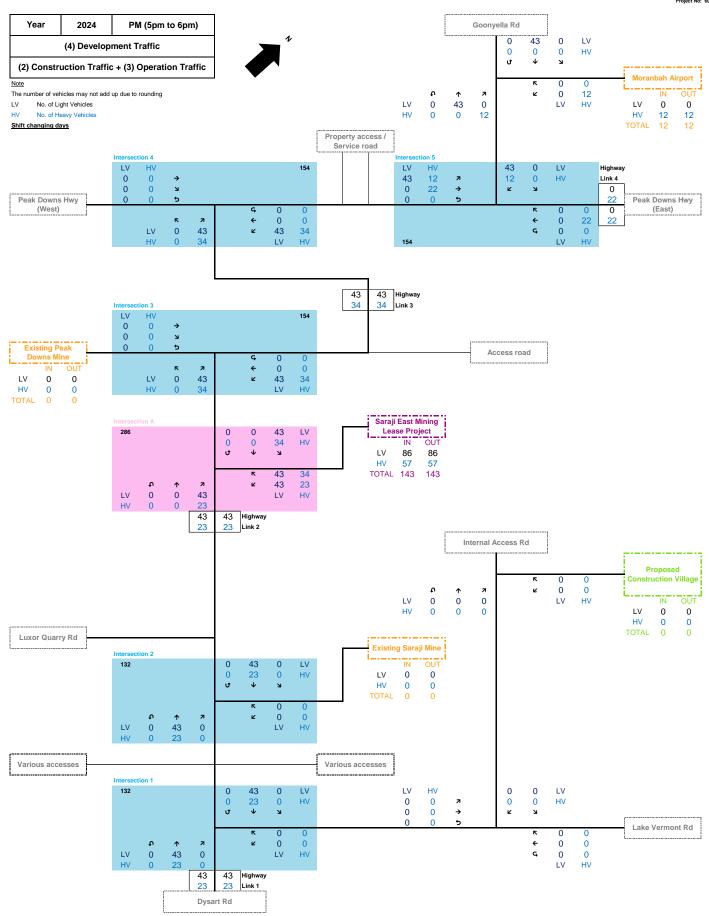


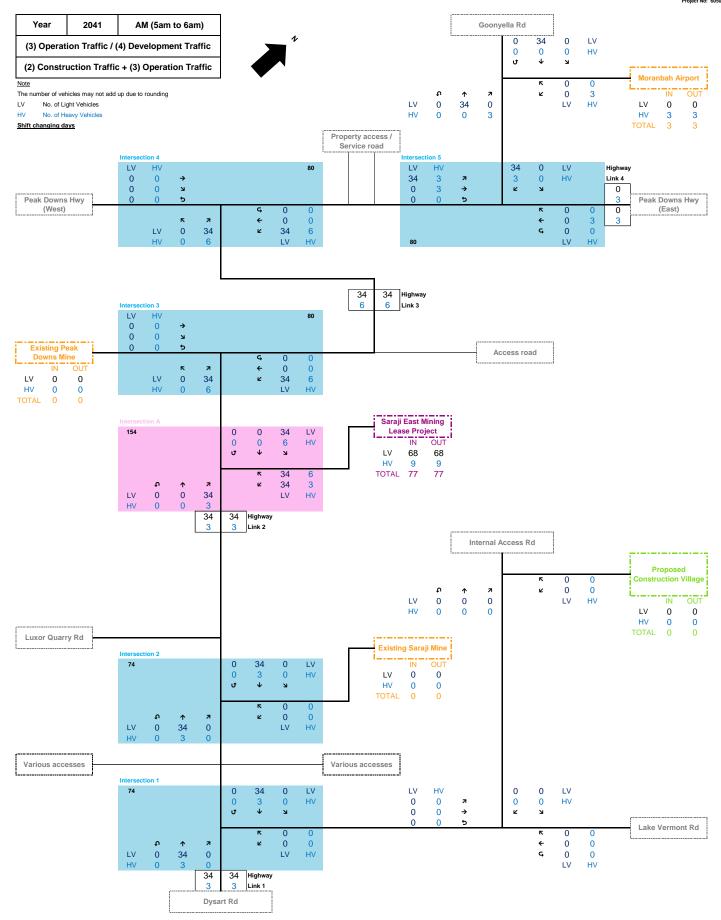


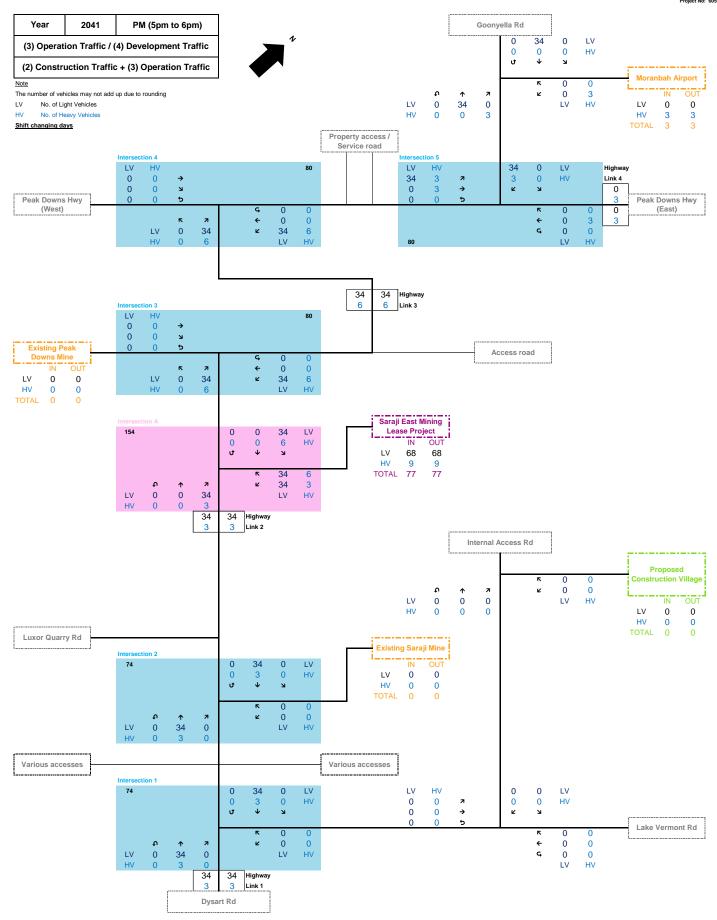


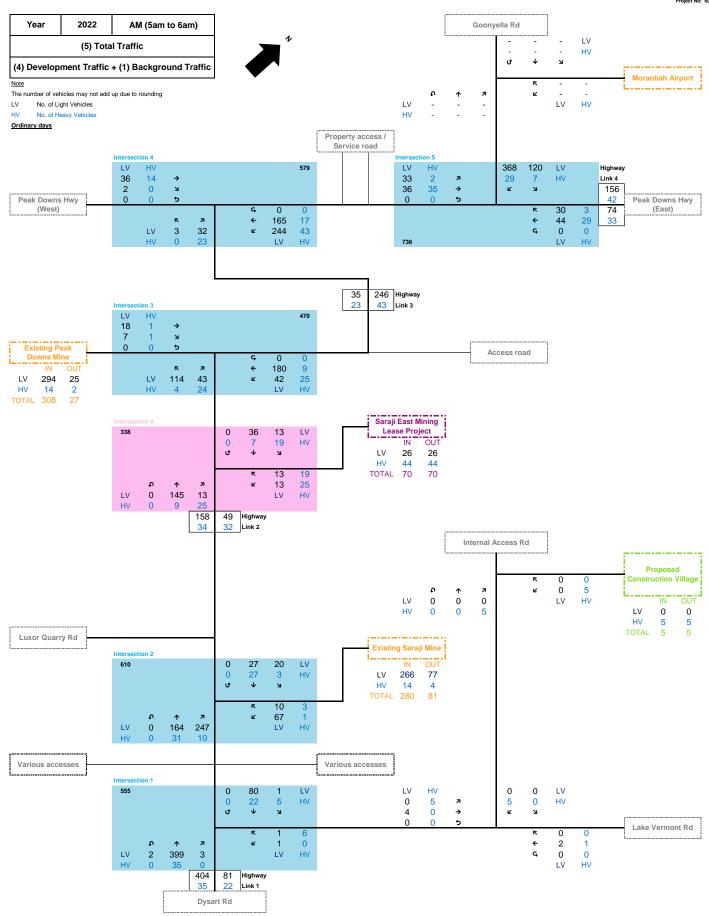


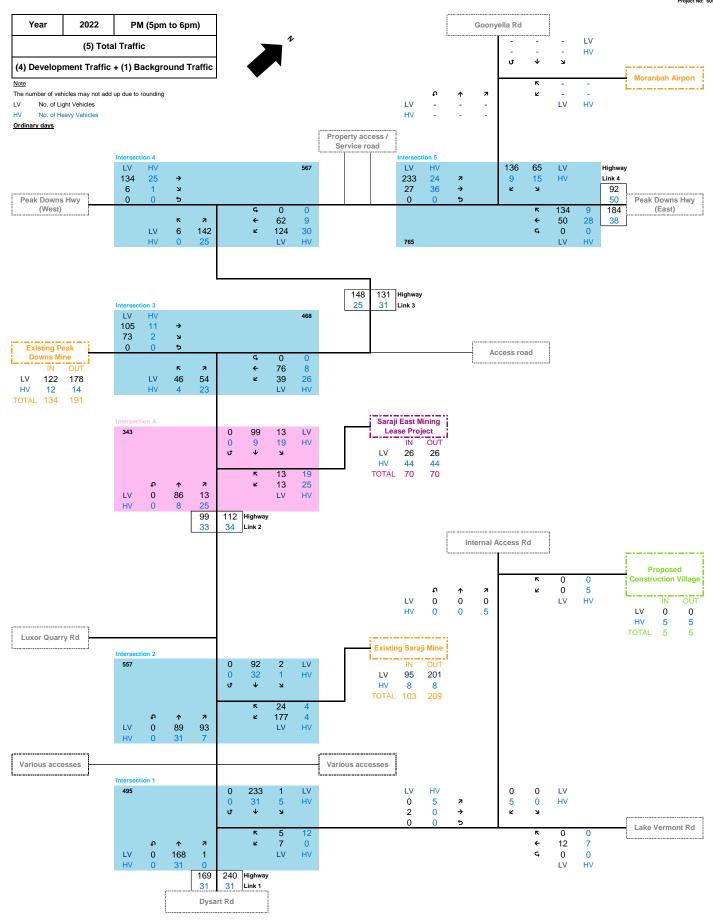




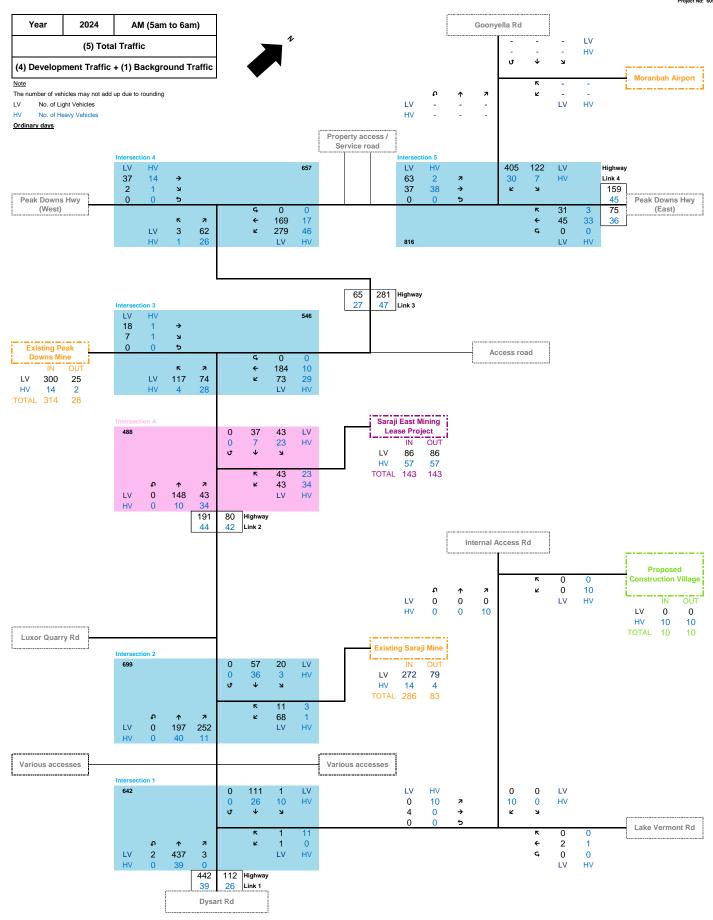


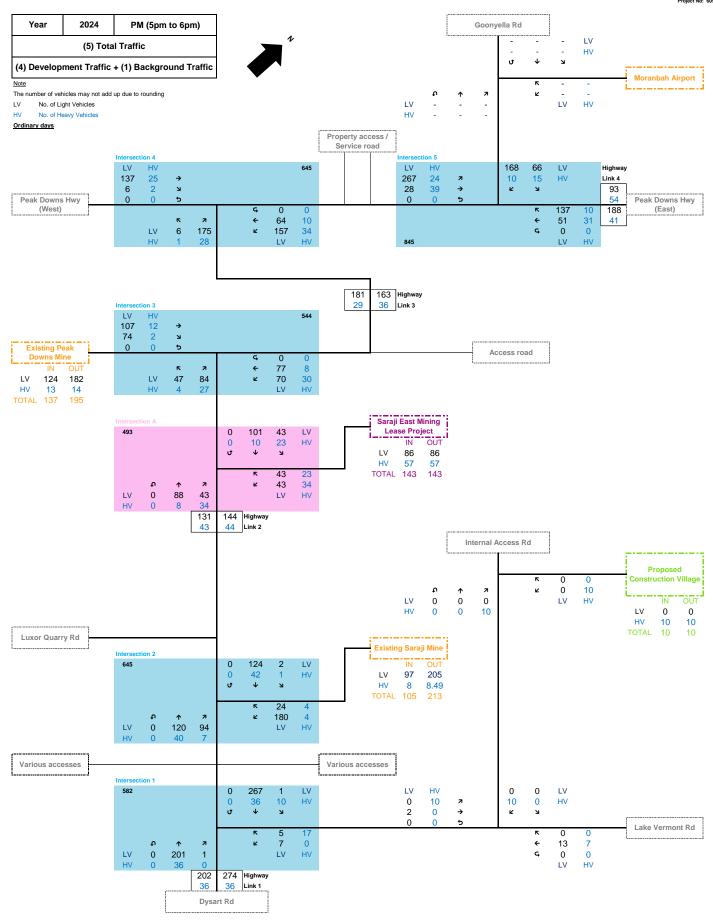


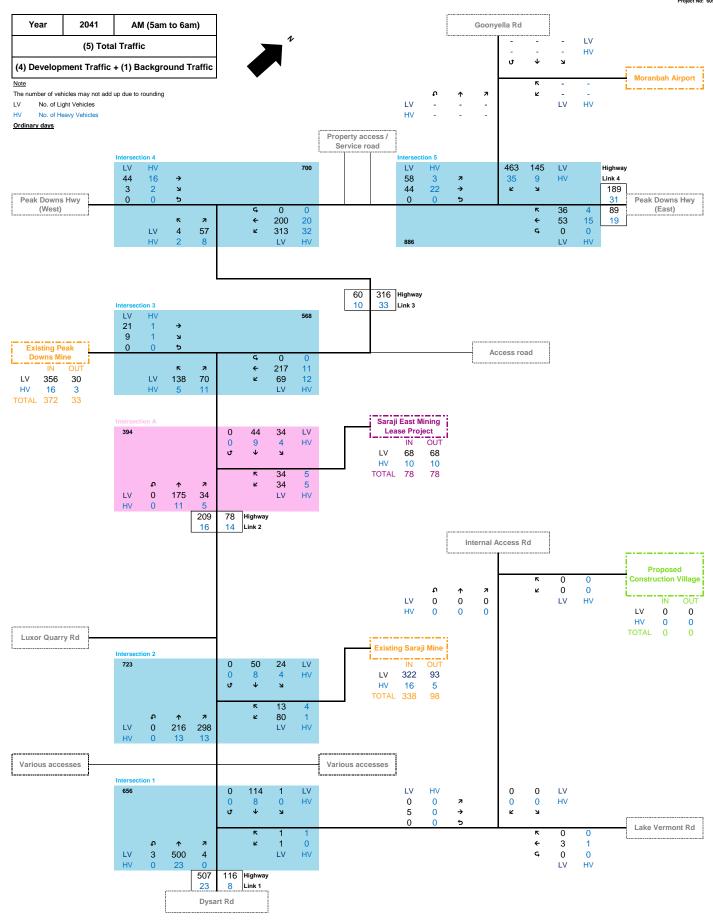


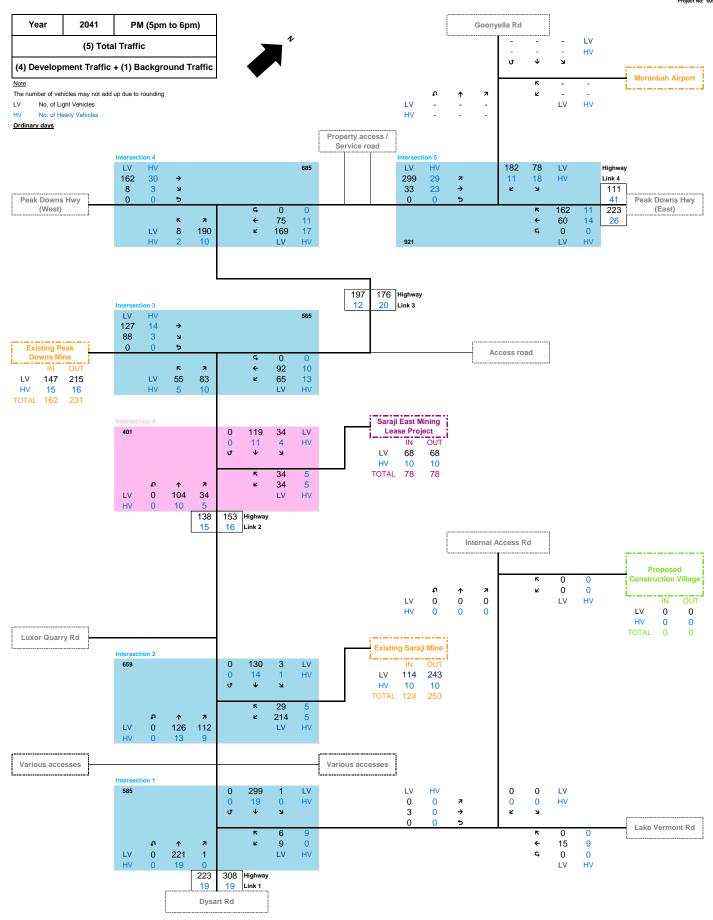

Appendix D

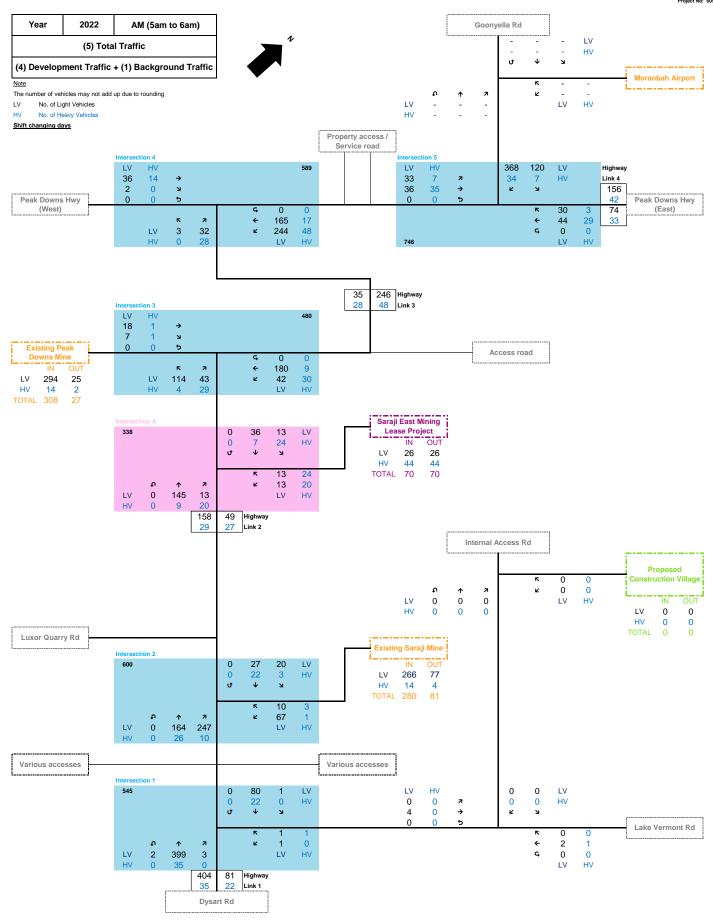
Total Traffic

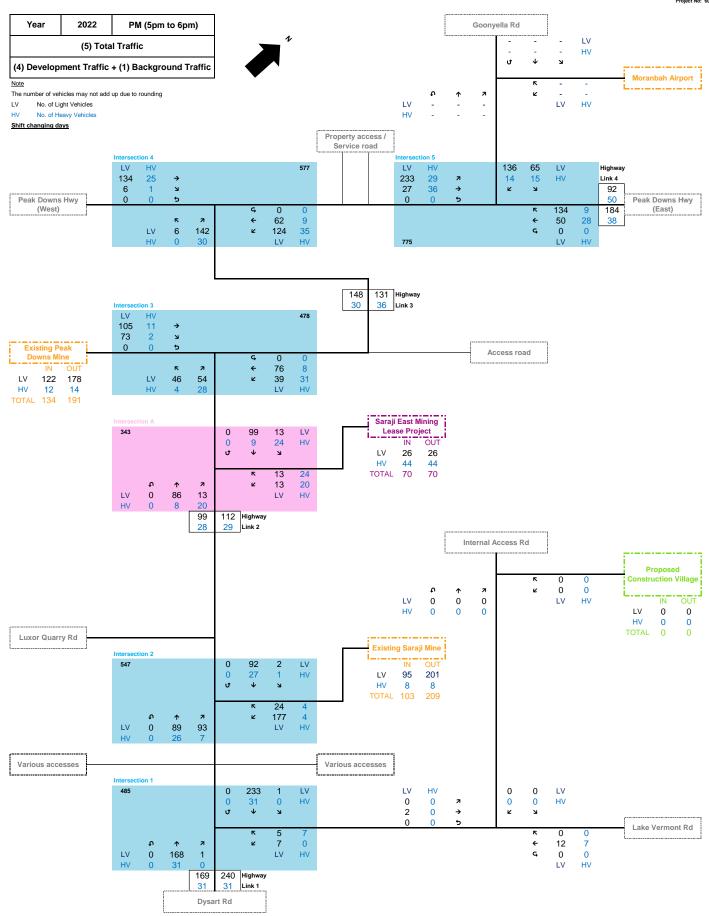


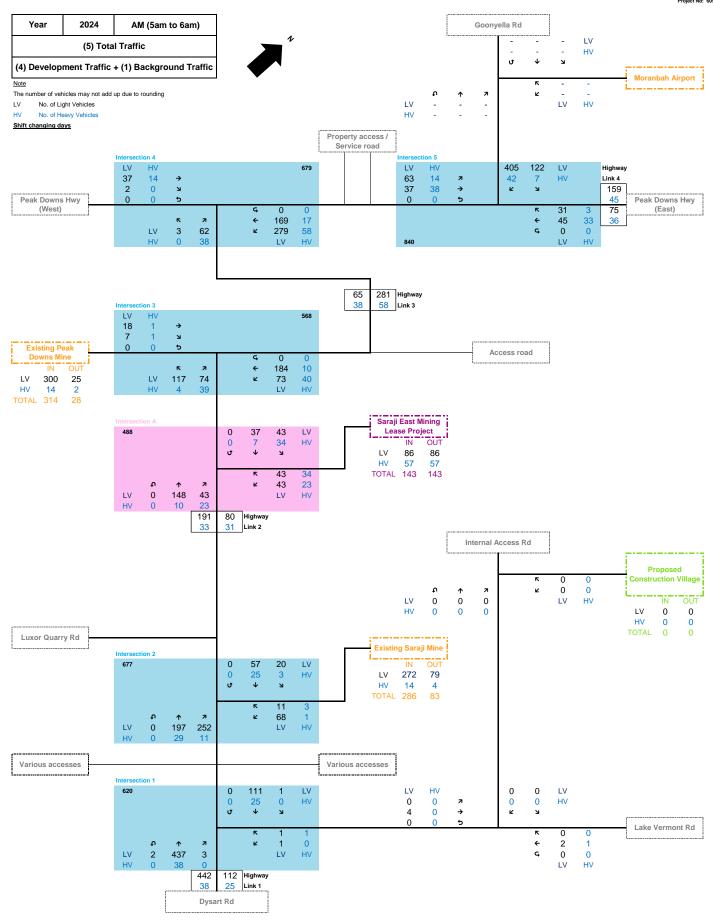


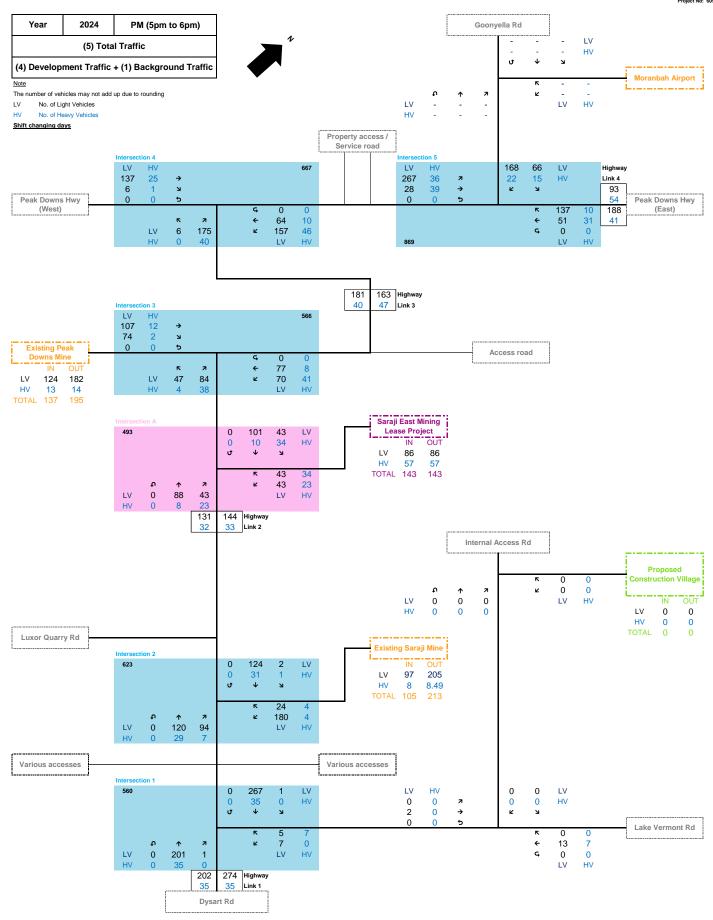


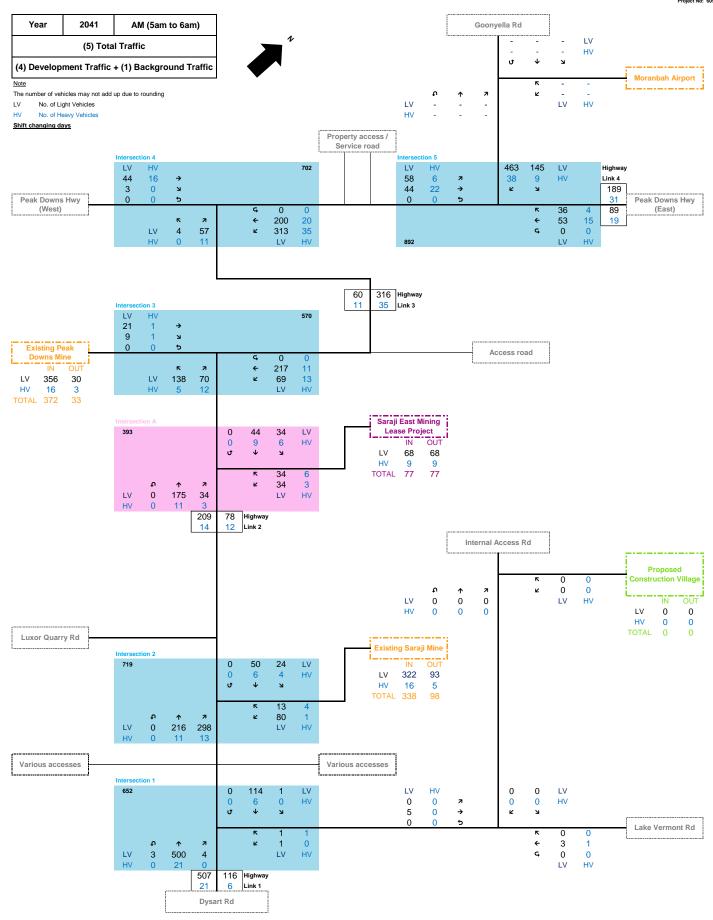


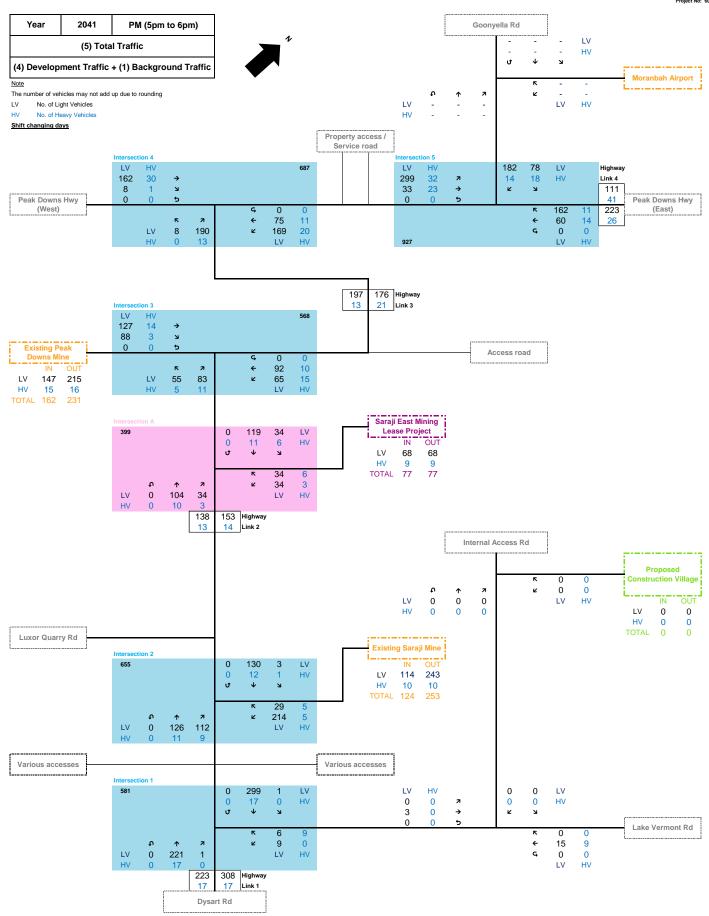












Appendix E

SIDRA

V Site: [Intersection 1 - Background 2018 AM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South	: Dysart F	Rd_South											
2	T1	385	3.6	0.204	0.0	LOS A	0.0	0.2	0.00	0.01	99.6		
3	R2	3	0.0	0.204	7.6	LOSA	0.0	0.2	0.00	0.01	71.5		
Appro	ach	388	3.6	0.204	0.1	NA	0.0	0.2	0.00	0.01	99.3		
East:	Lake Verr	mont Rd											
4	L2	1	0.0	0.004	5.7	LOSA	0.0	0.1	0.23	0.57	52.1		
6	R2	2	50.0	0.004	9.1	LOSA	0.0	0.1	0.23	0.57	49.5		
Appro	ach	3	33.3	0.004	8.0	LOSA	0.0	0.1	0.23	0.57	50.3		
North:	Dysart R	d_North											
7	L2	1	0.0	0.035	7.8	LOSA	0.0	0.0	0.00	0.01	88.1		
8	T1	66	3.0	0.035	0.0	LOSA	0.0	0.0	0.00	0.01	99.1		
Appro	ach	67	3.0	0.035	0.1	NA	0.0	0.0	0.00	0.01	98.9		
All Ve	hicles	458	3.7	0.204	0.1	NA	0.0	0.2	0.00	0.01	98.6		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Sunday, 13 May 2018 10:12:49 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 1 - Background 2018 PM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South	: Dysart R	Rd_South											
2	T1	160	6.9	0.086	0.0	LOSA	0.0	0.1	0.01	0.00	99.7		
3	R2	111	0.0	0.086	8.2	LOSA	0.0	0.1	0.01	0.00	71.5		
Appro	ach	161	6.8	0.086	0.1	NA	0.0	0.1	0.01	0.00	99.4		
East: I	Lake Vern	nont Rd											
4	L2	7	0.0	0.024	6.2	LOSA	0.1	0.7	0.37	0.60	52.2		
6	R2	12	58.3	0.024	8.8	LOSA	0.1	0.7	0.37	0.60	49.3		
Appro	ach	19	36.8	0.024	7.9	LOSA	0.1	0.7	0.37	0.60	50.3		
North:	Dysart R	d_North											
7	L2	1	0.0	0.118	7.8	LOSA	0.0	0.0	0.00	0.00	88.4		
8	T1	222	5.0	0.118	0.0	LOSA	0.0	0.0	0.00	0.00	99.7		
Appro	ach	223	4.9	0.118	0.0	NA	0.0	0.0	0.00	0.00	99.6		
All Vel	hicles	403	7.2	0.118	0.4	NA	0.1	0.7	0.02	0.03	95.1		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:16 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 2 - Background 2018 AM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
South	: Dysart R	Rd_South												
2	T1	151	4.0	0.079	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
3	R2	247	4.0	0.182	5.7	LOSA	8.0	6.0	0.13	0.57	53.7			
Appro	ach	398	4.0	0.182	3.5	NA	0.8	6.0	0.08	0.35	65.1			
East: \$	Saraji Min	e Entrance												
4	L2	65	1.5	0.075	5.6	LOSA	0.3	2.0	0.05	0.56	54.0			
6	R2	13	23.1	0.075	10.4	LOS B	0.3	2.0	0.05	0.56	51.8			
Appro	ach	78	5.1	0.075	6.4	LOS A	0.3	2.0	0.05	0.56	53.7			
North:	Dysart R	d_North												
7	L2	22	13.6	0.013	5.7	LOSA	0.0	0.0	0.00	0.57	53.0			
8	T1	15	13.3	0.008	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	37	13.5	0.013	3.4	NA	0.0	0.0	0.00	0.34	67.2			
All Vel	nicles	513	4.9	0.182	4.0	NA	0.8	6.0	0.07	0.38	63.2			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 3:13:00 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

▽ Site: [Intersection 2 - Background 2018 PM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Dyeart F	veh/h Rd South	%	v/c	sec		veh	m		per veh	km/h
	•	_									
2	T1	79	7.6	0.043	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
3	R2	96	7.3	0.075	5.9	LOS A	0.3	2.3	0.20	0.57	53.4
Appro	ach	175	7.4	0.075	3.2	NA	0.3	2.3	0.11	0.31	67.6
East: S	Saraji Mir	ne Entrance									
4	L2	174	2.3	0.181	5.9	LOS A	0.7	5.4	0.21	0.56	53.9
6	R2	27	14.8	0.181	8.2	LOSA	0.7	5.4	0.21	0.56	52.1
Appro	ach	201	4.0	0.181	6.3	LOSA	0.7	5.4	0.21	0.56	53.7
North:	Dysart R	d_North									
7	L2	3	33.3	0.002	5.9	LOSA	0.0	0.0	0.00	0.57	52.2
8	T1	83	8.4	0.045	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	86	9.3	0.045	0.2	NA	0.0	0.0	0.00	0.02	97.4
All Vel	nicles	462	6.3	0.181	4.0	NA	0.7	5.4	0.13	0.37	64.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 3:13:02 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 3 - Background 2018 AM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Dysart R	Rd_South												
1	L2	114	3.5	0.119	6.2	LOSA	0.5	3.5	0.29	0.58	52.6			
3	R2	34	14.7	0.119	6.7	LOSA	0.5	3.5	0.29	0.58	51.6			
Appro	ach	148	6.1	0.119	6.3	LOSA	0.5	3.5	0.29	0.58	52.3			
East: I	Dysart Rd	I_East												
4	L2	34	17.6	0.117	8.0	LOSA	0.0	0.0	0.00	0.11	74.8			
5	T1	182	4.9	0.117	0.0	LOSA	0.0	0.0	0.00	0.11	91.2			
Appro	ach	216	6.9	0.117	1.3	NA	0.0	0.0	0.00	0.11	88.1			
West:	Peak Dov	wns Mine En	trance											
11	T1	18	5.6	0.016	6.4	LOSA	0.1	0.4	0.21	0.83	80.8			
12	R2	8	12.5	0.016	8.0	LOSA	0.1	0.4	0.21	0.83	60.5			
Appro	ach	26	7.7	0.016	6.9	NA	0.1	0.4	0.21	0.83	73.3			
All Vel	nicles	390	6.7	0.119	3.6	NA	0.5	3.5	0.13	0.34	69.2			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:18 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 3 - Background 2018 PM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South	: Dysart R	d_South											
1	L2	48	8.3	0.079	5.9	LOS A	0.3	2.2	0.20	0.58	52.7		
3	R2	43	9.3	0.079	6.8	LOS A	0.3	2.2	0.20	0.58	52.1		
Appro	ach	91	8.8	0.079	6.3	LOSA	0.3	2.2	0.20	0.58	52.4		
East:	Dysart Rd	_East											
4	L2	32	21.9	0.064	7.9	LOSA	0.0	0.0	0.00	0.19	68.9		
5	T1	81	9.9	0.064	0.0	LOSA	0.0	0.0	0.00	0.19	84.8		
Appro	ach	113	13.3	0.064	2.2	NA	0.0	0.0	0.00	0.19	79.6		
West:	Peak Dov	vns Mine En	trance										
11	T1	112	9.8	0.106	8.2	LOSA	0.4	3.1	0.18	1.01	78.0		
12	R2	72	2.8	0.106	7.3	LOSA	0.4	3.1	0.18	1.01	59.4		
Appro	ach	184	7.1	0.106	7.8	NA	0.4	3.1	0.18	1.01	69.5		
All Ve	hicles	388	9.3	0.106	5.8	NA	0.4	3.1	0.13	0.67	66.8		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:19 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 4 - Background 2018 AM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South	East: Dys	art Rd											
21	L2	3	0.0	0.039	6.2	LOSA	0.1	1.2	0.45	0.65	51.4		
23	R2	22	18.2	0.039	8.9	LOSA	0.1	1.2	0.45	0.65	50.5		
Appro	ach	25	16.0	0.039	8.6	LOSA	0.1	1.2	0.45	0.65	50.6		
North	East: Pea	k Downs Hw	y_North										
24	L2	245	9.4	0.141	5.7	LOSA	0.0	0.0	0.00	0.57	53.2		
25	T1	175	9.1	0.095	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
Appro	ach	420	9.3	0.141	3.3	NA	0.0	0.0	0.00	0.33	66.0		
South	West: Pe	ak Downs Hv	vy_South	1									
31	T1	48	27.1	0.029	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
32	R2	2	0.0	0.002	7.2	LOSA	0.0	0.1	0.45	0.58	51.8		
Appro	ach	50	26.0	0.029	0.3	NA	0.0	0.1	0.02	0.02	96.4		
All Vel	hicles	495	11.3	0.141	3.3	NA	0.1	1.2	0.02	0.32	67.1		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:20 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 4 - Background 2018 PM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	East: Dysa	art Rd												
21	L2	6	0.0	0.185	5.8	LOSA	8.0	5.6	0.43	0.68	51.7			
23	R2	130	4.6	0.185	8.2	LOSA	0.8	5.6	0.43	0.68	51.3			
Appro	ach	136	4.4	0.185	8.1	LOSA	0.8	5.6	0.43	0.68	51.3			
North	East: Peak	Downs Hwy	y_North											
24	L2	118	9.3	0.068	5.7	LOSA	0.0	0.0	0.00	0.57	53.2			
25	T1	69	13.0	0.038	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	187	10.7	0.068	3.6	NA	0.0	0.0	0.00	0.36	64.3			
South	West: Pea	k Downs Hv	vy_South	ì										
31	T1	153	15.7	0.086	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
32	R2	7	14.3	0.006	6.4	LOSA	0.0	0.2	0.30	0.56	51.7			
Appro	ach	160	15.6	0.086	0.3	NA	0.0	0.2	0.01	0.02	96.0			
All Ve	hicles	483	10.6	0.185	3.7	NA	0.8	5.6	0.13	0.34	66.8			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:21 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 5 - Background 2018 AM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
North	East: Peal	Downs Hwy		*/*	333		7311			por vorr	1011/11			
25	T1	52	19.2	0.030	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
26	R2	32	9.4	0.025	5.9	LOSA	0.1	0.7	0.18	0.56	52.2			
Appro	ach	84	15.5	0.030	2.2	NA	0.1	0.7	0.07	0.21	74.2			
North\	Nest: Mor	anbah												
27	L2	122	5.7	0.527	6.5	LOSA	4.1	30.8	0.37	0.62	51.8			
29	R2	369	7.6	0.527	8.1	LOSA	4.1	30.8	0.37	0.62	51.5			
Appro	ach	491	7.1	0.527	7.7	LOSA	4.1	30.8	0.37	0.62	51.6			
South	West: Pea	ak Downs Hw	/y_South	1										
30	L2	21	9.5	0.012	5.7	LOS A	0.0	0.0	0.00	0.57	53.2			
31	T1	50	30.0	0.031	0.0	LOS A	0.0	0.0	0.00	0.00	100.0			
Appro	ach	71	23.9	0.031	1.7	NA	0.0	0.0	0.00	0.17	79.3			
All Ve	hicles	646	10.1	0.527	6.3	NA	4.1	30.8	0.29	0.52	55.9			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:22 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 5 - Background 2018 PM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov														
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
North	East: Peal	veh/h k Downs Hw		v/c	sec		veh	m		per veh	km/h			
25	T1	57	15.8	0.032	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
26	R2	138	6.5	0.134	7.0	LOSA	0.6	4.1	0.40	0.65	51.8			
Appro		195	9.2	0.134	4.9	NA	0.6	4.1	0.29	0.46	60.2			
			5.2	0.104	7.5	14/-1	0.0	7.1	0.20	0.40	00.2			
North\	NorthWest: Moran													
27	L2	76	18.4	0.262	6.0	LOS A	1.1	8.7	0.24	0.62	51.1			
29	R2	127	7.1	0.262	9.3	LOSA	1.1	8.7	0.24	0.62	51.3			
Appro	ach	203	11.3	0.262	8.1	LOSA	1.1	8.7	0.24	0.62	51.2			
South	West: Pea	ak Downs Hv	vv South	1										
30	L2	234	9.8	0.135	5.7	LOSA	0.0	0.0	0.00	0.57	53.2			
31	T1	42	38.1	0.027	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro		276	14.1	0.135	4.8	NA	0.0	0.0	0.00	0.49	57.2			
,,,,,,		~		200			0.0	0.0	0.00	00	27.1_			
All Ve	hicles	674	11.9	0.262	5.8	NA	1.1	8.7	0.15	0.52	56.1			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 2 May 2018 1:04:23 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2018_v01_WW_300418_.sip7

V Site: [Intersection 1 - Background 2022 AM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South	: Dysart F	Rd_South											
2	T1	401	3.7	0.212	0.0	LOS A	0.0	0.2	0.00	0.01	99.6		
3	R2	3	0.0	0.212	7.6	LOS A	0.0	0.2	0.00	0.01	71.5		
Appro	ach	404	3.7	0.212	0.1	NA	0.0	0.2	0.00	0.01	99.4		
East:	Lake Verr	mont Rd											
4	L2	1	0.0	0.004	5.7	LOSA	0.0	0.1	0.23	0.57	52.0		
6	R2	2	50.0	0.004	9.3	LOSA	0.0	0.1	0.23	0.57	49.4		
Appro	ach	3	33.3	0.004	8.1	LOSA	0.0	0.1	0.23	0.57	50.2		
North:	Dysart R	d_North											
7	L2	1	0.0	0.037	7.8	LOSA	0.0	0.0	0.00	0.01	88.2		
8	T1	69	2.9	0.037	0.0	LOSA	0.0	0.0	0.00	0.01	99.1		
Appro	ach	70	2.9	0.037	0.1	NA	0.0	0.0	0.00	0.01	98.9		
All Ve	hicles	477	3.8	0.212	0.1	NA	0.0	0.2	0.00	0.01	98.7		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:34 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 1 - Background 2022 PM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Dysart R	Rd_South												
2	T1	166	6.6	0.089	0.0	LOSA	0.0	0.1	0.01	0.00	99.7			
3	R2	111	0.0	0.089	8.2	LOSA	0.0	0.1	0.01	0.00	71.5			
Appro	ach	167	6.6	0.089	0.1	NA	0.0	0.1	0.01	0.00	99.4			
East: I	Lake Vern	nont Rd												
4	L2	7	0.0	0.025	6.3	LOSA	0.1	8.0	0.38	0.61	52.1			
6	R2	12	58.3	0.025	9.0	LOSA	0.1	0.8	0.38	0.61	49.2			
Appro	ach	19	36.8	0.025	8.0	LOSA	0.1	0.8	0.38	0.61	50.2			
North:	Dysart R	d_North												
7	L2	1	0.0	0.123	7.8	LOSA	0.0	0.0	0.00	0.00	88.5			
8	T1	231	4.8	0.123	0.0	LOSA	0.0	0.0	0.00	0.00	99.7			
Appro	ach	232	4.7	0.123	0.0	NA	0.0	0.0	0.00	0.00	99.6			
All Vel	hicles	418	6.9	0.123	0.4	NA	0.1	0.8	0.02	0.03	95.3			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:36 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 2 - Background 2022 AM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average			
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
South	: Dysart R	veh/h	70	v/c	sec		veh	m		per veh	km/h			
· -										100.0				
3	R2	257	3.9	0.189	5.7	LOSA	0.9	6.3	0.14	0.57	53.7			
Appro		414	3.9	0.189	3.5	NA	0.9	6.3	0.09	0.35	65.1			
			0.0	0.100	0.0		0.0	0.0	0.00	0.00				
East: \$	Saraji Min	e Entrance												
4	L2	68	1.5	0.078	5.6	LOSA	0.3	2.1	0.05	0.56	54.0			
6	R2	13	23.1	0.078	10.7	LOS B	0.3	2.1	0.05	0.56	51.8			
Appro	ach	81	4.9	0.078	6.4	LOSA	0.3	2.1	0.05	0.56	53.6			
North:	Dysart R	d North												
	•	_	40.0	0.044						^	=0.4			
7	L2	23	13.0	0.014	5.7	LOSA	0.0	0.0	0.00	0.57	53.1			
8	T1	16	12.5	0.009	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	39	12.8	0.014	3.4	NA	0.0	0.0	0.00	0.34	67.4			
All Vel	nicles	534	4.7	0.189	4.0	NA	0.9	6.3	0.07	0.38	63.2			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:36 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 2 - Background 2022 PM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
South	: Dysart R	ld_South												
2	T1	82	7.3	0.044	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
3	R2	100	7.0	0.079	5.9	LOSA	0.3	2.4	0.20	0.57	53.4			
Appro	ach	182	7.1	0.079	3.3	NA	0.3	2.4	0.11	0.31	67.6			
East: \$	Saraji Min	e Entrance												
4	L2	181	2.2	0.189	6.0	LOSA	8.0	5.6	0.21	0.56	53.9			
6	R2	28	14.3	0.189	8.3	LOSA	8.0	5.6	0.21	0.56	52.1			
Appro	ach	209	3.8	0.189	6.3	LOSA	0.8	5.6	0.21	0.56	53.7			
North:	Dysart R	d_North												
7	L2	3	33.3	0.002	5.9	LOSA	0.0	0.0	0.00	0.57	52.2			
8	T1	86	8.1	0.046	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	89	9.0	0.046	0.2	NA	0.0	0.0	0.00	0.02	97.4			
All Vel	nicles	480	6.0	0.189	4.0	NA	0.8	5.6	0.14	0.37	64.1			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:37 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 3 - Background 2022 AM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average			
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h			
South	: Dysart R		70	V/C	300		٧٥١١			per veri	KIII/II			
1	L2	118	3.4	0.124	6.3	LOSA	0.5	3.6	0.30	0.59	52.6			
3	R2	35	14.3	0.124	6.7	LOS A	0.5	3.6	0.30	0.59	51.6			
Appro	ach	153	5.9	0.124	6.4	LOSA	0.5	3.6	0.30	0.59	52.3			
East: I	Dysart Rd	_East												
4	L2	35	17.1	0.121	8.0	LOSA	0.0	0.0	0.00	0.10	75.0			
5	T1	189	4.8	0.121	0.0	LOSA	0.0	0.0	0.00	0.10	91.2			
Appro	ach	224	6.7	0.121	1.3	NA	0.0	0.0	0.00	0.10	88.2			
West:	Peak Dov	wns Mine En	trance											
11	T1	19	5.3	0.016	6.1	LOSA	0.1	0.4	0.21	0.81	81.3			
12	R2	8	12.5	0.016	8.0	LOSA	0.1	0.4	0.21	0.81	60.7			
Appro	ach	27	7.4	0.016	6.7	NA	0.1	0.4	0.21	0.81	73.9			
All Vel	hicles	404	6.4	0.124	3.6	NA	0.5	3.6	0.13	0.33	69.3			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:38 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 3 - Background 2022 PM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average			
ID	Mov	Total	HV %	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
South	: Dvsart R	veh/h	70	v/c	sec		veh	m		per veh	km/h			
South: Dysart Rd_South 1 L2 50 8.0 0.083 5.9 LOS A 0.3 2.3 0.20 0.58									0.58	52.7				
3	R2	45	8.9	0.083	6.9	LOSA	0.3	2.3	0.20	0.58	52.1			
Appro		95	8.4	0.083	6.4	LOSA	0.3	2.3	0.20	0.58	52.4			
			0.4	0.000	0.4	LOOK	0.0	2.0	0.20	0.50	JZ.4			
East: I	Dysart Rd	_East												
4	L2	33	21.2	0.066	7.8	LOSA	0.0	0.0	0.00	0.19	69.2			
5	T1	84	9.5	0.066	0.0	LOSA	0.0	0.0	0.00	0.19	84.8			
Appro	ach	117	12.8	0.066	2.2	NA	0.0	0.0	0.00	0.19	79.7			
West:	Peak Dov	wns Mine En	trance											
11	T1	116	9.5	0.110	8.2	LOSA	0.4	3.2	0.18	1.00	77.9			
12	R2	75	2.7	0.110	7.3	LOSA	0.4	3.2	0.18	1.00	59.4			
Appro		191	6.8	0.110	7.8	NA	0.4	3.2	0.18	1.00	69.4			
, .pp10				55			2.1	V. L	50					
All Vel	hicles	403	8.9	0.110	5.8	NA	0.4	3.2	0.14	0.67	66.8			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:38 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 4 - Background 2022 AM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dys	art Rd									
21	L2	3	0.0	0.042	6.3	LOSA	0.2	1.2	0.46	0.66	51.3
23	R2	23	17.4	0.042	9.1	LOSA	0.2	1.2	0.46	0.66	50.4
Appro	ach	26	15.4	0.042	8.8	LOS A	0.2	1.2	0.46	0.66	50.5
North	East: Peal	k Downs Hw	y_North								
24	L2	255	9.4	0.147	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
25	T1	182	9.3	0.099	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	437	9.4	0.147	3.3	NA	0.0	0.0	0.00	0.34	66.0
South	West: Pea	ak Downs H	wy_South	1							
31	T1	50	28.0	0.030	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	2	0.0	0.002	7.3	LOSA	0.0	0.1	0.45	0.58	51.7
Appro	ach	52	26.9	0.030	0.3	NA	0.0	0.1	0.02	0.02	96.5
All Ve	hicles	515	11.5	0.147	3.3	NA	0.2	1.2	0.02	0.32	67.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:39 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 4 - Background 2022 PM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	East: Dys	art Rd												
21	L2	6	0.0	0.195	5.9	LOSA	8.0	5.9	0.44	0.69	51.6			
23	R2	135	4.4	0.195	8.3	LOSA	0.8	5.9	0.44	0.69	51.2			
Appro	ach	141	4.3	0.195	8.2	LOSA	0.8	5.9	0.44	0.69	51.3			
North	East: Pea	k Downs Hwy	_North											
24	L2	122	9.0	0.070	5.7	LOSA	0.0	0.0	0.00	0.57	53.2			
25	T1	71	12.7	0.039	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	193	10.4	0.070	3.6	NA	0.0	0.0	0.00	0.36	64.2			
South'	West: Pea	ak Downs Hw	/y_South	1										
31	T1	159	15.7	0.090	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
32	R2	7	14.3	0.006	6.5	LOSA	0.0	0.2	0.30	0.56	51.7			
Appro	ach	166	15.7	0.090	0.3	NA	0.0	0.2	0.01	0.02	96.2			
All Vel	nicles	500	10.4	0.195	3.8	NA	0.8	5.9	0.13	0.34	66.8			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:56:40 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 5 - Background 2022 AM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
North	-ast: Peal	veh/h k Downs Hw	w North	v/c	sec		veh	m		per veh	km/h			
,-										100.0				
1 -														
26	R2	47	36.2	0.042	6.3	LOSA	0.2	1.5	0.20	0.57	51.0			
Appro	ach	101	26.7	0.042	2.9	NA	0.2	1.5	0.09	0.26	69.1			
North\	West: Mor	anbah												
27	L2	141	14.9	0.581	7.3	LOSA	5.7	43.3	0.41	0.66	50.7			
29	R2	384	7.6	0.581	9.3	LOSA	5.7	43.3	0.41	0.66	50.8			
Appro	ach	525	9.5	0.581	8.8	LOS A	5.7	43.3	0.41	0.66	50.7			
South	West: Pea	ak Downs Hv	vy_South											
30	L2	22	9.1	0.013	5.6	LOSA	0.0	0.0	0.00	0.57	53.2			
31	T1	52	30.8	0.032	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	74	24.3	0.032	1.7	NA	0.0	0.0	0.00	0.17	79.2			
All Vel	hicles	700	13.6	0.581	7.2	NA	5.7	43.3	0.32	0.55	54.9			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:58:29 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 5 - Background 2022 PM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
North	East: Peal	k Downs Hw	y_North											
25	T1	59	15.3	0.033	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
26	R2	157	14.6	0.163	7.3	LOSA	0.7	5.4	0.43	0.67	51.2			
Appro	ach	216	14.8	0.163	5.3	NA	0.7	5.4	0.31	0.49	59.1			
North\	Vest: Mor	anbah												
27	L2	94	30.9	0.301	6.2	LOSA	1.3	10.6	0.24	0.63	50.4			
29	R2	132	6.8	0.301	9.9	LOSA	1.3	10.6	0.24	0.63	51.1			
Appro	ach	226	16.8	0.301	8.4	LOS A	1.3	10.6	0.24	0.63	50.8			
South'	West: Pea	ak Downs Hv	vy_South	1										
30	L2	244	9.8	0.141	5.7	LOSA	0.0	0.0	0.00	0.57	53.2			
31	T1	44	38.6	0.028	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	288	14.2	0.141	4.8	NA	0.0	0.0	0.00	0.49	57.3			
All Vel	nicles	730	15.2	0.301	6.1	NA	1.3	10.6	0.17	0.53	55.6			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 3:59:50 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2022_v01_WW_020518_.sip7

V Site: [Intersection 1 - Background 2024 AM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/r
South	: Dysart R	d_South									
2	T1	409	3.7	0.217	0.0	LOSA	0.0	0.2	0.00	0.01	99.7
3	R2	3	0.0	0.217	7.6	LOSA	0.0	0.2	0.00	0.01	71.5
Appro	ach	412	3.6	0.217	0.1	NA	0.0	0.2	0.00	0.01	99.4
East:	Lake Verm	nont Rd									
4	L2	1	0.0	0.004	5.7	LOS A	0.0	0.1	0.24	0.57	51.9
6	R2	2	50.0	0.004	9.4	LOS A	0.0	0.1	0.24	0.57	49.4
Appro	ach	3	33.3	0.004	8.2	LOSA	0.0	0.1	0.24	0.57	50.2
North:	Dysart Ro	d_North									
7	L2	1	0.0	0.037	7.8	LOS A	0.0	0.0	0.00	0.01	88.2
8	T1	70	2.9	0.037	0.0	LOS A	0.0	0.0	0.00	0.01	99.1
Appro	ach	71	2.8	0.037	0.1	NA	0.0	0.0	0.00	0.01	98.9
All Ve	hicles	486	3.7	0.217	0.1	NA	0.0	0.2	0.00	0.01	98.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:07:56 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 1 - Background 2024 PM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Dysart R	Rd_South												
2	T1	170	7.1	0.092	0.0	LOSA	0.0	0.1	0.01	0.00	99.7			
3	R2	111	0.0	0.092	8.2	LOSA	0.0	0.1	0.01	0.00	71.5			
Appro	ach	171	7.0	0.092	0.1	NA	0.0	0.1	0.01	0.00	99.5			
East: I	Lake Vern	nont Rd												
4	L2	7	0.0	0.025	6.3	LOSA	0.1	8.0	0.39	0.61	52.0			
6	R2	12	58.3	0.025	9.0	LOSA	0.1	8.0	0.39	0.61	49.1			
Appro	ach	19	36.8	0.025	8.0	LOSA	0.1	8.0	0.39	0.61	50.2			
North:	Dysart R	d_North												
7	L2	1	0.0	0.126	7.8	LOSA	0.0	0.0	0.00	0.00	88.5			
8	T1	236	5.1	0.126	0.0	LOSA	0.0	0.0	0.00	0.00	99.7			
Appro	ach	237	5.1	0.126	0.0	NA	0.0	0.0	0.00	0.00	99.6			
All Vel	hicles	427	7.3	0.126	0.4	NA	0.1	0.8	0.02	0.03	95.4			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:07:57 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 2 - Background 2024 AM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov				Deg.							Average			
ID	Mov	Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed			
South	: Dysart R		70	V/C	sec		ven	m		per veh	km/h			
2	T1	160	3.8	0.084	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
3	R2	263	4.2	0.194	5.7	LOS A	0.9	6.5	0.14	0.57	53.7			
Appro	ach	423	4.0	0.194	3.5	NA	0.9	6.5	0.09	0.35	65.1			
East: \$	Saraji Min	e Entrance												
4	L2	69	1.4	0.081	5.6	LOSA	0.3	2.2	0.05	0.56	53.9			
6	R2	14	21.4	0.081	10.7	LOS B	0.3	2.2	0.05	0.56	51.8			
Appro	ach	83	4.8	0.081	6.5	LOSA	0.3	2.2	0.05	0.56	53.6			
North:	Dysart R	d_North												
7	L2	23	13.0	0.014	5.7	LOS A	0.0	0.0	0.00	0.57	53.1			
8	T1	16	12.5	0.009	0.0	LOS A	0.0	0.0	0.00	0.00	100.0			
Appro	ach	39	12.8	0.014	3.4	NA	0.0	0.0	0.00	0.34	67.4			
All Vel	nicles	545	4.8	0.194	4.0	NA	0.9	6.5	0.07	0.38	63.2			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:07:58 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 2 - Background 2024 PM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	: Dysart R		70	V/O	300		VCII			per veri	KITI/TI
2	T1	83	7.2	0.045	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
3	R2	101	6.9	0.080	5.9	LOSA	0.3	2.4	0.21	0.57	53.4
Appro	ach	184	7.1	0.080	3.3	NA	0.3	2.4	0.11	0.31	67.6
East:	Saraji Min	e Entrance									
4	L2	184	2.2	0.192	6.0	LOSA	0.8	5.7	0.22	0.56	53.9
6	R2	28	14.3	0.192	8.4	LOSA	0.8	5.7	0.22	0.56	52.1
Appro	ach	212	3.8	0.192	6.3	LOSA	8.0	5.7	0.22	0.56	53.7
North:	Dysart Ro	d_North									
7	L2	3	33.3	0.002	5.9	LOSA	0.0	0.0	0.00	0.57	52.2
8	T1	88	8.0	0.047	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	91	8.8	0.047	0.2	NA	0.0	0.0	0.00	0.02	97.5
All Ve	hicles	487	6.0	0.192	4.0	NA	0.8	5.7	0.14	0.37	64.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:07:59 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 3 - Background 2024 AM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov														
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h			
South	: Dysart R		70	V/C	366		VEII	- '''		per veri	KIII/II			
1	L2	121	3.3	0.127	6.3	LOSA	0.5	3.7	0.31	0.59	52.6			
3	R2	36	13.9	0.127	6.8	LOSA	0.5	3.7	0.31	0.59	51.6			
Appro	ach	157	5.7	0.127	6.4	LOSA	0.5	3.7	0.31	0.59	52.3			
East: I	Dysart Rd	_East												
4	L2	36	16.7	0.125	8.0	LOSA	0.0	0.0	0.00	0.11	75.2			
5	T1	194	5.2	0.125	0.0	LOSA	0.0	0.0	0.00	0.11	91.2			
Appro	ach	230	7.0	0.125	1.3	NA	0.0	0.0	0.00	0.11	88.2			
West:	Peak Dov	wns Mine En	trance											
11	T1	19	5.3	0.016	6.1	LOSA	0.1	0.4	0.21	0.80	81.3			
12	R2	8	12.5	0.016	8.1	LOSA	0.1	0.4	0.21	0.80	60.7			
Appro	ach	27	7.4	0.016	6.7	NA	0.1	0.4	0.21	0.80	73.9			
All Vel	hicles	414	6.5	0.127	3.6	NA	0.5	3.7	0.13	0.33	69.3			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:07:59 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 3 - Background 2024 PM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Dysart F	Rd_South												
1	L2	51	7.8	0.084	5.9	LOSA	0.3	2.3	0.20	0.58	52.7			
3	R2	45	8.9	0.084	6.9	LOSA	0.3	2.3	0.20	0.58	52.1			
Appro	ach	96	8.3	0.084	6.4	LOSA	0.3	2.3	0.20	0.58	52.4			
East:	Dysart Ro	I_East												
4	L2	34	20.6	0.067	7.8	LOSA	0.0	0.0	0.00	0.19	69.3			
5	T1	85	9.4	0.067	0.0	LOSA	0.0	0.0	0.00	0.19	84.6			
Appro	ach	119	12.6	0.067	2.2	NA	0.0	0.0	0.00	0.19	79.6			
West:	Peak Dov	wns Mine En	trance											
11	T1	119	10.1	0.113	8.2	LOSA	0.4	3.3	0.19	1.00	78.0			
12	R2	76	2.6	0.113	7.3	LOS A	0.4	3.3	0.19	1.00	59.5			
Appro	ach	195	7.2	0.113	7.8	NA	0.4	3.3	0.19	1.00	69.6			
All Ve	hicles	410	9.0	0.113	5.9	NA	0.4	3.3	0.14	0.67	66.9			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:08:00 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 4 - Background 2024 AM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dys	art Rd									
21	L2	3	0.0	0.042	6.3	LOSA	0.2	1.2	0.46	0.66	51.3
23	R2	23	17.4	0.042	9.2	LOS A	0.2	1.2	0.46	0.66	50.3
Appro	ach	26	15.4	0.042	8.9	LOSA	0.2	1.2	0.46	0.66	50.4
Northl	East: Pea	k Downs Hw	y_North								
24	L2	260	9.2	0.149	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
25	T1	186	9.1	0.101	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	446	9.2	0.149	3.3	NA	0.0	0.0	0.00	0.33	66.1
South	West: Pea	ak Downs Hv	vy_South	1							
31	T1	51	27.5	0.031	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	2	0.0	0.002	7.4	LOS A	0.0	0.1	0.46	0.58	51.7
Appro	ach	53	26.4	0.031	0.3	NA	0.0	0.1	0.02	0.02	96.6
All Ve	hicles	525	11.2	0.149	3.3	NA	0.2	1.2	0.02	0.32	67.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:08:00 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 4 - Background 2024 PM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Dys	veh/h art Rd	%	v/c	sec		veh	m		per veh	km/h
21	L2	6	0.0	0.201	5.9	LOSA	0.8	6.1	0.45	0.69	51.6
23	R2	138	4.3	0.201	8.4	LOSA	0.8	6.1	0.45	0.69	51.2
Appro	ach	144	4.2	0.201	8.3	LOSA	0.8	6.1	0.45	0.69	51.2
North	East: Peal	k Downs Hw	y_North								
24	L2	126	9.5	0.072	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
25	T1	74	13.5	0.041	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
Appro	ach	200	11.0	0.072	3.6	NA	0.0	0.0	0.00	0.36	64.3
South	West: Pea	ak Downs Hv	vy_South	1							
31	T1	162	15.4	0.091	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	7	14.3	0.006	6.5	LOSA	0.0	0.2	0.31	0.56	51.7
Appro	ach	169	15.4	0.091	0.3	NA	0.0	0.2	0.01	0.02	96.2
All Vel	hicles	513	10.5	0.201	3.8	NA	0.8	6.1	0.13	0.34	66.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:08:01 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 5 - Background 2024 AM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov	OD			Deg.	Average	Level of			Prop.	Effective	Average		
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h		
North	East: Pea	k Downs Hw											
25	T1	56	19.6	0.032	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
26	R2	57	45.6	0.053	6.5	LOSA	0.2	2.1	0.21	0.57	50.6		
Appro	ach	113	32.7	0.053	3.3	NA	0.2	2.1	0.10	0.29	67.0		
North\	West: Mo	ranbah											
27	L2	152	19.7	0.614	7.9	LOSA	6.8	51.8	0.43	0.69	50.0		
29	R2	392	7.7	0.614	10.1	LOS B	6.8	51.8	0.43	0.69	50.3		
Appro	ach	544	11.0	0.614	9.5	LOS A	6.8	51.8	0.43	0.69	50.2		
South'	West: Pe	ak Downs Hv	vy_South	ו									
30	L2	22	9.1	0.013	5.6	LOSA	0.0	0.0	0.00	0.57	53.2		
31	T1	53	30.2	0.033	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
Appro	ach	75	24.0	0.033	1.7	NA	0.0	0.0	0.00	0.17	79.4		
All Vel	hicles	732	15.7	0.614	7.7	NA	6.8	51.8	0.33	0.58	54.3		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 4:00:54 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

V Site: [Intersection 5 - Background 2024 PM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
North	East: Peak	Downs Hw	y_North										
25	T1	61	16.4	0.035	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
26	R2	172	20.3	0.186	7.6	LOSA	0.8	6.5	0.44	0.68	50.9		
Appro	ach	233	19.3	0.186	5.6	NA	0.8	6.5	0.33	0.50	58.4		
North\	Nest: Mor	anbah											
27	L2	104	36.5	0.328	6.4	LOSA	1.5	12.4	0.25	0.64	50.0		
29	R2	135	7.4	0.328	10.6	LOS B	1.5	12.4	0.25	0.64	50.9		
Appro	ach	239	20.1	0.328	8.7	LOS A	1.5	12.4	0.25	0.64	50.5		
South	West: Pea	ak Downs Hv	vy_South	1									
30	L2	248	9.7	0.143	5.7	LOSA	0.0	0.0	0.00	0.57	53.2		
31	T1	45	37.8	0.029	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
Appro	ach	293	14.0	0.143	4.8	NA	0.0	0.0	0.00	0.49	57.3		
All Vel	hicles	765	17.5	0.328	6.3	NA	1.5	12.4	0.18	0.54	55.3		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 4:01:25 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2024_v01_WW_020518_.sip7

▽ Site: [Intersection 1 - Background 2041 AM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
		veh/h	%	v/c	sec		veh	m		per veh	km/h			
South	: Dysart R	d_South												
2	T1	484	3.7	0.257	0.0	LOSA	0.0	0.2	0.00	0.01	99.6			
3	R2	4	0.0	0.257	7.7	LOSA	0.0	0.2	0.00	0.01	71.5			
Appro	ach	488	3.7	0.257	0.1	NA	0.0	0.2	0.00	0.01	99.3			
East:	Lake Vern	nont Rd												
4	L2	1	0.0	0.005	5.8	LOSA	0.0	0.1	0.28	0.57	51.4			
6	R2	2	50.0	0.005	10.4	LOS B	0.0	0.1	0.28	0.57	48.9			
Appro	ach	3	33.3	0.005	8.9	LOSA	0.0	0.1	0.28	0.57	49.7			
North:	Dysart R	d_North												
7	L2	1	0.0	0.044	7.8	LOSA	0.0	0.0	0.00	0.01	88.2			
8	T1	83	3.6	0.044	0.0	LOS A	0.0	0.0	0.00	0.01	99.2			
Appro	ach	84	3.6	0.044	0.1	NA	0.0	0.0	0.00	0.01	99.1			
All Ve	hicles	575	3.8	0.257	0.1	NA	0.0	0.2	0.01	0.01	98.7			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:01 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 1 - Background 2041 PM]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average		
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South	: Dysart F	Rd_South											
2	T1	201	7.0	0.108	0.0	LOS A	0.0	0.1	0.00	0.00	99.7		
3	R2	1	0.0	0.108	8.4	LOSA	0.0	0.1	0.00	0.00	71.5		
Appro	ach	202	6.9	0.108	0.0	NA	0.0	0.1	0.00	0.00	99.5		
East:	Lake Verr	mont Rd											
4	L2	9	0.0	0.035	6.4	LOSA	0.1	1.1	0.43	0.64	51.6		
6	R2	15	60.0	0.035	9.9	LOSA	0.1	1.1	0.43	0.64	48.7		
Appro	ach	24	37.5	0.035	8.6	LOSA	0.1	1.1	0.43	0.64	49.7		
North:	Dysart R	ld_North											
7	L2	1	0.0	0.148	7.8	LOSA	0.0	0.0	0.00	0.00	88.5		
8	T1	279	5.0	0.148	0.0	LOSA	0.0	0.0	0.00	0.00	99.7		
Appro	ach	280	5.0	0.148	0.0	NA	0.0	0.0	0.00	0.00	99.7		
All Ve	hicles	506	7.3	0.148	0.5	NA	0.1	1.1	0.02	0.03	95.1		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:02 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 2 - Background 2041 AM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South	: Dysart R	Rd_South												
2	T1	190	4.2	0.100	0.0	LOSA	0.0	0.0	0.00	0.00	99.9			
3	R2	311	4.2	0.231	5.7	LOSA	1.1	8.1	0.16	0.57	53.6			
Appro	ach	501	4.2	0.231	3.6	NA	1.1	8.1	0.10	0.35	65.0			
East: \$	Saraji Min	e Entrance												
4	L2	81	1.2	0.102	5.6	LOSA	0.4	2.8	0.06	0.56	53.7			
6	R2	17	23.5	0.102	12.5	LOS B	0.4	2.8	0.06	0.56	51.5			
Appro	ach	98	5.1	0.102	6.8	LOSA	0.4	2.8	0.06	0.56	53.4			
North:	Dysart R	d_North												
7	L2	28	14.3	0.017	5.7	LOSA	0.0	0.0	0.00	0.57	53.0			
8	T1	19	15.8	0.011	0.0	LOS A	0.0	0.0	0.00	0.00	100.0			
Appro	ach	47	14.9	0.017	3.4	NA	0.0	0.0	0.00	0.34	67.1			
All Vel	nicles	646	5.1	0.231	4.0	NA	1.1	8.1	0.09	0.38	63.1			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:02 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 2 - Background 2041 PM]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov				Deg.							Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
South	: Dysart R	veh/h	%	v/c	sec		veh	m		per veh	km/h			
2	T1	100	8.0	0.054	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
3	R2	121	7.4	0.097	6.0	LOSA	0.4	3.0	0.23	0.57	53.3			
Appro	ach	221	7.7	0.097	3.3	NA	0.4	3.0	0.13	0.31	67.6			
East: \$	Saraji Min	e Entrance												
4	L2	219	2.3	0.237	6.1	LOSA	1.0	7.3	0.25	0.58	53.8			
6	R2	34	14.7	0.237	9.3	LOSA	1.0	7.3	0.25	0.58	52.0			
Appro	ach	253	4.0	0.237	6.5	LOS A	1.0	7.3	0.25	0.58	53.6			
North:	Dysart R	d_North												
7	L2	4	25.0	0.003	5.8	LOSA	0.0	0.0	0.00	0.57	52.6			
8	T1	105	8.6	0.057	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	109	9.2	0.057	0.2	NA	0.0	0.0	0.00	0.02	97.3			
All Vel	hicles	583	6.3	0.237	4.1	NA	1.0	7.3	0.16	0.37	64.1			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:03 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 3 - Background 2041 AM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart F	Rd_South									
1	L2	143	3.5	0.156	6.4	LOSA	0.6	4.6	0.34	0.61	52.4
3	R2	42	14.3	0.156	7.1	LOS A	0.6	4.6	0.34	0.61	51.5
Appro	ach	185	5.9	0.156	6.6	LOSA	0.6	4.6	0.34	0.61	52.2
East:	Dysart Ro	d_East									
4	L2	43	18.6	0.147	8.0	LOSA	0.0	0.0	0.00	0.11	74.3
5	T1	228	4.8	0.147	0.0	LOS A	0.0	0.0	0.00	0.11	91.1
Appro	ach	271	7.0	0.147	1.3	NA	0.0	0.0	0.00	0.11	88.0
West:	Peak Do	wns Mine En	trance								
11	T1	22	4.5	0.020	6.5	LOSA	0.1	0.5	0.24	0.80	80.6
12	R2	10	10.0	0.020	8.1	LOSA	0.1	0.5	0.24	0.80	60.5
Appro	ach	32	6.3	0.020	7.0	NA	0.1	0.5	0.24	0.80	73.0
All Ve	hicles	488	6.6	0.156	3.7	NA	0.6	4.6	0.15	0.34	69.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:04 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 3 - Background 2041 PM]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart R	ld_South									
1	L2	60	8.3	0.104	6.0	LOS A	0.4	2.9	0.24	0.59	52.5
3	R2	54	9.3	0.104	7.3	LOS A	0.4	2.9	0.24	0.59	51.9
Appro	ach	114	8.8	0.104	6.6	LOSA	0.4	2.9	0.24	0.59	52.2
East:	East: Dysart Rd_E										
4	L2	40	22.5	0.081	7.9	LOSA	0.0	0.0	0.00	0.19	68.8
5	T1	102	9.8	0.081	0.0	LOSA	0.0	0.0	0.00	0.19	84.9
Appro	ach	142	13.4	0.081	2.2	NA	0.0	0.0	0.00	0.19	79.6
West:	Peak Dov	wns Mine Ent	trance								
11	T1	141	9.9	0.136	8.3	LOSA	0.5	4.1	0.21	0.98	77.9
12	R2	91	3.3	0.136	7.4	LOSA	0.5	4.1	0.21	0.98	59.4
Appro	ach	232	7.3	0.136	7.9	NA	0.5	4.1	0.21	0.98	69.4
All Ve	hicles	488	9.4	0.136	6.0	NA	0.5	4.1	0.16	0.66	66.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:04 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

V Site: [Intersection 4 - Background 2041 AM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth	Foot: Dvo	veh/h	%	v/c	sec		veh	m		per veh	km/h
	East: Dys										
21	L2	4	0.0	0.057	6.5	LOSA	0.2	1.7	0.50	0.70	50.6
23	R2	28	17.9	0.057	10.2	LOS B	0.2	1.7	0.50	0.70	49.7
Appro	ach	32	15.6	0.057	9.7	LOS A	0.2	1.7	0.50	0.70	49.8
North	East: Peal	k Downs Hw	y_North								
24	L2	308	9.4	0.177	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
25	T1	220	9.1	0.119	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	528	9.3	0.177	3.3	NA	0.0	0.0	0.00	0.33	66.0
South	West: Pea	ak Downs Hv	vy_South	l							
31	T1	60	26.7	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	3	0.0	0.004	7.9	LOSA	0.0	0.1	0.50	0.61	51.3
Appro	ach	63	25.4	0.036	0.4	NA	0.0	0.1	0.02	0.03	95.7
All Vel	hicles	623	11.2	0.177	3.3	NA	0.2	1.7	0.03	0.32	67.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:05 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 4 - Background 2041 PM]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

		rformance	<u> </u>	· ·	A. (Lavalaf	OFO/ Dook	af O., a., a	Duan	□# ative	A.,
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Dysa	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•										
21	L2	8	0.0	0.261	5.9	LOSA	1.1	8.1	0.50	0.74	51.0
23	R2	164	4.9	0.261	9.2	LOS A	1.1	8.1	0.50	0.74	50.6
Appro	ach	172	4.7	0.261	9.1	LOSA	1.1	8.1	0.50	0.74	50.6
North	East: Peak	Downs Hw	y_North								
24	L2	149	9.4	0.086	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
25	T1	86	12.8	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
Appro	ach	235	10.6	0.086	3.6	NA	0.0	0.0	0.00	0.36	64.2
South	West: Pea	ık Downs Hv	vy_South								
31	T1	192	15.6	0.108	0.0	LOS A	0.0	0.0	0.00	0.00	99.9
32	R2	9	11.1	0.008	6.6	LOS A	0.0	0.2	0.34	0.57	51.7
Appro	ach	201	15.4	0.108	0.3	NA	0.0	0.2	0.02	0.03	95.9
All Ve	hicles	608	10.5	0.261	4.1	NA	1.1	8.1	0.15	0.36	66.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 3 May 2018 9:57:06 AM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 5 - Background 2041 AM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total	Flows HV	Deg. Satn	Average Delav	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	10100	veh/h	%	v/c	sec	0011100	veh	m	Queucu	per veh	km/h
North	East: Pea	k Downs Hw	y_North								
25	T1	66	19.7	0.038	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
26	R2	58	37.9	0.054	6.4	LOSA	0.2	2.0	0.23	0.57	50.9
Appro	ach	124	28.2	0.054	3.0	NA	0.2	2.0	0.11	0.27	68.9
North\	Nest: Mo	ranbah									
27	L2	172	15.7	0.737	9.9	LOSA	11.9	90.3	0.56	0.82	48.3
29	R2	464	7.5	0.737	13.1	LOS B	11.9	90.3	0.56	0.82	48.4
Appro	ach	636	9.7	0.737	12.3	LOS B	11.9	90.3	0.56	0.82	48.4
South	West: Pe	ak Downs Hv	vy_South	1							
30	L2	27	11.1	0.016	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
31	T1	63	30.2	0.039	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	90	24.4	0.039	1.7	NA	0.0	0.0	0.00	0.17	79.0
All Vel	hicles	850	14.0	0.737	9.8	NA	11.9	90.3	0.43	0.67	52.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 4:02:41 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

▽ Site: [Intersection 5 - Background 2041 PM]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
North	East: Peal	k Downs Hw	y_North								
25	T1	71	15.5	0.040	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
26	R2	191	15.2	0.215	7.9	LOSA	0.9	7.3	0.49	0.72	50.8
Appro	ach	262	15.3	0.215	5.8	NA	0.9	7.3	0.35	0.52	58.6
North\	NorthWest: Moranbah										
27	L2	114	31.6	0.401	7.1	LOSA	2.3	18.6	0.30	0.68	49.2
29	R2	159	6.9	0.401	12.4	LOS B	2.3	18.6	0.30	0.68	49.8
Appro	ach	273	17.2	0.401	10.2	LOS B	2.3	18.6	0.30	0.68	49.6
South	West: Pea	ak Downs Hv	vy_South	1							
30	L2	294	9.9	0.169	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
31	T1	53	37.7	0.034	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	347	14.1	0.169	4.8	NA	0.0	0.0	0.00	0.49	57.3
All Vel	nicles	882	15.4	0.401	6.8	NA	2.3	18.6	0.20	0.56	55.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Wednesday, 9 May 2018 4:02:38 PM Project: \\aurok1fp001\Projects\605x\60507031\4. Tech Work Area\4.18 Transport\5. Analysis\SIDRA\Background \\60507031_Saraji_SIDRA_Background 2041_v01_WW_020518_sip7

V Site: [Intersection 1 - TOTAL 2022 AM_Ordinary days]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart R	Rd_South									
2	T1	434	8.1	0.236	0.0	LOSA	0.0	0.2	0.00	0.01	99.6
3	R2	3	0.0	0.236	7.9	LOSA	0.0	0.2	0.00	0.01	71.5
Appro	ach	437	8.0	0.236	0.1	NA	0.0	0.2	0.00	0.01	99.4
East: I	Lake Vern	nont Rd									
4	L2	1	0.0	0.018	5.8	LOSA	0.1	0.7	0.46	0.61	49.8
6	R2	7	85.7	0.018	12.5	LOS B	0.1	0.7	0.46	0.61	46.2
Appro	ach	8	75.0	0.018	11.6	LOS B	0.1	0.7	0.46	0.61	46.6
North:	Dysart R	d_North									
7	L2	6	83.3	0.065	9.9	LOSA	0.0	0.0	0.00	0.04	57.2
8	T1	102	21.6	0.065	0.0	LOSA	0.0	0.0	0.00	0.04	97.5
Appro	ach	108	25.0	0.065	0.6	NA	0.0	0.0	0.00	0.04	93.8
All Vel	hicles	553	12.3	0.236	0.3	NA	0.1	0.7	0.01	0.02	96.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:53 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 1 - TOTAL 2022 PM_Ordinary days]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Dysart R	Rd_South									
2	T1	199	15.6	0.113	0.0	LOSA	0.0	0.1	0.00	0.00	99.7
3	R2	11	0.0	0.113	8.4	LOSA	0.0	0.1	0.00	0.00	71.5
Appro	ach	200	15.5	0.113	0.0	NA	0.0	0.1	0.00	0.00	99.5
East: I	_ake Vern	nont Rd									
4	L2	7	0.0	0.039	6.4	LOSA	0.1	1.3	0.45	0.65	51.2
6	R2	17	70.6	0.039	10.5	LOS B	0.1	1.3	0.45	0.65	48.0
Appro	ach	24	50.0	0.039	9.3	LOSA	0.1	1.3	0.45	0.65	48.9
North:	Dysart R	d_North									
7	L2	6	83.3	0.151	10.0	LOSA	0.0	0.0	0.00	0.01	58.1
8	T1	264	11.7	0.151	0.0	LOSA	0.0	0.0	0.00	0.01	98.9
Appro	ach	270	13.3	0.151	0.2	NA	0.0	0.0	0.00	0.01	97.4
All Vel	nicles	494	16.0	0.151	0.6	NA	0.1	1.3	0.02	0.04	93.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:55 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 2 - TOTAL 2022 AM_Ordinary days]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h			
South	: Dysart R		70	*/*	333		7011			poi voii	1311711			
2	T1	195	15.9	0.110	0.0	LOSA	0.0	0.0	0.00	0.00	99.9			
3	R2	257	3.9	0.198	5.9	LOSA	0.9	6.6	0.22	0.57	53.5			
Appro	ach	452	9.1	0.198	3.4	NA	0.9	6.6	0.13	0.33	66.9			
East:	Saraji Min	e Entrance												
4	L2	68	1.5	0.085	5.8	LOSA	0.3	2.3	0.16	0.56	53.7			
6	R2	13	23.1	0.085	12.3	LOS B	0.3	2.3	0.16	0.56	51.5			
Appro	ach	81	4.9	0.085	6.9	LOSA	0.3	2.3	0.16	0.56	53.4			
North:	Dysart R	d_North												
7	L2	23	13.0	0.014	5.7	LOSA	0.0	0.0	0.00	0.57	53.1			
8	T1	54	50.0	0.037	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	77	39.0	0.037	1.7	NA	0.0	0.0	0.00	0.17	81.1			
All Vel	hicles	610	12.3	0.198	3.6	NA	0.9	6.6	0.12	0.34	66.1			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:55 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 2 - TOTAL 2022 PM_Ordinary days]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Dysart R	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•	_	0= 0		• •		•				100.0
2	T1	120	25.8	0.072	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
3	R2	100	7.0	0.083	6.1	LOS A	0.3	2.5	0.26	0.58	53.3
Appro	ach	220	17.3	0.083	2.8	NA	0.3	2.5	0.12	0.26	71.5
East: \$	Saraji Min	e Entrance									
4	L2	181	2.2	0.202	6.2	LOSA	8.0	6.0	0.29	0.59	53.7
6	R2	28	14.3	0.202	9.6	LOSA	0.8	6.0	0.29	0.59	51.9
Appro	ach	209	3.8	0.202	6.7	LOS A	0.8	6.0	0.29	0.59	53.5
North:	Dysart R	d_North									
7	L2	3	33.3	0.002	5.9	LOSA	0.0	0.0	0.00	0.57	52.2
8	T1	124	25.8	0.074	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	127	26.0	0.074	0.1	NA	0.0	0.0	0.00	0.01	98.2
All Vel	nicles	556	14.2	0.202	3.6	NA	0.8	6.0	0.15	0.33	67.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:56 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 3 - TOTAL 2022 AM_Shifting changing days]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart F	Rd_South									
1	L2	118	3.4	0.176	6.3	LOSA	0.7	5.6	0.33	0.61	52.5
3	R2	72	40.3	0.176	7.6	LOSA	0.7	5.6	0.33	0.61	50.4
Appro	ach	190	17.4	0.176	6.8	LOSA	0.7	5.6	0.33	0.61	51.7
East: I	Dysart Ro	I_East									
4	L2	72	41.7	0.150	8.3	LOSA	0.0	0.0	0.00	0.18	63.0
5	T1	189	4.8	0.150	0.0	LOSA	0.0	0.0	0.00	0.18	86.0
Appro	ach	261	14.9	0.150	2.3	NA	0.0	0.0	0.00	0.18	78.1
West:	Peak Dov	wns Mine En	trance								
11	T1	19	5.3	0.017	6.2	LOSA	0.1	0.4	0.24	0.79	81.2
12	R2	8	12.5	0.017	8.2	LOSA	0.1	0.4	0.24	0.79	60.7
Appro	ach	27	7.4	0.017	6.8	NA	0.1	0.4	0.24	0.79	73.8
All Vel	nicles	478	15.5	0.176	4.3	NA	0.7	5.6	0.14	0.38	64.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:57 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 3 - TOTAL 2022 PM_Shifting changing days]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 "		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	South: Dysart Rd_South										
1	L2	50	8.0	0.141	5.9	LOSA	0.5	4.3	0.25	0.60	52.3
3	R2	83	33.7	0.141	7.8	LOSA	0.5	4.3	0.25	0.60	50.7
Appro	ach	133	24.1	0.141	7.1	LOSA	0.5	4.3	0.25	0.60	51.3
East:	Dysart Rd	_East									
4	L2	70	44.3	0.095	7.9	LOSA	0.0	0.0	0.00	0.29	57.6
5	T1	84	9.5	0.095	0.0	LOSA	0.0	0.0	0.00	0.29	77.6
Appro	ach	154	25.3	0.095	3.6	NA	0.0	0.0	0.00	0.29	67.0
West:	Peak Dov	wns Mine En	trance								
11	T1	116	9.5	0.113	8.3	LOSA	0.4	3.3	0.22	0.97	77.9
12	R2	75	2.7	0.113	7.5	LOSA	0.4	3.3	0.22	0.97	59.4
Appro	ach	191	6.8	0.113	8.0	NA	0.4	3.3	0.22	0.97	69.4
All Ve	hicles	478	17.6	0.141	6.3	NA	0.5	4.3	0.16	0.65	62.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:57 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 4 - TOTAL 2022 AM_Shifting changing days]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Dys	veh/h art Rd	%	v/c	sec		veh	m		per veh	km/h
	•		0.0	0.400	0.0	1004	0.5	4.0	0.54	0.70	40.0
21	L2	3	0.0	0.132	6.3	LOSA	0.5	4.9	0.54	0.76	49.9
23	R2	60	46.7	0.132	11.4	LOS B	0.5	4.9	0.54	0.76	48.0
Appro	ach	63	44.4	0.132	11.1	LOS B	0.5	4.9	0.54	0.76	48.1
North	East: Peal	k Downs Hw	y_North								
24	L2	292	16.4	0.176	5.7	LOSA	0.0	0.0	0.00	0.57	52.9
25	T1	182	9.3	0.099	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	474	13.7	0.176	3.5	NA	0.0	0.0	0.00	0.35	64.5
South	West: Pea	ak Downs Hv	vy_South	1							
31	T1	50	28.0	0.030	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	2	0.0	0.002	7.6	LOS A	0.0	0.1	0.48	0.59	51.5
Appro	ach	52	26.9	0.030	0.3	NA	0.0	0.1	0.02	0.02	96.5
All Vel	nicles	589	18.2	0.176	4.1	NA	0.5	4.9	0.06	0.37	64.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:58 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 4 - TOTAL 2022 PM_Shifting changing days]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	East: Dys	art Rd									
21	L2	6	0.0	0.278	5.9	LOSA	1.2	9.8	0.50	0.74	51.0
23	R2	172	17.4	0.278	9.4	LOSA	1.2	9.8	0.50	0.74	50.1
Appro	ach	178	16.9	0.278	9.3	LOSA	1.2	9.8	0.50	0.74	50.1
North	East: Pea	k Downs Hw	y_North								
24	L2	159	22.0	0.099	5.8	LOSA	0.0	0.0	0.00	0.57	52.7
25	T1	71	12.7	0.039	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	230	19.1	0.099	4.0	NA	0.0	0.0	0.00	0.40	61.7
South'	West: Pea	ak Downs Hv	vy_South	1							
31	T1	159	15.7	0.090	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
32	R2	7	14.3	0.007	6.7	LOS A	0.0	0.2	0.34	0.57	51.6
Appro	ach	166	15.7	0.090	0.3	NA	0.0	0.2	0.01	0.02	59.6
All Vel	hicles	574	17.4	0.278	4.6	NA	1.2	9.8	0.16	0.39	57.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:58 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 5 - TOTAL 2022 AM_Shifting changing days]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed km/h
North	East: Peal	k Downs Hw		V/C	sec		ven	m		per veh	km/h
25	T1	74	40.5	0.048	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
26	R2	33	9.1	0.027	6.1	LOSA	0.1	0.8	0.24	0.57	52.1
Appro	ach	107	30.8	0.048	1.9	NA	0.1	0.8	0.07	0.17	77.9
North\	Nest: Mor	anbah									
27	L2	127	5.5	0.623	8.2	LOSA	6.9	51.5	0.51	0.76	50.0
29	R2	402	8.5	0.623	10.9	LOS B	6.9	51.5	0.51	0.76	49.7
Appro	ach	529	7.8	0.623	10.3	LOS B	6.9	51.5	0.51	0.76	49.7
South	West: Pea	ak Downs Hv	vy_South	1							
30	L2	40	17.5	0.024	5.7	LOSA	0.0	0.0	0.00	0.57	52.9
31	T1	71	49.3	0.048	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	111	37.8	0.048	2.1	NA	0.0	0.0	0.00	0.21	75.6
All Ve	hicles	747	15.5	0.623	7.8	NA	6.9	51.5	0.37	0.59	55.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:50:59 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 5 - TOTAL 2022 PM_Shifting changing days]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
North	East: Pea	k Downs Hw		V/C	366		Veri	- '''		per veri	KIII/II
25	T1	78	35.9	0.049	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
26	R2	143	6.3	0.149	7.4	LOSA	0.6	4.5	0.45	0.68	51.5
Appro	ach	221	16.7	0.149	4.8	NA	0.6	4.5	0.29	0.44	62.1
North\	Nest: Mor	ranbah									
27	L2	80	18.8	0.337	6.5	LOSA	1.7	12.9	0.35	0.69	50.1
29	R2	150	9.3	0.337	11.1	LOS B	1.7	12.9	0.35	0.69	50.2
Appro	ach	230	12.6	0.337	9.5	LOSA	1.7	12.9	0.35	0.69	50.1
South	West: Pea	ak Downs Hv	vy_South	ı							
30	L2	262	11.1	0.152	5.7	LOSA	0.0	0.0	0.00	0.57	53.1
31	T1	63	57.1	0.044	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	325	20.0	0.152	4.6	NA	0.0	0.0	0.00	0.46	58.4
All Vel	hicles	776	16.9	0.337	6.1	NA	1.7	12.9	0.19	0.52	56.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:00 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection A - TOTAL 2022 AM_Shifting changing days]

Dysart Rd / Proposed Saraji East Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	: Dysart R	veh/h	%	v/c	sec		veh	m		per veh	km/h
2	T1	154	5.8	0.082	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
3	R2	33	60.6	0.034	6.8	LOSA	0.1	1.4	0.23	0.57	49.9
Appro	ach	187	15.5	0.082	1.2	NA	0.1	1.4	0.04	0.10	84.9
East: S	Saraji Min	e Entrance									
4	L2	33	60.6	0.105	6.5	LOSA	0.4	4.4	0.20	0.58	49.7
6	R2	37	64.9	0.105	10.0	LOSA	0.4	4.4	0.20	0.58	49.2
Appro	ach	70	62.9	0.105	8.4	LOSA	0.4	4.4	0.20	0.58	49.4
North:	Dysart R	d_North									
7	L2	37	64.9	0.029	6.3	LOSA	0.0	0.0	0.00	0.57	51.0
8	T1	43	16.3	0.024	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
Appro	ach	80	38.8	0.029	2.9	NA	0.0	0.0	0.00	0.26	69.1
All Vel	nicles	337	30.9	0.105	3.1	NA	0.4	4.4	0.06	0.24	70.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:01 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection A - TOTAL 2022 PM_Shifting changing days]

Dysart Rd / Proposed Saraji East Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart F	Rd_South									
2	T1	94	8.5	0.051	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
3	R2	33	60.6	0.036	7.2	LOSA	0.1	1.5	0.31	0.59	49.7
Appro	ach	127	22.0	0.051	1.9	NA	0.1	1.5	0.08	0.15	79.2
East:	Saraji Mir	e Entrance									
4	L2	33	60.6	0.108	7.0	LOSA	0.4	4.5	0.34	0.61	49.5
6	R2	37	64.9	0.108	10.0	LOS B	0.4	4.5	0.34	0.61	49.1
Appro	ach	70	62.9	0.108	8.6	LOSA	0.4	4.5	0.34	0.61	49.3
North:	Dysart R	d_North									
7	L2	37	64.9	0.029	6.3	LOSA	0.0	0.0	0.00	0.57	51.0
8	T1	108	8.3	0.058	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	145	22.8	0.058	1.6	NA	0.0	0.0	0.00	0.14	80.2
All Ve	hicles	342	30.7	0.108	3.1	NA	0.4	4.5	0.10	0.24	70.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:01 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2022_v03_WW_190619_.sip7

V Site: [Intersection 1 - TOTAL 2024 AM_Ordinary days]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart R	Rd_South									
2	T1	476	8.2	0.259	0.0	LOSA	0.0	0.2	0.00	0.00	99.7
3	R2	3	0.0	0.259	8.1	LOSA	0.0	0.2	0.00	0.00	71.5
Appro	ach	479	8.1	0.259	0.1	NA	0.0	0.2	0.00	0.00	99.4
East: I	Lake Vern	nont Rd									
4	L2	1	0.0	0.038	6.0	LOSA	0.1	1.4	0.58	0.67	48.3
6	R2	12	91.7	0.038	14.7	LOS B	0.1	1.4	0.58	0.67	44.7
Appro	ach	13	84.6	0.038	14.0	LOS B	0.1	1.4	0.58	0.67	44.9
North:	Dysart R	d_North									
7	L2	11	90.9	0.089	10.0	LOSA	0.0	0.0	0.00	0.05	55.0
8	T1	137	19.0	0.089	0.0	LOSA	0.0	0.0	0.00	0.05	96.8
Appro	ach	148	24.3	0.089	0.8	NA	0.0	0.0	0.00	0.05	91.6
All Vel	hicles	640	13.4	0.259	0.5	NA	0.1	1.4	0.02	0.03	95.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:21 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 1 - TOTAL 2024 PM_Ordinary days]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Mov	ement Pe	Demand		Deg.	Average	Level of	95% Back	of Oueue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
שו	IVIOV	veh/h	%	v/c	sec	OCIVICC	veh	m	Queucu	per veh	km/r
South	: Dysart R										
2	T1	237	15.2	0.134	0.0	LOS A	0.0	0.1	0.00	0.00	99.7
3	R2	1	0.0	0.134	8.7	LOS A	0.0	0.1	0.00	0.00	71.5
Appro	ach	238	15.1	0.134	0.0	NA	0.0	0.1	0.00	0.00	99.6
East:	Lake Verm	nont Rd									
4	L2	7	0.0	0.058	6.6	LOS A	0.2	2.0	0.51	0.69	50.2
6	R2	22	77.3	0.058	12.1	LOS B	0.2	2.0	0.51	0.69	46.9
Appro	ach	29	58.6	0.058	10.8	LOS B	0.2	2.0	0.51	0.69	47.6
North:	Dysart Ro	d_North									
7	L2	11	90.9	0.177	10.1	LOS B	0.0	0.0	0.00	0.02	56.0
8	T1	303	11.9	0.177	0.0	LOS A	0.0	0.0	0.00	0.02	98.4
Appro	ach	314	14.6	0.177	0.4	NA	0.0	0.0	0.00	0.02	95.9
All Ve	hicles	581	17.0	0.177	0.8	NA	0.2	2.0	0.03	0.05	92.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:22 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 2 - TOTAL 2024 AM_Ordinary days]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Dysart F	Rd_South									
2	T1	237	16.9	0.135	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
3	R2	263	4.2	0.212	6.1	LOSA	1.0	7.1	0.28	0.59	53.3
Appro	ach	500	10.2	0.212	3.2	NA	1.0	7.1	0.15	0.31	68.5
East: 9	Saraji Mir	ne Entrance									
4	L2	69	1.4	0.095	6.0	LOSA	0.3	2.5	0.24	0.57	53.4
6	R2	14	21.4	0.095	14.0	LOS B	0.3	2.5	0.24	0.57	51.2
Appro	ach	83	4.8	0.095	7.3	LOSA	0.3	2.5	0.24	0.57	53.0
North:	Dysart R	ld_North									
7	L2	23	13.0	0.014	5.7	LOSA	0.0	0.0	0.00	0.57	53.1
8	T1	93	38.7	0.060	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	116	33.6	0.060	1.1	NA	0.0	0.0	0.00	0.11	86.8
All Vel	nicles	699	13.4	0.212	3.4	NA	1.0	7.1	0.13	0.31	68.5

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:23 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 2 - TOTAL 2024 PM_Ordinary days]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart R	ld_South									
2	T1	160	25.0	0.095	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
3	R2	101	6.9	0.088	6.4	LOSA	0.4	2.6	0.31	0.60	53.2
Appro	ach	261	18.0	0.095	2.5	NA	0.4	2.6	0.12	0.23	74.6
East:	Saraji Min	e Entrance									
4	L2	184	2.2	0.219	6.5	LOSA	0.9	6.5	0.34	0.62	53.5
6	R2	28	14.3	0.219	11.0	LOS B	0.9	6.5	0.34	0.62	51.7
Appro	ach	212	3.8	0.219	7.1	LOS A	0.9	6.5	0.34	0.62	53.3
North:	Dysart R	d_North									
7	L2	3	33.3	0.002	5.9	LOSA	0.0	0.0	0.00	0.57	52.2
8	T1	166	25.3	0.099	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	169	25.4	0.099	0.1	NA	0.0	0.0	0.00	0.01	98.6
All Vel	hicles	642	15.3	0.219	3.4	NA	0.9	6.5	0.16	0.30	69.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:24 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 3 - TOTAL 2024 AM_Shift changing days]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart F	Rd_South									
1	L2	121	3.3	0.230	6.4	LOSA	0.9	7.5	0.36	0.63	52.4
3	R2	113	34.5	0.230	7.8	LOSA	0.9	7.5	0.36	0.63	50.6
Appro	ach	234	18.4	0.230	7.0	LOSA	0.9	7.5	0.36	0.63	51.5
East: I	Dysart Ro	d_East									
4	L2	113	35.4	0.179	7.9	LOS A	0.0	0.0	0.00	0.24	62.3
5	T1	194	5.2	0.179	0.0	LOSA	0.0	0.0	0.00	0.24	81.3
Appro	ach	307	16.3	0.179	2.9	NA	0.0	0.0	0.00	0.24	73.1
West:	Peak Do	wns Mine En	trance								
11	T1	19	5.3	0.017	6.4	LOSA	0.1	0.5	0.26	0.77	81.2
12	R2	8	12.5	0.017	8.5	LOS A	0.1	0.5	0.26	0.77	60.7
Appro	ach	27	7.4	0.017	7.0	NA	0.1	0.5	0.26	0.77	73.8
All Vel	hicles	568	16.7	0.230	4.8	NA	0.9	7.5	0.16	0.43	62.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:24 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 3 - TOTAL 2024 PM_Shift changing days]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart F	Rd_South									
1	L2	51	7.8	0.194	6.0	LOSA	0.7	6.1	0.29	0.63	52.1
3	R2	122	31.1	0.194	8.0	LOSA	0.7	6.1	0.29	0.63	50.6
Appro	ach	173	24.3	0.194	7.4	LOSA	0.7	6.1	0.29	0.63	51.0
East: I	Dysart Ro	d_East									
4	L2	111	36.9	0.122	7.4	LOS A	0.0	0.0	0.00	0.36	56.5
5	T1	85	9.4	0.122	0.0	LOSA	0.0	0.0	0.00	0.36	72.3
Appro	ach	196	25.0	0.122	4.2	NA	0.0	0.0	0.00	0.36	62.4
West:	Peak Do	wns Mine En	trance								
11	T1	119	10.1	0.117	8.4	LOS A	0.5	3.5	0.26	0.94	78.0
12	R2	76	2.6	0.117	7.6	LOS A	0.5	3.5	0.26	0.94	59.5
Appro	ach	195	7.2	0.117	8.1	NA	0.5	3.5	0.26	0.94	69.5
All Vel	hicles	564	18.6	0.194	6.5	NA	0.7	6.1	0.18	0.64	60.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:25 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 4 - TOTAL 2024 AM_Shift changing days]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dys	art Rd									
21	L2	3	0.0	0.216	6.4	LOSA	0.9	7.9	0.57	0.81	49.6
23	R2	100	38.0	0.216	11.7	LOS B	0.9	7.9	0.57	0.81	48.0
Appro	ach	103	36.9	0.216	11.5	LOS B	0.9	7.9	0.57	0.81	48.0
Northl	NorthEast: Peak Dov		y_North								
24	L2	337	17.2	0.204	5.8	LOSA	0.0	0.0	0.00	0.57	52.9
25	T1	186	9.1	0.101	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	523	14.3	0.204	3.7	NA	0.0	0.0	0.00	0.37	63.5
South	West: Pea	ak Downs Hv	vy_South	1							
31	T1	51	27.5	0.031	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	2	0.0	0.003	8.0	LOSA	0.0	0.1	0.50	0.61	51.2
Appro	ach	53	26.4	0.031	0.3	NA	0.0	0.1	0.02	0.02	96.5
All Ve	hicles	679	18.7	0.216	4.6	NA	0.9	7.9	0.09	0.41	62.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:26 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 4 - TOTAL 2024 PM_Shift changing days]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Dys	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•										
21	L2	6	0.0	0.366	6.6	LOS A	2.0	16.0	0.56	0.83	50.0
23	R2	215	18.6	0.366	10.8	LOS B	2.0	16.0	0.56	0.83	49.1
Appro	ach	221	18.1	0.366	10.7	LOS B	2.0	16.0	0.56	0.83	49.1
North	East: Peal	k Downs Hw	y_North								
24	L2	203	22.7	0.127	5.8	LOSA	0.0	0.0	0.00	0.57	52.7
25	T1	74	13.5	0.041	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	277	20.2	0.127	4.3	NA	0.0	0.0	0.00	0.42	60.2
South	West: Pea	ak Downs Hv	vy_South	ו							
31	T1	162	15.4	0.091	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
32	R2	7	14.3	0.007	7.0	LOS A	0.0	0.2	0.38	0.58	51.5
Appro	ach	169	15.4	0.091	0.3	NA	0.0	0.2	0.02	0.02	59.6
All Ve	hicles	667	18.3	0.366	5.4	NA	2.0	16.0	0.19	0.46	55.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:26 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 5 - TOTAL 2024 AM_Shift changing days]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
									Prop.					
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h			
North	East: Peal	k Downs Hw		V/C	366		Ven	- '''		pei veii	KIII/II			
25	T1	78	42.3	0.051	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
26	R2	34	8.8	0.029	6.3	LOSA	0.1	0.9	0.28	0.58	52.0			
Appro	ach	112	32.1	0.051	1.9	NA	0.1	0.9	0.09	0.17	78.1			
North\	NorthWest: Morant													
27	L2	129	5.4	0.712	9.8	LOSA	9.9	74.7	0.60	0.88	48.4			
29	R2	447	9.4	0.712	13.4	LOS B	9.9	74.7	0.60	0.88	48.1			
Appro	ach	576	8.5	0.712	12.6	LOS B	9.9	74.7	0.60	0.88	48.2			
South	West: Pea	ak Downs Hv	vy_South	ı										
30	L2	77	18.2	0.047	5.8	LOSA	0.0	0.0	0.00	0.57	52.8			
31	T1	75	50.7	0.051	0.0	LOSA	0.0	0.0	0.00	0.00	100.0			
Appro	ach	152	34.2	0.051	2.9	NA	0.0	0.0	0.00	0.29	68.8			
All Ve	hicles	840	16.3	0.712	9.4	NA	9.9	74.7	0.42	0.68	53.8			

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:27 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 5 - TOTAL 2024 PM_Shift changing days]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
North	East: Pea	k Downs Hw		V/O	300		VCII			per veri	KIII/II
25	T1	82	37.8	0.052	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
26	R2	147	6.8	0.163	7.7	LOSA	0.7	4.9	0.48	0.71	51.2
Appro	ach	229	17.9	0.163	5.0	NA	0.7	4.9	0.31	0.46	62.0
North\	Nest: Mor	ranbah									
27	L2	81	18.5	0.434	7.5	LOSA	2.7	20.8	0.42	0.75	48.8
29	R2	190	11.6	0.434	13.1	LOS B	2.7	20.8	0.42	0.75	48.8
Appro	ach	271	13.7	0.434	11.5	LOS B	2.7	20.8	0.42	0.75	48.8
South	West: Pea	ak Downs Hv	vy_South	ı							
30	L2	303	11.9	0.177	5.7	LOSA	0.0	0.0	0.00	0.57	53.1
31	T1	67	58.2	0.047	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	370	20.3	0.177	4.7	NA	0.0	0.0	0.00	0.47	58.0
All Vel	hicles	870	17.6	0.434	6.9	NA	2.7	20.8	0.21	0.56	55.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:28 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection A - TOTAL 2024 AM_Shift changing days]

Dysart Rd / Proposed Saraji East Mine Entrance Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average												
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South	: Dysart R	d_South											
2	T1	158	6.3	0.084	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
3	R2	66	34.8	0.063	6.6	LOSA	0.3	2.3	0.27	0.58	50.9		
Appro	ach	224	14.7	0.084	2.0	NA	0.3	2.3	0.08	0.17	77.8		
East:	Saraji Min	e Entrance											
4	L2	66	34.8	0.206	6.2	LOS A	0.8	8.0	0.21	0.59	50.4		
6	R2	77	44.2	0.206	10.5	LOS B	8.0	8.0	0.21	0.59	49.7		
Appro	ach	143	39.9	0.206	8.5	LOS A	0.8	8.0	0.21	0.59	50.0		
North:	Dysart Ro	d_North											
7	L2	77	44.2	0.055	6.1	LOSA	0.0	0.0	0.00	0.57	51.8		
8	T1	44	15.9	0.025	0.0	LOSA	0.0	0.0	0.00	0.00	100.0		
Appro	ach	121	33.9	0.055	3.9	NA	0.0	0.0	0.00	0.36	62.7		
All Ve	hicles	488	26.8	0.206	4.3	NA	0.8	8.0	0.10	0.34	63.6		

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:28 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection A - TOTAL 2024 PM_Shift changing days]

Dysart Rd / Proposed Saraji East Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart F	Rd_South									
2	T1	96	8.3	0.052	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
3	R2	66	34.8	0.068	7.0	LOS A	0.3	2.5	0.34	0.61	50.7
Appro	ach	162	19.1	0.068	2.9	NA	0.3	2.5	0.14	0.25	71.6
East:	East: Saraji Mine E										
4	L2	66	34.8	0.211	6.6	LOSA	0.9	8.2	0.36	0.64	50.2
6	R2	77	44.2	0.211	10.5	LOS B	0.9	8.2	0.36	0.64	49.6
Appro	ach	143	39.9	0.211	8.7	LOSA	0.9	8.2	0.36	0.64	49.9
North:	Dysart R	d_North									
7	L2	77	44.2	0.055	6.1	LOSA	0.0	0.0	0.00	0.57	51.8
8	T1	111	9.0	0.060	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	188	23.4	0.060	2.5	NA	0.0	0.0	0.00	0.23	72.3
All Ve	hicles	493	26.8	0.211	4.4	NA	0.9	8.2	0.15	0.35	63.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:29 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2024_v03_WW_190619_.sip7

V Site: [Intersection 1 - TOTAL 2041 AM_Ordinary days]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/r
South	: Dysart R	d_South									
2	T1	523	4.4	0.278	0.0	LOS A	0.0	0.2	0.01	0.01	99.6
3	R2	4	0.0	0.278	7.9	LOS A	0.0	0.2	0.01	0.01	71.5
Approach		527	4.4	0.278	0.1	NA	0.0	0.2	0.01	0.01	99.3
East: Lake Vermont Rd											
4	L2	1	0.0	0.005	5.9	LOS A	0.0	0.2	0.36	0.58	50.9
6	R2	2	50.0	0.005	11.5	LOS B	0.0	0.2	0.36	0.58	48.4
Appro	ach	3	33.3	0.005	9.6	LOSA	0.0	0.2	0.36	0.58	49.2
North:	Dysart Ro	d_North									
7	L2	1	0.0	0.066	7.8	LOSA	0.0	0.0	0.00	0.01	88.3
8	T1	122	6.6	0.066	0.0	LOS A	0.0	0.0	0.00	0.01	99.5
Appro	ach	123	6.5	0.066	0.1	NA	0.0	0.0	0.00	0.01	99.4
All Ve	hicles	653	4.9	0.278	0.1	NA	0.0	0.2	0.01	0.01	98.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:47 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 1 - TOTAL 2041 PM_Ordinary days]

Dysart Rd / Lake Vermont Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart F	Rd_South									
2	T1	240	7.9	0.130	0.0	LOSA	0.0	0.1	0.00	0.00	99.8
3	R2	1	0.0	0.130	8.7	LOSA	0.0	0.1	0.00	0.00	71.5
Appro	ach	241	7.9	0.130	0.0	NA	0.0	0.1	0.00	0.00	99.6
East: I	_ake Verr	mont Rd									
4	L2	9	0.0	0.039	6.6	LOSA	0.1	1.2	0.47	0.66	51.1
6	R2	15	60.0	0.039	10.9	LOS B	0.1	1.2	0.47	0.66	48.3
Appro	ach	24	37.5	0.039	9.3	LOSA	0.1	1.2	0.47	0.66	49.3
North:	Dysart R	d_North									
7	L2	1	0.0	0.170	7.8	LOSA	0.0	0.0	0.00	0.00	88.5
8	T1	318	6.0	0.170	0.0	LOSA	0.0	0.0	0.00	0.00	99.7
Appro	ach	319	6.0	0.170	0.0	NA	0.0	0.0	0.00	0.00	99.7
All Vel	nicles	584	8.0	0.170	0.4	NA	0.1	1.2	0.02	0.03	95.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:48 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 2 - TOTAL 2041 AM_Ordinary days]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
South	: Dysart R	-	/0	V/C	366		VEII	- '''		per veri	KIII/II
2	2 T1 229 5.7 0.122 0.0 LOS A 0.0 0.0 0.00 0.00									99.9	
3	R2	311	4.2	0.241	5.9	LOSA	1.2	8.4	0.23	0.57	53.4
Appro	ach	540	4.8	0.241	3.4	NA	1.2	8.4	0.13	0.33	66.6
East: \$	East: Saraji Mine E										
4	L2	81	1.2	0.110	5.8	LOSA	0.4	3.0	0.16	0.56	53.4
6	R2	17	23.5	0.110	14.1	LOS B	0.4	3.0	0.16	0.56	51.2
Appro	ach	98	5.1	0.110	7.2	LOSA	0.4	3.0	0.16	0.56	53.1
North:	Dysart R	d_North									
7	L2	28	14.3	0.017	5.7	LOSA	0.0	0.0	0.00	0.57	53.0
8	T1	58	13.8	0.032	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	86	14.0	0.032	1.9	NA	0.0	0.0	0.00	0.19	79.6
All Vel	hicles	724	5.9	0.241	3.8	NA	1.2	8.4	0.12	0.34	65.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:48 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 2 - TOTAL 2041 PM_Ordinary days]

Dysart Rd / Existing Saraji Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	Dvsart F	veh/h Rd South	%	v/c	sec		veh	m		per veh	km/h
	· -										100.0
3	R2	121	7.4	0.102	6.2	LOSA	0.4	3.1	0.28	0.59	53.2
Appro	ach	260	8.5	0.102	2.9	NA	0.4	3.1	0.13	0.27	70.9
East: \$	Saraji Mir	e Entrance									
4	L2	219	2.3	0.251	6.3	LOSA	1.1	7.7	0.31	0.60	53.6
6	R2	34	14.7	0.251	10.5	LOS B	1.1	7.7	0.31	0.60	51.8
Appro	ach	253	4.0	0.251	6.9	LOSA	1.1	7.7	0.31	0.60	53.4
North:	Dysart R	d_North									
7	L2	4	25.0	0.003	5.8	LOSA	0.0	0.0	0.00	0.57	52.6
8	T1	144	9.7	0.079	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	148	10.1	0.079	0.2	NA	0.0	0.0	0.00	0.02	97.9
All Vel	nicles	661	7.1	0.251	3.8	NA	1.1	7.7	0.17	0.34	66.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:49 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 3 - TOTAL 2041 AM_Shifting changing days]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart R	Rd_South									
1	L2	143	3.5	0.202	6.5	LOSA	8.0	6.1	0.36	0.63	52.4
3	R2	82	14.6	0.202	7.3	LOSA	8.0	6.1	0.36	0.63	51.4
Appro	ach	225	7.6	0.202	6.8	LOSA	0.8	6.1	0.36	0.63	52.0
East: I	Dysart Rd	I_East									
4	L2	82	15.9	0.170	7.8	LOSA	0.0	0.0	0.00	0.18	71.8
5	T1	228	4.8	0.170	0.0	LOSA	0.0	0.0	0.00	0.18	85.6
Appro	ach	310	7.7	0.170	2.1	NA	0.0	0.0	0.00	0.18	81.4
West:	Peak Dov	wns Mine En	trance								
11	T1	22	4.5	0.020	6.6	LOS A	0.1	0.5	0.27	0.79	80.6
12	R2	10	10.0	0.020	8.3	LOS A	0.1	0.5	0.27	0.79	60.5
Appro	ach	32	6.3	0.020	7.1	NA	0.1	0.5	0.27	0.79	73.0
All Vel	hicles	567	7.6	0.202	4.2	NA	0.8	6.1	0.16	0.39	66.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:50 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 3 - TOTAL 2041 PM_Shifting changing days]

Dysart Rd / Peak Downs Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart R	Rd_South									
1	L2	60	8.3	0.155	6.0	LOSA	0.6	4.4	0.27	0.62	52.3
3	R2	94	11.7	0.155	7.6	LOSA	0.6	4.4	0.27	0.62	51.6
Appro	ach	154	10.4	0.155	7.0	LOSA	0.6	4.4	0.27	0.62	51.8
East: I	Dysart Rd	I_East									
4	L2	80	18.8	0.104	7.4	LOSA	0.0	0.0	0.00	0.29	65.1
5	T1	102	9.8	0.104	0.0	LOSA	0.0	0.0	0.00	0.29	77.3
Appro	ach	182	13.7	0.104	3.3	NA	0.0	0.0	0.00	0.29	71.4
West:	Peak Dov	wns Mine En	trance								
11	T1	141	9.9	0.139	8.4	LOS A	0.6	4.2	0.25	0.95	77.9
12	R2	91	3.3	0.139	7.6	LOS A	0.6	4.2	0.25	0.95	59.4
Appro	ach	232	7.3	0.139	8.1	NA	0.6	4.2	0.25	0.95	69.4
All Vel	hicles	568	10.2	0.155	6.2	NA	0.6	4.4	0.17	0.65	64.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:50 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 4 - TOTAL 2041 AM_Shifting changing days]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dys	art Rd									
21	L2	4	0.0	0.137	6.5	LOS A	0.5	4.1	0.55	0.77	50.1
23	R2	68	16.2	0.137	10.7	LOS B	0.5	4.1	0.55	0.77	49.3
Appro	ach	72	15.3	0.137	10.5	LOS B	0.5	4.1	0.55	0.77	49.3
Northl	East: Pea	k Downs Hw	y_North								
24	L2	348	10.1	0.201	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
25	T1	220	9.1	0.119	0.0	LOSA	0.0	0.0	0.00	0.00	99.9
Appro	ach	568	9.7	0.201	3.5	NA	0.0	0.0	0.00	0.35	64.9
South	West: Pe	ak Downs Hv	vy_South	1							
31	T1	60	26.7	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
32	R2	3	0.0	0.004	8.2	LOS A	0.0	0.1	0.52	0.63	51.1
Appro	ach	63	25.4	0.036	0.4	NA	0.0	0.1	0.02	0.03	95.6
All Ve	hicles	703	11.7	0.201	3.9	NA	0.5	4.1	0.06	0.37	64.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:51 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 4 - TOTAL 2041 PM_Shifting changing days]

Peak Downs Hwy / Dysart Rd Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dys	art Rd									
21	L2	8	0.0	0.335	6.4	LOSA	1.7	12.4	0.55	0.81	50.3
23	R2	203	6.4	0.335	10.3	LOS B	1.7	12.4	0.55	0.81	49.8
Appro	ach	211	6.2	0.335	10.1	LOS B	1.7	12.4	0.55	0.81	49.8
Northl	East: Pea	k Downs Hw	y_North								
24	L2	189	10.6	0.109	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
25	T1	86	12.8	0.048	0.0	LOS A	0.0	0.0	0.00	0.00	100.0
Appro	ach	275	11.3	0.109	3.9	NA	0.0	0.0	0.00	0.39	62.2
South	West: Pea	ak Downs Hv	vy_South	1							
31	T1	192	15.6	0.108	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
32	R2	9	11.1	0.009	6.8	LOSA	0.0	0.3	0.37	0.58	51.6
Appro	ach	201	15.4	0.108	0.3	NA	0.0	0.3	0.02	0.03	59.5
All Ve	hicles	687	10.9	0.335	4.8	NA	1.7	12.4	0.17	0.42	57.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:52 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 5 - TOTAL 2041 AM_Shifting changing days]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
North	East: Pea	k Downs Hw			333					p 6: 16:1	
25	T1	68	22.1	0.040	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
26	R2	40	10.0	0.034	6.1	LOS A	0.1	1.0	0.25	0.57	52.0
Appro	ach	108	17.6	0.040	2.3	NA	0.1	1.0	0.09	0.21	74.5
North\	West: Mor	anbah									
27	L2	154	5.8	0.763	10.4	LOS B	13.4	99.3	0.61	0.86	48.1
29	R2	501	7.6	0.763	13.9	LOS B	13.4	99.3	0.61	0.86	47.8
Appro	ach	655	7.2	0.763	13.1	LOS B	13.4	99.3	0.61	0.86	47.9
South	West: Pea	ak Downs Hv	vy_South	Ì							
30	L2	64	9.4	0.037	5.7	LOS A	0.0	0.0	0.00	0.57	53.2
31	T1	66	33.3	0.041	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	130	21.5	0.041	2.8	NA	0.0	0.0	0.00	0.28	69.7
All Ve	hicles	893	10.5	0.763	10.3	NA	13.4	99.3	0.46	0.70	52.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:52 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection 5 - TOTAL 2041 PM_Shifting changing days]

Peak Downs Hwy / Moranbah Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
NorthE	East: Pea	k Downs Hw	y_North								
25	T1	74	18.9	0.043	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
26	R2	173	6.4	0.193	7.8	LOSA	0.8	5.9	0.50	0.73	51.1
Approa	ach	247	10.1	0.193	5.5	NA	0.8	5.9	0.35	0.51	59.9
NorthV	Vest: Mo	ranbah									
27	L2	96	18.8	0.448	7.4	LOSA	2.8	21.8	0.36	0.72	48.9
29	R2	196	7.1	0.448	13.0	LOS B	2.8	21.8	0.36	0.72	49.1
Approa	ach	292	11.0	0.448	11.2	LOS B	2.8	21.8	0.36	0.72	49.1
South	West: Pe	ak Downs Hv	wy_South	1							
30	L2	331	9.7	0.191	5.7	LOSA	0.0	0.0	0.00	0.57	53.2
31	T1	56	41.1	0.036	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Approa	ach	387	14.2	0.191	4.9	NA	0.0	0.0	0.00	0.49	57.0
All Veh	nicles	926	12.1	0.448	7.0	NA	2.8	21.8	0.20	0.57	54.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:53 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection A - TOTAL 2041 AM_Shifting changing days]

Dysart Rd / Proposed Saraji East Mine Entrance Giveway / Yield (Two-Way)

Mov	OD	rformance Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Dysart R	d_South									
2	T1	186	5.9	0.099	0.0	LOS A	0.0	0.0	0.00	0.00	99.9
3	R2	37	8.1	0.029	5.9	LOSA	0.1	0.9	0.20	0.56	52.2
Appro	ach	223	6.3	0.099	1.0	NA	0.1	0.9	0.03	0.09	86.8
East:	Saraji Min	e Entrance									
4	L2	37	8.1	0.090	5.9	LOS A	0.3	2.7	0.20	0.58	52.1
6	R2	40	15.0	0.090	8.4	LOSA	0.3	2.7	0.20	0.58	51.6
Appro	ach	77	11.7	0.090	7.2	LOSA	0.3	2.7	0.20	0.58	51.9
North:	Dysart Ro	d_North									
7	L2	40	15.0	0.024	5.7	LOS A	0.0	0.0	0.00	0.57	53.0
8	T1	53	17.0	0.030	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	93	16.1	0.030	2.5	NA	0.0	0.0	0.00	0.25	72.3
All Ve	hicles	393	9.7	0.099	2.6	NA	0.3	2.7	0.06	0.22	73.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:53 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

V Site: [Intersection A - TOTAL 2041 PM_Shifting changing days]

Dysart Rd / Proposed Saraji East Mine Entrance Giveway / Yield (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Dysart R	td_South									
2	T1	114	8.8	0.062	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
3	R2	37	8.1	0.032	6.3	LOSA	0.1	0.9	0.28	0.58	52.0
Appro	ach	151	8.6	0.062	1.5	NA	0.1	0.9	0.07	0.14	81.5
East: \$	Saraji Min	e Entrance									
4	L2	37	8.1	0.093	6.2	LOSA	0.4	2.7	0.33	0.60	52.0
6	R2	40	15.0	0.093	8.4	LOSA	0.4	2.7	0.33	0.60	51.5
Appro	ach	77	11.7	0.093	7.4	LOSA	0.4	2.7	0.33	0.60	51.7
North:	Dysart R	d_North									
7	L2	40	15.0	0.024	5.7	LOSA	0.0	0.0	0.00	0.57	53.0
8	T1	130	8.5	0.070	0.0	LOSA	0.0	0.0	0.00	0.00	100.0
Appro	ach	170	10.0	0.070	1.4	NA	0.0	0.0	0.00	0.13	82.6
All Vel	hicles	398	9.8	0.093	2.6	NA	0.4	2.7	0.09	0.23	73.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 9:51:54 AM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\60507031_Saraji_SIDRA_TOTAL 2041_v03_WW_190619_.sip7

🖍 Site: [LC-1 Lake Vermont Rd_Rail crossing 2022 AM Peak_Ordinary]

Existing Lake Vermont Road / Norwich Park Branch Rail Line Open Level Crossing
Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Lake Verm	nont Rd (E)									
8	T1	8	75.0	0.007	2.6	LOSA	0.5	6.1	0.04	0.03	88.3
Appro	ach	8	75.0	0.007	2.6	LOS A	0.5	6.1	0.04	0.03	88.3
West:	Lake Verr	mont Rd (W))								
2	T1	9	55.6	0.007	2.6	LOSA	0.6	6.1	0.04	0.03	88.3
Appro	ach	9	55.6	0.007	2.6	LOSA	0.6	6.1	0.04	0.03	88.3
All Ve	hicles	18	64.7	0.007	2.6	LOSA	0.6	6.1	0.04	0.03	88.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pe	destrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	West Full Crossing	1	1815.7	LOS F	29.7	29.7	1.01	1.01
All Pe	destrians	1	1815.7	LOS F			1.01	1.01

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:56:10 PM

Project: City InstruMonal MAD Designants & Bidel Sarsii 2010 SIDRAM pyral grassings SEMI B Level Crossing Applysis

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2022 with Development_190619.sip7

★ Site: [LC-1 Lake Vermont Rd_Rail crossing 2022 PM Peak_Ordinary]

Existing Lake Vermont Road / Norwich Park Branch Rail Line Open Level Crossing
Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Lake Verm	nont Rd (E)									
8	T1	25	50.0	0.019	2.6	LOSA	1.6	16.0	0.04	0.03	88.1
Appro	ach	25	50.0	0.019	2.6	LOSA	1.6	16.0	0.04	0.03	88.1
West:	Lake Verr	mont Rd (W))								
2	T1	7	71.4	0.006	2.6	LOSA	0.5	5.2	0.04	0.03	88.3
Appro	ach	7	71.4	0.006	2.6	LOSA	0.5	5.2	0.04	0.03	88.3
All Ve	hicles	33	54.8	0.019	2.6	LOSA	1.6	16.0	0.04	0.03	88.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pe	destrians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	West Full Crossing	1	1815.7	LOS F	29.7	29.7	1.01	1.01
All Pe	destrians	1	1815.7	LOS F			1.01	1.01

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:56:10 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2022 with Development 190619.sip7

Mathematical Street Street Mathematical Stree

Existing Dysart Road / Norwich Park Branch Level Crossing

Move	ement Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dysa	art Rd (SE)									
2	T1	66	44.4	0.045	3.1	LOS A	4.6	44.7	0.05	0.04	74.9
Appro	ach	66	44.4	0.045	3.1	LOSA	4.6	44.7	0.05	0.04	74.9
North\	West: Dys	art Rd (NW)									
8	T1	309	16.3	0.181	3.6	LOSA	25.0	199.4	0.05	0.05	74.1
Appro	ach	309	16.3	0.181	3.6	LOSA	25.0	199.4	0.05	0.05	74.1
All Ve	hicles	376	21.3	0.181	3.5	LOSA	25.0	199.4	0.05	0.05	74.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	ement Performance - Pedes	trians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1	SouthEast Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00
All Pe	destrians	53	3588.0	LOS F			2.00	2.00

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:56:11 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2022 with Development 190619.sip7

Mathe Site: [LC-2 Dysart Rd_Rail crossing 2022 PM Peak_Shift changing] ■ Mathematical Properties ■ Mathematical Properties

Existing Dysart Road / Norwich Park Branch Level Crossing

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dysa	art Rd (SE)									
2	T1	187	16.9	0.110	3.5	LOS A	14.4	115.0	0.05	0.05	74.2
Appro	ach	187	16.9	0.110	3.5	LOSA	14.4	115.0	0.05	0.05	74.2
North\	Nest: Dys	art Rd (NW)									
8	T1	176	21.6	0.106	3.5	LOSA	13.4	111.2	0.05	0.05	74.3
Appro	ach	176	21.6	0.106	3.5	LOSA	13.4	111.2	0.05	0.05	74.3
All Ve	hicles	363	19.1	0.110	3.5	LOSA	14.4	115.0	0.05	0.05	74.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	SouthEast Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:56:11 PM
Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2022 with Development 190619.sip7

Site: [LC-A Proposed Access_Rail crossing 2022 AM Peak_Ordinary / Shift changing]

Proposed Access B / Norwich Park Branch Level Crossing

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Proposed	Access B (E	Ξ)								
8	T1	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
Appro	ach	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
West:	Proposed	Access B (W)								
2	T1	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
Appro	ach	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
All Ve	hicles	147	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:56:12 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2022 with Development 190619.sip7

Site: [LC-A Proposed Access_Rail crossing 2022 PM Peak_Ordinary / Shift changing]

Proposed Access B / Norwich Park Branch Level Crossing

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Proposed	Access B (E	Ξ)								
8	T1	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
Appro	ach	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
West:	Proposed	Access B (W)								
2	T1	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
Appro	ach	74	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8
All Ve	hicles	147	62.9	0.055	3.2	LOSA	5.2	55.9	0.05	0.04	70.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:56:12 PM Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2022 with Development 190619.sip7

🖍 Site: [LC-1 Lake Vermont Rd_Rail crossing 2024 AM Peak_Ordinary]

Existing Lake Vermont Road / Norwich Park Branch Rail Line Open Level Crossing
Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Lake Verm	nont Rd (E)									
8	T1	14	84.6	0.012	2.6	LOSA	0.9	10.4	0.04	0.03	88.2
Appro	ach	14	84.6	0.012	2.6	LOSA	0.9	10.4	0.04	0.03	88.2
West:	Lake Verr	mont Rd (W)									
2	T1	15	71.4	0.012	2.6	LOSA	0.9	10.4	0.04	0.03	88.2
Appro	ach	15	71.4	0.012	2.6	LOSA	0.9	10.4	0.04	0.03	88.2
All Ve	hicles	28	77.8	0.012	2.6	LOSA	0.9	10.4	0.04	0.03	88.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	1	1815.7	LOS F	29.7	29.7	1.01	1.01				
All Pe	destrians	1	1815.7	LOS F			1.01	1.01				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:58:30 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2024 with Development 190619.sip7

★ Site: [LC-1 Lake Vermont Rd_Rail crossing 2024 PM Peak_Ordinary]

Existing Lake Vermont Road / Norwich Park Branch Rail Line Open Level Crossing
Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Lake Verm	nont Rd (E)									
8	T1	31	58.6	0.023	2.6	LOSA	1.9	20.4	0.04	0.03	88.1
Appro	ach	31	58.6	0.023	2.6	LOSA	1.9	20.4	0.04	0.03	88.1
West:	Lake Verr	mont Rd (W)									
2	T1	13	83.3	0.011	2.6	LOSA	0.8	9.5	0.04	0.03	88.2
Appro	ach	13	83.3	0.011	2.6	LOSA	0.8	9.5	0.04	0.03	88.2
All Ve	hicles	43	65.9	0.023	2.6	LOSA	1.9	20.4	0.04	0.03	88.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	1	1815.7	LOS F	29.7	29.7	1.01	1.01				
All Pe	destrians	1	1815.7	LOS F			1.01	1.01				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:58:31 PM

Project: C:\Ulcor\

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2024 with Development 190619.sip7

Site: [LC-2 Dysart Rd_Rail crossing 2024 AM Peak_Shift changing]

Existing Dysart Road / Norwich Park Branch Level Crossing

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dysa	art Rd (SE)									
2	T1	108	36.9	0.071	3.2	LOSA	7.8	71.5	0.05	0.04	74.7
Appro	ach	108	36.9	0.071	3.2	LOSA	7.8	71.5	0.05	0.04	74.7
North\	Nest: Dys	art Rd (NW))								
8	T1	357	17.1	0.210	3.7	LOSA	29.8	239.3	0.06	0.05	73.9
Appro	ach	357	17.1	0.210	3.7	LOSA	29.8	239.3	0.06	0.05	73.9
All Vel	hicles	465	21.7	0.210	3.6	LOSA	29.8	239.3	0.05	0.05	74.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	SouthEast Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Monday, 24 June 2019 7:51:59 AM
Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2024 with Development 190619.sip7

Mathe Site: [LC-2 Dysart Rd_Rail crossing 2024 PM Peak_Shift changing] ■ Mathematical Properties ■ Mathematical Properties

Existing Dysart Road / Norwich Park Branch Level Crossing

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dys	art Rd (SE)									
2	T1	233	18.1	0.138	3.6	LOSA	18.4	148.5	0.05	0.05	74.1
Appro	ach	233	18.1	0.138	3.6	LOSA	18.4	148.5	0.05	0.05	74.1
North\	West: Dys	art Rd (NW)									
8	T1	221	22.4	0.134	3.6	LOSA	17.4	145.1	0.05	0.05	74.1
Appro	ach	221	22.4	0.134	3.6	LOSA	17.4	145.1	0.05	0.05	74.1
All Ve	hicles	454	20.2	0.138	3.6	LOSA	18.4	148.5	0.05	0.05	74.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	SouthEast Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:58:32 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2024 with Development 190619.sip7

Site: [LC-A Proposed Access_Rail crossing 2024 PM Peak_Ordinary / Shift changing]

Proposed Access B / Norwich Park Branch Level Crossing

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	East: Proposed Access B (E)										
8	T1	151	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4
Appro	ach	151	39.9	0.100	3.3	LOS A	11.1	104.4	0.05	0.04	70.4
West:	Proposed	Access B (\	W)								
2	T1	151	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4
Appro	ach	151	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4
All Ve	hicles	301	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:58:33 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2024 with Development 190619.sip7

★ Site: [LC-A Proposed Access_Rail crossing 2024 AM Peak_Ordinary / Shift changing]

Proposed Access B / Norwich Park Branch Level Crossing

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	East: Proposed Access B (E)										
8	T1	151	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4
Appro	ach	151	39.9	0.100	3.3	LOS A	11.1	104.4	0.05	0.04	70.4
West:	Proposed	Access B (\	W)								
2	T1	151	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4
Appro	ach	151	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4
All Ve	hicles	301	39.9	0.100	3.3	LOSA	11.1	104.4	0.05	0.04	70.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 1:58:32 PM Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2024 with Development 190619.sip7

🖍 Site: [LC-1 Lake Vermont Rd_Rail crossing 2041 AM Peak_Ordinary]

Existing Lake Vermont Road / Norwich Park Branch Rail Line Open Level Crossing
Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
East:	Lake Verm	nont Rd (E)										
8	T1	3	33.3	0.002	2.6	LOSA	0.2	1.8	0.04	0.03	88.3	
Appro	ach	3	33.3	0.002	2.6	LOSA	0.2	1.8	0.04	0.03	88.3	
West:	Lake Verr	mont Rd (W)										
2	T1	5	0.0	0.003	2.6	LOSA	0.3	2.3	0.04	0.03	88.3	
Appro	ach	5	0.0	0.003	2.6	LOSA	0.3	2.3	0.04	0.03	88.3	
All Ve	hicles	8	12.5	0.003	2.6	LOSA	0.3	2.3	0.04	0.03	88.3	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	1	1815.7	LOS F	29.7	29.7	1.01	1.01				
All Pe	destrians	1	1815.7	LOS F			1.01	1.01				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 2:01:38 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2041 with Development 190619.sip7

🛕 Site: [LC-1 Lake Vermont Rd_Rail crossing 2041 PM Peak_Ordinary]

Existing Lake Vermont Road / Norwich Park Branch Rail Line Open Level Crossing
Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East:	Lake Vern	nont Rd (E)									
8	T1	25	37.5	0.017	2.6	LOSA	1.6	14.8	0.04	0.03	88.2
Appro	ach	25	37.5	0.017	2.6	LOSA	1.6	14.8	0.04	0.03	88.2
West:	Lake Veri	mont Rd (W)									
2	T1	2	0.0	0.001	2.6	LOS A	0.1	0.9	0.04	0.03	88.3
Appro	ach	2	0.0	0.001	2.6	LOSA	0.1	0.9	0.04	0.03	88.3
All Ve	hicles	27	34.6	0.017	2.6	LOSA	1.6	14.8	0.04	0.03	88.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	1	1815.7	LOS F	29.7	29.7	1.01	1.01				
All Pe	destrians	1	1815.7	LOS F			1.01	1.01				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 2:01:39 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2041 with Development 190619.sip7

Mathematical Street Street Mathematical Stree

Existing Dysart Road / Norwich Park Branch Level Crossing

Move	ment Pe	rformance	- Vehic	les							
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: Dysa	art Rd (SE)									
2	T1	75	15.5	0.044	3.1	LOSA	5.2	41.2	0.05	0.04	74.9
Appro	ach	75	15.5	0.044	3.1	LOSA	5.2	41.2	0.05	0.04	74.9
North\	West: Dys	art Rd (NW)									
8	T1	369	10.0	0.208	3.7	LOSA	30.8	234.1	0.06	0.05	73.9
Appro	ach	369	10.0	0.208	3.7	LOSA	30.8	234.1	0.06	0.05	73.9
All Ve	hicles	444	10.9	0.208	3.6	LOSA	30.8	234.1	0.05	0.05	74.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	SouthEast Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 2:01:39 PM Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2041 with Development 190619.sip7

Mathe Site: [LC-2 Dysart Rd_Rail crossing 2041 PM Peak_Shift changing] ■ Mathematical PM Peak Shift Changing ■ Mathematical PM P

Existing Dysart Road / Norwich Park Branch Level Crossing

Move	Movement Performance - Vehicles											
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	East: Dysa	art Rd (SE)										
2	T1	221	6.2	0.122	3.6	LOSA	17.1	126.4	0.05	0.05	74.2	
Appro	ach	221	6.2	0.122	3.6	LOSA	17.1	126.4	0.05	0.05	74.2	
North\	West: Dys	art Rd (NW)										
8	T1	207	10.7	0.117	3.5	LOSA	16.0	122.3	0.05	0.05	74.2	
Appro	ach	207	10.7	0.117	3.5	LOSA	16.0	122.3	0.05	0.05	74.2	
All Ve	hicles	428	8.4	0.122	3.6	LOSA	17.1	126.4	0.05	0.05	74.2	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	SouthEast Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 2:01:40 PM Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2041 with Development 190619.sip7

★ Site: [LC-A Proposed Access_Rail crossing 2041 AM Peak_Ordinary / Shift changing]

Proposed Access B / Norwich Park Branch Level Crossing

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Movement Performance - Vehicles												
Mov	OD	Demand Flows		Deg. Average		Level of	95% Back of Queue		Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
East:	Proposed	d Access B (E	<u>:</u>)									
8	T1	82	12.8	0.047	3.1	LOS A	5.7	44.5	0.05	0.04	70.9	
Appro	ach	82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
West:	Proposed	d Access B (\	W)									
2	T1	82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
Appro	ach	82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
All Ve	hicles	164	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 2:01:40 PM Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2041 with Development 190619.sip7

Site: [LC-A Proposed Access_Rail crossing 2041 PM Peak_Ordinary / Shift changing]

Proposed Access B / Norwich Park Branch Level Crossing

Pedestrian Crossing (Signals) - Fixed Time Isolated Cycle Time = 3600 seconds (User-Given Phase Times)

Movement Performance - Vehicles												
Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
East:	Proposed	Access B (E	Ξ)									
8	T1	82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
Approach		82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
West:	Proposed	Access B (W)									
2	T1	82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
Appro	ach	82	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	
All Ve	hicles	164	12.8	0.047	3.1	LOSA	5.7	44.5	0.05	0.04	70.9	

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

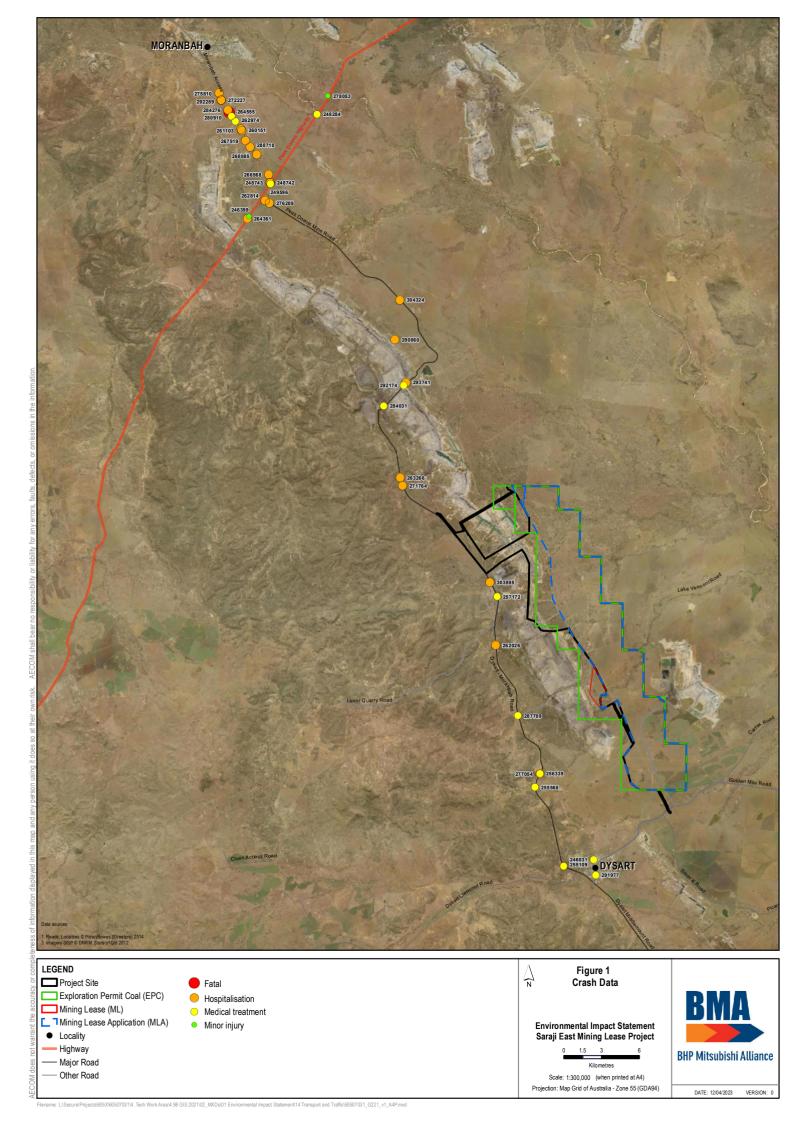
Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Move	Movement Performance - Pedestrians											
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped				
P1	West Full Crossing	53	3588.0	LOS F	2931.2	2931.2	2.00	2.00				
All Pe	destrians	53	3588.0	LOS F			2.00	2.00				


Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AECOM AUSTRALIA PTY LTD | Processed: Thursday, 20 June 2019 2:01:41 PM

Project: C:\Users\WongW4\Documents\2. Projects & Bids\Saraji 2019\SIDRA\Level crossings\SEMLP Level Crossing Analysis Future Year 2041 with Development 190619.sip7

Appendix F

Crash Data

	Mining Lease P								
		o June 2017) in Study Ar Crash Day Of Week		Crash Street	Crash Nature	Crash Type	Crash Severity	Crash DCA Description	Crash_DCA_Group_Description
2012	June	Wednesday	5	Hannah Cres	Hit pedestrian			Ped'N: Hit Facing Traffic	Pedestrian
2012	June	Sunday	19	Peak Downs Hwv	Hit obiect	Single Vehicle		Off Path-Straight:Right Off Cway Hit Obj	Off carriageway on straight hit object
2012	August	Tuesday	7	Peak Downs Hwy	Hit object			Off Path-Straight:Right Off Cway Hit Obj	Off carriageway on straight hit object
2012	August	Tuesday	5	Moranbah Access Rd	Rear-end	Multi-Vehicle	Hospitalisation	Veh'S Same Direction: Rear End	Rear-end
2012	August	Tuesday	5	Moranbah Access Rd	Rear-end	Multi-Vehicle	Hospitalisation	Veh'S Same Direction: Rear End	Rear-end
2012	September	Wednesday	4	Moranbah Access Rd	Hit object		Medical treatment	Off Path-Curve: Off Cway Lt Bend Hit Obj	Off carriageway on curve hit object
2012	March	Tuesday	6	Peak Downs - Dysart Rd	Rear-end	Multi-Vehicle	Medical treatment	Veh'S Same Direction: Rear End	Rear-end
2013	March	Monday	15	Peak Downs - Dysart Rd	Overturned		Medical treatment	Off Path-Curve: Other	Other
2013	April	Wednesday	6	Peak Downs - Dysart Rd	Rear-end	Multi-Vehicle	Medical treatment	Veh'S Same Direction: Rear End	Rear-end
2013	May		14			Single Vehicle	Medical treatment	Veh'S On Path: Temporary Object On C'Way	Other
		Thursday		Peak Downs - Dysart Rd	Hit object	Other			Hit animal
2013	July	Monday	18	Moranbah Access Rd	Hit animal		Hospitalisation	Pass & Misc: Hit Animal	
2013	August	Friday	0	Moranbah Access Rd	Hit object		Hospitalisation	Off Path-Straight: Other	Other
2013	September	Tuesday	22	Peak Downs - Dysart Rd	Overturned		Hospitalisation	Off Path-Straight: Other	Other
2013	October	Wednesday	18	Peak Downs - Dysart Rd	Hit object		Hospitalisation	Veh'S Overtaking: Out Of Control	Off carriageway on straight
2013	October	Monday	18	Moranbah Access Rd	Fall from vehicle		Medical treatment	Pass & Misc: Fell In/From Vehicle	Other
2013	October	Tuesday	4	Peak Downs - Dysart Rd	Hit object		Hospitalisation	Veh'S Overtaking: Other	Other
2013	November	Saturday	17	Peak Downs Hwy	Overturned		Hospitalisation	Off Path-Straight:Right Off Cway Hit Obj	Off carriageway on straight hit object
2013	November	Friday	17	Moranbah Access Rd	Overturned		Medical treatment	Off Path-Straight:Right Off Cway Hit Obj	Off carriageway on straight hit object
2014	January	Friday	21	Moranbah Access Rd	Head-on	Multi-Vehicle	Hospitalisation	Veh'S Opposite Approach: Head On	Head-on
2014	February	Saturday	22	Moranbah Access Rd	Overturned		Hospitalisation	Off Path-Straight: Right Off Cway	Off carriageway on straight
2014	April	Tuesday	23	Moranbah Access Rd	Overturned		Hospitalisation	Off Path-Straight:Out Of Control On Cway	Out of control on straight
2014	June	Friday	2	Peak Downs - Dysart Rd	Overturned	Single Vehicle	Hospitalisation	Off Path-Curve: Off Cway Left Bend	Off carriageway on curve
2014	July	Thursday	9	Moranbah Access Rd	Hit object	Single Vehicle	Hospitalisation	Off Path-Curve: Off Cway Rt Bend Hit Obj	Off carriageway on curve hit object
2014	October	Wednesday	21	Invalid Street From Police	Hit animal	Other	Hospitalisation	Pass & Misc: Hit Animal	Hit animal
2014	October	Wednesday	5	Peak Downs - Dysart Rd	Angle	Multi-Vehicle	Hospitalisation	Veh'S Same Direction: Right Turn S/Swipe	Parallel lanes turning
2014	November	Thursday	18	Peak Downs - Dysart Rd	Overturned	Single Vehicle	Hospitalisation	Off Path-Curve: Off Cway Right Bend	Off carriageway on curve
2014	December	Thursday	23	Peak Downs Hwy	Overturned	Single Vehicle	Minor injury	Off Path-Straight:Out Of Control On Cway	Out of control on straight
2015	March	Friday	4	Moranbah Access Rd	Head-on	Multi-Vehicle	Fatal	Veh'S Opposite Approach: Head On	Head-on
2015	June	Wednesday	5	Peak Downs - Dysart Rd	Rear-end	Multi-Vehicle	Medical treatment	Veh'S Same Direction: Rear End	Rear-end
2015	June	Friday	16	Moranbah Access Rd	Overturned	Single Vehicle	Hospitalisation	Off Path-Straight: Left Off Cway	Off carriageway on straight
2015	October	Wednesday	5	Peak Downs - Dysart Rd	Rear-end	Multi-Vehicle	Medical treatment	Veh'S Same Direction: Rear End	Rear-end
2015	November	Friday	5	Moranbah Access Rd	Hit object	Single Vehicle	Hospitalisation	Off Path-Straight:Right Off Cway Hit Obj	Off carriageway on straight hit object
2016	January	Friday	11	Peak Downs - Dysart Rd	Overturned		Hospitalisation	Off Path-Curve: Off Cway Right Bend	Off carriageway on curve
2016	February	Saturday	21	Beardmore Cres	Hit object		Medical treatment	Off Path-Straight:Right Off Cway Hit Obj	Off carriageway on straight hit object
2016	February	Friday	7	Peak Downs - Dysart Rd	Hit object		Medical treatment	Off Path-Straight: Other	Other
2016	February	Monday	17	Moranbah Access Rd	Hit object		Hospitalisation	Off Path-Curve: Off Cway Rt Bend Hit Obj	Off carriageway on curve hit object
2016	April	Tuesday	16	Peak Downs - Dysart Rd	Rear-end	Multi-Vehicle	Hospitalisation	Veh'S Same Direction: Rear End	Rear-end
2017	February	Thursday	5	Peak Downs - Dysart Rd	Hit object		Hospitalisation	Off Path-Straight: Left Off Cway Hit Obj	Off carriageway on straight hit object
2017	February	Wednesday	6	Peak Downs - Dysart Rd	Hit object		Hospitalisation	Off Path-Straight: Left Off Cway Hit Obj	Off carriageway on straight hit object
2011	i oblualy	vvcuiiesuay	•	r can Downs - Dysait Nu	i iii objeci	Onlyle verille	i iospitalisatioi i	On Fain Graight. Left On Gway Filt Obj	On carriageway on straight hit object

Appendix G

Level Crossing Concept Design

Prepared for BMA Alliance Coal Operations Pty Ltd ABN: 67 096 412 752 **AECOM**

Rail Interface Concept Design

01-Apr-2022 Saraji East Mining Lease Project Doc No. REP-00001

Rail Interface Concept Design

Client: BMA Alliance Coal Operations Pty Ltd

ABN: 67 096 412 752

Prepared by

AECOM Australia Pty LtdLevel 1, 130 Victoria Parade, PO Box 1049, Rockhampton QLD 4700, Australia T +61 7 4927 5541 F +61 7 4927 1333 www.aecom.com
ABN 20 093 846 925

01-Apr-2022

Job No.: 60676090

AECOM in Australia and New Zealand is certified to ISO9001, ISO14001 and ISO45001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document Rail Interface Concept Design

Ref 60676090

Date 01-Apr-2022

Prepared by Matthew Huff

Reviewed by Alan Bolton

Revision History

Rev	Revision Date	Details	Authorised		
	Nevision Date	Details	Name/Position	Signature	
В	01-Apr-2022	Final Issue	Chris Brown Project Manager	4	

Table of Contents

1.0	Execu	utive Summary	1
2.0		ct Overview	2
	2.1	Project Background	2 2
	2.2	Purpose of the Report	4
	2.3	Referenced Data	4
	2.4	Abbreviations	4
	2.5	Limitations	4
	2.6	Exclusions	4
	2.7	Assumptions	5
3.0	Targe	et Design Criteria	6
	3.1	General Criteria	6
	3.2	Cross Section	6
	3.3	Intersection	7
	3.4	Rail Level Crossing	8
4.0	Mine A	Access Location	8 9 9
	4.1	Alignment Constraints	9
	4.2	Short Stacking Assessment	11
	4.3	Horizontal Alignment Shift	12
5.0	Inters	section Development	12
6.0	Conce	ept Cost Estimate	13
7.0	Concl	lusions	14
8.0	Recor	mmendations	14
Apper	ndix A		
	Conce	ept Drawings	A
Apper	ndix B		
	Conce	ept Cost Estimate	В

1

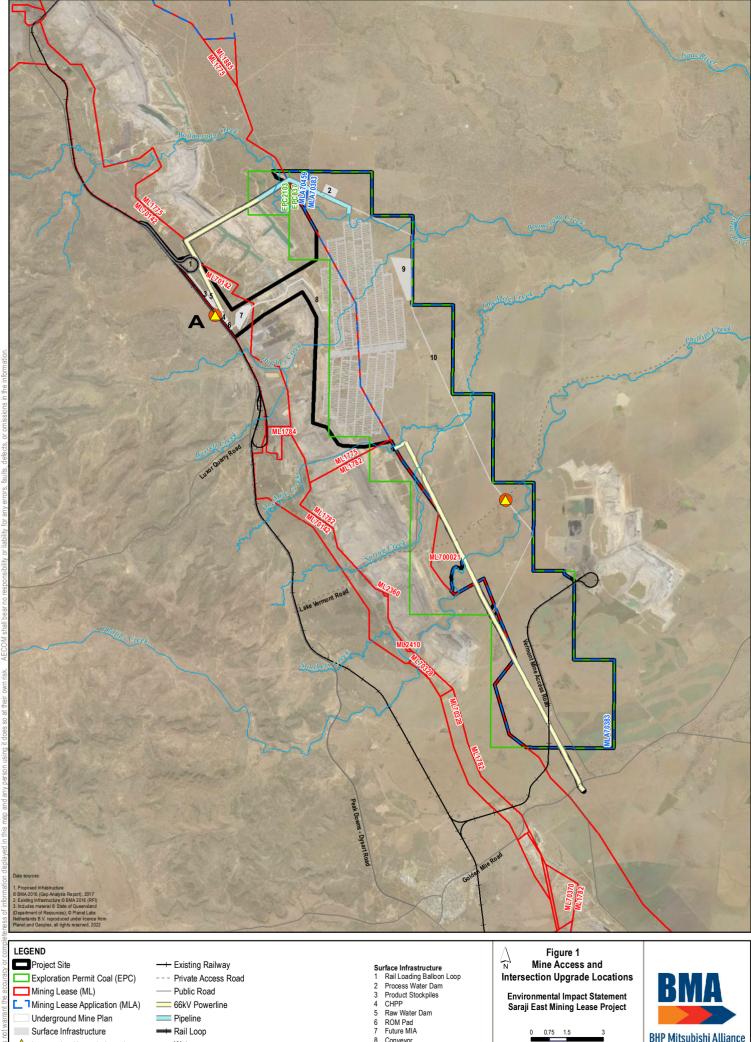
1.0 Executive Summary

AECOM Australia Pty Ltd was engaged by BMA Coal Alliance Operations Pty Ltd (BMA) to undertake a concept design for a rail level crossing for a proposed new access to the Saraji Mine. The concept design was undertaken in response to the Queensland Department of Transport and Main Roads (TMR) queries to a broader Environmental Impact Statement (EIS) for the Saraji East Mining Lease expansion project. The TMR queries specific to this report related to the geometric requirements for safe operation of a rail level crossing by demonstrating that there is space between the existing roadway (Saraji Road) and the existing rail line (Goonyella System Rail line) to facilitate safe storage and turning paths for vehicles at the intersection and rail crossing.

The concept design was undertaken in two phases; identifying a suitable access location in the vicinity of the location nominated in the EIS and preparing a concept design for the intersection. The initial phase to identify a suitable location highlighted that there was insufficient space between the existing roadway and rail line to accommodate traffic stopped at a rail level crossing (referred to as "short stacking by TMR). To meet current road design standards, the existing roadway would need to incorporate a horizontal shift to the west of approximately 10m. This shift can be accommodated within the existing road reserve.

The design undertaken for the intersection is only at a concept level and a series of recommendations, including topographic survey, has been made to assist the progression of this project through to subsequent stages of design.

2.0 Project Overview


2.1 Project Background

The project is a greenfield single-seam underground mine development located in the Bowen Basin, approximately 30 kilometres (km) north of Dysart, and has the capacity to produce up to eight million tonnes per annum of product coal.

Recently the Saraji East Mining Lease Project (the project) Environmental Impact Statement (EIS) was publicly notified as a part of the process to allow an Environmental Authority (EA) to be granted for the Mining Lease Applications (MLA) 70383 and MLA 70459.

The project incorporated a new access to the mine from Saraji Road and crossed the Goonyella System Rail Line (refer to proposed Access Point A in Figure 1). During the EIS public notification period the Department of Transport and Main Roads (DTMR) made a submission which BMA will respond to through a revised EIS. DTMR have requested the supply of the following additional design information:

- Demonstrate sufficient clearance between each railway level crossing and the relevant intersection/vehicular access location to allow the maximum size of vehicle used in the operation to queue. The minimum clearance required is the design vehicle plus a safety factor of 5 metres (m) from the edge running rail (of the closest railway track) as per Section 5.4 Short Stacking and Figure 3.2 Yellow Box Marking of AS1742.7:2016 Manual of Uniform Traffic Control Devices, Part 7: Railway plus the length of the maximum design vehicle.
- Provide a plan accurately showing the available clearance between the railway level crossing and
 relevant intersection/access point and demonstrate how the maximum vehicle length can be
 accommodated along with the 5m setback from the closest track. Additionally, the vehicle must not
 encroach on any safety controls, such as pavement marking (for example, box marking), for the
 railway level crossing or road.
- Provide a RPEQ certified swept path analysis based on the maximum design vehicle for turns in and out of the railway level crossing. Over-dimensional Road Loads: Under the Transport Infrastructure (Rail) Regulation 2006, permission from the Railway Manager (Aurizon) is required to take over-dimensional road loads across Aurizon Infrastructure (e.g. rail level crossings). Further information can be obtained from Aurizon's website at: https://www.aurizon.com.au/what-we-deliver/network/over-dimensional-road-loads

Exploration Permit Coal (EPC)

Mining Lease (ML)

■ Mining Lease Application (MLA)

Underground Mine Plan Surface Infrastructure

△ Intersection Upgrade Locations Entry/Access points and crossings Private Access Road

Public Road

=== 66kV Powerline Pipeline

Rail Loop Watercourse

- Conveyor
 Construction Village
 Transport and Infrastructure Corridor

Intersection Upgrade Locations

Environmental Impact Statement Saraji East Mining Lease Project

Scale: 1:158.094 (when printed at A4) Projection: Map Grid of Australia - Zone 55 (GDA94)

DATE: 16/05/2023 VERSION: 5

2.2 Purpose of the Report

The objective of this report is to record the concept design process undertaken for a new rail level crossing to the Saraji Mine Site to address the concerns raised by DTMR as part of the EIS process.

As this report is limited to concept design, a series of recommendations have been included to capture issues that need to be carried through to subsequent stages of design development.

2.3 Referenced Data

Table 1 Data Sources

Data Identifier	Source
Chainages	Queensland Globe
Cadastre	Queensland Globe

2.4 Abbreviations

Table 2 Abbreviations

Abbreviation	Description
DTMR	Queensland Department of Transport and Main Roads
AECOM	AECOM Australia Pty Ltd
IRC	Isaac Regional Council
IFC	Issued for Construction
MUTCD	Manual of Uniform Traffic Control Devices
MRTS	Main Road Technical Specification
PUP	Public Utility Plant
EIS	Environmental Impact Study

2.5 Limitations

The report and concept design has the following limitations:

- No survey was utilised for the concept design. The concept design is limited to only layout design
 overlaid on publicly available aerial imagery. In the absence of survey data, qualitative assessment
 regarding vertical geometry have been derived from available public imagery on Google Street
 view. A series of recommendations to progress the project into detailed design, including survey,
 have been included in Section 8.0 below.
- Cost estimates have been developed from recent experience and rates for similar projects. Project specific quotes have not been sourced for this report.

2.6 Exclusions

The project is limited to concept design and many of the items excluded need to be undertaken as the project progresses in a detailed design phase. These recommended items are captured in Section 8.0 below. Additionally, some of these items, including liaison with municipal authorities and traffic studies have been undertaken as part of the broader EIS project, however they are not pertinent to this report.

The following items have been excluded from the scope of this report:

- No traffic or hydraulic modelling has been undertaken for the project.
- No liaison with local municipal, road or rail authorities has been undertaken.

- No electrical design (lighting, rail signals) has been undertaken.
- No ALCAM assessment has been undertaken.
- No environmental investigations were included in the scope.
- No pavement design was included in the scope.
- No geotechnical investigations or design was included in the scope.

2.7 Assumptions

No intersection modelling has been undertaken as part of this works covered under this report. It was noted that the existing Saraji Mine Access 5.5km to the south of the proposed new access location has a very long right turn lane (650m) associated with it. It has been assumed that this has been designed to cater for traffic at shift changes and when the rail crossing is closed for a passing train. When assessing the suitability of a new access location, the new intersection was assumed to require the same sized intersection as the existing mine access to replicate the traffic storage requirements of shift change and when the rail crossing is closed for a passing train. Utilising the long right turn lane allows for a "worst case scenario" with regards to space proofing and assessing impacts to existing road and rail assets. This was particularly pertinent with the presence of the Hughes Creek bridge and other drainage structures. The length of turn lanes, road lighting and other items assumed for this report will be refined in the detailed design phase of the project.

The Concept Design assumes the following:

- The sizing of the intersection (auxiliary lane lengths) has been adopted from the existing access which is located 5.5 kilometres to the south of the proposed new intersection.
- The existing mine access intersection has a posted speed limit of 80km/h. This has been adopted for the proposed intersection.
- All works to be contained within the existing road reserve.
- The access will match the existing height of the rail crossing. No geometric changes proposed to the rail.

3.0 Target Design Criteria

3.1 General Criteria

The base design parameters for this project are displayed in Table 3. The project has been designed in accordance with TMR's Road Planning and Design Manual (RPDM). This is the standard for rural road design in Queensland. The RPDM is a strongly cross referenced with the Austroads Guide to Road Design (AGRD), which is why is has also been referenced in Table 3.

Table 3 Base Design Parameters

Criteria	Functional Characteristics (Specification)	Reference
519 Peak Downs – Dysart Road (S	Saraji Road)	
Road Authority	Isaac Regional Council	
Maintenance Operator	Isaac Regional Council	
Road Classification	Rural Arterial Road Class 3 – Route Classification C	IRC Road Register Table 4.2 AGRD Part 1
Design Speed	Intersection - 90 km/h Approaches – 110km/h	Assumed from posted speed at existing intersection.
Posted Speed	Intersection - 80 km/h Approaches – 100km/h	Assumed from posted speed at existing intersection.
Design Vehicle	36.5m (Type 1 Road Train)	Current Road Designation (Qld Globe 2- 3 -2021)
AADT	600 veh/day (2016 Count)	EIS Traffic Report
Land Tenure Considerations	Desirable to keep all works within the existing rad reserve.	
Active Transport Inclusions	Nil	Rural arterial road with no existing active transport facilities.
Parking	Nil	
Over Size / Over Mass Considerations	10m Wide Check Vehicle	This accounts for occasional deliveries of dump truck trays and bodies.
Flood Immunity	Out of Scope	
Road Lighting	Required for the intersection	Existing intersection is fully lit.

3.2 Cross Section

The cross-section design parameters for this project are displayed in Table 4. These cross-section parameters are standard for a rural road design in Queensland in line with the Road Planning and Design Manual and Austroads Guide to Road Design. Some of items such as Clear Zone width are calculated based on the general parameters listed above.

Table 4 Cross Section Criteria

Item	Functional Characteristics (Specification)	Reference
519 Peak Downs – Dysart Road	(Saraji Road)	
Clear Zone Width	5.5m (Assumed batter slope of 1:5 to 1:4)	RPDM Part 6 – Table 6-2
Traffic Lane Width (excluding curve widening)	3.5m	RPDM Part 3- Clause 4.2.5 AGRD Part 3 - Table 4.3
Turn Lane Width (excluding curve widening)	3.5m	AGRD Part 3 Figure 4.31 AGRD Part 4A Figure 7.8 AGRD Part 4A Figure 8.6
Bicycle Lane Width (on-road)	N/A	AGRD Part 3 –Table 4.18
Shoulder Width	Minimum 0.5m	AGRD Part 3 Table 4.7
General Crossfall	3% (Bituminous sprayed seal)	AGRD Part 3 – Table 4.2
Maximum Superelevation	6%	AGRD Part 3 – Table 7.8
Pavement Extents	Full width pavement Asphalt required for the throat of the intersection.	
Side Roads		

Rail Crossing on side road. Deceleration distances for turning lanes to assume vehicles are to come to a complete stop to account for rail crossing.

3.3 Intersection

With reference to the assumptions noted in Section 2.7 above. The geometry of the intersection has been adopted to align with the requirements of the existing mine access 5.5km to the south of proposed new location. The intersection has a channelised right turn with a painted median that is 650m long. This is a very long right turn lane on a rural intersection, and it is assumed that this is to address the traffic peaks created by shift change at the mine. The intersection also has a 160m long left turn auxiliary lane. The intersection has full road lighting.

3.4 Rail Level Crossing

The new rail crossing level crossing has been assumed to be signalised rail crossing with boom gates, as per the corresponding crossing to the south. Whilst there are various other criteria that are applied to rail level crossing, the concept design has focussed on the short stacking requirements.

Table 5 Rail Level Crossing Criteria

Item	Functional Characteristics (Specification)	Reference
Boom Gate Clearance from the nearest rail	3.5m	Figure 4.7 AS1742.7: 2016.
Stop line setback from boom gates	3m	Figure 4.7 AS1742.7: 2016.
Design Vehicle	Type 1 Road Train – 36.5m Length	
Factor of Safety for short stacking	5m	Clause 5.4 AS1742.7: 2016.
Total minimum length required for Short Stacking (nearest rail to edge line of the nearest traffic lane)	48m	Clause 5.4 AS1742.7: 2016.

4.0 Mine Access Location

Whilst an access location has been indicatively nominated as part of the EIS process (refer Figure 1), a preliminary review was undertaken to determine the most suitable location for the access in relation to existing site constraints.

4.1 Alignment Constraints

The proposed indicative access is at approximately Chainage 42 on Saraji Road. Immediately south of Chainage 42 the vertical grade of Saraji Road drops down to a low lying area surrounding Hughes Creek (located at Chainage 43), with a significant height difference from the railway (refer Figure 3). The area is on a horizontal bend and the northbound lanes have a vertical crest that limits visibility on approach to Chainage 42. These factors combine to create an unfavourable road environment south of Chainage 42 to develop a channelised right turn on approach to an intersection.

To the north of Chainage 42, the horizontal alignment is straight and the road and rail are at approximately the same height (refer Figure 4). This is a more desirable road environment for establishing a new intersection. This is particularly important with ensuring that the required sight distances at the rail crossing and to the back of queue in the channelised right turn lane.

For the purposes of the concept design, the intersection has been place in the vicinity of Chainage 41 to take advantage of the best available road environment. This has been developed from qualitative assessment as part of the concept design. Items such as sight distance, horizontal and vertical geometry will be further refined in the detailed design phase when topographical survey is completed.

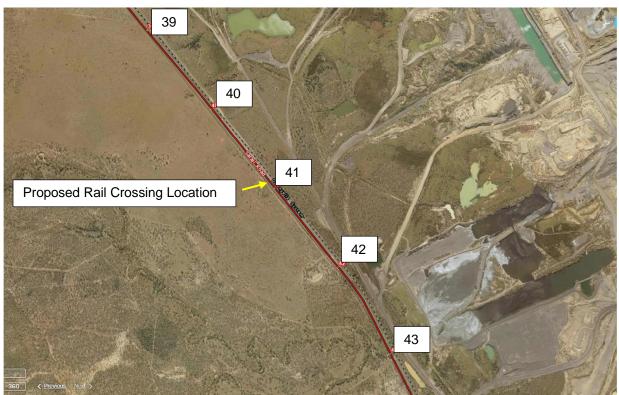


Figure 2 Aerial Image with Chainages

Figure 3 Google Street View capture facing north towards Chainage 42.

Google Street View capture facing north from Chainage 42. Figure 4

Figure 5 Google Street View capture facing South from Chainage 41.

Figure 6 Google Street View capture facing North from Chainage 41.

4.2 Short Stacking Assessment

The short stacking requirement is a minimum distance of 48m (refer Table 5) between the edge line of the roadway to the nearest rail line. In the area nominated for a new access, Chainage 41, the road and rail run parallel with a constant offset of 43m between the edge line and the nearest rail. There is no location in the vicinity of the proposed access where the road and rail diverge enough to accommodate the required short stacking distance. A new intersection will have to incorporate a horizontal alignment shift of Saraji Road to accommodate an intersection large enough to accommodate short stacking.

4.3 Horizontal Alignment Shift

The horizontal alignment shift to accommodate the short stacking distance, requires utilising reverse curves. This creates another constraint as curves in the same direction need to be separated by a straight so that drivers can perceive changes in the radius of curves. For northbound vehicles on Saraji Road, there is an existing left-hand curve that ends 140m south of Chainage 42. Another left-hand curve is required to be developed north of this to accommodate the horizontal shift. The distance between these curves is dictated as being 440m with a posted speed of 100km/h and design speed of 110km/h (refer Clause 7.5.2 of Austroads Guide to Road Design). This constrains the point at which the development of the horizontal shift can commence to being 440m north of existing curve at Chainage 42.140km.

The horizontal alignment shift and intersection design was developed with a posted speed of 80km/h (design speed 90km/h).

The alignment shift and general intersection layout has been included in Appendix A. The drawings of the updated proposed intersection show that the works will be contained within the road reserve.

5.0 Intersection Development

The intersection was developed initially to meet the short stacking requirements. As the intersection was developed further and the turn paths added for the Type 1 Road trains the intersection had to be made bigger to accommodate these movements. These turn paths highlighted that the stop line for vehicle turning out of the mine access needed to be set back further from the intersection, which in turn required the intersection to be moved further away from the rail line to ensure short stacking of outbound vehicles was achieved.

The turn paths for the intersection have been included in Appendix A. The concept layout can accommodate the design and check vehicles and maintains the short stacking requirements.

6.0 Concept Cost Estimate

A concept cost estimate was prepared for the intersection and rail level crossing. The full cost estimate document is included in Appendix B. The concept cost estimate was undertaken to align with the TMR Cost Estimation Manual for the concept phase of a project. This is the typical standard utilised for cost estimation of road project in Queensland.

The Cost Estimate includes a contingency amount based on a strategic risk assessment. The higher limit of contingency has been shown in the cost estimate summary below in Table 6

Table 6 Concept Cost Estimate Summary

Item	Cost	Notes
Client Costs	\$1,075,053.00	Includes Internal Project Management, Design & Development, Contract Administration, WH&S Fees & Obligations, Finalisation activities
Construction Costs	\$3,948,724.00	
Contingency & Risk	\$1,958,883.00	
Total	\$6,981,660.00	

The Construction Costs are primarily driven by new pavement works and rail level crossing infrastructure (signals, boom gates and connecting into the existing signalling and control network). A breakdown of the construction costs is shown in Figure 7.

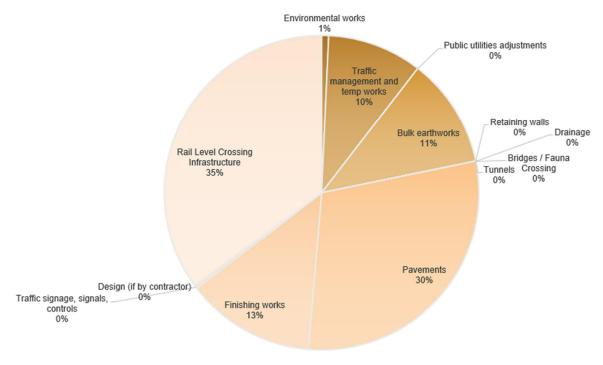


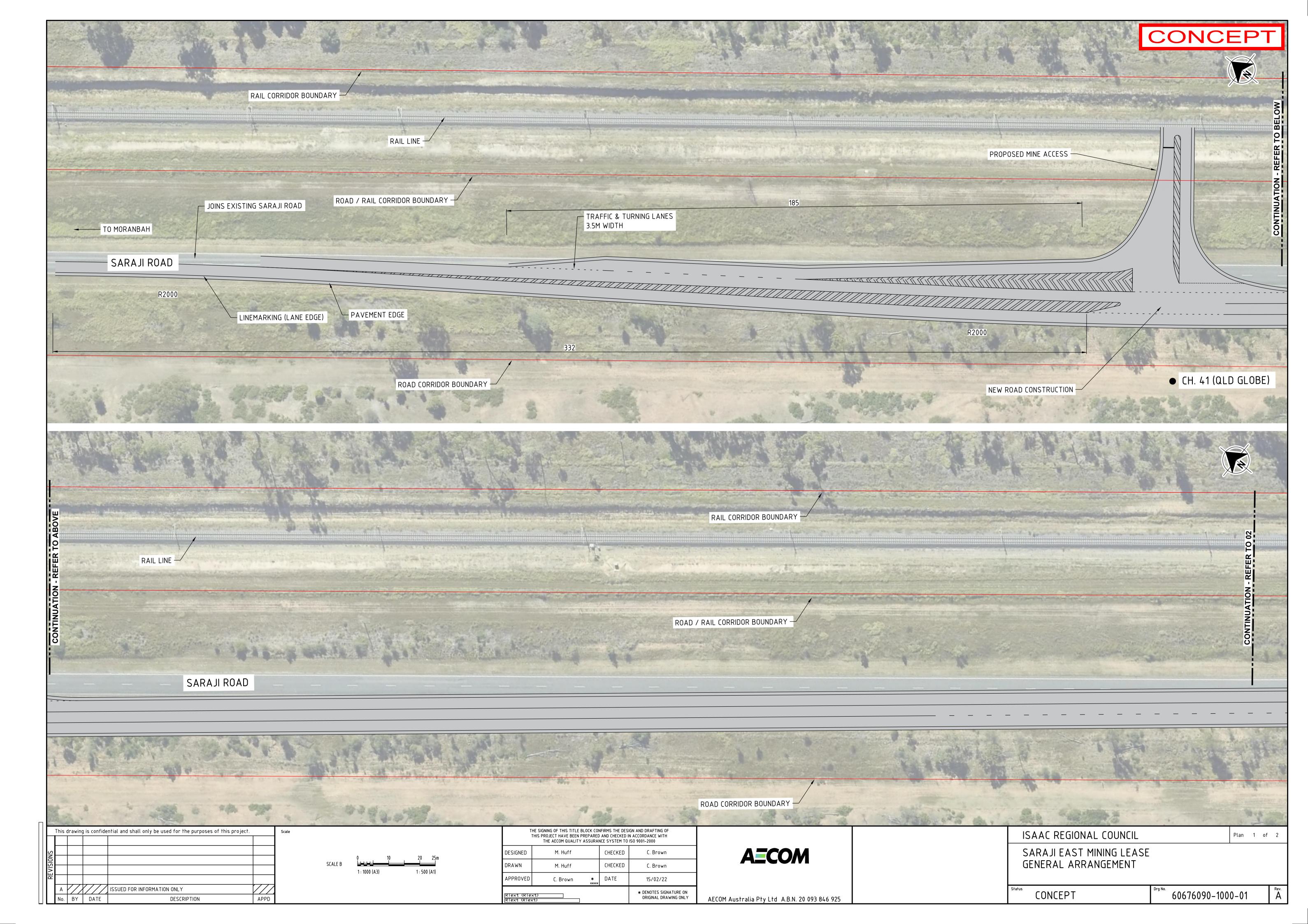
Figure 7 Construction Cost Breakdown

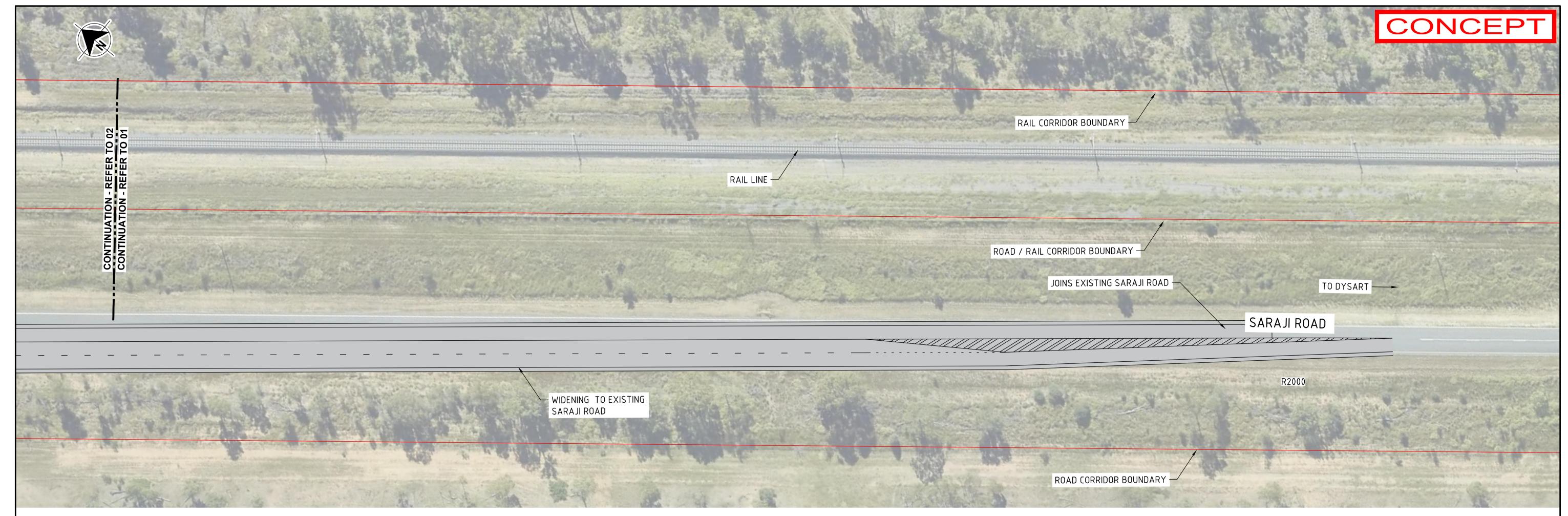
7.0 Conclusions

A new mine access and rail level crossing can fit geometrically and address the short stacking requirement between Saraji Road and the Goonyella Rail line if the horizontal alignment of Saraji Road can be realigned approximately 10m to the west. The new intersection will be contained within the existing road reserve.

If the new access intersection is located at approximately Chainage 41, there are no topographic features that are likely to constrain the design or require design elements that don't conform with the Road Planning and Design Manual Standards.

8.0 Recommendations


The following actions are recommended to assist the transition the project into a detailed design phase:


- Detailed Topographic Survey
- Liaison with Isaac Regional Council to with regards to the proposed speed zone changes.
- Liaison with the rail authority to confirm rail crossing signalling requirements and connection to the broader signalling network.
- Undertake an Australian Level Crossing Assessment Model (ALCAM) to quantify risks associated with the inclusion of a new level crossing on the rail network.
- Detailed intersection modelling to determine the storage requirements of the auxiliary lanes.
- Undertake Geotechnical and pavement investigations to inform pavement design.

BMA have noted their intention to explore these items further in subsequent project phases.

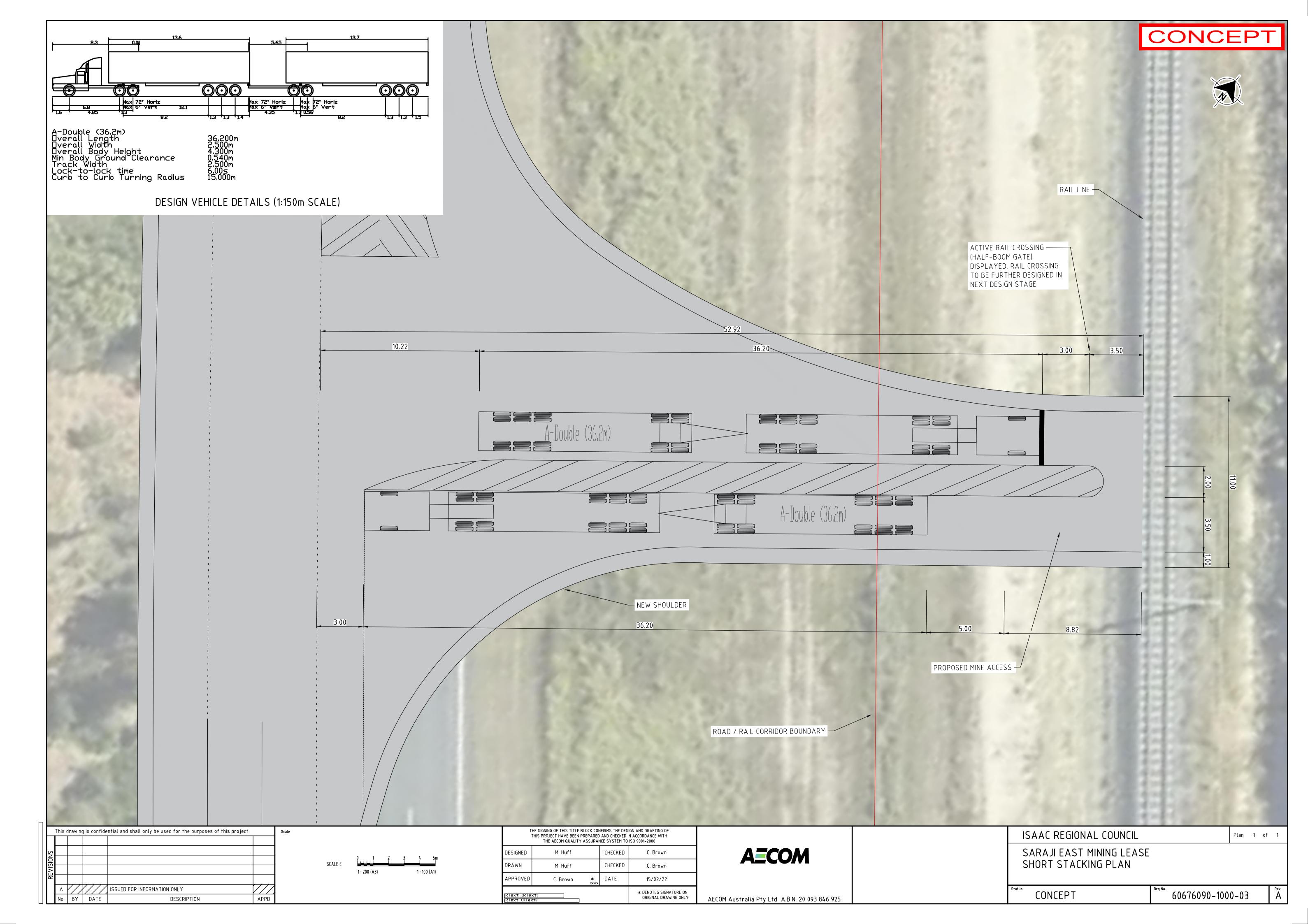
Appendix A

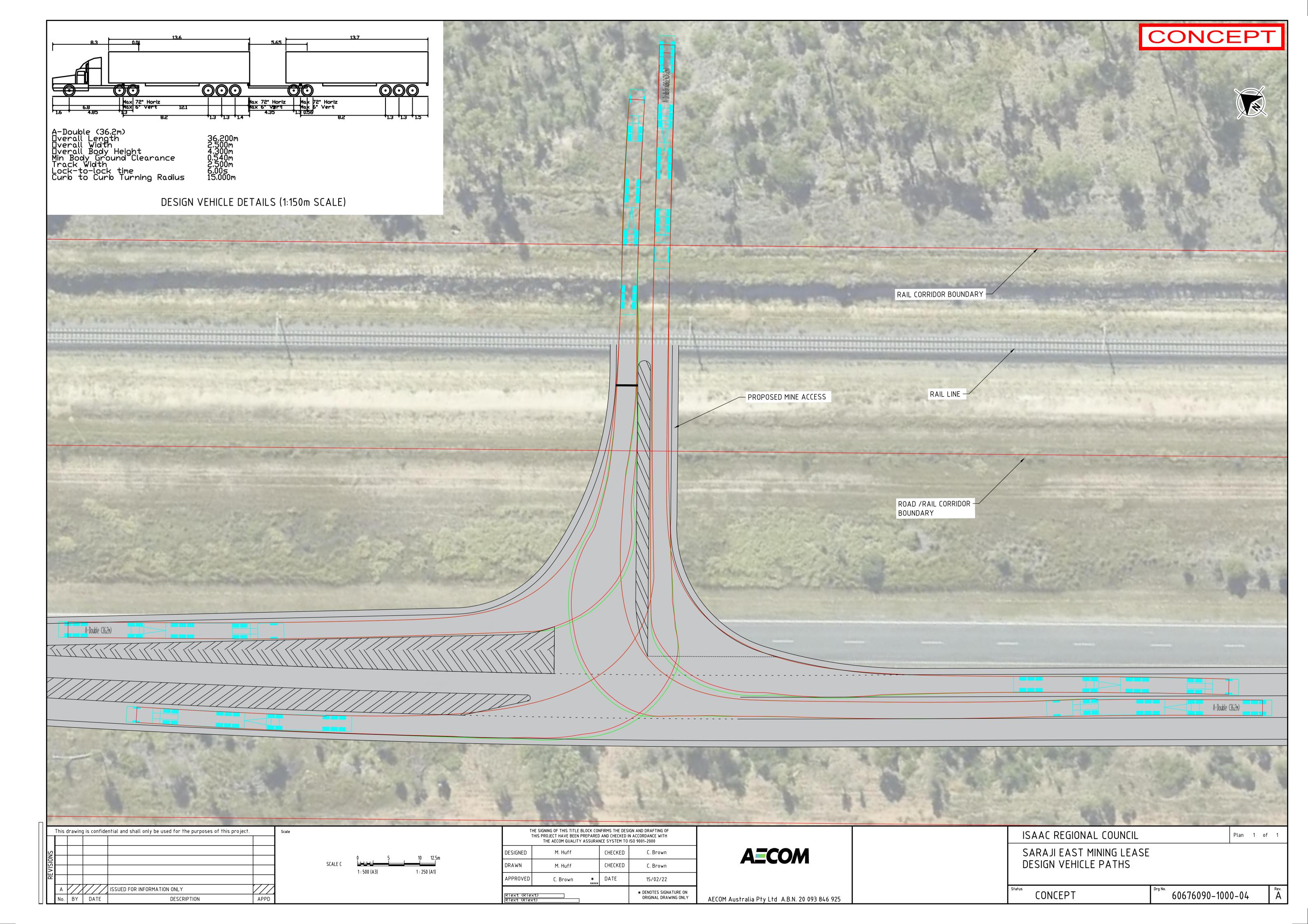
Concept Drawings

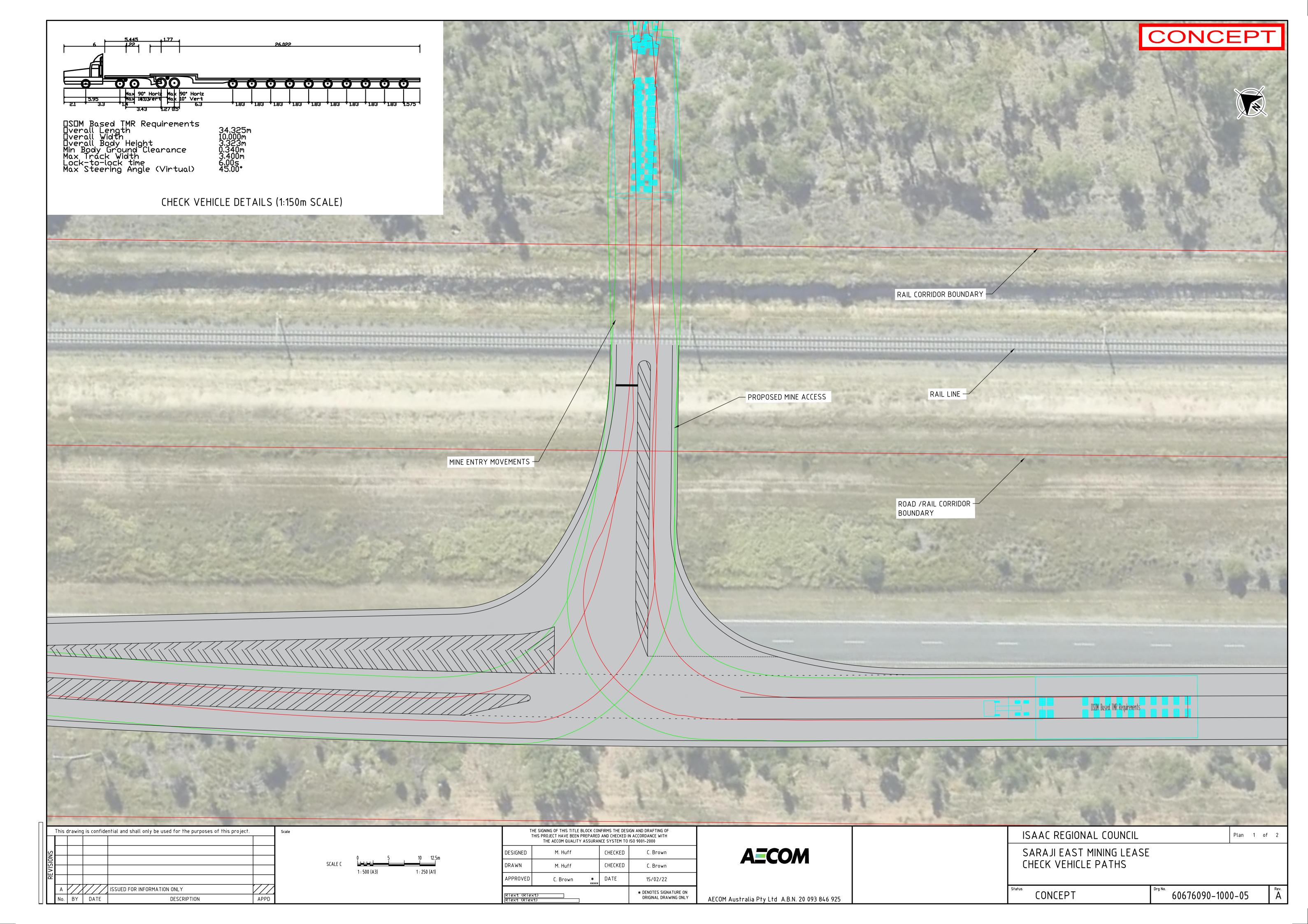
DESIGN NOTES:

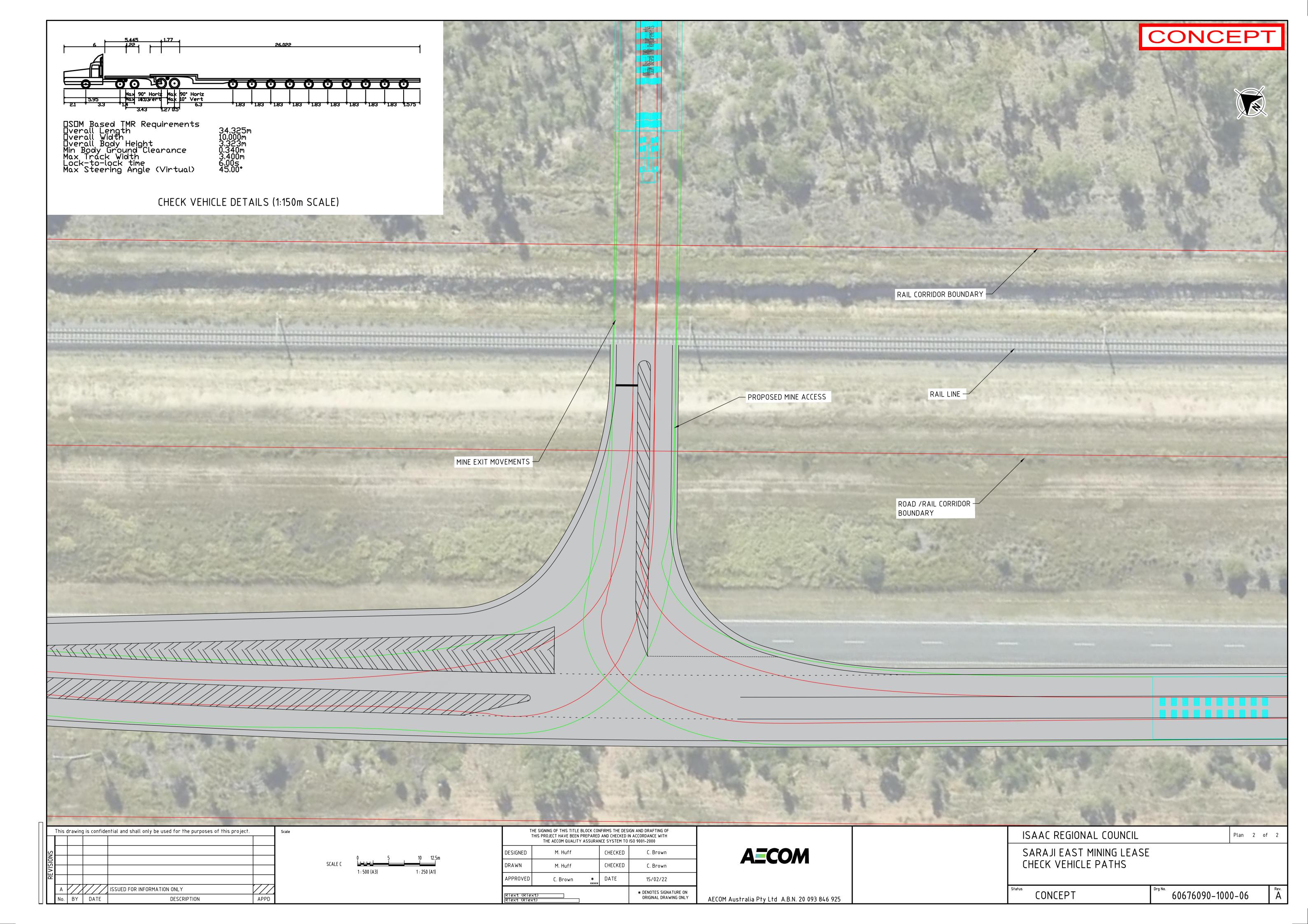
- DESIGN SPEED = 90KM/H (80KM/H POSTED SPEED)
- THE DESIGN VEHICLE = TYPE 1 ROAD TRAIN
- CHECK VEHICLE = 10M WIDE 0SOM VEHICLE

DESIGN IS A CONCEPT DESIGN AND IS PURELY 2D. NO VERTICAL DESIGN OR CHECKS HAVE BEEN COMPLETED. NO SURVEY DATA IS PRESENT AND THE DESIGN IS BASED ON AVAILABLE IMAGERY ONLY. PUP AND CADASTRAL BOUNDARIES NOT IDENTIFIED.


MEDIANS ARE ASSUMED TO BE PAINTED FOR THIS CONCEPT LAYOUT. NO LIGHTING CONSIDERED.


ACCESS TREATMENTS, CULVERT WIDENING AND OTHER ADDITIONAL DESIGN ITEMS ARE TO BE FURTHER INVESTIGATED IN THE NEXT STAGE OF DESIGN DEVELOPMENT.


RAIL NOTES:


A NEW RAIL CROSSING IS TO BE DESIGNED AND INSTALLED IN THIS LOCATION IN LATER DESIGN STAGES. THIS CONCEPT DESIGN SHOWS AN ACTIVE CONTROL CROSSING (HALF BOOM-GATES) AND SHOWS THE EXPECTED REALIGNMENT OF THE SARAJI ROAD.

	This drawing	g is confidential and shall only be used for the purposes of this project.	Scale		HE SIGNING OF THIS TITLE THIS PROJECT HAVE BEEN THE AECOM QUALITY	PREPARED AND CHE		E WITH			ISAAC REGIONAL COUNCIL	Plan 2 of 2	
SNS			0 10 20 25m	DESIGNED	M. Huff	CHECK	KED C. B	Brown			SARAJI EAST MINING LEASE		
OISIA			SCALE B 1: 1000 (A3) 1: 500 (A1)	DRAWN	M. Huff	CHEC	KED C. B	Brown			GENERAL ARRANGEMENT		
				APPROVED	C. Brown	* DATE	E 15/0	02/22					
	A No. BY	DATE DESCRIPTION APPD		RText (RTex				ES SIGNATURE ON AL DRAWING ONLY	AECOM Australia Pty Ltd A.B.N. 20 093 846 925		CONCEPT	60676090-1000-02 A	

Appendix B

Concept Cost Estimate

Project # Project name Document

F2220 Saraji East Level Crossing Cover

Project information

Client Previous versions

Index

___1 Cover

General project information and workbook layout

2

Project summary Information Received

Арр В

Construction Estimate Summary

TMR Strategic Risk Table

Арр С 6 App D1

 $Construction \ Estimate \ Submission \ Schedule \ - \ Detailed \ construction \ estimate \ output \ from \ Expert \ Estimation \ - \ Including \ assumptions$

8 App D2 ${\sf Detailed\ construction\ estimate\ output\ from\ Expert\ Estimation\ for\ Segment\ 2\ Option\ 2\ including\ property}$

App E

Project # Project name Document

F2220

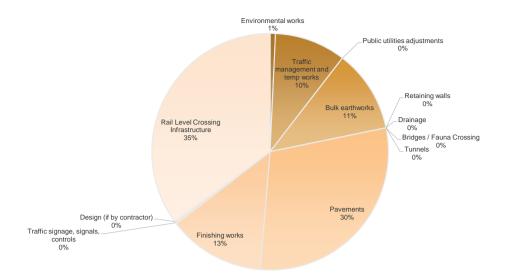
Saraji East Level Crossing Summary

		Saraji East Le Low Amount	evel Cro	ssing High Amount
	CLIENT COST	20W / WHOCH		Trigit 7 title ditt
1	SECTION 1 - CLIENT COSTS	\$ 1,074,053	\$	1,074,053
2	SECTION 2 - PROPERTY & PUP	\$ -	\$	-
	CONSTRUCTION COST			
3	SECTION 3 - CONSTRUCTION COSTS	\$ 3,948,724	\$	3,948,724
4	SECTION 4 - BASE COSTS	\$ 5,022,777	\$	5,022,777
	CONTINGENT RISKS			
5	SECTION 5 - CONTINGENT RISKS	\$ 1,077,386	\$	1,958,883
		21%		39%
	PROJECT TOTALS	\$ 6,100,163	\$	6,981,660

Appendix A - Information Received

Saraji East Level Crossing

Date 1-Mar-22	Document Description	Dwg / Sketch Deta	Dwg / Sketch Details if applicable			
Date	Document Description	Dwg Number	Rev	Format		
21-Mar-22	SEML Concept Rail Crossing - BOQ	REP-00001				
		BOQ				


Appendix B - Project Cost Summary

						Saraji East Level Crossing
Summary Basis of estimate: :: Build up in first principles using expert estimating 2014 :: Base date of March 2022 :: Based on Design provided by Aecom :: Deterministic Risk allowance :: Estimate expressed as real dollars						
	Base	Unit	Qty	Amount Low	Amount High	Notes
1 SECTION 1 - CLIENT COSTS						
1.1 Scoping	2.00%	%		\$	78,974	Percentage is based on historically known costs for scope development for a TMR project of this scope
		%		\$	315,898	Percentage is based on historically known costs to design and award a construction contract for a TMR
1.1 Development	8.00%	70		\$	502 200	project of this scope Percentage is based on historically known costs to externally administer the construction contract for a
1.2 Implementation	15.00%	%		\$	592,309	TMR project of this scope
1.2 Work place health and safety fee, and Training Levy (PAI)	1.25%	%		\$	49,359	Queenland State Government Work Health and Safety Levy
1.2 Portable long service levy + Construction Skills Queensland Levy	0.45%	%		\$	17,769	Queenland State Government Portable Long Service Leave Levy and Construction Skills Queensland Levy
1.2 Finalisation	0.50%	%		\$	19,744	Percentage is based on historically known costs to finalise and complete a TMR project of this scope
					,	
	Sub Total -	Section 1		\$	1,074,053	
2 SECTION 2 - PROPERTY & PUP						
2.1 Property	\$ -	m²	-	\$	-	Nil Allowance at this Stage
2.2 PUP - Power Pole Relocations	\$ -	each	-	\$		Nil Allowance at this Stage
2.3 PUP - Water Main Relocations	\$ -	m	-	\$		Nil Allowance at this Stage
2.4 PUP - Telstra Relocations	\$ -	m	-	\$		Nil Allowance at this Stage
	Sub Total -	Section 2		\$	-	
3 SECTION 3 - CONSTRUCTION COSTS						
3.01 Environmental works			1%	\$	28.300	Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.02 Traffic management and temp works			10%	\$		Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.03 Public utilities adjustments			0% 11%	\$	440.004	Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.04 Bulk earthworks 3.05 Retaining walls			0%	\$	440,024	Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.06 Drainage			0%			Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.07 Bridges / Fauna Crossing			0%			Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.08 Tunnels 3.09 Pavements			0% 30%	\$	1 167 221	Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.10 Finishing works			13%	\$		Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.11 Traffic signage, signals, controls			0%	\$		Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.12 Design (if by contractor)			0%		1 005 010	Categories are as per the DITRDC Project Cost Breakdown and inaccordance with TMR PCEM
3.13 Rail Level Crossing Infrastructure			35%	\$	1,385,348	
	Sub Total -	Section 3		\$	3,948,724	
V						
4 SECTION 4 - BASE COSTS 4.1 Principal's Costs				•	1.074.052	
4.2 Property & PUP Relocations				\$	1,074,053	
4.3 Construction costs				\$	3,948,724	
	Sub Total -	Section 4		\$	5,022,777	
	Jub i otal	200110114			-,,-1	
5 SECTION 5 - CONTINGENT RISKS	20.000					
5.1 Principal's Costs 21.459 5.2 Property & PUP Relocations 21.459				\$ 230,384 \$ \$ - \$		As per Appendix E which the the TMR Strategic Risk Table from the PCEM As per Appendix E which the the TMR Strategic Risk Table from the PCEM
5.3 Construction costs as per TMR Matrix (App E) 21.45		%		\$ 847,001 \$	1,540,002	As per Appendix E which the the TMR Strategic Risk Table from the PCEM As per Appendix E which the the TMR Strategic Risk Table from the PCEM
	% of	base cost	1	21%	39%	
	Sub Total -	0		\$ 1,077,386 \$	1,958,883	

Appendix C - Construction Estimate Summary

Saraji East Level Crossing

	Labour	Material	Plant	Subcontract	Total	% CV	% TC	% DC
Direct costs	551,146.79	982,661.44	183,181.76	1,014,826.21	2,731,816.21	69.18	76.10	100.00
Overhead costs	531,226	198,150	93,144	35,410	857,930	21.73	23.90	31.41
Sub total, costs	1,082,373	1,180,811	276,326	1,050,236	3,589,746	90.91	100.00	131.41
Risks and opportunities								
Preadjustments								
Cost Total	1,082,373	1,180,811	276,326	1,050,236	3,589,746	90.91	100.00	131.41
Overall margin	10	on total cost			358,975	9.09	10.00	13.14
Corporate margin		on total cost						
Margins on direct costs (%)								
Margins on overhead costs (%)								
Margins on risks and opportunities (%)								
Margins on preadjustments (%)								
Defined margin								
Margins on provisional sums (%)								
Margins total					358,975	9.09	10.00	13.14
Items on which no margin is calculated								
Post adjustments								
Provisional sums								
Anticipated Direct Costs								
Anticipated Overhead Costs								
Project Total					3,948,721	100.00	110.00	144.55
GST amount					394,872	10.00	11.00	14.45
Project total including GST					4,343,593	110.00	121.00	159.00
							-	

Summary by DIRDC Pro	ect Cost Breakdown Classification (Department Infrastructure and Regional Development and Cities)			
1	Environmental works		\$	28,300
2	Traffic management and temp works		\$	385,114
3	Public utilities adjustments			
	Bulk earthworks		\$	446,624
5	Retaining walls			
6	Drainage			
	Bridges / Fauna Crossing			
8	Tunnels			
9	Pavements		\$	1,167,221
10	Finishing works		\$	522,519
	Traffic signage, signals, controls		\$	13,598
	Design (if by contractor)			
13	Rail Level Crossing Infrastructure		\$	1,385,348
	Total Construction Cost		\$	3,948,724
				TRUE

Construction Cost - Subm Item	mission schodula				TRUE		
	Description	Unit	Quantity	Unit Rate	Amount	Code	Assumptions
Item	Description	Unit	Quantity	Unit Rate	Amount		
MRS02Mar2021	Provision for Traffic						
20016	Traffic management inspections	LSUM	1	\$ 3,076.00	\$ 3,076.00	2	
20017	Planning of temporary traffic management (TMP)	LSUM	1	\$ 7,805.00	\$ 7,805.00	2	
20018	Design of temporary traffic management (TGS)	LSUM	1	\$ 4,683.00	\$ 4,683.00	2	
				, , , , , , , , , , , , , , , , , , , ,	,,,,,		
20019	Implementation, maintenance and removal of temporary traffic management	LSUM	1	\$ 351,604.00	\$ 351,604.00	2	
20020	Administration of temporary traffic management	LSUM	1	\$ 17,946.00	\$ 17,946.00	2	
		LOOW		Ψ 17,540.00	Ψ 17,540.00		
MRS04Nov2020	General Earthworks Preparation						
32001	Clearing and grubbing	m2	21,165	\$ 0.94	\$ 19,895.00	4	
	Ground surface treatment under embankment, standard	m2	14,635	\$ 1.46	\$ 21,367.00	4	
32014	Excavation and disposal of Unsuitable Material with individual excavation = 10m³ (Provisional</td <td>m3</td> <td>146</td> <td>\$ 99.80</td> <td>\$ 14,571.00</td> <td>4</td> <td></td>	m3	146	\$ 99.80	\$ 14,571.00	4	
	Quantity, as directed) Excavation and disposal of Unsuitable Material with individual excavation > 10m³ (Provisional						
32018	Quantity, as directed)	m3	1,464	\$ 22.31	\$ 32,662.00	4	
	Excavation						
32101	Excavation, all materials	m3	660	\$ 18.61	\$ 12,283.00	4	
32201	Embankment Embankment	m3	2,927	\$ 66.28	\$ 194,002.00	А	
32201	Existing Subgrade Testing and Treatments	7110	2,321	y 00.20	104,002.00	4	
32306	Subgrade treatment Type A (Provisional Quantity, if ordered)	m2	14,635	\$ 2.92	\$ 42,734.00	4	
00100	Backfill	3	1.010		0 400 110 00		
32402 MRS05Nov2020	Backfill with select backfill material to [Unsuitable] (Provisional Quantity, as directed) Unbound Pavements	m³	1,610	\$ 67.77	\$ 109,110.00	4	
MICOONGV2020	Unbound Pavements Unbound Pavements						
40002	Subtype 2.1, Unbound pavement, [layer/location]	m³	2,927	\$ 148.84	\$ 435,655.00	9	
40004	Subtype 2.3, Unbound pavement, [layer/location]	m³	2,927	\$ 139.65	\$ 408,756.00	9	
MRS11Jul2019	Sprayed Bituminous Treatments (Excluding Emulsion)						
	Sprayed Bituminous Treatments (excluding Emulsion) Spraying bituminous material, treatment type [I-S/S, primer seal], binder [AMC7], spray rate	Day -	10.000	ф	n 11		
40721	[1.3L/m2], [All Pavement] Spraying didininious material, пеацпент type (၁/၁, sear), dinder (Ե/17d), spray rate (0/12/m2), թու	litre	19,026	\$ 2.17	\$ 41,286.00	9	
40721	Povomonti	litre	10,245	\$ 2.89	\$ 29,608.00	9	
40723	Spreading cover aggregate [14mm precoated], [105m2/m3], [including] supply of cover aggregate,	m3	139	\$ 505.89	\$ 70,319.00	9	
10120	[All Pavement]			Ψ 000.00			
40723	Spreading cover aggregate [10mm precoated], [255m2/m3], [including] supply of cover aggregate,	m3	57	\$ 650.43	\$ 37,075.00	9	
10120	[All Pavement]		0.	Ψ 000110	01,010.00		
40725	Supply and addition of adhesion agent (Provisional Quantity) - Adhesion agent for AMC7 and C170	litre	878	\$ 1.73	\$ 1,519.00	9	
	Road Furniture						
MICTOTHMAILT	Road Furniture						
50001	Demolition of road furniture, as listed in Clause 3 of Annexure MRTS14.1	each	1	\$ 179.00	\$ 179.00	11	
	Guidance and Information Systems		15		A 4 500 00	- 11	
50051	Road edge guide posts	each LSUM	15	\$ 106.10 \$ 2,371.00	\$ 1,592.00 \$ 2,371.00	11	
50052	Supply of regulatory, warning and hazard sign faces, as listed in Clause 1.3 of Annexure MRS14.1 Supply of direction and information sign faces, as listed in Clause 2.3 of Annexure MRS14.1	LSUM	1	\$ 1,185.00	\$ 1,185.00	11	
50056		LSUM	1	\$ 5,514.00	\$ 5,514.00	11	
50058	Installation of direction and information signs, as listed in Clause 2.3 of Annexure MRS14.1	LSUM	1	\$ 2,757.00	\$ 2,757.00	11	
MRS16Jul2017	Landscape and Revegetation Works Landscape and Revegetation - Sampling and Testing						
50601			1	\$ 2,257.00	\$ 2,257.00	10	
50602	Topsoil sampling and testing - Form C (Provisional Quantity)		1	\$ 1,084.00	\$ 1,084.00	10	
50606	Manufactured site topsoil sampling and testing - Form D (Provisional Quantity)		1	\$ 1,084.00	\$ 1,084.00	10 10	
50610 50614	Subsoil sampling and testing - Form E (Provisional Quantity) Drainage basin soil sampling and testing - Form F (Provisional Quantity)		1	r 705.00	♠ 70€ 00		
			1	\$ 795.00 \$ 1.012.00	\$ 795.00 \$ 1,012.00		
			1	\$ 795.00 \$ 1,012.00	\$ 795.00 \$ 1,012.00	10	
20101	Contractor's site facilities and Camp Contractor's site facilities	LSUM	1	\$ 1,012.00 INCLUDED			
20101 20102	Contractors Site Facilities and Camp Contractor's site facilities Contractor's camp	LSUM LSUM	1	\$ 1,012.00			
20101 20102	Contractors Site Facilities and Camp Contractor's site facilities Contractor's camp Asphalt Pavements		1	\$ 1,012.00 INCLUDED			
20101 20102 MRS30Jul2020	Contractors Site Facilities Contractor's site facilities Contractor's camp Asphalt Pavements Preparation of the Existing Surface		1	\$ 1,012.00 INCLUDED			
20101 20102 MRS30Jul2020 41701	Contractors Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity)	LSUM	1 1	\$ 1,012.00 INCLUDED INCLUDED	\$ 1,012.00		
20101 20102 MRS30Jul2020 41701 41710	Contractors Site Facilities and Camp Contractor's site facilities Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing surface Track coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt	LSUM m2	1 1 1 2,085 834	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00		
20101 20102 MRS30Jul2020 41701 41710 41754	Contractors Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix	LSUM m2	1 1 1 2,085	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72	\$ 1,012.00 \$ 1,501.00		
20101 20102 MRS30JuI2020 41701 41710 41754 MRS45Nov2020	Contractors Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation	LSUM m2	2,085 834	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58	\$ 1,501.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00		
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101	Contractors Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white],	m2 litre t	2,085 834 240 4,859	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29	\$ 1,501.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 1,409.00	9 9 9	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102	Contractors Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint]	m2 litre t m	2,085 834 240 4,859	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 1,409.00 \$ 422.00	9 9 9 10	
20101 20102 MRS30Jul2020 41701 41710 41710 41754 MRS45Nov2020 52101 52102	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Dearner mine, one underston, of mineral angap detwent mines, occurring the same mine, one underston, of mineral angap detwent mines, occurring the same mine, one underston, of mineral angap detwent mines, occurring the same mine, occurring the same mine, one underston, of mineral angap detwent mines, occurring the same mine, one underston, of mineral angap detwent mines, occurring the same mineral angap detwent mines and mineral angap detwe	m2 litre t m m m	2,085 834 240 4,859 364 300	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 1,409.00 \$ 422.00 \$ 348.00	9 9 9 10 10	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52105	Contractors Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Usarier mite, or or controlled or	m2 litre t m m	2,085 834 240 4,859 364 300 735	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16	\$ 1,601.00 \$ 1,601.00 \$ 1,443.00 \$ 140,059.00 \$ 1,409.00 \$ 422.00 \$ 348.00 \$ 853.00	9 9 9 10 10 10	
20101 20102 MRS30Jul2020 41701 417701 417754 MRS45Nov2020 52101 52102 52105 52106 52110 52110	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Larrier mmb, one one contention and the court mmb, or	m2 litre t m m m	2,085 834 240 4,859 364 300 735 168 2,187	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00	9 9 9 10 10	
20101 20102 MRS30Jul2020 41701 417701 417754 MRS45Nov2020 52101 52102 52105 52106 52110 52110	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Usanter mite, or the direction, or min made each time, our film leader gap between times, soon min line Usanter mite, or the direction, or min made each time, our film leader gap between times, soon min line Usanter mite, one direction, or min made each time, our film leader gap between times, soon min line Usanter mite, 150 mm wide, colour [colour], material [material] Edge line, 150 mm wide, colour [colour], material [material] Outline, 150 mm wide, colour [colour], material [material]	m2 litre t m m m	2,085 834 240 4,859 364 300 735 168	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.46	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 142.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00	9 9 9 10 10 10 10	
20101 20102 MRS30Jul2020 41701 417701 417754 MRS45Nov2020 52101 52102 52105 52106 52110 52110	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Dividing line, broken 100mm wide, and the paint lines of the pain	m2 litre t m m m m	2,085 834 240 4,859 364 300 735 168 2,187	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00	9 9 9 9 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 417101 41710 41754 MRS45Nov2020 52101 52102 52106 52110 52111 52113	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing	m2 litre t m m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00	9 9 9 100 100 100 100 100 100 100 100 10	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52111	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Usanter mite, one country, of min made each mine, our min laterial gap between mines, occurrence to the laterial for the country of min made each mine, our min laterial gap between mines, occurrence to the laterial states of the laterial form of the laterial for	m2 litre t m m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00	9 9 9 100 100 100 100 100 100 100 100 10	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52113 52117	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium duty Dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Earner mis, one country of min wide each mis, our immediated grade provided and the state of the	LSUM m2 litre t m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 2.7.10	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 1,409.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 33,929.00	9 9 9 9 100 100 100 100 100 100 100 100	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52106 52110 52111 52113 52117	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Usamer mice, one consistence of the material surface of the properties of the propert	m2 litre t m m m m m m m m m m m m m each	2,085 834 240 4,859 364 300 735 168 2,187 1,105	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 27.10	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 33,929.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41770 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52113 52117 52201 MRS50Mar21	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing	m2 litre t t m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.16 \$ 2.60 \$ 1.45 \$ 27.10 \$ 8.24 \$ 8.24	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 224.00 \$ 5,686.00 \$ 1,602.00 \$ 33,929.00 \$ 4,466.00 \$ 1,129.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52117 52117 52201 MRS50Mar21	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Usamer mice, one consistence of the material surface of the properties of the propert	m2 litre t m m m m m m m m m m m m m each	2,085 834 240 4,859 364 300 735 168 2,187 1,105	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 27.10	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 33,929.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41770 41754 MRS45Nov2020 52101 52102 52105 52110 52111 52111 52111 52111 52111 52101 MRS50Mar21 MRS51Jul2020 20202	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing	m2 litre t m m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 27.10 \$ 8.24 \$ 8.24 \$ 8.24	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 33,929.00 \$ 4,466.00 \$ 1,129.00 \$ 2,821.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Juli2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52117 52211 MRS50Mar21 20151 MRS51Juli2020 20202	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] For the surface of the surface	m2 litre t t m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.16 \$ 2.60 \$ 1.45 \$ 2.7.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 8.24	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 3,929.00 \$ 4,466.00 \$ 1,129.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41770 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52117 52117 62201 MRS50Mar21 MRS50Mar21 20151 MRS51Jul2020 20202 20203 MRSJul2018	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Learner land, 10000 one count is with an whole reciri mark and provided in the surface of the surfa	m2 litre t m m m m m m m m m m m m litre each each litre litre m litre m LSUM LSUM	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 27.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 6.667.00 \$ 18,426.00	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 1,602.00 \$ 3,929.00 \$ 4,466.00 \$ 1,129.00 \$ 6,667.00 \$ 2,821.00 \$ 18,426.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52105 52106 52110 52111 52113 52117 52117 52117 52117 52118 52118 52118 52119 52111 52111 52113 52117 52110 52110 52111 52113 52117 52110 52110 52110 52111 52113 52117	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Description of the Existing Surface Surf	m2 litre t m m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 27.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 6,667.00 \$ 1,8426.00	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 33,929.00 \$ 4,466.00 \$ 1,129.00 \$ 2,821.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41770 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52111 52111 52111 52110 MRS50Mar21 MRS50Mar21 20202 20203 MRSJul2018 20501 MRS91 Mar 21	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the Existing Surface Preparation of the existing surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] International Court of the	m2 littre t t m m m m m m m m m m m m littre each each LSUM LSUM LSUM LSUM LSUM LSUM	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.16 \$ 2.60 \$ 1.45 \$ 2.7.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 6,667.00 \$ 18,426.00 \$ 7,053.00	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 1,129.00 \$ 4,466.00 \$ 1,129.00 \$ 6,667.00 \$ 2,821.00 \$ 7,053.00	9 9 9 9 100 100 100 100 100 100 100 100	
20101 20102 MRS30Jul2020 41701 41770 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52111 52111 52111 52110 MRS50Mar21 MRS50Mar21 20202 20203 MRSJul2018 20501 MRS91 Mar 21	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Edge line, 150 mm wide, colour [colour], material [material] Edge line, 150 mm wide, colour [colour], material [material] Continuity line, 200 mm wide, colour [colour], material [material] Coutline, 150 mm wide, colour [colour], material [material] Raised Pavement Markers Retroreflective raised pavement markers - Dividing Line - Yellow Bi Retroreflective raised pavement markers - Edge Line - Red Uni Specific Quality System Requirements Supply of As Constructed documents Environmental Management Plan (Construction) Implement Environmental Management Plan (Construction) Erosion and Sediment Control Plan/s Conduit and Conduit Fittings Underground Supply and installation of [1] of [80] mm, [HDuPVC], [Elec] conduit(s), in [Earth]	m2 litre t m m m m m m m m m m m m litre each each litre litre m litre m LSUM LSUM	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.45 \$ 2.60 \$ 1.45 \$ 27.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 6.667.00 \$ 18,426.00	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 1,602.00 \$ 3,929.00 \$ 4,466.00 \$ 1,129.00 \$ 6,667.00 \$ 2,821.00 \$ 18,426.00	9 9 9 10 10 10 10 10 10 10 10	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52111 52111 52111 52111 52111 62201 MRS50Mar21 20151 MRS51Jul2020 20202 20203 MRSJul2018 20501 MRS91 Mar 21	Contractor's Site Facilities Contractor's camp Asphalt Pavements Preparation of the Existing Surface P	m2 littre t t m m m m m m m m m m m m m m m m littre each each LSUM LSUM LSUM m m m m m m m m m m m m m m m m m m m	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.18 \$ 1.45 \$ 2.60 \$ 1.45 \$ 2.7.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 7.053.00 \$ 7,053.00	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 1,129.00 \$ 4,466.00 \$ 1,129.00 \$ 2,821.00 \$ 18,426.00 \$ 7,053.00	9 9 9 9 9 100 100 100 100 100 100 100 10	
20101 20102 MRS30Jul2020 41701 417710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52111 52111 52111 52111 52111 52105 MRS50Mar21 MRS50Mar21 20202 20203 MRSJul2018 20501 MRS91 Mar 21 60007.01	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Tack coat, residual bitumen (Provisional Quantity) Medium Duty Dense Graded Asphalt Medium Duty Dense Graded Asphalt Medium duty dense graded asphalt in surfacing course, AC [14] M mix Road Surface Delineation Spotting only for longitudinal lines Dividing line, broken 100mm wide, [3000] mm line length, [9000] mm gap legth,colour [white], material [waterbourne paint] Edge line, 150 mm wide, colour [colour], material [material] Edge line, 150 mm wide, colour [colour], material [material] Continuity line, 200 mm wide, colour [colour], material [material] Coutline, 150 mm wide, colour [colour], material [material] Raised Pavement Markers Retroreflective raised pavement markers - Dividing Line - Yellow Bi Retroreflective raised pavement markers - Edge Line - Red Uni Specific Quality System Requirements Supply of As Constructed documents Environmental Management Plan (Construction) Implement Environmental Management Plan (Construction) Erosion and Sediment Control Plan/s Conduit and Conduit Fittings Underground Supply and installation of [1] of [80] mm, [HDuPVC], [Elec] conduit(s), in [Earth]	m2 littre t t m m m m m m m m m m m m littre each each LSUM LSUM LSUM LSUM LSUM LSUM	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.16 \$ 2.60 \$ 1.45 \$ 2.7.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 6,667.00 \$ 18,426.00 \$ 7,053.00	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 1,129.00 \$ 4,466.00 \$ 1,129.00 \$ 6,667.00 \$ 2,821.00 \$ 7,053.00	9 9 9 9 100 100 100 100 100 100 100 100	
20101 20102 MRS30Jul2020 41701 41710 41754 MRS45Nov2020 52101 52102 52105 52106 52110 52111 52111 52111 52111 52111 52111 62201 MRS50Mar21 408551Jul2020 20202 20203 MRS51Jul2018 20501 MRS91 Mar 21 60007.01 60204 60206 MRS92 Mar 18	Contractor's Site Facilities and Camp Contractor's camp Asphalt Pavements Preparation of the Existing Surface Preparation of the existing	m2 littre t t m m m m m m m m m m m m m littre each littre t t sum LSUM LSUM m each	2,085 834 240 4,859 364 300 735 168 2,187 1,105 1,252 542 137	\$ 1,012.00 INCLUDED INCLUDED \$ 0.72 \$ 1.73 \$ 583.58 \$ 0.29 \$ 1.16 \$ 1.16 \$ 1.16 \$ 1.16 \$ 2.60 \$ 1.45 \$ 2.7.10 \$ 8.24 \$ 8.24 \$ 8.24 \$ 6,667.00 \$ 18,426.00 \$ 7,053.00 \$ 92.04 \$ 92.04	\$ 1,012.00 \$ 1,501.00 \$ 1,443.00 \$ 140,059.00 \$ 140,059.00 \$ 422.00 \$ 348.00 \$ 853.00 \$ 244.00 \$ 5,686.00 \$ 1,602.00 \$ 1,129.00 \$ 4,466.00 \$ 1,129.00 \$ 7,053.00 \$ 101,244.00 \$ 32,998.00	9 9 9 9 9 100 100 100 100 100 100 100 10	