

Appendix H

Aquatic Ecology Impact Assessment Report

Caval Ridge Mine

Horse Pit Extension Project Aquatic Ecology Assessment

Prepared for: SLR Consulting Australia Pty Ltd on behalf of BM Alliance Coal Operations Pty Ltd

Prepared by Ecological Service Professionals Pty Ltd
August 2021

Document Control

Report Title: Caval Ridge Mine: Horse Pit Extension Project Aquatic Ecology

Assessment

Project Reference: 1941

Client: SLR Consulting Australia Pty Ltd on behalf of BM Alliance Coal

Operations Pty Ltd

Client Contact: Peter Smith, SLR Consulting Australia Pty Ltd

Report Status	Version Number	Date Submitted	Authored By	Reviewed By	Issued By	Comment					
Draft	1941.002V1	30/05/2020	R. King K. Keating J. Keep S. Goodwin	L. West L. Thorburn	L. West	Working draft for client comment					
Draft	1941.002V2	07/05/2021	S. Goodwin	K. Keating L. West	L. West	Addressed SLR comments					
Draft	1941.002V3	07/07/2021	K. Keating	K. Keating	L. West	Addressed BHP comments					
Final	1941.002V4	03/08/2021	L. West	L. West	L. West	Final report					
Final	1941.002V5	10/08/2021	K. Keating	K. Keating	K. Keating	Addressed BHP comments; final report					

© Ecological Service Professionals Pty Ltd

The contents of this report is protected by copyright. All contents shall remain the intellectual property of Ecological Service Professionals Pty Ltd, unless prior arrangement has been made.

Table of Contents

EXECU	TIVE SUMMARY	I
1 IN	TRODUCTION	1
1.1 Pr	oject Background	1
1.2 Sc	cope of the Assessment	3
1.3 De	escription of the Study Area	4
1.3.1	Waterways and Wetlands in the Vicinity of the Project	4
1.3.2	Watercourses in the Vicinity of the Project	4
1.3.3	Isaac River Sub-Basin	5
2 R	ELEVANT LEGISLATION, POLICIES AND GUIDELINES	8
3 M	ETHODS	13
3.1 Ac	quatic Ecology Assessment	13
3.1.1	Desktop Literature Review	13
3.1.2	Field Surveys	13
3.1.3	Aquatic Ecosystem Values	30
3.2 St	ygofauna Assessment	32
3.2.1	Desktop Review	32
3.2.2	Field Surveys	32
4 D	ESCRIPTION OF THE EXISTING ENVIRONMENT	36
4.1 Ac	quatic Habitat	36
4.1.1	Aquatic Habitat of the Region	36
4.1.2	Aquatic Habitat in the Vicinity of the Project	36
4.2 W	ater Quality	40
4.2.1	Environmental Values	40
4.2.2	Water Quality of the Region	41
4.2.3	Water Quality in the Vicinity of the Project	42
4.3 Se	ediment Quality	47
4.3.1	Sediment Quality of the Region	47
4.3.2	Sediment Quality in the Vicinity of the Project	47
4.4 Ac	quatic Plants	53
4.4.1	Aquatic Plants of the Region	53
4.4.2	Aquatic Plants in the Vicinity of the Project	53
4.5 Ac	quatic Macroinvertebrates	58
4.5.1	Macroinvertebrate Communities of the Region	58
4.5.2	Macroinvertebrate Communities in the Vicinity of the Project	59
4.6 Ac	quatic Vertebrates	67
4.6.1	Fish	67

4.6	5.2	Turtles	73
4.6	3.3	Other Vertebrates	74
4.7	Gro	oundwater-Dependent Ecosystems	75
4.8	Ма	tters of State Environmental Significance	77
4.8	3.1	HES Wetlands	77
4.8	3.2	Waterways Providing for Fish Passage	77
4.8	3.3	Listed Threatened Species	79
4.9	Ма	tters of National Environmental Significance	80
4.9	9.1	Listed Threatened Species	80
4.9	9.2	Water Resources	81
4.10	Su	mmary of Aquatic Ecosystem Values	81
4.	10.1	Waterways	81
4.	10.2	Mapped Lacustrine Wetlands and Farm Dams	82
4.	10.3	Mapped Palustrine Wetlands	82
5	ST	YGOFAUNA COMMUNITIES	84
5.1	De	sktop Literature Review	84
5.	1.1	Stygofauna Overview	84
5.	1.2	Habitat Preferences and Ecology	85
5.	1.3	Hydrogeology in the Vicinity of the Project	86
5.	1.4	Stygofauna Communities in the Vicinity of the Project	87
5.2	Fie	ld Survey Results	88
5.2	2.1	In Situ Water Quality	88
5.2	2.2	Bore Depth	89
5.2	2.3	Stygofauna Communities	90
6	IM	PACT ASSESSMENT AND PROPOSED MITIGATION MEASURES	92
6.1	Ha	bitat Modification and Loss	92
6.2	Re	location of Minor Waterway	93
6.3	Ch	anges to Habitat	93
6.4	Re	striction of Fish Passage	95
6.5	Ch	anges in Flow and Surface Water Hydrology	96
6.6	Ba	nk Stability, Erosion and Stormwater Runoff	99
6.7	Du	st and Particulate Matter	100
6.8	Wa	ter Releases	100
6.8	3.1	Clean Water Management	101
6.8	3.2	Dirty Water Management	101
6.8	3.3	Release of MAW	101
6.9	Sal	line or Acid Drainage	103
6.10	Spi	ills of Hydrocarbons and Other Contaminants	103
6.11	Litt	ter and Waste	104

6.12	Proliferation	of Aquatic Pests	104
6.1 6.1 6.1	13.2 Changes 13.3 Changes	Groundwater Disruption of Aquifers to Water Quantity to Water Quality to Groundwater Interactions	105 105 105 106 106
6.14	Matters of Na	ational Environmental Significance	107
6.15	Matters of St	ate Environmental Significance	107
7	RISK ASSES	SSMENT	109
7.1	Risk Assess	ment and Mitigation Measures	109
7.2	Significant R	esidual Impacts and Offsets	110
8	SUMMARY A	AND CONCLUSIONS	116
8.1	Aquatic Ecol	оду	116
8.2	Stygofauna		117
8.3	Potential Imp	pacts and Proposed Mitigation Measures	118
9	REFERENCE	≣S	120
ATTA	ACHMENT A	DATABASE SEARCH RESULTS	A-1
ATT	ACHMENT B	LABORATORY CERTIFICATES OF ANALYSIS	B-1
ATT	ACHMENT C	AQUATIC HABITAT ASSESSMENT TABLES	C-1
ATTA	ACHMENT D	PHOTOGRAPHS OF FISH SPECIES CAUGHT DURING THE FIELD SU	RVEYS D-1

List of Figures

Figure 1.1	Regional Context	2
Figure 1.2	Waterways and wetlands in the vicinity of the Project	6
Figure 1.3	Mapped watercourses and drainage features in the vicinity of the Project	7
Figure 3.1	Monthly total rainfall recorded at by CVM at Buffel Park leading up to the	
	December 2019, April 2020 and November 2020 surveys	14
Figure 3.2	Maximum daily stream flow in Cherwell Creek recorded at the upstream gauging	
	station leading up to the December 2019, April 2020 and November 2020 surveys	15
Figure 3.3	Maximum daily stream flow in Cherwell Creek recorded at the downstream gauging	
	station leading up to the December 2019, April 2020 and November 2020 surveys	15
Figure 3.4	Location of aquatic ecology sites surveyed in December 2019, April 2020 and	
	November 2020	19
Figure 3.5	Quadrant diagram for SIGNAL2 / Family Bi-plot (Chessman 2003)	28
Figure 3.6	Location of bores sampled for the stygofauna assessment	34
Figure 4.1	Bioassessment scores at wet waterway sites in April 2020	37
Figure 4.2	Dry channel at site H1 (unnamed tributary of Horse Creek downstream of the	
	Project footprint) in April 2020	37
Figure 4.3	Pool habitat at site Ch2 (Cherwell Creek downstream of CVM and upstream of the	
	Project footprint) in April 2020	38
_	• •	39
Figure 4.5	,	40
Figure 4.6	Total taxonomic richness of macroinvertebrates in bed habitat at each site; DRY	
	, ,	60
Figure 4.7	Total taxonomic richness of macroinvertebrates in edge habitat at each site; DRY	
	, , , , , , , , , , , , , , , , , , ,	60
Figure 4.8	Total PET richness of macroinvertebrates in bed habitat at each site; DRY	
	· · · · · · · · · · · · · · · · · · ·	61
Figure 4.9	Total PET richness of macroinvertebrates in edge habitat at each site; DRY	
	, , , , , , , , , , , , , , , , , , ,	62
Figure 4.10	Total SIGNAL 2 scores of macroinvertebrates in bed habitat at each site; DRY	
	· · · · · · · · · · · · · · · · · · ·	62
Figure 4.11	Total SIGNAL 2 scores of macroinvertebrates in edge habitat at each site; DRY	
	,	63
•	, ,	64
_	, ,	65
Figure 4.14	Proportion of native fish from juvenile, intermediate and adult life stages caught at	
445		70
Figure 4.15	Proportion of native fish from juvenile, intermediate and adult life stages caught at	74
F: 4.40	'	71
•	0 1	74
Figure 4.17	Waterways mapped as low, moderate and high potential to be dependent on	
	surface-expression of groundwater (GDEs) in the vicinity of the Project and sites	70
Cianus 447	, , , , , , , , , , , , , , , , , , , ,	76
_	, , ,	78
Figure 6.1	Key infrastructure components and mapped waterways and wetlands in the vicinity	04
	of the Project	94

List of Tables

Table 2.1	Summary of relevant legislation, policies and guidelines relating to aquatic ecology that are relevant to the Project	9
Table 3.1	Site details, assessment completed and ecological indicators sampled for at each	9
Table 3.1	site surveyed in December 2019, April 2020 and November 2020	17
Table 3.2	Relevant Water Quality Objectives (WQOs) used for the aquatic ecology	17
Table 3.2	assessment (bold) and the REMP WQOs	22
Table 3.3	Default guideline values (DGV) and guideline values-high (GV-High) for sediment	22
Table 3.3	quality (ANZG 2018)	25
Table 3.4	Biological guidelines values for upper Isaac River catchment freshwaters (DEHP	23
Table 3.4	2013a) ^a	27
Table 3.5	Fish and turtle effort at each survey site in December and April surveys	29
Table 3.6	Criteria used to assess aquatic ecosystem value	31
Table 3.7	Bore sampling sites surveyed in April and November 2020	33
Table 4.1	Water quality at comprehensive assessment sites sampled during aquatic ecology	
	surveys completed in December 2019 and April 2020	43
Table 4.2	Sediment quality at Horse Pit sites sampled during aquatic ecology surveys	
	completed in December 2019	48
Table 4.3	Sediment quality at Horse Pit sites sampled during aquatic ecology surveys	. •
	completed in April 2020	50
Table 4.4	Total coverage and taxonomic richness of aquatic plants recorded at Horse Pit	
	sites in December 2019	55
Table 4.5	Total coverage and taxonomic richness of aquatic plants recorded at Horse Pit	
	sites in April 2020	56
Table 4.6	Macrocrustaceans recorded during December 2019 and April 2020	66
Table 4.7	Freshwater fish recorded from the region	67
Table 4.8	Fish species abundance and richness recorded during aquatic ecology surveys	
	completed in December 2019 and April 2020	72
Table 4.9	Turtles recorded during aquatic ecology surveys completed in December 2019 and	
	April 2020	74
Table 5.1	In situ water quality recorded at each bore during the pilot studies	88
Table 5.2	Depths and strata of each bore sampled during the pilot studies	89
Table 6.1	Criteria for assessing potential impacts to flow for the Project (based on the	
	presumptive standards outlined in Richter et al 2011)	97
Table 6.2	Summary of changes to average flow duration in days (with days of flow shown in	
	brackets) in Horse Creek (at the confluence of Grosvenor Creek and Horse Creek)	
	and Cherwell Creek (at the confluence of Cherwell Creek and the Isaac River) for	
	flows greater than 1 m ³ /s but less than 3 m ³ /s	98
Table 6.3	Summary of changes to volume and peak flows in Horse Creek (approx. 500 m	
	downstream of the Moranbah Access Road) and Cherwell Creek (near the Peak	
	Downs Highway) during 1% and 10% AEP (results provided by SLR)	99
Table 7.1	Risk matrix, including likelihood of an impact occurring, and the severity of	
	subsequent consequences	109
Table 7.2	Definitions of likelihood for the risk assessment	109
Table 7.3	Definitions of consequence for the risk assessment	110
Table 7.4	Risk assessment and proposed mitigation measures	111
Table C1	Aquatic habitat descriptions from each site during the field surveys; grey/blue	
	highlighted water quality cells indicate values that are outside of the relevant	
	WQOs	C-2

Executive Summary

This aquatic ecology assessment report has been prepared by Ecological Service Professionals (ESP) for SLR Consulting Australia (SLR) on behalf of BM Alliance Coal Operations Pty Ltd (BMA) and describes the existing aquatic environment for the Caval Ridge Mine (CVM) Horse Pit Extension Project (the Project). It also assesses the risk of potential impacts associated with the Project on aquatic ecological values and stygofauna communities, and outlines proposed measures to minimise, manage or prevent potential adverse impacts. CVM is an open-cut coal mine that has been in operation since 2014 and is located approximately five kilometres (km) south-west of Moranbah in the Bowen basin region of central Queensland. The Project involves an extension to Horse Pit to enable the current five year mine plan.

The purpose of this aquatic ecology assessment is to summarise aquatic habitats, flora and fauna as well as stygofauna communities known or likely to occur in the vicinity of the Project, and assess potential impacts and measures to minimise, manage and / or prevent potential adverse impacts on the aquatic ecological values of the waterways, wetlands and stygofauna communities. A desktop review and seasonal aquatic ecology and stygofauna field surveys were completed.

Aquatic habitat in waterways and wetlands in the vicinity of the Project was typical of ephemeral systems in the broader region, with seasonal patterns in habitat availability and quality evident at all sites. During the early-wet season survey in December 2019, sites located on waterways (i.e. creeks and tributaries) were generally dry. However, some isolated dry season refuges were recorded at mapped lacustrine wetlands and unmapped farm dams. During the late-wet season survey in April 2020, most sites in both higher stream order waterways and wetlands contained isolated pools, which would only connect and flow during and following periods of heavy rainfall.

Water quality in waterways and wetlands in the vicinity of the Project was highly variable, which is typical of ephemeral systems in the region. Overall, water quality measured in situ was characterised by neutral to slightly alkaline pH, moderate to high electrical conductivity, variable saturation of dissolved oxygen, and high turbidity. Laboratory-analysed results indicated moderate to high concentrations of nutrients and some metals (particularly aluminium and copper). Concentrations of these parameters were outside of the relevant water quality objectives (WQOs) at several sites during the field surveys.

Sediment quality was moderate to good in the vicinity of the Project. Concentrations of most parameters were below the relevant default guideline values (DGVs) during the surveys, except for chromium and nickel, which exceeded the DGVs or the guideline-value high (GV-high) at some sites in the vicinity of the Project at times.

Biological communities (including aquatic plants, macroinvertebrates, macrocrustaceans, fish and turtles) recorded at sites in the vicinity of the Project were typical of ephemeral systems in central Queensland. All taxa recorded were common in the broader region, and no listed threatened species known from the catchment (or potential habitat for these species) were identified.

Emergent growth forms dominated aquatic plant communities, with few submerged and floating species, indicating that water is not likely to persist for the majority of the year (except at wetland and farm dam sites). Macroinvertebrate communities were in low to moderate condition relative to those expected in the broader region, and results indicated that a range of factors influenced communities at most sites (including mining, industrial and / or agricultural pollution, high concentrations of nutrients, and harsh environmental conditions).

Most sites that contained water provided habitat for fish from a range of life-history stages during the late-wet season, including adults, intermediates, and juveniles. Two exotic species of fish were also recorded in the April 2020 survey: Mozambique tilapia (*Oreochromis mossambicus*) and platy (*Xiphophorus maculatus*). Tilapia is listed as a restricted biosecurity matter and a noxious fish under the *Biosecurity Act 2014*; platy is a pest species but is not restricted or prohibited under Queensland legislation.

Turtles were not particularly abundant or widespread in the vicinity of the Project and were only caught in the mapped lacustrine wetland. The species captured (Krefft's river turtle) is considered widespread and common throughout waterways in Queensland. No potential habitat for platypus (*Ornithorhynchus anatinus*) was identified.

Results of all aquatic indicators surveyed as part of this assessment were consistent with results from previous aquatic ecology surveys at CVM and in the broader region. No differences were observed in aquatic ecological indicators between sites on mapped potential surface-expression Groundwater Dependent Ecosystems (GDE) and sites on other waterways and wetlands in the region.

Overall, aquatic ecosystem values of waterways and wetlands in the vicinity of the Project were low to moderate, and were considered to be similar to and representative of ephemeral systems in the broader region. Sites on waterways with higher stream orders (i.e. Cherwell Creek and Grosvenor Creek) typically had higher ecological value than sites on waterways with low stream orders (i.e. Horse Creek, Caval Creek and unnamed tributaries). Mapped lacustrine wetlands were assessed as having moderate aquatic ecological value (particularly due to their provision of dry season refuge for aquatic flora and fauna) and palustrine wetlands were assessed as having low aquatic ecological value (as they were dry during the field surveys).

No true stygofauna specimens were recorded from bores sampled during the field survey. This is consistent with the findings of the desktop assessment, which concluded that the aquifer formations within the Project site are unlikely to support diverse stygofauna communities. Stygofauna communities are highly likely to occur further downstream of the Project, in the alluvium associated with the Isaac River and the lower reaches of its major tributaries.

Of the aquatic listed threatened species known to occur in the broader catchment, none were considered likely to occur in the vicinity of the Project. One High Ecological Significance (HES) palustrine wetland, including the associated Wetland Protection Area (WPA), is mapped approximately 20 km downstream of the Project. This wetland is a Matter of State Environmental Significance (MSES). However, it was dry during the field survey and was assessed as having low habitat value for aquatic flora and fauna, as it was in similar condition to other mapped palustrine wetlands in the vicinity area and would rarely be inundated (and therefore would rarely provide aquatic habitat).

Waterways in the vicinity of the Project are mapped as waterways providing for fish passage in the *Queensland Waterways for Waterway Barrier Works* spatial layer, with a low, moderate, high and major risk of adverse impacts to fish passage as a result of waterway barrier works. Water resources within the Project footprint included waterways (all of which were stream order one and highly ephemeral) and a farm dam (which was modified by the presence of a dam wall). Water resources downstream of the Project footprint included waterways (all of which were ephemeral in vicinity of the Project), lacustrine wetlands and farm dams (all of which were modified by the presence of dams), palustrine wetlands (all of which were dry during the field surveys), mapped potential aquatic (i.e. surface expression) GDEs, and subterranean GDEs. These water resources are a Matters of National Environmental Significance (MNES) if the action has, will have, or is likely to have a significant impact.

No other aquatic MNES or MSES were identified within the vicinity of the Project.

A number of potential impacts on aquatic ecological values may be associated with the Project, including:

- loss or modification of aquatic habitat, flora and fauna within the pit extension area and zone for dragline crossing
- temporary loss of minor waterway to be relocated
- changes to aquatic habitat (e.g. loss of habitat features) adjacent to and downstream of the Project
- altering fish passage via loss of sections of waterways and at water crossings, specifically the extension of the haul road requiring a bridge over Horse Creek and (where the location B option is selected for the blasting compound) a medium vehicle access road to the relocated blasting compound requiring a crossing over the existing Horse Creek diversion (although there is another route option also being considered)
- changes to flow and flood regimes or waterways and wetlands downstream of the Project as a result of loss of catchment
- changes to water and sediment quality associated with vegetation and excavation works, dust and particulate matter, surface water run-off, controlled and overflow releases, seepage and saline or acid drainage
- leaks and spills of contaminants
- production of litter and waste, and
- · proliferation of aquatic pests.

Changes to groundwater quantity, quality, and interactions are not expected in the unconsolidated sediments of the Isaac River alluvium, in the lower reaches of the Isaac River and at the confluences of larger tributaries (i.e. where stygofauna communities are likely to occur). Therefore, no impacts to stygofauna communities are expected as a result of the Project.

Implementation of the following management measures would mitigate or minimise adverse impacts on aquatic ecology associated with the Project:

- limiting areas disturbed at any one time; progressive and timely reinstatement of the disturbed landform
- avoiding waterway crossings, where possible, or to consider fish passage and flow in crossing designs
- ensuring earthworks and stockpiles are planned (and minimise where possible), including stormwater directed away from waterways
- designing and constructing infrastructure in accordance with the principles in existing strategies and management plans, including the existing Erosion and Sediment Control Plan (ESCP), as well as best practice procedures
- adhering to conditions of the existing Environmental Authority (EA), undertaking the
 receiving environment monitoring program (REMP) annually, utilising water
 management systems and complying with management plans developed for the
 management of water, waste, hydrocarbons and contaminants and pests.

Overall, where these mitigation measures are implemented, potential direct and indirect impacts were considered acceptable, with a low risk of residual impacts to aquatic ecosystem values. Furthermore, no significant impacts to water resources are expected as a result of the Project.

1 Introduction

This aquatic ecology assessment report has been prepared by Ecological Service Professionals (ESP) for SLR Consulting Australia (SLR) on behalf of BM Alliance Coal Operations Pty Ltd (BMA) and describes the existing aquatic environment for the Caval Ridge Mine (CVM) Horse Pit Extension Project (the Project). It also assesses the potential impacts associated with the Project on aquatic ecological values and stygofauna communities, and outlines proposed measures to minimise, manage or prevent potential adverse impacts.

1.1 Project Background

CVM is an existing open-cut coal mine located approximately five km south-west of Moranbah in the Bowen basin region of central Queensland (**Figure 1.1**). It is owned and operated by BMA, on behalf of the Central Queensland Coal Associates Joint Venture (CQCA JV) and has been in operation since 2014. Operations at CVM are carried out under the conditions of EA EPML00562013 and the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) Approval (2008/4417).

The CVM includes two pits: Horse Pit (north of Peak Downs Highway) and Heyford Pit (north of Harrow Creek), both located within Mining Lease (ML) 1775. Existing infrastructure is located primarily within ML 70403 and ML 70462. The CVM Environmental Impact Statement (EIS) (2010) and approval was based on a 30-year mine plan across defined extents for Horse Pit and Heyford Pit. Due to changes in mine sequencing, improvement in mining efficiency and further resource definition, an extension to the approved mining footprint of Horse Pit is required to continue mining. The Project involves an extension of the footprint of the existing Horse Pit at the CVM.

The key mining elements of the Project include:

- extension of the existing Horse Pit beyond the approved extent (exclusive of Moranbah Airport and Moranbah Access Road)
- maximum CVM Run-of-Mine (ROM) coal production up to 15 million tonnes per annum (Mtpa) CVM Life of Mine (LOM) to Financial Year (FY) 2056
- development of an Out of Pit Dump (OOPD) in the north-west of ML 70403 (commencing in FY2028)
- continuation of progressive rehabilitation of disturbed areas with the aim of progressing to a final landform design, including a final void of approximately 680 hectares (ha) in the far east of ML 1775 at the conclusion of mining
- continuation of current open cut mining techniques employed at CVM
- continuation of progressive disposal of mining waste and Coal Handling and Processing Plant (CHPP) rejects to In Pit Spoil Dumps (IPDs) and to the proposed OOPD (commencing in FY2028), and
- continued use of the existing accommodation and workforce strategy.

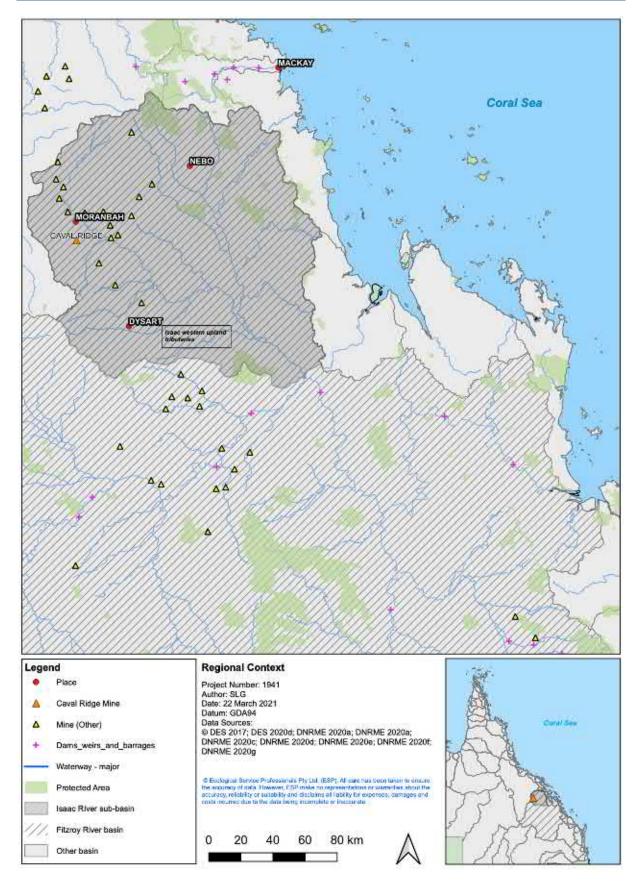


Figure 1.1 Regional Context

The key mine infrastructure elements of the Project include:

- relocation of enabling infrastructure, including: an EME Build Pad, blasting compound, go-lines, substations, back-access roads and powerlines as required by the progress of mining
- extension of the haul road to access the proposed OOPD in the north-west of ML 70403 including the construction of a bridge over Horse Creek
- construction of two flood levees: the northern levee bounds a portion of Horse Pit and the western levee is located at the south-west extent of the proposed OOPD
- relocation of mine water dams and pipelines as required by the progress of mining
- extension of sediment dam capacities and construction of new sediment dams, clean water diversion drains and mine affected water (MAW) drains to manage runoff associated with the proposed OOPD
- relocation of the Peak Downs Highway dragline crossing
- continued use of the CHPP complex (no upgrades to the CHPP are required as a result of the Project)
- continued disposal of dewatered tailings and rejects within spoil, and
- continued use of the conveyor from Peak Downs Mine, Caval Ridge rail spur, train load-out facility, product coal stockpiles, ROM stockpiles, IPDs, water management system and supporting infrastructure (i.e. roads, powerlines, laydown, workshops and offices).

1.2 Scope of the Assessment

The purpose of this aquatic ecology report is to:

- summarise aquatic flora and fauna known or likely to occur in the vicinity of the Project, as informed by the desktop review and results from comprehensive seasonal surveys
- detail the aquatic ecological condition of waterways and potential surface expression GDEs in the vicinity of the Project
- assess the potential likelihood of occurrence of any aquatic MNES and MSES in the vicinity of the Project
- summarise stygofauna communities known from or likely to occur in the groundwater aquifers of the region, as informed by the desktop review and results from two stygofauna pilot studies
- assess the risk and magnitude of potential impacts of the Project on the aquatic ecological values of the waterways and on stygofauna communities, and
- outline proposed measures to minimise, manage and / or prevent potential adverse impacts.

1.3 Description of the Study Area

1.3.1 Waterways and Wetlands in the Vicinity of the Project

A waterway is defined under the *Fisheries Act 1994* (Fisheries Act) as freshwater and tidal waters, both permanent and ephemeral, including a drainage feature, river, creek, stream, watercourse or inlet of the sea. There are several waterways in the vicinity of the Project (**Figure 1.2**). These include:

- an unnamed waterway and its associated tributaries, the headwaters of which are located within the south eastern part of the Project footprint. These waterways flow in a south easterly direction, joining Cherwell Creek approximately 3.5 km downstream of the Project.
- Horse Creek, the tributaries of which originate to the west of CVM and flow in a north easterly direction around the western boundary of CVM and join Grosvenor Creek approximately 2.5 km downstream of the Project. Horse Creek has been historically diverted around active mining areas, however an undiverted reach and several of its tributaries flow through the Project footprint.
- Grosvenor Creek, which originates to the north west of CVM and flows in an easterly direction joining the Isaac River approximately 7 km downstream. It is not within the Project footprint but is downstream of it.
- the Isaac River, which is located to the east of the Project and Cherwell Creek, which flows to the south of the Project. Neither are within the Project footprint but are located downstream of it; the Isaac River is approximately 9.5 km downstream of the Project at its confluence with Grosvenor Creek; and Cherwell Creek is approximately 3.8 km downstream of the Project at its confluence with the unnamed waterway.

In addition to waterways, one mapped lacustrine wetland considered to be modified by the presence of a farm dam is located downstream of the Project. Several farm dams that are unmapped but may provide aquatic habitat are located upstream, within and downstream of the Project. Mapped palustrine wetlands are also mapped in the region, none of which are within the Project footprint. One wetland of High Ecological Significance (HES), regulated under the *Environmental Protection Act 1994* (EP Act), is located on a mapped palustrine wetland approximately 20 km east (downstream) of the Project footprint. The HES wetland incorporates the mapped wetland and Wetland Protection Area (WPA) (**Figure 1.2**).

1.3.2 Watercourses in the Vicinity of the Project

A watercourse is defined under the *Water Act 2000* (Water Act) as a river, creek or other stream, including a stream in the form of an anabranch or a tributary, in which water flows permanently or intermittently, regardless of the frequency of flow events, and does not include drainage features (that lack a natural or artificial channel). The Isaac River as well as Horse Creek (within and downstream of the Project footprint) and Grosvenor Creek are 'watercourses' as defined by the Water Act (**Figure 1.3**). The upstream reaches of Horse Creek are unmapped under the Water Act and the tributaries of Horse Creek that flow within the Project footprint are stream order one and two waterways that are also unmapped under the Water Act.

1.3.3 Isaac River Sub-Basin

These waterways and wetlands are all within the Isaac River sub-basin, which is part of the wider Fitzroy River basin (**Figure 1.1**). The Isaac River sub-basin covers an area of approximately 22,364 square kilometres (km²). The Isaac River originates north of Moranbah in the Great Dividing Range and flows in a south-easterly direction, flowing adjacent to the Project and eventually discharging into the Mackenzie River, approximately 150 km downstream of the Project. Ultimately, the Mackenzie River joins the Dawson River to form the Fitzroy River, which flows initially north and then east towards the east coast of Queensland and discharges into the Coral Sea southeast of Rockhampton approximately 315 km downstream of the Project (**Figure 1.1**). The waters of the Isaac River sub-basin are included in Schedule 1 of the *Environmental Protection (Water and Wetland Biodiversity) Policy 2019* (EPP (WWB)). Under this document, they are classified as being within the Isaac western upland tributaries sub-catchments (DEHP 2011b; **Figure 1.1**). Several of the waterways and wetlands in the vicinity of the Project (upstream and downstream of the Project footprint) are mapped as moderate and high potential surface-expression groundwater dependent ecosystems (GDEs) (refer to **Section 4.7**).

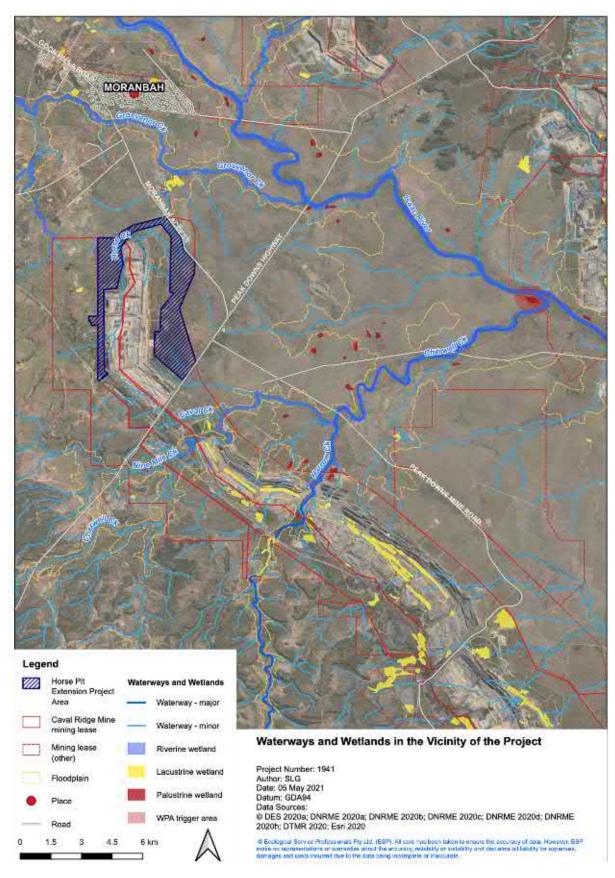


Figure 1.2 Waterways and wetlands in the vicinity of the Project

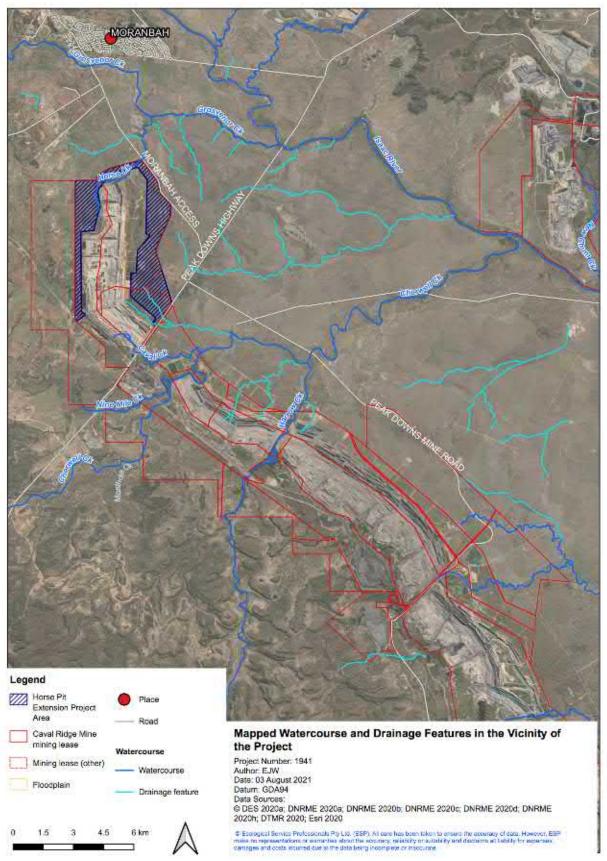


Figure 1.3 Mapped watercourses and drainage features in the vicinity of the Project

2 Relevant Legislation, Policies and Guidelines

The relevant legislation, policies and guidelines relating to aquatic habitat, water quality and aquatic flora and fauna in the vicinity of the Project are outlined in **Table 2.1**. In summary, the key items relating to aquatic ecology are:

- the potential presence of listed aquatic species, specifically:
 - Fitzroy River turtle (Rheodytes leukops)
 - o white-throated snapping turtle (Elseya albagula)
 - o silver perch (Bidyanus bidyanus), and
 - o platypus (Ornithorhynchus anatinus).
- the presence of water resources (waterways, wetlands and potential surface expression GDEs) and mapped HES wetlands
- mapped waterways under the Queensland Waterways for Waterway Barrier Works spatial layer within and adjacent to the Project footprint (noting that approvals for waterway barrier works are not required within the ML)
- the presence of listed pest species of aquatic plants and animals
- environmental values (EVs) of waterways and Water Quality Objectives (WQOs) for the protection of the relevant EVs, and
- the presence of mapped watercourses and drainage features under the Water Act on the Watercourse Identification Map (WIM).

Murray cod (*Maccullochella peelii*) and Australian lungfish (*Neoceratodus forsteri*) are known from the wider Fitzroy River basin; however, there are no records of these species from within the Isaac River sub-basin and they are highly unlikely to occur in the vicinity of the Project due to lack of suitable habitat. Therefore, these species are not considered further.

Regional ecosystems, a MSES protected under the Queensland *Vegetation Management Act 1999*, including those associated with waterways and wetlands, are assessed in the **Significant Impact Assessment Report – Terrestrial Ecology** (E2M 2021) and not considered in this report.

 Table 2.1
 Summary of relevant legislation, policies and guidelines relating to aquatic ecology that are relevant to the Project

Legislation / Synopsis Policy / Guideline		Relevance	Relevant Report Section							
Commonwealth										
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) and the EPBC Act Environmental Offsets Policy (EO Policy)	Provides for the protection and management of nine matters of national environmental significance (MNES).	Relevant MNES include: • the potential for listed threatened aquatic species to occur, and • water resources (including GDEs) in relation	The potential for aquatic MNES to occur in the vicinity of the Project is discussed in Section 4.9 , with no significant impacts expected, as discussed in Section 6.14 .							
		to coal seam gas development and large	GDEs are assessed in Section 4.7 .							
		coal mining development.	The requirement for environmental offsets (relating to aquatic ecology) are not considered this report as significant impacts to MNES are expected and therefore offsets are unlikely to be required.							
Queensland										
Environmental Protection Act 1994 (EP Act) and the subordinate Environmental Protection Regulation 2019 (EP Regulation)	Provides the basis for effective and efficient management of the natural environment within the context of ecologically sustainable development.	Regulates resource activities, including mining, and provides an approval system (EAs) for environmentally relevant activities (ERAs).	The character, resilience and values of waterways and wetlands, including MSES, fish passage and HES wetlands, are described in Sections 4 and 5 , with no significant impacts expected following mitigation as described in Section 6 .							

Legislation / Policy / Guideline	Synopsis	Relevance	Relevant Report Section					
EP Act and the subordinate Environmental Protection (Water and Wetland	Seeks to protect the quality of natural waters in Queensland while supporting ecologically	Environmental Values (EVs) and Water Quality Objectives (WQOs) have been defined for the Isaac River sub-basin under Schedule 1 of the	The aquatic ecological values of wetlands and waterways protected under the EPP (WWB) are described in Sections 4.2 , 4.7 and 4.10 .					
	sustainable development.	EPP (WWB). A HES wetland (designated as a wetland protection area (WPA) in Great Barrier Reef	The results of water quality and sediment quality sampling are provided in Sections 4.2.3 and 4.3.2 .					
Biodiversity) Policy 2019 (EPP (WWB))		catchments) is mapped downstream of the Project footprint near the confluence of Cherwell Creek and the Isaac River.	The aquatic ecological values of habitats comprising the HES wetland are described in Sections 4.1.2.3 and 4.10.3 .					
		There are no high ecological value (HEV) waterways or wetlands within the Project footprint or the broader study area.	No significant impacts to aquatic ecological values are expected following mitigation as described in Section 6 .					
Environmental Offsets Act 2014 (Offsets Act) and the subordinate Environmental Offsets Regulation 2014 (Offsets Regulation)	Seeks to counterbalance the significant residual impacts of particular activities on prescribed environmental matters through the use of environmental offsets.	An environmental offset may be required as a condition of approval where, following consideration of avoidance and mitigation measures, a prescribed activity is likely to result in a significant residual impact on a prescribed environmental matter(s).	The requirement for environmental offsets (relating to aquatic ecology) are not considered in this report as significant residual impacts to MSES are not expected and therefore offsets are unlikely to be required.					
Fisheries Act 1994 (Fisheries Act) and the subordinate	Seeks to achieve economically viable, socially acceptable and ecologically sustainable development of Queensland's	Waterway barrier works approval may be required if new waterway crossings are constructed or existing crossings are modified	The fish habitat value of the waterways in the vicinity of the Project are summarised in Sections 4.6.1 , 4.8.2 and 4.10 .					

Legislation / Policy / Guideline	Synopsis	Relevance	Relevant Report Section
Fisheries Regulation 2008	fisheries resources. Measures are designed to protect fisheries resources, include regulation of waterway barrier works, declaration of fish habitat areas and protection of marine plants.	outside of the Mining Lease but as part of the Project. Waterway barrier works approval under the Fisheries Act is not required within the Mining Lease, however waterways within and adjacent to the Project footprint are mapped on the Queensland Waterways for Waterway Barrier Works spatial layer and so consideration should be given to the impact to fish passage from the Project.	Significant impacts to fish passage are not expected following mitigation as described in Section 6.4.
Nature Conservation Act 1992 (NC Act) and subordinate Nature Conservation (Wildlife) Regulation 2006 (NCWR)	Provides for the protection of endangered, vulnerable and near threatened species of flora and fauna as listed under the NCWR.	Listed threatened aquatic species are present in the Isaac River sub-basin.	The potential for listed threatened aquatic species to be present within the study area is discussed in Sections 4.8.3 and 4.9.1 . Significant impacts to are not expected as described in Section 6.15 .
Biosecurity Act 2014	Provides a framework for the improved management of weeds and pest animals.	Potential aquatic pest plants (also recognised nationally as Weeds of National Significance (WoNS)) and pest animals that could have an adverse economic, environmental or social impact are present in the Isaac River sub-basin.	The potential for aquatic pest species in the vicinity of the Project is discussed in Sections 4.4 and 4.6 . Weeds and pests will be managed as outlined in Section 6.12 and significant impacts are not expected.

Legislation / Policy / Guideline	Synopsis	Relevance	Relevant Report Section
Planning Act 2016 (Planning Act)	Establishes a system for land use planning, development assessment and related matters that facilitates the achievement of ecological sustainability.	The Planning Act does not apply to development authorised under the <i>Mineral Resources Act</i> 1989, unless the development is on a Queensland heritage place or involves work under the <i>Building Act</i> 1975.	Not relevant for the Project, as the Planning Act is only relevant where there are works outside of the mining lease.
Water Act 2000	Provides for the sustainable management of water resources, including sustaining the health of ecosystems, water quality, water-dependent ecological processes and biological diversity associated with watercourses, lakes, springs, aquifers and other natural water systems (including, where practicable, reversing degradation that has occurred). Empowers the State to plan for the sustainable management of water through water plans and water use plans (i.e. Water Plans (formerly Water Management Plans) and Water Management Protocols (formerly Resource Operations Plans)).	A riverine protection permit (RPP) is required to excavate, or place fill in a watercourse, lake or spring, and may be required if the RPP exemption requirements cannot be complied with. A Water Licence may be required to interfere with watercourses. Waterways in the Project footprint are mapped on the Watercourse Identification Map (WIM), including: • a section of Horse Creek which is mapped as a watercourse • unnamed tributaries of Cherwell Creek which are mapped as drainage features • unnamed tributaries of Horse Creek which are unmapped.	The aquatic ecological values of mapped watercourses are shown on Figure 6.1, and described in Section 4, and specifically Section 4.10. The Project does not involve excavation or placing fill in a watercourse, lake or spring or interfering with watercourses outside of the mining lease. If activities proposed on-lease trigger an RPP and do not comply with the RPP exemption requirements then an RPP or water license will be required.

3 Methods

3.1 Aquatic Ecology Assessment

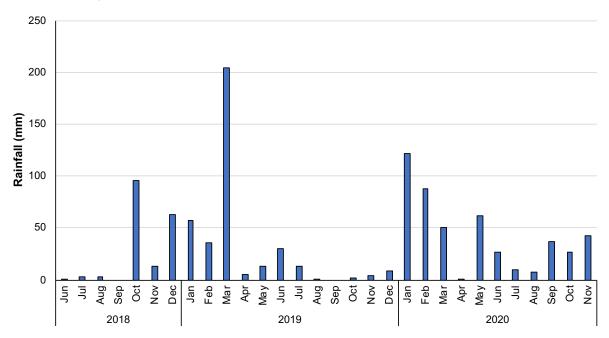
3.1.1 Desktop Literature Review

A comprehensive desktop assessment was completed to describe the aquatic habitat, flora and fauna of the region. The following sources were reviewed:

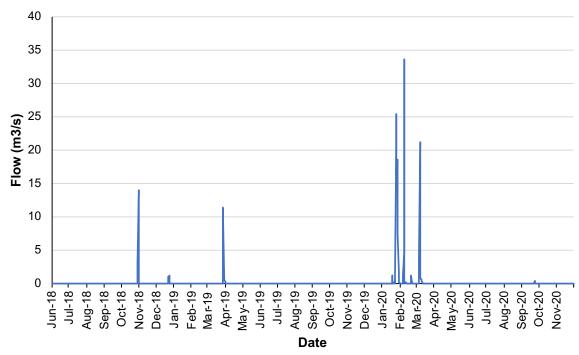
- EPBC Act Protected Matters Search Tool and the Queensland Wildlife Online database to determine the aquatic species (including listed threatened species) that are known or are likely to occur in the waterways within 50 km of the Project
- database searches of the species occurring in the area, including the Atlas of Living Australia and the Queensland Government's Wetland Info species lists for the Isaac River sub-basin and Fitzroy River basin
- publicly available water quality data from the Queensland Government's Water Monitoring Information Portal
- existing mapping of the aquatic ecological values in the vicinity of the Project, including the Queensland Government's Queensland Wetland Program mapping, Waterways for Waterway Barrier Works spatial layer and the Watercourse Identification Map
- aquatic ecology baseline assessments for CVM completed in 2008 (BAAM 2009); the CVM Receiving Environment Monitoring Program (REMP) reports for 2016 – 2017 (Gauge Industrial and Environmental 2018) and 2018 – 2019 (Gauge Industrial and Environmental 2020); and the CVM Aquatic Ecosystem Health Program (AEHP) reports for 2018 (CQU 2018) and 2019 (CQU 2019), and
- publicly available reports from aquatic ecology assessments completed in the region.

3.1.2 Field Surveys

3.1.2.1 Survey Timing


In order to adequately describe the range of aquatic ecological values present in the vicinity of the Project, as well as identify any important dry season refuges, field surveys were completed in both the early wet season and the late wet season. An additional aquatic habitat survey was completed in the early wet season. Climate data for the region (BOM 2020a) and data for rainfall recorded from the CVM on-site gauging station at Buffel Park, and flow recorded in Cherwell Creek from the CVM gauging stations located upstream and downstream of CVM were used to describe the environmental conditions leading up to and during each survey.

The 2019 early wet season aquatic ecology survey was completed from 9 to 12 December 2019 (hereafter referred to as the December 2019 survey). The weather was dry and sunny with temperatures ranging from 25 to 40 °C (BOM 2020a). Rainfall leading up to the survey was low (less than 10 millimetres (mm) recorded at the CVM on-site gauging station in the month prior to the survey) (**Figure 3.1**). The region experienced prolonged dry conditions for


some time prior to the survey. The wettest months of the year for the region are typically between October and March (i.e. the wet season); in the 2018/2019 wet season significant rainfall (more than 100 mm) was recorded only in March 2019, while less than 100 mm was recorded in all other months. Flow in the region is typically reflective of rainfall. In the month leading up to the December 2019 survey, no flow was recorded upstream of the Project but minor flows were recorded downstream (**Figure 3.2**; **Figure 3.3**).

The 2020 late wet season aquatic ecology survey was completed from 31 March to 4 April 2020 (hereafter referred to as the April 2020 survey). The weather was dry and sunny with temperatures ranging from 17 to 35°C (BOM 2020a). There was moderate rainfall recorded in the period leading up to the survey. The last few months of 2019 were very dry, with less than 10 mm of rainfall recorded each month (**Figure 3.1**). However, over 120 mm was recorded in January, 90 mm was recorded in February and 50 mm was recorded at the beginning of March (**Figure 3.1**). No rainfall was recorded in the three weeks prior to the survey. The 2020 wet season rainfall was considered a relatively dry wet-season for the region (less than 300 mm was recorded; whereas long-term data for Government gauging stations in the region indicated between 350 and 550 mm of rainfall is usually recorded in the wet-season (BOM 2020b)). However, the survey took place within an appropriate period of time after significant rainfall events to capture post-wet season conditions. In addition, flows were recorded in January, February and March in Cherwell Creek at both upstream and downstream gauging stations (**Figure 3.2**; **Figure 3.3**).

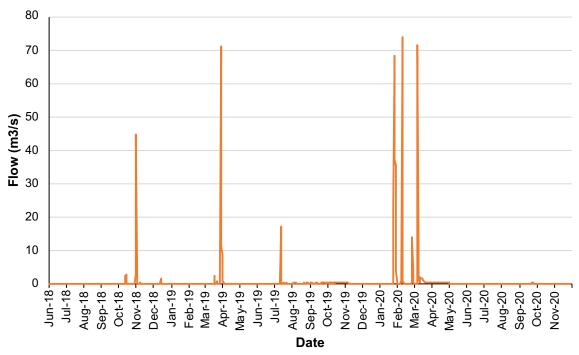

The 2020 early wet season aquatic ecology survey was completed from 23 to 27 November 2020 (hereafter referred to as the November 2020 survey). The weather was dry and sunny with temperatures ranging from 17 to 40°C (BOM 2020a). There was low rainfall recorded in the period leading up to the survey; a total of 4.8 mm recorded in November 2020, with 1.2 mm of rainfall recorded in the week prior to the survey (**Figure 3.1**). The region had experienced lower than average rainfall during the 2019 / 2020 wet season with only January 2020 recording more than 100 mm.

Figure 3.1 Monthly total rainfall recorded at by CVM at Buffel Park leading up to the December 2019, April 2020 and November 2020 surveys

Figure 3.2 Maximum daily stream flow in Cherwell Creek recorded at the upstream gauging station leading up to the December 2019, April 2020 and November 2020 surveys

Figure 3.3 Maximum daily stream flow in Cherwell Creek recorded at the downstream gauging station leading up to the December 2019, April 2020 and November 2020 surveys

3.1.2.2 Site Locations

In total twenty-four sites were surveyed, located upstream, within and downstream of the Project (**Table 3.1**; **Figure 3.4**). Not all sites were sampled during all surveys. In December 2019, 14 sites were surveyed and in April 2020, 15 sites were surveyed, including two new sites to align with changes in the Project footprint which occurred between surveys (**Table 3.1**). In November 2020, eight new sites were surveyed to assess aquatic habitat at additional surface water sites.

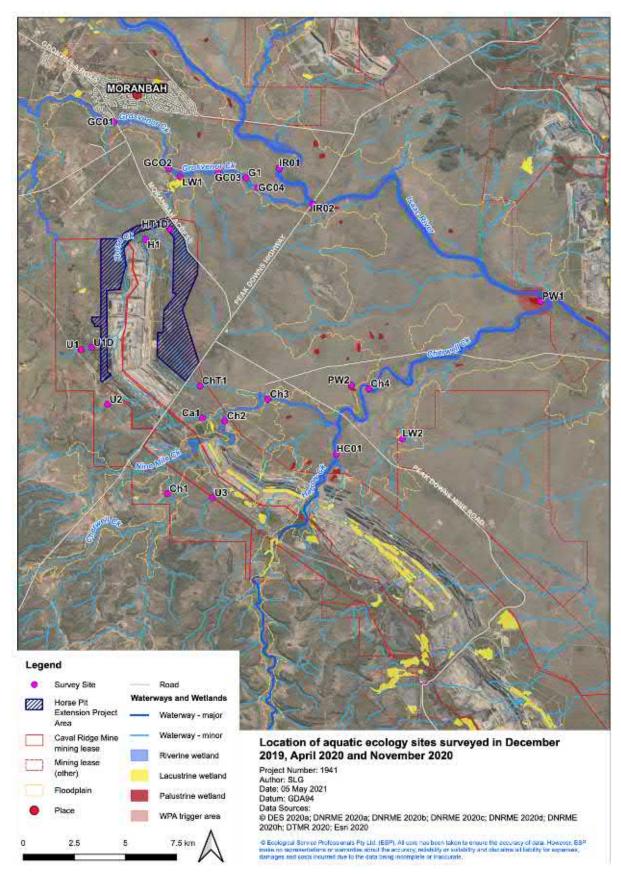
At comprehensive aquatic ecology assessment sites (i.e. sites marked "C" in **Table 3.1**), a wide range of indicators were assessed in December 2019 and April 2020, which included: aquatic habitat, in-situ and analytical water quality (if water was present), sediment quality, aquatic plants, macroinvertebrates (if water was present), fish (if water was present) and turtles (if water was present and appropriate habitat was identified) and aquatic ecological value. A sub-set of indicators were surveyed at habitat assessment sites (which were all dry) in December 2019 and April 2020, including: aquatic habitat, aquatic plants and aquatic ecological value. In November 2020, only aquatic habitat was surveyed at the additional surface sites.

Aquatic ecological indicators surveyed at each site during the field surveys is presented in **Table 3.1**. The methodologies for each aquatic ecological indicator were in accordance with the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy* (DES 2018a) unless modified to suit the objectives of the assessment and are described in the sections below.

Table 3.1 Site details, assessment completed and ecological indicators sampled for at each site surveyed in December 2019, April 2020 and November 2020

Dec 2019														Apr :020			Nov 2020			
Site	Description	Latitude	Longitude	Assessment Type	Habitat	Water Quality	Sediment Quality	Fish	Turtles	Macroinvertebrates	Aquatic Plants	Habitat	Water Quality	Sediment Quality	Fish	Turtles	Platypus (visual)	Macroinvertebrates	Aquatic Plants	Habitat
Upstre	am																			
U1	Unnamed waterway, 1 km upstream of CVM	-22.1139	148.0288	Н	Υ^	NS	-	_	_	_	Y	Υ^	NS	Υ	_	_	_	_	Y	_
U1D	Farm dam on unnamed waterway, 0.5 km upstream of CVM	-22.1129	148.0333	С	Υ	Y	Y	Υ	Y	Y	Y	Υ	Y	Y	Υ	Υ	NS	Y	Y	_
U2	Caval Creek, 0.5 km upstream of CVM	-22.1379	148.0403	С	Υ^	NS	Υ	_	_	-	Υ	Υ^	NS	Υ	_	_	_	_	Υ	_
U3	Unnamed waterway, 0.25 km upstream of CVM	-22.1789	148.0865	Н	_	_	_	_	_	-	_	Υ^	NS	_	_	_	_	_	Y	_
Ca1	Caval Creek, downstream of diversion	-22.1439	148.0821	С	Υ^	NS	Υ	_	_	-	Υ	Υ	Υ	Υ	Υ	NS	NS	Υ	Υ	_
Ch1	Cherwell Creek, 1.5 km upstream of CVM	-22.1771	148.0667	С	Υ^	NS	Υ	_	_	-	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	_
Ch2	Cherwell Creek, downstream of CVM and upstream of the Project site	-22.1451	148.0919	С	Υ^	NS	Υ	_	_	_	Y	Υ	Υ	Y	Υ	NS	NS	Y	Y	_
GC01	Grosvenor Creek approximately 5 km upstream of the confluence with Horse Creek	-22.0138	148.0431	Н*	_	_	-	_	_	_	-	_	_	-	_	_	_	_	-	Y
GC02	Grosvenor Creek approximately 700 m upstream of the confluence with Horse Creek	-22.0342	148.0671	Н*	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	Υ^
IR01	Isaac River 2 km upstream of confluence with Grosvenor Creek	-22.0343	148.1157	Н*	-	_	-	_	_	_	_	_	_	_	_	_	_	_	-	Υ^
HC01	Harrow Creek downstream of CVM but upstream of the Project site	-22.1599	148.1409	Н*																Υ^
LW2	Lacustrine wetland on unnamed tributary downstream of CVM but adjacent to Project site	-22.1530	148.1699	Н*	_	_	-	_	-	-	_	_	_	_	_	-	_	_	-	Υ
Within	Project Footprint									•										
HT1D	Farm dam on tributary of Horse Creek within Project site	-22.0609	148.0679	С	Υ	Y	Y	Y	Υ	Υ	Y	Y	Y	Y	Υ	Υ	NS	Y	Y	_

	Dec 2019													Apr 2020							
Site	Description	Latitude	Longitude	Assessment Type	Habitat	Water Quality	Sediment Quality	Fish	Turtles	Macroinvertebrates	Aquatic Plants	Habitat	Water Quality	Sediment Quality	Fish	Turtles	Platypus (visual)	Macroinvertebrates	Aquatic Plants	Habitat	
Downs	tream																				
H1	Horse Creek within Horse Pit	-22.0654	148.0570	С	Υ^	NS	Υ	_	_	-	Υ	Υ^	NS	Y	_	_	-	_	Υ	-	
ChT1	Tributary of Cherwell Creek downstream of Project site	-22.1296	148.0828	Н	_	-	_	-	-	-	-	Υ^	NS	-	_	_	-	-	Υ	_	
LW1	Lacustrine wetland on Horse Creek downstream of Project site	-22.0379	148.0722	С	Y	Y	Υ	Y	Y	Υ	Y	Y	Υ	Υ	Υ	Υ	NS	Υ	Υ	_	
G1	Grosvenor Creek downstream of Project site	-22.0384	148.1013	C	Υ^	NS	Υ	/-	_	-	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	_	
Ch3	Cherwell Creek downstream of CVM	-22.1356	148.1108	С	Υ^	NS	Υ	- /	_	-	Υ	Υ	Υ	Υ	NS	NS	NS	Υ	Υ	-	
Ch4	Cherwell Creek downstream of its confluence with Harrow Creek	-22.1310	148.1551	C	Υ^	NS	Y	-	_	7	Y	Υ	Υ	Υ	Υ	NS	NS	Υ	Υ	_	
PW1	WPA / HES wetland downstream of the Project site and downstream of confluence of Harrow Creek	-22.0932	148.2282	С	Υ^	NS	Υ	-	_	-	Υ	_	_	_	_	_	_	-	_	_	
PW2	Palustrine wetland downstream of the Project site and the confluence of Harrow Creek	-22.1306	148.1478	Н	Υ^	NS	-	-	_	-	Υ	Υ^	NS	-	-	_	-	-	Υ	_	
GC03	Grosvenor Creek 1.8 km downstream of confluence with Horse Creek	-22.0358	148.0889	Н*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Υ^	
GC04	Grosvenor Creek 4 km downstream of confluence with Horse Creek	-22.0427	148.1064	H*	-	-	9	_	-	-	-	-	-	-	-	-	-	-	-	Υ^	
IR02	Isaac River downstream of confluence with Grosvenor Creek and Peaks Down Highway	-22.0499	148.1306	H*	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	Υ^	


Assessment type: C = comprehensive assessment sites surveyed in December 2019 and April 2020, including aquatic habitat, sediment quality, aquatic plants, and where water was present insitu and analytical water quality, macroinvertebrates, fish and turtles; H = habitat assessment (dry) sites surveyed in December 2019 and April 2020, including aquatic habitat and aquatic plants; H* = additional sites in November 2020, included habitat (including in-situ water quality) only

[^] Site dry at the time of the survey

⁻ Not surveyed

Y Indicator sampled

NS Indicator not sampled as appropriate habitat features or sufficient water not available

Figure 3.4 Location of aquatic ecology sites surveyed in December 2019, April 2020 and November 2020

3.1.2.3 Aquatic Habitat

Aquatic habitat assessments were completed to describe the aquatic habitat condition, connectivity and ecosystem value of each site. Assessments were based on the Australian River Assessment System (AUSRIVAS) habitat assessment protocol, modified where required to suit the purpose of this assessment. Observations included:

- features of the water body, including bank height, estimate of flow, estimated width and depth of any standing water present
- details of the riparian zone (e.g. width, canopy height, species present) and adjacent land use
- aquatic habitat types present and their relative per cent cover within the reach
- details of the sediment types present (e.g. relative composition of grain sizes, presence of anoxic sediments)
- details regarding any evidence of disturbances or impacts (if present) on aquatic ecosystems, and
- overall habitat condition and value.

Physicochemical water quality was measured as outlined in **Section 3.1.2.4** to assist interpretation of habitat assessments. Habitat assessments were completed using an electronic template to avoid transcription errors. Georeferenced photographs of the reach and key habitat features were also taken at each site. The aquatic habitat at each site was summarised and used to assist interpretation of the biological survey results.

In April 2020, at each site holding water (excluding wetland and dam sites), overall habitat condition was assessed based on the river bioassessment score protocol described in the *Queensland AUSRIVAS Sampling and Processing Manual* (DNRM 2001). Each site was given a numeric score for a number of criteria. The sum of the numerical score from each criterion produced an overall habitat condition score that allocated each site to one of four categories:

- >110 were considered to be in excellent condition
- between 75 and 110 were considered to be in good condition
- between 39 and 74 were considered to be in moderate condition, and
- ≤38 were considered to be in poor condition.

3.1.2.4 Water Quality

The surface water quality assessment was not designed as a comprehensive baseline survey of water quality for the Project. Instead, surface water quality data was collected to provide an indication of the condition of water quality at the time of the surveys in order to inform the interpretation of biological survey results.

At each site that held sufficient water (**Table 3.1**), physicochemical water quality (temperature, conductivity, pH, dissolved oxygen and turbidity) was measured using a YSI ProDSS multi-parameter water quality sonde at a depth of approximately 20 cm below the water surface (at each site that held sufficient water). The water quality meter was calibrated prior to field sampling.

At each comprehensive aquatic ecology site that held sufficient water (**Table 3.1**), grab samples were also collected from approximately 30 cm below the water surface and analysed for:

- total dissolved solids (TDS) and total suspended solids (TSS)
- nutrients (total nitrogen, nitrate, nitrite, oxides of nitrogen (NOx), ammonia, organic nitrogen measured as Total Kjeldahl Nitrogen (TKN), reactive and total phosphorous)
- total hardness
- major ions (calcium, fluoride, magnesium, potassium, sodium and sulphate)
- total and dissolved metals and metalloids (aluminium, arsenic, boron, cadmium, chromium, cobalt, copper, lead, iron, manganese, mercury, molybdenum, nickel, selenium, silver, uranium, vanadium and zinc)
- total petroleum hydrocarbons (TPHs), and
- benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN).

Quality assurance / quality control (QA/QC) measures for water quality sampling and analyses were in accordance with the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy* (DES 2018a) and the most current versions of other appropriate Australian Standards. This included the use of powder-free nitrile gloves, which were worn during sample container handling, to reduce the risk of sample contamination during collection. All samples were held under the appropriate conditions (e.g. in eskies in the field and during transport) and delivered to ALS Environmental (a NATA accredited laboratory).

A duplicate field sample (i.e. sample split into two) and field method blank were collected from one site during each survey, to determine the variability in results associated with field sampling. A relative per cent difference (RPD) of < 20 per cent between field replicates was considered acceptable (where the values were more than five to ten times the laboratory limit of reporting) (DES 2018a). Laboratory analyses also included quality control measures, including analysis of blanks, spikes and duplicates. A Certificate of Analysis for water quality samples is provided in **Attachment B**.

Results were reviewed, and all parameters below or equal to the laboratory limit of reporting (LOR) at all sites were noted and not considered further. Results for remaining parameters were compared to available water quality objectives (WQOs) adopted from the following hierarchy of sources (**Table 3.2**):

- WQOs for upper Isaac River catchment freshwaters (used for comparison to waterway sites) and lakes/reservoirs (for lacustrine wetland and farm dam sites) scheduled in the EPP (WWB) for the Isaac River sub-basin (DEHP 2013a)
- default guideline values (DGVs) for slightly to moderately disturbed ecosystems for 95 per cent level of protection (unless otherwise recommended) published in the Australian water quality guidelines (ANZG 2018) for toxicants as specified in the EPP (WWB) for the Isaac River sub-basin (DEHP 2013a), and
- trigger levels (TLs) for aquatic ecosystem protection specified in the *Model Water Conditions for Coal Mines in the Fitzroy Basin* (DES 2018b).

WQOs differed from those outlined in the REMP design document for some parameters given the REMP has been designed for all BMA and BHP Mitsui Coal (BMC) coal mines in the region (BHP 2018), and many of the guidelines are based on adjacent catchment water quality objectives. The REMP guideline values are shown in **Table 3.2** and were used for interpretation of results, where relevant (i.e. where WQOs differed).

Table 3.2 Relevant Water Quality Objectives (WQOs) used for the aquatic ecology assessment (bold) and the REMP WQOs

Parameter	Units	Freshwater ^a	Lakes and Reservoirs ^b	REMP
Physical	'			
Temperature	°C	_	_	
pH	рН	6.5 – 8.5	6.5 - 8.0	6.5 - 8.5 ^m
Electrical conductivity	μS/cm	720 ^c	250 °	720 ^{c,n}
Dissolved oxygen	%Sat	85 –110	90 –110	85 –110 ^m
Turbidity	NTU	50	1 – 20	50 m
Total dissolved solids (TDS)	mg/L	_	_	_
Total suspended solids (TSS)	mg/L	55	_	30 m
Major lons				
Total Hardness as CaCO₃	mg/L	_	_	_
Sulfate as SO ₄	mg/L	25	_	5 m
Calcium	mg/L	_	_	_
Magnesium	mg/L	_	_	_
Sodium	mg/L	_	_	_
Potassium	mg/L	_	_	_
Fluoride	mg/L	2		1000 °
Nutrients	'			
Ammonia	μg/L	20	10	900 p
Nitrite	μg/L	_	_	_
Nitrate	μg/L	_	_	1100 ^j
Oxides of nitrogen	μg/L	60	10	_
Organic nitrogen	μg/L	420	330	_
Total nitrogen	μg/L	500	350	_
Total phosphorous	μg/L	50	10	-
Filterable reactive phosphorous (FRP)	μg/L	20	5	_
Metals and Metalloids d				
Aluminium	μg/L	55		55 p
Arsenic	μg/L	13 ^k		13 ^k
Boron	μg/L	370		370 p
Cadmium	μg/L	0.2x(H/30) ^{0.89 e}		0.2 ^p
Chromium	μg/L	1.0 1		1.0 1
Cobalt	μg/L	90 ^f		90 j
Copper	μg/L	1.4		2 ^j
Iron	μg/L	300 a		300 j
Lead	μg/L	3.4x(H/30) ^{1.27 e}		4 j
Manganese	μg/L	1:	900	1900 p

Parameter	Units	Freshwater ^a Lakes and Reservoirs ^b	REMP
Mercury	μg/L	0.06 ^h	0.2 ^j
Molybdenum	μg/L	34 ⁱ	34 ^j
Nickel	μg/L	11x(H/30) ^{0.85 e}	11 ^p
Selenium	μg/L	10 ^j	10 ^j
Silver	μg/L	0.05	1 ^j
Uranium	μg/L	1 ^j	1 ^j
Vanadium	μg/L	10 ^j	10 ^j
Zinc	μg/L	8.0x(H/30) ^{0.85 e}	8 p
Hydrocarbons			
C6 - C9 Fraction	μg/L	20	20 ^p
C10 - C14 Fraction	μg/L	-	_
C15 - C28 Fraction	μg/L	-	_
C29 - C36 Fraction	μg/L	-	_
C10 - C36 Fraction (sum)	μg/L	100	100 p
BTEXN			
Benzene	μg/L	950	_
Toluene	μg/L	-	_
Ethylbenzene	μg/L	-	_
Meta- & Para-Xylene	μg/L	-	_
Ortho-Xylene	μg/L	350	_
Total Xylenes	μg/L	-	_
Naphthalene	μg/L	16	_

- WQO for Upper Isaac River catchment moderately disturbed waters (DEHP 2013a), which defaults to the Australian water quality guidelines for toxicants (ANZG 2018), used for comparison to waterway sites, unless otherwise indicated
- WQO for Upper Isaac River catchment moderately disturbed freshwater lakes/reservoirs used for comparison to lacustrine wetland and farm dam sites (DEHP 2013a), which defaults to the Australian water quality guidelines for toxicants (ANZG 2018), unless otherwise specified
- ^c WQO for base flow conditions (DEHP 2013a)
- d Specified WQOs to be applied to dissolved metals and metalloids only (ANZG 2018)
- ^e WQO modified based on water hardness-dependent algorithm, where H = water hardness (ANZG 2018)
- f Moderate reliability WQO (ANZG 2018)
- Interim WQO based on Canadian guideline value, as per recommendations in ANZG (2018) and adopted in the Model Water Conditions for Coal Mines in the Fitzroy Basin (DES 2018b)
- h WQOs for 99% of species protection for slightly to moderately disturbed waters as per recommendations (ANZG 2018)
- Low reliability WQO, as per recommendations in ANZG (2018) and adopted in the Model Water Conditions for Coal Mines in the Fitzroy Basin (DES 2018b)
- TL for aquatic ecosystem protection outlined in the Model Water Conditions for Coal Mines in the Fitzroy Basin (DES 2018b)
- k WQOs for arsenic V adopted as a conservative approach (ANZG 2018) because analyses did not speciate arsenic
- WQOs for chromium VI adopted as a conservative approach (ANZG 2018) because analyses did not speciate chromium
- m WQO for the Comet River sub-basin waters scheduled in the EPP (WWB) for the Comet River sub-basin (DEHP 2011a)
- WQO for the freshwaters scheduled in the Queensland Water Quality Guidelines (DEHP 2013b)
- ° Lower trigger value for irrigation (cotton) (ANZECC & ARMCANZ 2000)
- Freshwater guideline values scheduled in the Australian water quality guidelines (ANZECC & ARMCANZ 2000)

3.1.2.5 Sediment Quality

At each comprehensive aquatic ecology site (**Table 3.1**), sediment quality in the stream channel was assessed. A single composite sample was collected from a low-flow stream bank using a stainless steel trowel, in accordance with methods outlined in the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy* (DES 2018a) and the guide to *Sediment Quality Assessment* (Simpson & Batley 2016). The composite sample comprised five to 10 sediment grabs collected one to 10 metres (m) apart along the length of each site. Samples were collected into suitable glass jars and were not mixed in the field, as this was completed by the laboratory during sample preparation for analysis.

Samples were held under the appropriate conditions (e.g. in eskies in the field and during transport) and delivered to ALS Environmental (a NATA-accredited laboratory) for analysis of:

- particle size distribution
- total organic carbon
- total metals and metalloids (aluminium, arsenic, boron, cadmium, chromium, cobalt, copper, lead, iron, manganese, mercury, molybdenum, nickel, selenium, silver, uranium, vanadium and zinc)
- TPHs, and
- BTEXN.

Strict QA/QC protocols were adhered to throughout each stage of sampling, in accordance with the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy* (DES 2018a). Powder-free nitrile gloves were worn during sample container handling, to reduce the risk of sample contamination during collection.

During the sediment surveys, one field replicate sample was collected from one site and analysed for the parameters listed above to determine any small scale (i.e. within site) variation. A relative per cent difference (RPD) of < 50 per cent between field replicates was deemed acceptable (DES 2018a). The laboratory also completed quality control measures including analysis of blanks, spikes and duplicates. A Certificate of Analysis report for sediment quality samples is provided in **Attachment B**.

The sediment quality results were reviewed, and all parameters that were below or equal to the laboratory LOR at all sites were noted and not considered further. Results for remaining parameters were compared to the DGVs and guideline value-high (GV-High) (where available) outlined in the ANZG (2018) and Simpson et al (2013) (**Table 3.3**), which were consistent with the sediment quality guidelines outlined in the REMP design document (BHP 2018).

Table 3.3 Default guideline values (DGV) and guideline values-high (GV-High) for sediment quality (ANZG 2018)

Parameter	Unit	DGV	GV-High ^a
Particle Size Distribution	%	_	_
Total Organic Carbon	%	_	-
Metals and Metalloids			
Aluminium	mg/kg	_	-
Arsenic	mg/kg	20	70
Boron	mg/kg	_	-
Cadmium	mg/kg	1.5	10
Chromium	mg/kg	80	370
Cobalt	mg/kg	-	-
Copper	mg/kg	65	270
Iron	mg/kg	-	-
Lead	mg/kg	50	220
Manganese	mg/kg	-	-
Mercury	mg/kg	0.15	1
Molybdenum	mg/kg	-	-
Nickel	mg/kg	21	52
Selenium	mg/kg	_	_
Silver	mg/kg	1	4
Uranium	mg/kg	_	_
Vanadium	mg/kg	_	_
Zinc	mg/kg	200	410
Total Petroleum Hydrocarbons			
C6 - C9 Fraction	mg/kg	_	-
C10 - C14 Fraction	mg/kg	_	-
C15 - C28 Fraction	mg/kg	-	-
C29 - C36 Fraction	mg/kg	_	-
C10 - C36 Fraction (sum)	mg/kg	280	550

no guideline value exists for this parameter

^a GV-High to be used as an indicator of potential high-level toxicity problems, not as a guideline value to ensure protection of ecosystems

3.1.2.6 Aquatic Plants

At each comprehensive aquatic ecology site (excluding wetland and dam sites) surveyed in December 2019 and April 2020 (**Table 3.1**), aquatic plant communities were semi-quantitatively assessed using ten replicated quadrats along a 100 m belt transect via visual assessment. The following were recorded in each quadrat:

- the location (i.e. on bank or in stream) of macrophytes,
- macrophyte growth form (i.e. submerged, emergent, floating), and
- per cent cover of each species (both native and exotic).

At wetland and dam sites, aquatic plants were assessed via visual estimates of species diversity and total per cent coverage within the area of the wetland or dam.

For each comprehensive aquatic ecology site, the total taxonomic richness and per cent cover were calculated to inform the interpretation of biological survey results and to assess the overall aquatic ecological value of the site.

For habitat sites surveyed in December 2019 and April 2020, aquatic plant diversity and abundance was not semi-quantitatively assessed but used to assess the overall aquatic ecological value of the site.

3.1.2.7 Aquatic Macroinvertebrates

At each comprehensive aquatic ecology site that held sufficient water (**Table 3.1**), macroinvertebrate communities (including macrocrustaceans) were surveyed to provide an assessment of ecosystem health. One AUSRIVAS sample was collected from a 10 m section of each available habitat type (e.g. bed / pool and edge) using the standard kick-sweep method.

All samples were collected using a standard triangular AUSRIVAS dip net. Samples were transferred into labelled sample jars, preserved in ethanol solution and transported to ESP's laboratory for processing. The macroinvertebrates in each sample were sorted, counted and identified to the lowest practical taxonomic level (in most instances family) to comply with standard AUSRIVAS methodology. Any macrocrustaceans (e.g. yabbies and freshwater crabs) caught during fish surveys (see below) were also recorded.

Appropriate QA/QC checks were completed in accordance with the recommendations in the Queensland AUSRIVAS Sampling and Processing Manual (DNRM 2001) and the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy* (DES 2018a). A second ecologist checked approximately 80 per cent of picked samples, and at least 5 per cent of samples were re-identified and counted by a second ecologist. An error rate of < 10 per cent was considered acceptable, as per the Laboratory Identification QA/QC guidelines (DNRM 2001, DES 2018a).

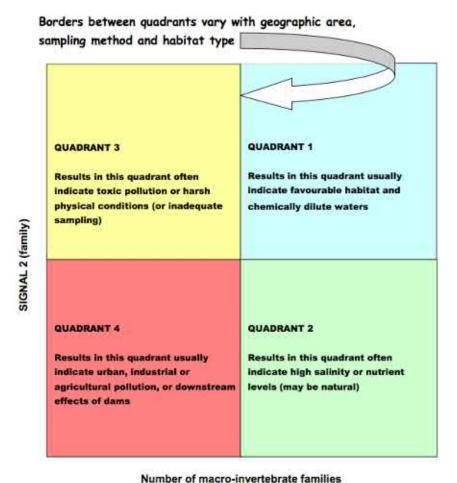
Standard macroinvertebrate indices were calculated for each site, including (Chessman 2003):

 taxonomic richness: count of the number of different macroinvertebrate taxa present at each site. Taxonomic richness does not take into account the relative abundance of each taxon, so rare and common taxa are considered equally

- PET richness: the number of macroinvertebrate taxa at a site that belong to the orders Plecoptera, Ephemeroptera and Trichoptera (i.e. PET taxa). These taxa are considered to be particularly sensitive to changes in their environment, and are therefore good indicators of habitat degradation and water quality. Low PET scores generally indicate poor habitat condition, and high PET scores generally indicate good habitat condition. However, PET taxa are often naturally rare in ephemeral Queensland rivers and creeks (preferring clear, fast-flowing streams), therefore low PET richness is not necessarily indicative of anthropogenic impacts, and
- Stream Invertebrate Grade Number Average Level (SIGNAL) 2 scores based on the sensitivity of each macroinvertebrate taxa to pollution or habitat degradation. Different macroinvertebrate taxa have been allocated a sensitivity grade number based on their sensitivity to various pollutants, and this number is weighted for abundance (so that the relative abundance of tolerant or sensitive taxa can be considered, and not just the presence / absence of taxa). A low SIGNAL score indicates that taxa are tolerant to a range of environmental conditions and a high score indicates that taxa are more sensitive to such conditions.

Due to very high abundances of microcrustaceans (e.g. copepods, ostracods and Cladocera) in some samples, these taxa were removed from the analysis (van Looij 2009).

Results were compared against the relevant biological objectives outlined in the EPP (WWB) for the Isaac River sub-basin for upper Isaac River catchment freshwaters (DEHP 2013a) (**Table 3.4**), which were consistent with the REMP Macroinvertebrate Water Quality Objectives (BHP 2018). These values are derived for streams (i.e. flowing waters) and as such comparisons of results from wetlands and dams with the biological objectives should be interpreted with caution (as they are stagnant habitats).


Table 3.4 Biological guidelines values for upper Isaac River catchment freshwaters (DEHP 2013a) ^a

Index	Composite ^b	Edge
Taxonomic richness	12 – 21	23 – 33
PET richness	2 – 5	2-5
SIGNAL score	3.33 – 3.85	3.31 – 4.20

Macroinvertebrate biological guidelines are based on the Queensland Water Quality Guidelines (QWQGs; DEHP 2013b) Central Coast regional water quality guidelines based on the 20th and 80th percentiles of test site data

SIGNAL 2 scores were interpreted in conjunction with the number of families found in the sample. This was achieved using a SIGNAL 2 / family bi-plot (Chessman 2003). The SIGNAL 2 / family bi-plot is divided into quadrants, with each quadrant indicative of environmental conditions that may influence a community (**Figure 3.5**). Quadrant boundaries for the SIGNAL 2 / Family Bi-plot used for this assessment were based on the upper (80th percentile) biological guideline values for taxonomic richness and SIGNAL scores.

b Mixture of all bed habitats within the site (e.g. sandy pool, rocky pool, riffle, run, cascade)

Number of macro-mivertebrate failules

Figure 3.5 Quadrant diagram for SIGNAL2 / Family Bi-plot (Chessman 2003)

3.1.2.8 Fish

At each comprehensive aquatic ecology site that held sufficient water (**Table 3.1**), fish communities were surveyed using a combination of methods depending on the habitat characteristics of the site, including fyke nets, seine nets and baited traps. Survey methods and effort used at each site during each survey are summarised in **Table 3.5**.

All sampling was completed in accordance with the methodology outlined in the latest version of the *Monitoring and Sampling Manual: Environmental Protection (Water) Policy* (DES 2018a), where appropriate, and relevant permits issued to ESP, including General Fisheries Permit 193593, Animal Ethics Approval CA 2017/06/1072 and Scientific Purposes Permit WA0017831.

All native fish were identified, counted, and returned to the environment. The total length (cm) of fish of a subsample of 20 individuals per species caught at each site was measured. Pest fish were identified, counted and euthanised in accordance with permit conditions.

The abundance of fish species caught at each site was calculated and tabulated. Life history stages of native fish were determined using length measurements (based on information in Pusey et al 2014), graphed and discussed.

 Table 3.5
 Fish and turtle effort at each survey site in December and April surveys

Location	Site	Method	Number	Date / Time In	Date / Time Out	Total Effort (hours)
December 201	9					
Lingtroom	U1D	Fyke	3	15:30, 11/12/2019	9:00, 12/12/2019	52.5
Upstream	טוט	Traps	4	15:30, 11/12/2019	9:00, 12/12/2019	70
Within	HT1D	Fyke	3	17:00, 10/12/2019	9:00, 11/12/2019	48
vvitnin	нио	Traps	5	17:00, 10/12/2019	9:50, 11/12/2019	84
Downstream	LW1	Fyke	3	16:00, 9/12/2019	8:00, 10/12/2019	48
	LVV1	Traps	5	16:00, 9/12/2019	8:00, 10/12/2019	80
April 2020	,					
	LIAD	Fyke	2	14:30,02/04/2020	9:00, 3/4/2020	37
	U1D	Traps	5	14:30,02/04/2020	9:00, 3/4/2020	92.5
l la atua a ua	Ca1	Traps	2	14:30, 3/4/2020	8:00, 4/4/2020	35
Upstream	Ch1	Fyke	2	16:45, 2/4/2020	10:30, 3/4/2020	35.5
	Ch1	Traps	5	16:45, 2/4/2020	10:30, 3/4/2020	177.5
	Ch2	Traps	3	16:30, 3/4/2020	8:15, 4/4/2020	47.25
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LITAD	Fyke	2	16:45, 1/4/2020	8:45, 2/4/2020	32
Within	HT1D	Traps	5	16:45, 1/4/2020	8:45, 2/4/2020	80
	1.1074	Fyke	2	15:15,31/3/20	10:45, 31/3/2020	39
	LW1	Traps	5	15:15,31/3/20	10:45, 31/3/2020	195
Downstream	04	Fyke	2	14:30, 31/3/2020	9:45, 1/4/2020	38.5
	G1	Traps	5	14:30, 31/3/2020	9:45, 1/4/2020	192.5
	Ch4	Seine	2	13:30, 1/4/2020	13:45, 1/4/2020	0.25

3.1.2.9 Turtles

Turtles were surveyed at comprehensive aquatic ecology sites that contained any suitable potential turtle habitat (**Table 3.5**). Turtles were surveyed in conjunction with fish surveys (i.e. fyke nets set for fish surveys were set to trap turtles also). Survey effort used at each site during each survey is summarised in **Table 3.5**.

All sampling was completed in accordance with the *Australian Survey Guidelines for Australia's Threatened Reptiles* (Commonwealth of Australia 2011), *Terrestrial Vertebrate Fauna Survey Guidelines for Queensland* (Eyre et. al 2018) as well as relevant permits issued to ESP, including Animal Ethics Approval CA 2017/06/1072 and Scientific Purposes Permit WA0017831. Once caught, turtles were identified and returned back to the environment.

Suitable turtle habitat and nesting habitat were noted if present, particularly features preferred by the listed species known to occur in the region (i.e. Fitzroy River turtle (*Rheodytes leukops*) and white-throated snapping turtle (*Elseya albagula*)), such as:

- General habitat features, including:
 - o clear, flowing and well oxygenated water with riffle zones and deep pools

- o sandy gravel substrate
- a diversity of instream features for shelter and to refuge amongst (e.g. submerged aquatic vegetation, submerged rock crevices, undercut banks and/or submerged logs and fallen trees), and
- Nesting habitat features, including sandy or loam banks (Limpus et al 2011).

While there was habitat available for turtles in some areas, there was no suitable habitat for listed threatened turtle species identified in the study area. As such, no further targeted surveys for these species (such as snorkelling, evening spotlighting or seine netting) were completed.

3.1.3 Aquatic Ecosystem Values

The overall aquatic ecosystem values of the waterways and wetlands were identified based on the criteria outlined in **Table 3.6**. The criteria were developed in accordance with the *Guidelines for Identifying High Ecological Values Aquatic Ecosystems* (Aquatic Ecosystems Task Group 2012), which identifies five core criteria that can be used to determine aquatic ecosystems of high value:

- Diversity: The aquatic ecosystem exhibits exceptional diversity of species (native / migratory), habitats, and / or geomorphological features / processes; includes diversity of ecosystem types (rivers, wetlands, subterranean systems, etc.), biotic diversity (within and between species) and / or abiotic (e.g. geomorphic) features and processes;
- Distinctiveness: The aquatic ecosystem is rare / threatened or unusual; and / or supports rare / threatened / endemic species / communities / genetically unique populations; and / or exhibits rare or unusual geomorphological features / processes and / or environmental conditions (and is likely to support unusual assemblages of species adapted to these conditions, and / or are important in demonstrating key features of the evolution of Australia's landscape, riverscape or biota);
- Vital Habitat: An aquatic ecosystem provides vital habitat for flora and fauna species
 if it supports unusually large numbers of a particular native or migratory species; and /
 or maintenance of populations of specific species at critical life cycle stages; and / or
 key significant refugia for aquatic species that are dependent on the habitat
 particularly at times of stress; and
- Naturalness: The ecological character of the aquatic ecosystem is not adversely affected by modern human activity.
- Representativeness: The aquatic ecosystem is an outstanding example of an aquatic ecosystem class to which it has been assigned, within a drainage division.

While these guidelines were developed to identify high ecological value aquatic ecosystems at a national level (drainage division scale) they can be used at a range of scales and were therefore adapted where appropriate (e.g. incorporating results of sampling parameters and river bio-assessment scores) to suit the purposes of this assessment as per advice in the guidelines.

 Table 3.6
 Criteria used to assess aquatic ecosystem value

Criteria ^a	Low	Moderate	High
Diversity	Low biodiversity of aquatic flora and fauna Low habitat diversity Low to moderate habitat bio-assessment scores	Moderate to good biodiversity of aquatic flora and fauna Moderate habitat diversity Good habitat bio- assessment scores	High biodiversity of aquatic flora and fauna High habitat diversity Very good bio- assessment scores
Distinctiveness	Species, communities and processes common Available habitat types common No habitat for protected species No listed protected aquatic areas, habitats or species High tolerance to change or highly adaptive communities	Species, communities and processes moderately common Available habitat types relatively common No core habitat for protected species Listed protected aquatic areas, habitats or species, but unlikely to provide significant habitat (e.g. breeding area) Moderate tolerance to change or moderately adaptive communities	Species, communities and processes rare Available habitat types rare Core habitat for protected species Listed protected aquatic areas, habitats or species Sensitive or poorly adaptive communities
Vital Habitat	Poor refuge or breeding area Supports low numbers of native species Little fisheries value Poor connectivity and fish passage	Limited refuge or breeding area Supports moderate numbers of native species Moderate fisheries value Limited connectivity and fish passage	Important refuge or breeding area Supports high numbers of native species High fisheries value High connectivity and important corridor for fish passage
Naturalness	Highly disturbed Poor riparian condition Poor habitat condition	Moderately disturbed Moderate to good riparian condition Moderate to good habitat condition	Undisturbed, pristine Excellent riparian condition Excellent habitat condition
Representativeness	Highly disturbed Poor example of ecosystem type	Moderately disturbed Average example of ecosystem type	Undisturbed Outstanding example of ecosystem type

^a Source: Aquatic Ecosystems Task Group 2012

3.2 Stygofauna Assessment

A desktop review and pilot surveys for stygofauna (i.e. subterranean aquatic fauna) in accordance with the *Guideline for the Environmental Assessment of Subterranean Aquatic Fauna* (DES 2019b) was conducted to:

- assess the suitability of local habitat for stygofauna based on the hydrogeology in the vicinity of the Project, and
- assess the likely presence and composition of stygofauna in the vicinity of the Project.

3.2.1 Desktop Review

The desktop review summarised existing general information available on stygofauna and habitat preference in Australia and Queensland, including:

- the Queensland Subterranean Aquatic Fauna Database curated by the Queensland Herbarium
- previous groundwater assessments completed in the vicinity of CVM, including the CVM EIS (URS 2009)
- bore records, and
- scientific publications, including the CSIRO report to the Australian Coal Association Research Program (ACAP) on the extent of knowledge of Stygofauna in Australian Groundwater Systems (Hose et al 2015).

3.2.2 Field Surveys

Two pilot studies were undertaken, the first in April 2020 and the second in November 2020. Methods were in accordance with the *Guideline for the Environmental Assessment of Subterranean Aquatic Fauna* (DES 2019b).

3.2.2.1 Bore Locations and Survey Timing

A total of 23 bores were sampled as part of the stygofauna assessment; 13 bores were sampled in April 2020 and 10 bores were sampled in November 2020. Bores were distributed throughout the Project footprint and comparable nearby bores outside of the Project footprint. Each bore was established for at least six months prior to stygofauna sampling and contained groundwater. The locations of the bores sampled are described in **Table 3.7** and displayed on **Figure 3.6**.

 Table 3.7
 Bore sampling sites surveyed in April and November 2020

Bore ID	Date Surveyed	Latitude	Longitude
Outside the Project	Footprint		
MB19CVM03T	April 2020	-22.1396	148.0687
MB19CVM05T	April 2020	-22.1387	148.0771
MB19CVMO6P	April 2020	-22.1387	148.0771
MB19CVMP07T	April 2020	-22.1287	148.0819
MB19CVM08P	April 2020	-22.1287	148.0819
MB19CVMP09A	April 2020	-22.1436	148.0915
MB19CVM10P	April 2020	-22.1519	148.0987
PZ07D	April 2020	-22.1435	148.0917
PZ09	April 2020	-22.1604	148.1099
162145	November 2020	-22.1416	148.1170
162807	November 2020	-22.0372	148.0816
162144	November 2020	-22.0319	148.1162
162044	November 2020	-22.0574	148.1203
162142	November 2020	-22.0411	148.0831
162816	November 2020	-22.1300	148.1535
162045	November 2020	-22.0643	148.1207
182164	November 2020	-22.0375	148.0640
162043	November 2020	-22.0576	148.1009
162048	November 2020	-22.0843	148.1014
Within Project Footp	orint		
PZ01	April 2020	-22.0584	148.0656
PZ04	April 2020	-22.1016	148.0746
PZ12D	April 2020	-22.0853	148.0743
PZ12S	April 2020	-22.0848	148.0743

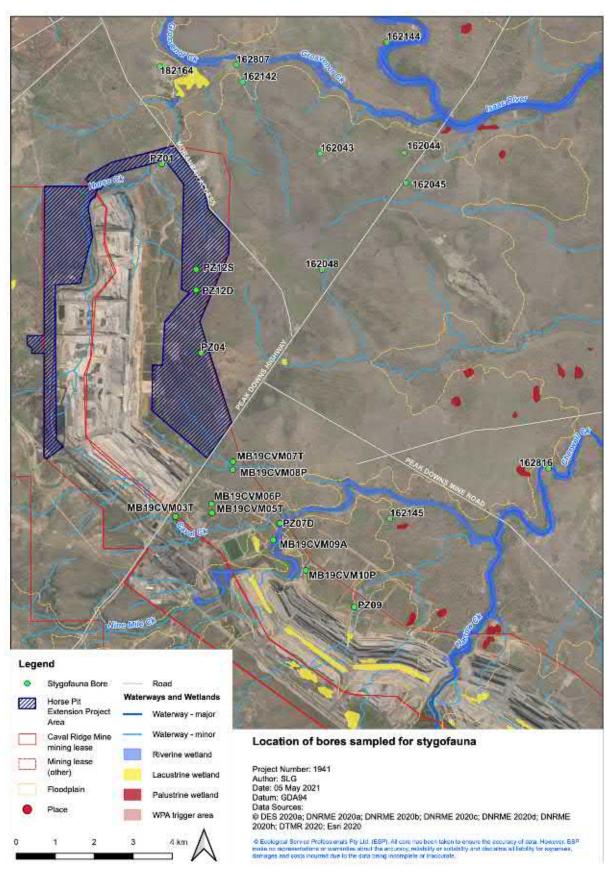


Figure 3.6 Location of bores sampled for the stygofauna assessment

3.2.2.2 Water Quality

Water quality (conductivity and pH) was measured in situ at each bore using a hand-held YSI ProDSS multi-parameter water quality sonde. A bailer was used to collect a water sample from approximately 1-2 m below the water level of the bore. The sample was retrieved slowly and poured into the measuring cup of the water quality probe. The water sample was collected before the stygofauna samples were collected.

The water quality meter was calibrated prior to field sampling.

3.2.2.3 Stygofauna Sampling

The full water column within each bore was sampled by hauling a weighted phraetobiological net. Three hauls were completed with a coarse mesh net (150 μ m) and three hauls were completed with a fine mesh net (50 μ m). Nets were lowered to the bottom of the bore, bounced five times to dislodge resting animals and then carefully retrieved. After each haul, the net and collection vial were emptied onto a 50 μ m sieve and rinsed with deionised water. The three fine mesh hauls and three coarse net hauls were combined into one sample per bore and preserved in 100 per cent ethanol.

Nets were washed thoroughly between survey bores.

Photographs were taken of the bore and surrounding environment. The diameter of the bore, casing type, whether the bore was screened and whether a pump was installed, the height of the collar and the depth of the bore and depth to water level were also recorded.

The equipment used to sample stygofauna complied with standards outlined in the *Guideline* for the Environmental Assessment of Subterranean Aquatic Fauna (DES 2019b).

3.2.2.4 Sample Processing

The composite stygofauna samples were sorted in the laboratory under a stereomicroscope. Each sample container was drained of ethanol and washed into a shallow elongated counting tray to create a thin layer of sediment spread across the bottom of the tray. Any aquatic animals were transferred into 2 millilitre (mL) vials with 100 per cent ethanol and identified to the lowest practical taxonomic level. All field work and processing were undertaken by suitably qualified ecologists.

4 Description of the Existing Environment

4.1 Aquatic Habitat

4.1.1 Aquatic Habitat of the Region

Natural waterways in the region are typically temporary or ephemeral streams, which are dry for most of the year and flow for a short time following rainfall events that are more common in the wet season (DPM Envirosciences 2018). Intermittent pools that persist for several months may be present in certain reaches of these ephemeral waterways, particularly where clay substrates dominate the bed. During the dry season, larger permanent waterholes provide a refuge for aquatic flora and fauna.

Land use within the Isaac River sub-basin is primarily cattle grazing and coal mining (Burgess 2003, Rollason & Howell 2012, DPM Envirosciences 2018). Although broad-scale clearing is evident throughout the wider catchment, the riparian zone is typically in good condition, with moderate coverage of vegetation and minimal erosion.

Aquatic habitat assessments recently completed at sites on Cherwell Creek, Harrow Creek and the Isaac River as part of the CVM REMP and AEHP show that physical habitat conditions are fair to good (Gauge Industrial & Environmental 2018, 2020; CQU 2018, 2019). Bank stability and vegetative cover were typically good to excellent, and there was little channel alteration or bottom scouring. However, the availability of bottom substrates was poor (mostly fine sediments with less than 10 per cent rubble, gravel, or stable habitat), and habitat was dominated by stagnant pools. This is reflective of the ephemeral nature of waterways in the region, which typically flow for short periods during high rainfall events, before receding to shallow pools.

4.1.2 Aquatic Habitat in the Vicinity of the Project

A detailed description of aquatic habitat condition at all sites is presented in **Attachment C**.

4.1.2.1 Waterways

Aquatic habitat condition was fairly consistent across sites located on waterways, with poor to fair conditions in the minor (low stream-order) waterways but better conditions in the major (higher stream order) waterways (**Figure 4.1**). All sites on waterways were dry in December 2019; all sites except one were dry in November 2020; and, six sites contained water in April 2020 (typically sites on higher stream orders). Sites that contained water in April 2020 were characterised by pool habitat that would typically persist intermittently following high rainfall events; other sites were characteristic of highly ephemeral waterways that channel water and potentially provide for aquatic fauna passage during periods of high rainfall, but do not hold significant pools for extended periods. The site that contained water in November 2020 (GC01) was a dry season refuge, but it was unclear if the site consistently endured water in the dry season or if current land use practices (e.g. water releases from upstream or damming from downstream earthworks) were influencing water levels.

In minor waterways and drainage channels, which were typically dry during all three surveys, aquatic habitat features were limited (**Figure 4.2**). Potential aquatic habitat in the dry

channels included a low to moderate abundance of terrestrial detritus and woody debris, overhanging vegetation, and some rocky outcrops. Moderate to high disturbances to bed and bank stability were evident as a result of cattle access and land clearing associated with the adjacent land uses.

In major waterways, in-stream features were more abundant with shallow and deep pools, variable substrate (dominated by sand but with larger substrate types present in low abundance), in-stream woody debris and moderate to high coverage of trailing and overhanging bankside vegetation (**Figure 4.3**). Bed and bank stability were low to moderately disturbed from cattle access, terrestrial weeds and feral animals. Although riparian vegetation was reduced as a result of land clearing associated with the adjacent land uses, the banks remained moderately vegetated by predominantly mature native trees (namely *Eucalyptus*, *Casuarina* and *Acacia*) with a sparse to moderate groundcover of grasses.

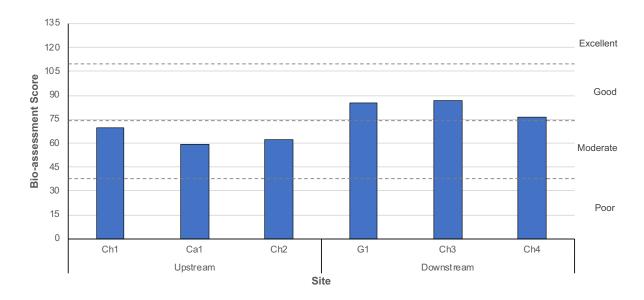


Figure 4.1 Bioassessment scores at wet waterway sites in April 2020

Figure 4.2 Dry channel at site H1 (unnamed tributary of Horse Creek downstream of the Project footprint) in April 2020

Figure 4.3 Pool habitat at site Ch2 (Cherwell Creek downstream of CVM and upstream of the Project footprint) in April 2020

4.1.2.2 Lacustrine Wetlands and Farm Dams

Two mapped lacustrine wetlands were assessed during the field surveys: site LW1 at the confluence of Horse Creek and Grosvenor Creek, downstream of the Project footprint; and site LW2 on an unnamed tributary upstream of Cherwell Creek (**Figure 3.4**). Both lacustrine wetlands were modified by the presence of a dam for agriculture / stock watering. Two unmapped farm dams on unnamed tributaries of Horse Creek were also assessed during the field surveys: site HT1D within the Project footprint, and site U1D upstream of the Project footprint (**Figure 3.4**).

The field assessment confirmed that the State-mapped wetlands meet the definition of a wetland under the *Queensland Wetland Definition and Delineation Guideline* (DERM 2011a), which includes artificial wetlands.

Aquatic habitat at the mapped lacustrine wetlands and unmapped farm dams were relatively similar, and consisted of shallow and deep pools with some terrestrial woody debris, emergent aquatic plants, filamentous algae, trailing bank vegetation and detritus. Instream sediments were typically dominated by sand and blanketing fine silt / clay, with some rocky areas. The sites typically contained moderately abundant and diverse aquatic plant communities, including floating and submerged species, indicating that they hold water for extended periods and provide relatively favourable conditions for aquatic flora (**Figure 4.4**). These sites were highly impacted by cattle access, resulting in extensive vegetation clearing of the riparian zone, eroded banks and trampling.

Although connectivity to downstream habitats was typically limited due to the construction of dam walls, these sites contained water during the December 2019 (LW1, HT1D and U1D) or November 2020 (LW2) surveys, and would therefore provide dry season refuges for aquatic flora and fauna.

Figure 4.4 Aquatic plant communities at site HT1D in April 2020

4.1.2.3 Palustrine Wetlands

Two mapped palustrine wetlands were assessed during the field surveys: site PW1 on Cherwell Creek near its confluence with the Isaac River, approximately 20 km downstream of the Project; and site PW2 adjacent to Cherwell Creek, approximately 7 km downstream of the Project (**Figure 3.4**).

Site PW1 is a mapped HES wetland area and a WPA, and is discussed further below. The field assessment confirmed that this site met the definition of a wetland under the *Queensland Wetland Definition and Delineation Guideline* (DERM 2011a).

Site PW2 did not contain any features indicative of wetland habitat, and is likely incorrectly mapped as a palustrine wetland; therefore, site PW2 is not considered further as a palustrine wetland.

Mapped High Ecological Significance Wetlands

HES Wetlands are wetlands that have been assigned a "high" conservation value according to the AquaBAMM assessments, which were based primarily on a desktop review, and no field surveys (Rollason & Howell 2012). The "high" conservation value for the HES wetland downstream of the Project footprint (i.e. site PW1) was based on:

- a very high score for the 'naturalness' criteria
- a medium score for the 'diversity and richness' criteria
- a high score for the 'threatened species and ecosystems' criteria
- a high score for the 'priority species and ecosystems' criteria, and
- a high score for the 'representativeness' criteria.

During the field survey in December 2019, the wetland was dry (**Figure 4.5**). The dry bed contained some potential habitat features, including emergent aquatic plants, some overhanging and trailing vegetation, terrestrial detritus and woody debris. Canopy cover and shading was limited throughout the site. The riparian zone was reduced due to vegetation clearing, but a continuous band of trees and grasses with some shrubs bordered the wetland. There were some terrestrial weeds growing in the dry bed, but otherwise disturbance was relatively low.

Based on the December 2019 survey, the wetland did not provide substantial aquatic habitat. This site was unable to be surveyed in April 2020 due to property access issues. However, it is possible that this wetland provides habitat for aquatic fauna during and after high rainfall / flow events.

Figure 4.5 Site PW1 (HES wetland and WPA) in December 2019

4.2 Water Quality

4.2.1 Environmental Values

The quality of natural waters in Queensland is protected under the EPP (WWB). The purpose of the EPP (WWB) is to achieve the objectives of the EP Act in relation to water quality while allowing for ecologically sustainable development.

The EPP (WWB) outlines the EVs that may apply to waters in Queensland, and for ecological values describe various levels of protection for high ecological value (HEV), slightly disturbed, moderately disturbed and highly disturbed waters as well as associated WQOs.

Under the EPP (WWB) for the Isaac River sub-basin, the waterways in the vicinity of the Project are scheduled as moderately disturbed freshwaters within the Upper Isaac River catchment and fall within the Isaac and lower Connors River main channel and Isaac western upland tributaries (DEHP 2011b; **Figure 1.1**). The following EVs have been assigned for these sub-catchments (DEHP 2013a):

- aquatic ecosystems (moderately disturbed)
- irrigation
- farm supply/use
- stock water
- aquaculture (assigned to Isaac western upland tributaries only)
- human consumer
- primary recreation
- secondary recreation

- visual recreation
- · drinking water
- industrial use, and
- cultural and spiritual use.

4.2.2 Water Quality of the Region

Water quality in the Isaac River sub-basin can be highly variable over time, primarily due to the ephemeral nature of the waterways. Water quality in the Isaac River sub-basin is typically characterised by (URS 2009b, Hatch 2018):

- neutral pH, although some strongly alkaline waters have been recorded at wetlands (attributed to the higher biomass of algae and / macrophytes releasing oxygen during photosynthesis)
- low electrical conductivity, which is typically within the WQOs
- variable dissolved oxygen saturation, which is often below the WQO
- high turbidity and total suspended solids, which are variable and likely dependent on conditions at the time of sampling (e.g. recent flow events may increase suspended sediments and / or disturbance from cattle access), but are typically above WQOs
- low concentrations of ions (fluoride and sulfate)
- high concentrations of some nutrients (total nitrogen and total phosphorus), which typically exceed the WQOs
- low concentrations of TPHs, which are typically below the WQOs, and
- low concentrations of most metal parameters, although concentrations of total and dissolved aluminium, dissolved zinc, total cobalt and iron can be high.

Results from water quality surveys recently completed at sites on Harrow Creek, Cherwell Creek and the Isaac River as part of the CVM REMP are generally consistent with results from the broader region (Gauge Industrial & Environmental 2018, 2020; CQU 2018, 2019). Overall, water quality during sampling completed from 2018 to 2019 showed:

- neutral pH, typically within the WQO range
- low electrical conductivity, typically below the WQO
- variable dissolved oxygen, frequently below the WQO range
- high turbidity and total suspended solids, typically above the WQOs
- low concentrations of ions, typically below the WQOs
- high concentrations of some nutrients, including ammonia and total phosphorus, which were frequently above the WQOs, and
- low concentrations of most metal parameters, although concentrations of total and dissolved aluminium and iron, total manganese and dissolved copper can be high.

4.2.3 Water Quality in the Vicinity of the Project

Water quality in the vicinity of the Project was in moderate condition, likely influenced to some degree by surrounding land-use and local geomorphology, which is characteristic of a moderately disturbed ecosystem. Surface water of waterways and wetlands within the vicinity of the Project were highly variable, as is typical of ephemeral systems in the region, and were characterised by (**Table 4.1**):

- neutral to slightly alkaline pH, which frequently exceeded the WQO range
- moderate to high electrical conductivity (EC), which frequently exceeded the WQO
- variable dissolved oxygen levels, which were frequently outside of the WQO range
- moderate to high turbidity, which frequently exceeded the WQO
- low concentrations of most ions, except at upstream site Ca1 in April 2020
- high concentrations of nutrients, which frequently exceeded the WQO, although generally remained below the REMP WQOs for ammonia and nitrate, and
- low concentrations of most metals, with concentrations of most dissolved metals at most sites less than the laboratory limit of reporting (<LOR) or below the relevant WQO; except for aluminium (which has historically been high in the region; URS 2009b), copper (which was generally equal to or lower than the REMP WQO except at downstream site G1 where it exceeded the REMP WQO) and uranium, which had high concentrations at more than one site in April 2020.</p>

 Table 4.1
 Water quality at comprehensive assessment sites sampled during aquatic ecology surveys completed in December 2019 and April 2020

			Dec-19		Apr-20								
		Up- stream	Within Project Footprint	Down- stream		Ups	tream		Within Project Footprint		Downs	stream	
Parameter	Unit	U1D	HT1D	LW1	U1D	Ch1	Ca1	Ch2	HT1D	LW1	G1	Ch3	Ch4
Physical													
Temperature	°C	32.5	28.9	28.7	26.7	28.2	26.3	23	25.3	26	28.9	29	24.8
pН	pH units	8.88	8.53	9.40	7.56	8.03	7.84	7.32	8.38	8.47	8.02	8.00	8.12
EC	μS/cm	1664	485.2	561	466	447.7	7403	367.9	355.1	320.6	184.1	184	456.6
Dissolved oxygen	%Sat	181.0	100.4	111.5	76.4	85.5	72.9	11.3	84.0	113.1	111.3	111.0	63.8
Turbidity	NTU	190	32.8	12.0	54.2	33.2	44.5	120.3	17.9	54.9	66.9	67.0	32.4
TDS	mg/L	994	289	317	262	260	4980	297	207	227	207	280	271
TSS	mg/L	384	33	<lor< td=""><td>18</td><td>17</td><td>39</td><td>33</td><td>17</td><td>30</td><td>21</td><td>6</td><td>32</td></lor<>	18	17	39	33	17	30	21	6	32
Major Ions													
Hardness	mg/L	236	145	99	102	144	1060	106	99	86	54	140	143
Sulfate	mg/L	11	4	9	2	17	1260	9	3	5	4	14	24
Calcium	mg/L	32	25	15	18	38	247	26	20	18	10	33	31
Magnesium	mg/L	38	20	15	14	12	109	10	12	10	7	14	16
Sodium	mg/L	216	47	78	54	30	1220	26	34	35	22	38	38
Potassium	mg/L	44	9	9	16	10	18	9	6	6	6	10	21
Fluoride	mg/L	0.8	0.7	0.7	0.2	0.2	0.2	0.2	0.5	0.3	0.1	0.3	0.2
Nutrients										•			
Ammonia	μg/L	50	10	<lor< td=""><td>20</td><td><lor< td=""><td>260</td><td><lor< td=""><td>10</td><td>20</td><td>10</td><td>20</td><td>260</td></lor<></td></lor<></td></lor<>	20	<lor< td=""><td>260</td><td><lor< td=""><td>10</td><td>20</td><td>10</td><td>20</td><td>260</td></lor<></td></lor<>	260	<lor< td=""><td>10</td><td>20</td><td>10</td><td>20</td><td>260</td></lor<>	10	20	10	20	260
Nitrite	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>340</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>340</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>340</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	340	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

			Dec-19			Apr-20								
		Up- stream	Within Project Footprint	Down- stream		Ups	tream		Within Project Footprint		Downstream			
Parameter	Unit	U1D	HT1D	LW1	U1D	Ch1	Ca1	Ch2	HT1D	LW1	G1	Ch3	Ch4	
Nitrate	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>9290</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>9290</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>9290</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>9290</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>9290</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	9290	<lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<>	60	<lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<>	<lor< td=""><td>40</td></lor<>	40	
Oxides of nitrogen	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>9630</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>9630</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>9630</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>9630</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>9630</td><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	9630	<lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<></td></lor<>	60	<lor< td=""><td><lor< td=""><td>40</td></lor<></td></lor<>	<lor< td=""><td>40</td></lor<>	40	
TKN	μg/L	3900	1100	800	1200	500	1100	1300	600	800	1100	500	2000	
Total nitrogen	μg/L	3900	1100	800	1200	500	10700	1300	600	900	1100	500	2000	
FRP	μg/L	50	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Total phosphorus	μg/L	330	60	20	80	30	40	130	40	80	130	30	90	
Total Metals														
Aluminium	μg/L	2210	800	380	280	760	1080	3070	590	670	2560	200	520	
Arsenic	μg/L	2	2	2	<lor< td=""><td>1</td><td>1</td><td>4</td><td>1</td><td>2</td><td>1</td><td>1</td><td>2</td></lor<>	1	1	4	1	2	1	1	2	
Cadmium	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Chromium	μg/L	5	<lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>1</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>1</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>1</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	1	2	4	<lor< td=""><td>1</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	1	7	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Cobalt	μg/L	6	1	1	2	1	8	3	<lor< td=""><td>1</td><td>2</td><td><lor< td=""><td>1</td></lor<></td></lor<>	1	2	<lor< td=""><td>1</td></lor<>	1	
Copper	μg/L	3	2	2	<lor< td=""><td>2</td><td>1</td><td>2</td><td>1</td><td>2</td><td>5</td><td>2</td><td>2</td></lor<>	2	1	2	1	2	5	2	2	
Lead	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	3	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Manganese	μg/L	856	363	18	187	70	144	209	156	82	40	13	93	
Molybdenum	μg/L	2	2	2	<lor< td=""><td><lor< td=""><td>65</td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>65</td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td></lor<></td></lor<></td></lor<>	65	1	1	<lor< td=""><td><lor< td=""><td>2</td><td>1</td></lor<></td></lor<>	<lor< td=""><td>2</td><td>1</td></lor<>	2	1	
Nickel	μg/L	12	4	3	5	3	23	7	3	6	7	1	3	
Selenium	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	10	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Uranium	μg/L	1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>12</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>12</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>12</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>12</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	12	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Vanadium	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	

			Dec-19			Apr-20								
		Up- stream	Within Project Footprint	Down- stream		Ups	tream		Within Project Footprint		Down	stream		
Parameter	Unit	U1D	HT1D	LW1	U1D	Ch1	Ca1	Ch2	HT1D	LW1	G1	Ch3	Ch4	
Zinc	μg/L	8	<lor< td=""><td><lor< td=""><td><lor< td=""><td>9</td><td>7</td><td>10</td><td><lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>9</td><td>7</td><td>10</td><td><lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>9</td><td>7</td><td>10</td><td><lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	9	7	10	<lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	6	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Boron	μg/L	310	110	130	90	50	140	60	70	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Iron	μg/L	3640	1000	310	1550	1100	1310	5380	760	1200	3400	150	620	
Mercury	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Silver	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.01	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Dissolved Metals														
Aluminium	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>60</td><td><lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	60	<lor< td=""><td><lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>70</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	70	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Arsenic	μg/L	2	2	2	1	<lor< td=""><td><lor< td=""><td>2</td><td>1</td><td>1</td><td><lor< td=""><td>1</td><td>1</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>2</td><td>1</td><td>1</td><td><lor< td=""><td>1</td><td>1</td></lor<></td></lor<>	2	1	1	<lor< td=""><td>1</td><td>1</td></lor<>	1	1	
Cadmium	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Chromium	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Cobalt	μg/L	3	<lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>2</td><td><lor< td=""><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	2	<lor< td=""><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Copper	μg/L	<lor< td=""><td><lor< td=""><td>2</td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>2</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>2</td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>2</td></lor<></td></lor<></td></lor<></td></lor<>	2	1	1	<lor< td=""><td><lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>2</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>1</td><td>2</td><td>4</td><td><lor< td=""><td>2</td></lor<></td></lor<>	1	2	4	<lor< td=""><td>2</td></lor<>	2	
Lead	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Manganese	μg/L	467	24	<lor< td=""><td>126</td><td>6</td><td>133</td><td>114</td><td><lor< td=""><td><lor< td=""><td>4</td><td>7</td><td>10</td></lor<></td></lor<></td></lor<>	126	6	133	114	<lor< td=""><td><lor< td=""><td>4</td><td>7</td><td>10</td></lor<></td></lor<>	<lor< td=""><td>4</td><td>7</td><td>10</td></lor<>	4	7	10	
Molybdenum	μg/L	2	2	2	<lor< td=""><td><lor< td=""><td>54</td><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td>2</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>54</td><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td>2</td></lor<></td></lor<></td></lor<>	54	2	1	<lor< td=""><td><lor< td=""><td>1</td><td>2</td></lor<></td></lor<>	<lor< td=""><td>1</td><td>2</td></lor<>	1	2	
Nickel	μg/L	9	3	3	5	2	20	3	2	5	3	1	2	
Selenium	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	10	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Uranium	μg/L	1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	11	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Vanadium	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	
Zinc	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>	

			Dec-19						Apr-20				
		Up- stream	Within Project Footprint	Down- stream		Ups	tream		Within Project Footprint		Downstream		
Parameter	Unit	U1D	HT1D	LW1	U1D	Ch1	Ca1	Ch2	HT1D	LW1	G1	Ch3	Ch4
Boron	μg/L	370	140	170	150	90	160	60	100	80	<lor< td=""><td>90</td><td>90</td></lor<>	90	90
Iron	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td>230</td><td><lor< td=""><td><lor< td=""><td>310</td><td><lor< td=""><td><lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>230</td><td><lor< td=""><td><lor< td=""><td>310</td><td><lor< td=""><td><lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>230</td><td><lor< td=""><td><lor< td=""><td>310</td><td><lor< td=""><td><lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	230	<lor< td=""><td><lor< td=""><td>310</td><td><lor< td=""><td><lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>310</td><td><lor< td=""><td><lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	310	<lor< td=""><td><lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>130</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	130	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Mercury	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Silver	μg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.03</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.03</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.03</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.03</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.03</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	0.03	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	0.01	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Hydrocarbons													
C6 - C9	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
C10 - C14	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
C15 - C28	μg/L	230	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
C29 - C36	μg/L	60	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
C10 - C36 (sum)	μg/L	290	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
BTEXN										1			
Benzene	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Toluene	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Ethylbenzene	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
meta- & para-Xylene	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
ortho-Xylene	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Total Xylenes	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Sum of BTEX	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Naphthalene	μg/L	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

grey shading denotes values above the relevant WQO / WQO range (**Table 3.2**); blue shading denotes values below the relevant WQO range (**Table 3.2**); <LOR denotes result less than the laboratory limit of reporting.</pre>

4.3 Sediment Quality

4.3.1 Sediment Quality of the Region

Sediment quality in the vicinity of CVM is routinely monitored as part of the REMP and AEHP. Recent sediment sampling in 2018 and 2019 showed that sediment quality in Harrow Creek, Cherwell Creek and the Isaac River in the vicinity of the Project was good, and typically characterised by (Gauge Industrial & Environmental 2018, 2020; CQU 2018, 2019):

- bed sediments dominated by fine particles, including silt, clay and sand, with small amounts of gravel, and
- low concentrations of metals, typically below the relevant DGVs.

4.3.2 Sediment Quality in the Vicinity of the Project

Sediment quality in the vicinity of the Project was in moderate to good condition, and likely influenced to some degree by surrounding land-use and local geomorphology, which is characteristic of a moderately disturbed system.

In December 2019 and April 2020, sediments were characterised by a variety of metals and metalloids, including the following (commonly detected in samples at all or most sites): aluminium, chromium, cobalt, iron, manganese, nickel, vanadium and zinc (**Table 4.2** and **Table 4.3**).

Several metals and metalloids were not detected (i.e. concentrations were equal to or below the LOR) at most sites during the surveys, including: arsenic, boron, cadmium, molybdenum, selenium, silver, mercury, total petroleum hydrocarbons, and BTEXN chemicals (**Table 4.2** and **Table 4.3**).

Concentrations of most parameters were below the relevant DGVs except for the following, which exceeded either the DGV or the GV-high value at several sites:

- chromium, which exceeded the DGV at sites UD1 and H1 in December 2019 and site
 U1 in April 2020, and
- nickel, which exceeded the DGV at sites UD1, HT1D and H1 in December 2019 and sites HT1D, H1 and LW1 in April 2020; and was equal to the GV-high value at site U1 in April 2020.

Bed sediments were mostly fine at all sites, and dominated by either silt / clay or sand, with smaller amounts of gravel (**Table 4.2** and **Table 4.3**).

 Table 4.2
 Sediment quality at Horse Pit sites sampled during aquatic ecology surveys completed in December 2019

				Upstream			Within Project Footprint			Downs	stream		
Parameter	Unit	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4	PW1
Particle Size Distribu	ıtion			•									
Fines (<75 µm)	%	56	11	11	16	60	76	9	9	8	2	1	88
Sand (>75 μm)	%	40	87	87	81	38	19	46	74	80	96	98	11
Gravel (>2mm)	%	4	2	2	3	2	5	45	17	12	2	1	1
Cobbles (>6cm)	%	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Metals and Metalloid	s												
Aluminium	mg/kg	4910	870	810	1320	3210	7360	4250	2040	1360	520	740	5100
Arsenic	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Boron	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Cadmium	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Chromium	mg/kg	107	15	4	9	9	21	107	11	23	4	3	14
Cobalt	mg/kg	20	12	<lor< td=""><td>8</td><td>6</td><td>18</td><td>19</td><td>4</td><td>6</td><td><lor< td=""><td><lor< td=""><td>8</td></lor<></td></lor<></td></lor<>	8	6	18	19	4	6	<lor< td=""><td><lor< td=""><td>8</td></lor<></td></lor<>	<lor< td=""><td>8</td></lor<>	8
Copper	mg/kg	12	<lor< td=""><td><lor< td=""><td><lor< td=""><td>7</td><td>16</td><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>7</td><td>16</td><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>7</td><td>16</td><td>11</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	7	16	11	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>14</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>14</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>14</td></lor<></td></lor<>	<lor< td=""><td>14</td></lor<>	14
Iron	mg/kg	51300	9160	4900	5840	12900	22700	46500	6330	14300	3790	3390	11700
Lead	mg/kg	5	<lor< td=""><td><lor< td=""><td>5</td><td>8</td><td>9</td><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>13</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>5</td><td>8</td><td>9</td><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>13</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	5	8	9	10	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>13</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>13</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>13</td></lor<></td></lor<>	<lor< td=""><td>13</td></lor<>	13
Manganese	mg/kg	447	165	38	309	158	422	506	53	131	33	48	268
Molybdenum	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Nickel	mg/kg	29	7	2	8	12	31	39	8	12	<lor< td=""><td><lor< td=""><td>13</td></lor<></td></lor<>	<lor< td=""><td>13</td></lor<>	13
Selenium	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

				Upstream			Within Project Footprint			Downs	Downstream				
Parameter	Unit	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4	PW1		
Vanadium	mg/kg	67	14	6	12	15	34	63	12	24	6	5	27		
Zinc	mg/kg	26	6	8	7	21	30	25	8	8	<lor< td=""><td>5</td><td>36</td></lor<>	5	36		
Silver	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Uranium	mg/kg	0.4	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.3</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>0.1</td><td><lor< td=""><td><lor< td=""><td>0.5</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.3</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>0.1</td><td><lor< td=""><td><lor< td=""><td>0.5</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.3</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>0.1</td><td><lor< td=""><td><lor< td=""><td>0.5</td></lor<></td></lor<></td></lor<></td></lor<>	0.3	0.3	0.3	<lor< td=""><td>0.1</td><td><lor< td=""><td><lor< td=""><td>0.5</td></lor<></td></lor<></td></lor<>	0.1	<lor< td=""><td><lor< td=""><td>0.5</td></lor<></td></lor<>	<lor< td=""><td>0.5</td></lor<>	0.5		
Mercury	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Total Organic Carbon	%	1.82	0.35	0.33	0.25	0.92	0.73	0.16	0.25	0.07	0.05	0.1	1.74		
Total Petroleum Hydroca	rbons														
C6 - C9 Fraction	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
C10 - C14 Fraction	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
C15 - C28 Fraction	mg/kg	<lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<>	<lor< td=""><td>100</td></lor<>	100		
C29 - C36 Fraction	mg/kg	200	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
C10 - C36 Fraction (sum)	mg/kg	200	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>100</td></lor<></td></lor<>	<lor< td=""><td>100</td></lor<>	100		
BTEXN															
Benzene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Toluene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Ethylbenzene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
meta- & para-Xylene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
ortho-Xylene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Total Xylenes	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Sum of BTEX	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		

	Upstream							Within Project Footprint				Downstream				
Parameter	Unit	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4	PW1			
Naphthalene	mg/kg	<lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>			

grey shading denotes values that are above the relevant DGV (**Table 3.3**); blue shading denotes values that are above the relevant DGV – high (**Table 3.3**) < LOR result less than the laboratory limit of reporting

 Table 4.3
 Sediment quality at Horse Pit sites sampled during aquatic ecology surveys completed in April 2020

				Upst	ream			Within Project Footprint		Downstream					
Parameter	Unit	U1	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4		
Particle Size Distribution															
Fines (<75 µm)	%	65	44	2	4	11	37	68	25	54	38	3	2		
Sand (>75 µm)	%	29	49	96	95	88	63	25	62	42	53	93	98		
Gravel (>2mm)	%	6	7	2	1	1	<lor< td=""><td>7</td><td>13</td><td>5</td><td>9</td><td>4</td><td><lor< td=""></lor<></td></lor<>	7	13	5	9	4	<lor< td=""></lor<>		
Cobbles (>6cm)	%	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Metals and Metalloids															
Aluminium	mg/kg	7030	3820	470	550	1800	2390	7350	6420	9030	2260	600	680		
Arsenic	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Boron	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Cadmium	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		
Chromium	mg/kg	82	64	6	3	8	7	20	42	31	16	3	3		
Cobalt	mg/kg	57	9	2	<lor< td=""><td>5</td><td>4</td><td>17</td><td>29</td><td>17</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	5	4	17	29	17	7	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>		

				Upst	ream			Within Project Footprint	Downstream							
Parameter	Unit	U1	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4			
Copper	mg/kg	16	17	<lor< td=""><td><lor< td=""><td><lor< td=""><td>6</td><td>16</td><td>15</td><td>18</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>6</td><td>16</td><td>15</td><td>18</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>6</td><td>16</td><td>15</td><td>18</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	6	16	15	18	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Iron	mg/kg	38000	26400	3300	3170	5760	7560	20100	30700	19300	8670	2810	3120			
Lead	mg/kg	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6</td><td>11</td><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6</td><td>11</td><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>6</td><td>11</td><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>6</td><td>11</td><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>6</td><td>11</td><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	6	11	7	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Manganese	mg/kg	1370	171	31	18	224	106	543	941	322	167	43	39			
Molybdenum	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Nickel	mg/kg	52	17	<lor< td=""><td><lor< td=""><td>11</td><td>8</td><td>25</td><td>49</td><td>29</td><td>10</td><td><lor< td=""><td>2</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>11</td><td>8</td><td>25</td><td>49</td><td>29</td><td>10</td><td><lor< td=""><td>2</td></lor<></td></lor<>	11	8	25	49	29	10	<lor< td=""><td>2</td></lor<>	2			
Selenium	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Vanadium	mg/kg	55	44	7	<lor< td=""><td>11</td><td>12</td><td>32</td><td>40</td><td>46</td><td>22</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	11	12	32	40	46	22	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Zinc	mg/kg	29	30	<lor< td=""><td><lor< td=""><td>7</td><td>12</td><td>22</td><td>25</td><td>18</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>7</td><td>12</td><td>22</td><td>25</td><td>18</td><td>7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	7	12	22	25	18	7	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Silver	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Uranium	mg/kg	0.4	0.2	0.7	0.1	0.6	0.1	0.7	<lor< td=""><td>0.6</td><td>0.1</td><td>0.1</td><td>0.5</td></lor<>	0.6	0.1	0.1	0.5			
Mercury	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
Total Organic Carbon	%	0.93	2.52	0.08	0.09	0.2	0.6	0.39	0.26	2.3	0.64	0.05	0.07			
Total Petroleum Hydrocarb	ons					1			1							
C6 - C9 Fraction	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
C10 - C14 Fraction	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
C15 - C28 Fraction	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
C29 - C36 Fraction	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
C10 - C36 Fraction (sum)	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>			
BTEXN	1	1	1	1		1		1	1		1		1			

				Upst	tream			Within Project Footprint		D			
Parameter	Unit	U1	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4
Benzene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Toluene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Ethylbenzene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
meta- & para-Xylene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
ortho-Xylene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Total Xylenes	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Sum of BTEX	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Naphthalene	mg/kg	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

grey shading denotes values that are above the relevant DGV (**Table 3.3**); blue shading denotes values that are above the relevant DGV – high (**Table 3.3**) < LOR result less than the laboratory limit of reporting

4.4 Aquatic Plants

4.4.1 Aquatic Plants of the Region

A total of 108 aquatic plants species (i.e. species listed as wetland indicator species) are known to occur in the Isaac River sub-basin (DES 2020a). All species recorded from the Isaac River sub-basin are considered Least Concern under the NC Act. There are no published records of any aquatic plant species that are listed as threatened under the NC Act and the EPBC Act within 50 km of the Project footprint (DoEE 2019, DES 2019a).

There is a low diversity and coverage of aquatic plants in the region, typically due to variable water availability, harsh habitat conditions, and cattle grazing and trampling. Aquatic plant communities in the waterways adjacent to the Project footprint were typically dominated by emergent species such as rushes, sedges and grasses with a greater diversity and abundance typically recorded in the wet season (DPM Envirosciences 2018). Palustrine wetlands that retained water for the majority of the year supported a higher diversity of aquatic plants compared to waterways.

A total of seven introduced aquatic plant species have been recorded in the Isaac River sub-basin (DES 2020b):

- white eclipta (*Eclipta prostrata*)
- watercress (Rorippa nasturtium-aquaticum)
- yellow nutgrass (*Cyperus exculentus*)
- toad rush (Juncus bufonius)
- awnless barnyard grass (Echinochloa colona)
- olive hymenachne (Hymenachne amplexicaulis), and
- para grass (Urochloa mutica).

Of these, one species, olive hymenachne, is a Weed of National Significance and a restricted invasive plant under Queensland's *Biosecurity Act 2014.*

4.4.2 Aquatic Plants in the Vicinity of the Project

A total of 19 native aquatic plant species from 13 families were recorded at sites in the vicinity of the Project across the December 2019 and April 2020 surveys. In December 2019, a total of six native aquatic plant species from five families were recorded (**Table 4.4**), and in April 2020, a total of 17 native aquatic plant species from 13 families were recorded (**Table 4.5**). No plant species recorded are listed as threatened under the EPBC Act and the NC Act.

All native species recorded are recognised as wetland indicator species (DES 2020b). Emergent species, namely sedges (*Cyperus* spp.), were the most widespread aquatic plants and were growing on the banks or in the shallow margins of the sites where they were recorded. Submerged and floating species were only recorded at sites that had been dammed.

Overall, aquatic plant diversity and coverage was low at most waterways (creeks) and mapped palustrine wetland sites. Coverage at these sites ranged from approximately zero to

24 per cent, with a low diversity of species and growth forms (emergent plants only, and very little in-stream aquatic plant growth). Aquatic plant coverage was higher at unmapped farm dams and mapped lacustrine wetland sites (all of which were dammed), which ranged from approximately 9 to 79 per cent coverage, with a higher diversity of species and growth forms recorded (particularly in-stream, and including submerged and floating species).

There was seasonal variation seen at most sites, with lower diversity and abundance of species recorded in December 2019 compared to April 2020. The rainfall and flows leading up to the April 2020 survey promoted the distribution and growth of aquatic plants along the waterways within the vicinity of the Project. In contrast, aquatic plants died due to the dry conditions prior to the December 2019 survey.

 Table 4.4
 Total coverage and taxonomic richness of aquatic plants recorded at Horse Pit sites in December 2019

			Up	stream			Within Project Footprint				Downstream						
Family Species Name	Common Name	U1	U1D	U2	Ch1	Ca1	Ch2	HT1D	H1	LW1	G1	Ch3	Ch4	PW1	PW2	Total	
Haloragaceae																	
Myriophyllum verrucosum	red water milfoil	_	-	-	-	-	-	10	-	15	-	-	-	-	-	25	
Juncaceae																	
Juncus usitatus	rush	_	1	_	_	_	_	_	_	_	_	_	_	_	_	1	
Onagraceae																	
Ludwigia peploides	water primrose	_	1	-	-	-	-	1	-	1	-	-	-	-	-	3	
Polygonaceae																	
Persicaria decipiens	slender knotweed	_	-	-	-	-	-	-	-	1	-	-	-	-	-	1	
Persicaria orientalis	princes feathers	_	-	-	-	-	-	-	-	-	-	-	-	5	-	5	
Typhaceae																	
Typha sp.	cumbungi	_	_	_	_	_	_	1	_	1	_	_	_	_	_	2	
Native Species C	overage (%)	0	2	0	0	0	0	12	0	18	0	0	0	5	0		
Native Species R	Richness	0	2	0	0	0	0	3	0	4	0	0	0	1	0	6	

⁻ Species not recorded

 Table 4.5
 Total coverage and taxonomic richness of aquatic plants recorded at Horse Pit sites in April 2020

				Ul	pstream	1			Within Project Footprint								
Family Species Name	Common Name	U1	U1D	U2	U3	Ch1	Ca1	Ch2	HT1D	H1	ChT1	LW1	G1	Ch3	Ch4	PW2	Total
Alistmataceae																	
Caldesia oligococca	_	_	0.2	_	_	_	_	_	_	_	_	_	_	_	_	_	0.2
Cyperaceae																	
Cyperus difformis	rice sedge	1.1	_	_	7.7	0.2	_	_	4.5	1.5	_	_	0.1	_	_	_	14
Cyperus digitatus	flat sedge	_	28.5	_	_	_	_	_	_	_	_	_	_	_	_	_	28.5
Cyperus lucidus	leafy flat sedge	_	-	_	-	-	-	_	_	-	-	2	0.1	-	-	-	2.1
Cyperus polystachyos	bunchy sedge	0.1	-	_	0.2	-	-	-	-	-	-	-	-	-	-	-	0.2
Fimbristylis quinquangularis	-	_	-	_	16	-	-	_	-	_	_	_	-	-	-	_	16
Haloragaceae																	
Myriophyllum verrucosum	red water milfoil	_	-	-	-	-	-	-	7	-	-	-	-	-	-	-	7
Hydrocharitaceae																	
Ottelia ovalifolia	swamp lily	_	26.6	_	_	_	_	_	-	_	_	_	_	_	_	_	26.6
Juncaceae																	
Juncus usitatus	rush	_	_	_	_	_	_	_	-	5.1	_	1	_	_	_	_	6.1
Marsileaceae																	
Marsilea hirsuta	hairy nardoo	_	_	_	_	_	_	_	0.2	_	_	_	_	_	_	_	0.2

			Upstream						Within Project Footprint								
Family Species Name	Common Name	U1	U1D	U2	U3	Ch1	Ca1	Ch2	HT1D	H1	ChT1	LW1	G1	Ch3	Ch4	PW2	Total
Najadaceae																	
Najas tenuifolia	water nymph	_	4	_	-	_	_	_	_	-	_	_	_	_	_	_	4
Ludwigia peploides	water primrose	_	12	-	-	-	-	-	13.5	-	-	-	-	-	-	-	25.5
Polygonaceae																	
Persicaria attenuata	smartweed	_	_	_	_	_	_	_	_	_	_	5	_	_	_	_	5
Pontederiaceae																	
Monochoria cyanea	blue hyacinth	_	7.1	_	-	_	_	_	0.7	_	_		_	_	_	_	7.8
Potamogetonaceae																	
Potamogeton crispus	curly pondweed	_	0.2	_	-	-	-	-	3.2	-	-	-	_	-	-	-	3.4
Streptophyceae																	
Nitella spp.	Nitella	_	_	_	_	_	_	_	4.9	_	_	_	_	_	_	_	4.9
Typhaceae																	
Typha sp.	cumbungi	_	_	_	_	_	_	_	16.5	_	_	1	_	_	_	_	17.5
Native Species Cove	erage (%)*	1.2	78.6	0	23.9	0.2	0	0	50.5	6.6	0	9	0.2	0	0	0	
Native Species Rich	ness	2	7	3	3	1	0	0	8	2	0	4	2	0	0	0	17

⁻ Species not recorded

4.5 Aquatic Macroinvertebrates

4.5.1 Macroinvertebrate Communities of the Region

Macroinvertebrate communities in the region are considered to be in moderate to good condition, although community health and composition can be variable and are influenced by surrounding land-use and habitat conditions as well as seasonality (URS 2013, DPM Envirosciences 2018). Taxonomic richness, PET richness and SIGNAL 2 scores of macroinvertebrate communities are generally within or above the biological objectives outlined in the EPP (WWB), indicating diverse and healthy communities. Communities typically consist of a number of pollutant-tolerant and sensitive taxa, indicating waterways and wetlands in the region have suitable water and habitat quality to support diverse communities. Assemblages are typically dominated by tolerant taxa, primarily beetles (Coleoptera), true bugs (Hemiptera) and true flies (Diptera). However, sensitive taxa from orders Ephemeroptera (mayflies) and Trichoptera (caddisflies) are typically moderately abundant, while taxa from order Plecoptera (stoneflies) are rare (URS 2013, DPM Envirosciences 2018). No records of threatened macroinvertebrate or macrocrustaceans are known from the Fitzroy River basin and Isaac River sub-basin (DES 2020b, URS 2013).

Macroinvertebrate communities in Harrow Creek, Cherwell Creek and the Isaac River in the vicinity of the Project footprint are routinely monitored as part of the CVM REMP and AEHP. Sampling from 2011 to 2019 shows that the condition of macroinvertebrate communities is highly variable over time, and monitoring sites are often dry (particularly on Cherwell and Harrow creeks) (Gauge Industrial & Environmental 2018, 2020; CQU 2018, 2019). Monitoring sites include:

- two sites on Cherwell Creek, one upstream of CVM (which was monitored four times between May 2011 and March 2018) and one downstream of CVM (which was monitored three times between May 2011 and March 2015)
- two sites on Harrow Creek, one upstream of CVM (which was monitored seven times between May 2011 and May 2016) and one downstream of CVM (which was monitored three times between May 2011 and May 2012), and
- six regional sites on the Isaac River downstream of CVM (each of which was monitored from three to eight times between May 2011 and April 2019).

Monitoring typically occurred more frequently at sites on the Isaac River as it is a major waterway, which is more likely to contain pools following high rainfall and flows than the smaller waterways higher in the catchment (i.e. Cherwell and Harrow creeks).

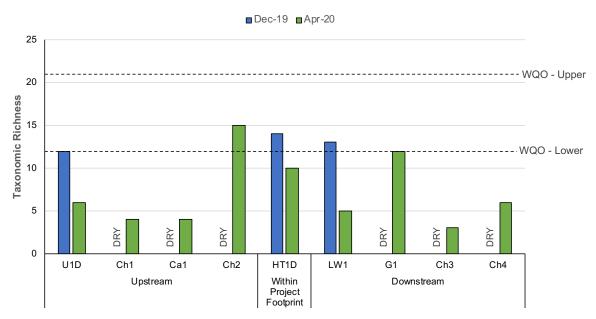
Historically, indices recorded for macroinvertebrate communities in the vicinity of CVM have generally been within the biological objectives outlined in the EPP (WWB), indicating diverse and healthy communities (Gauge Industrial & Environmental 2018, 2020). Recent sampling in 2018 and 2019 indicated that macroinvertebrate communities were in moderate condition. Taxonomic richness and PET richness were typically within the biological objectives. However, SIGNAL 2 scores were frequently below the biological objectives and sensitive taxa were typically low in abundance (CQU 2018, 2019). This may be attributed to the highly ephemeral nature of waterways in the vicinity of CVM, which are subject to harsh environmental conditions.

4.5.2 Macroinvertebrate Communities in the Vicinity of the Project

4.5.2.1 Community Composition

A total of 2,423 individuals from 52 taxa were collected in samples collected across all sites in December 2019 and April 2020. In both bed and edge habitats, macroinvertebrate communities were typically dominated by several major groups that were common across the majority of sites in moderate to high abundance, including:

- flies (order Diptera) with high abundances of non-biting midges (subfamilies Chironominae and Tanypodinae) and biting midges (family Ceratopogonidae) common in samples
- beetles (order Coleoptera) with high abundances of diving beetles (family Dytiscidae) common in samples
- crustaceans, with high abundances of freshwater shrimp (family Atyidae) and seed shrimp (class Ostracoda) common in samples, and
- true bugs (order Hemiptera), with high abundances of pygmy water boatmen (family Micronectidae) common in samples.


All of these taxa are common in the region and are considered to be tolerant to a range of environmental conditions (where sensitivity ratings are available).

Overall, the community composition of the samples is representative of macroinvertebrate communities of the wider region with similar taxa recorded (DPM Envirosciences 2018).

4.5.2.2 Taxonomic Richness

Bed Habitat

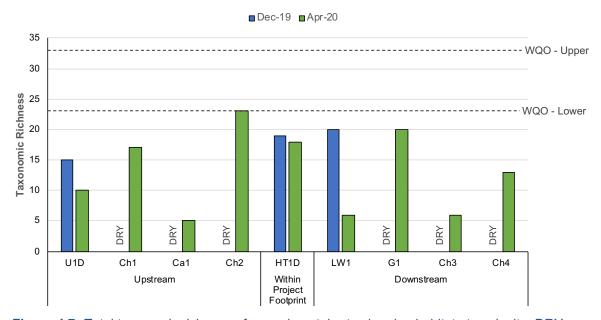

Overall, total taxonomic richness of macroinvertebrate communities in bed habitat was low to moderate (**Figure 4.6**). In December 2019, total taxonomic richness was equal to or within the WQO range at all sites, indicating that it was within the range expected from the broader region. In April 2020, total taxonomic richness was below the WQO range at most sites, except site Ch2 on Cherwell Creek (where it was within the WQO range) and G1 on Grosvenor Creek (where it was equal to the WQO lower trigger). Most sites consisted of small, isolated pools in April 2020, which do not provide ideal or varied habitat for a range of macroinvertebrate taxa.

Figure 4.6 Total taxonomic richness of macroinvertebrates in bed habitat at each site; DRY indicates the site was dry and could not be surveyed

Edge Habitat

Total taxonomic richness of macroinvertebrate communities in edge habitat was low, and was equal to or below the WQO range at all sites during December 2019 and April 2020 (**Figure 4.7**). The water level was low at most sites during these surveys, resulting in poor quality, homogeneous edge habitat for macroinvertebrates.

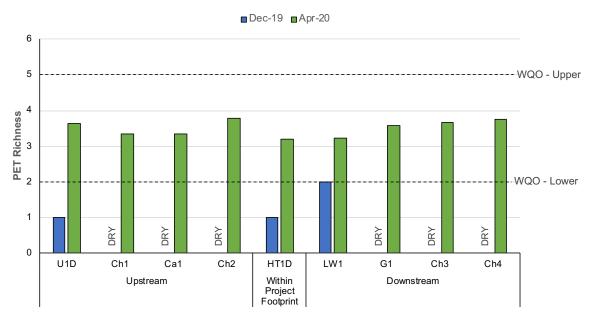


Figure 4.7 Total taxonomic richness of macroinvertebrates in edge habitat at each site; DRY indicates the site was dry and could not be surveyed

4.5.2.3 PET Richness

Bed Habitat

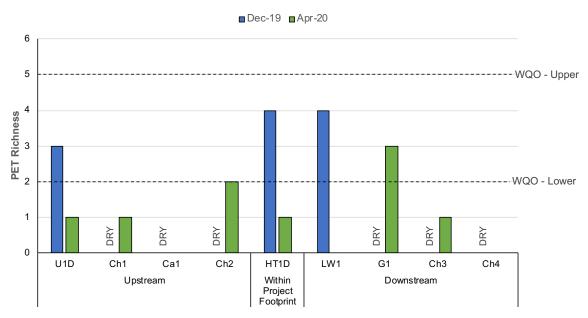

Overall, total PET richness of macroinvertebrate communities in bed habitat was low to moderate (**Figure 4.8**). Sensitive PET taxa were recorded at all sites during the December 2019 and April 2020 surveys. In December 2019, total PET richness was equal to or below the WQO range at all sites. In contrast, in April 2020, total taxonomic richness was within the WQO range at all sites.

Figure 4.8 Total PET richness of macroinvertebrates in bed habitat at each site; DRY indicates the site was dry and could not be surveyed

Edge Habitat

Overall, total PET richness of macroinvertebrate communities in edge habitat was low to moderate (**Figure 4.9**). Total PET richness in edge habitat showed the opposite seasonal pattern to bed habitat, and was within the WQO range at all sites in December 2019, and equal to or below the WQO range at most sites in April 2020. No sensitive PET taxa were recorded in edge habitat at sites Ca1 (Caval Creek), LW1 (lacustrine wetland on Horse Creek) or Ch4 (Cherwell Creek) in April 2020. The water level was low at most sites in April 2020, resulting in poor quality, homogeneous edge habitat, which does not provide ideal habitat for PET taxa.

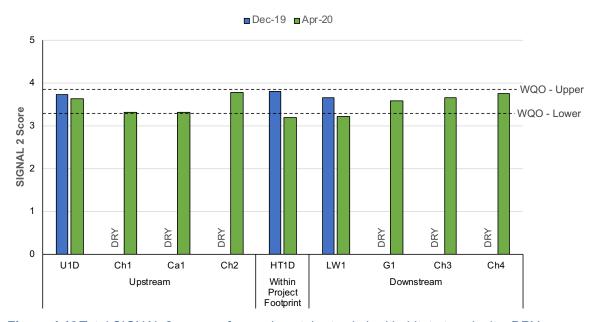


Figure 4.9 Total PET richness of macroinvertebrates in edge habitat at each site; DRY indicates the site was dry and could not be surveyed

4.5.2.4 SIGNAL 2 Scores

Bed Habitat

Overall, total SIGNAL 2 scores of macroinvertebrate communities in bed habitat were moderate to good, and did not vary substantially between surveys (**Figure 4.10**). Total SIGNAL 2 scores were within or slightly below the WQO range at all sites during the December 2019 and April 2020 surveys, indicating that a range of sensitive taxa were present in bed habitat at each site, and that communities were in similar condition to that expected from the broader region.

Figure 4.10 Total SIGNAL 2 scores of macroinvertebrates in bed habitat at each site; DRY indicates the site was dry and could not be surveyed

Edge Habitat

Overall, total SIGNAL 2 scores of macroinvertebrate communities in edge habitat was low to moderate (**Figure 4.11**). Total SIGNAL 2 scores in edge habitat was within the WQO range at all sites in December 2019, and within or below the WQO range at all sites in April 2020. The water level was low at most waterway sites in April 2020, resulting in poor quality, homogeneous edge habitat, which does not provide ideal habitat for sensitive taxa.

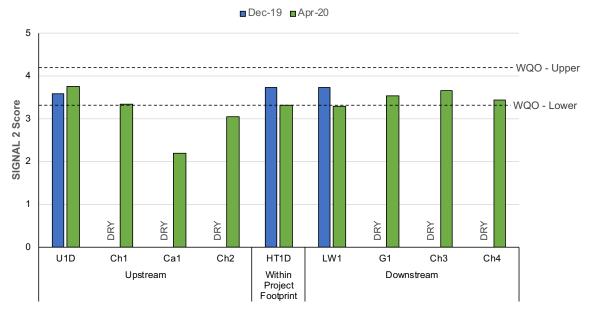


Figure 4.11 Total SIGNAL 2 scores of macroinvertebrates in edge habitat at each site; DRY indicates the site was dry and could not be surveyed

4.5.2.5 SIGNAL 2 Score / Family Bi-plots

Bed Habitat

On SIGNAL 2 / family bi-plots for macroinvertebrate communities in bed habitat (Chessman 2003), all sites in December 2019 were within or on the border of quadrant one (refer to **Figure 3.5**; **Figure 4.12**). This indicates that sites contained favourable habitat, typically with chemically dilute waters. Site U1D, on an unmapped dam upstream of the Project (and upstream of CVM), was on the border of quadrants one and three, indicating that this site was also influenced by a combination of harsh physical conditions (given the low water level at this site during the survey) and poor water quality (with several physicochemical, nutrient and metals parameters exceeding relevant WQOs; **Table 4.1**).

In April 2020, most sites were within quadrant three, indicating that they were likely influenced primarily by a combination of harsh physical conditions, and also poor water quality. The exceptions were:

- site Ch2 on Cherwell Creek (upstream of the Project footprint and downstream of CVM), which was in quadrant one indicating favourable habitat conditions
- site G1 on Grosvenor Creek, which was on the border of quadrants one and three
 indicating that this site had relatively favourable habitat, but was also likely influenced
 by a combination of harsh physical conditions and poor water quality (though the

- concentrations of dissolved copper and aluminium, total phosphorus, total nitrogen, ammonia and turbidity were also high at other sites during the survey; **Table 4.1**)
- sites LW1 and HT1D, dams in the Horse Creek catchment, which were on the border
 of quadrants three and four, which is indicative of communities exposed to toxic
 pollution or harsh physical conditions, and industrial or agricultural pollution. Given the
 aquatic habitat condition and water quality results at these sites, it is likely that a
 combination of harsh physical conditions and agricultural pollution contributed to this
 result. These sites were impacted by cattle access and trampling, with high
 concentrations of nutrients and some metals and metalloids present in the water. These
 parameters were also high at other sites during the survey, including sites upstream of
 the Project footprint and CVM, and throughout the broader region in historical surveys
 (URS 2009b), which may be related to the ephemeral nature of the waterways (Table
 4.1).

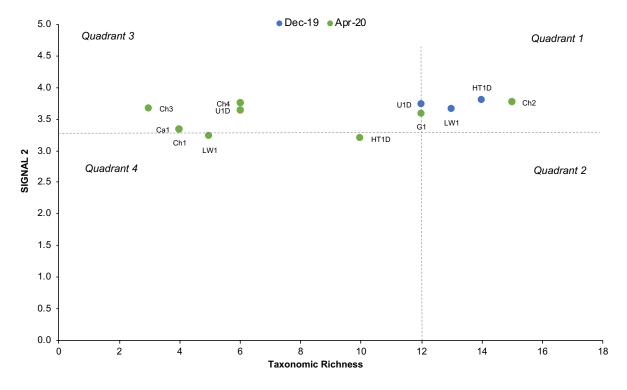


Figure 4.12 SIGNAL 2 / family bi-plot of macroinvertebrates in bed habitat at each site

Edge Habitat

On SIGNAL 2 / family bi-plots for macroinvertebrate communities in edge habitat, most sites were in quadrant three during the December 2019 and April 2020 surveys (refer to **Figure 3.5**; **Figure 4.13**), indicating toxic pollution or harsh physical conditions. Sites in quadrant three were likely influenced primarily by a combination of harsh physical conditions (given the ephemeral nature of the waterways assessed), and also poor water quality (with several physicochemical, nutrient and metals parameters exceeding relevant WQOs at the relevant sites; **Table 4.1**). The exceptions were:

Site Ch2 on Cherwell Creek, which was on the border of quadrants two and four, which
is indicative of communities exposed to industrial or agricultural pollution and / or high
salinity or nutrient concentrations. Water quality results showed relatively high

concentrations of some metals, nutrients and physicochemical parameters at this site, though the concentrations of these parameters were also high at other sites during the current survey, including sites upstream of the Project footprint and CVM, and throughout the broader region in historical surveys (URS 2009b), which may be related to the ephemeral nature of the waterways (**Table 4.1**). This site was located upstream of the Project footprint and immediately downstream of existing CVM infrastructure and consisted of a small, shallow pool during the survey.

• Site Ca1 on Caval Creek, within quadrant four, is indicative of communities exposed to industrial or agricultural pollution. Water quality was also relatively poor at this site, including high electrical conductivity and high nutrient levels (CQU 2018; **Table 4.1**); however, low water levels during this survey are likely to have also influenced this result, as the site consisted of a shallow isolated pool (where nutrients may concentrate, leading to higher concentrations than flowing environments).

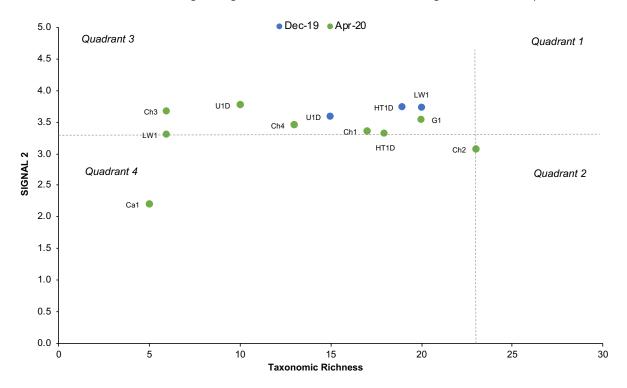


Figure 4.13 SIGNAL 2 / family bi-plot of macroinvertebrates in edge habitat at each site

4.5.2.6 Macrocrustaceans

Five species of macrocrustaceans were recorded during fish sampling (**Table 4.6**). All species have been recorded in previous surveys completed in waterways in the Isaac River catchment (DPM Envirosciences 2018, ALA 2020). Freshwater prawns (*Macrobrachium* sp.) were particularly abundant and were recorded at most sites. In contrast, only one redclaw yabby (*Cherax quadricarinatus*) was recorded at one site in a farm dam on a tributary of Horse Creek (i.e. site HT1D) in December 2019. This species is not naturally occurring within the Isaac River sub-basin, and has been historically translocated from northern Australia to become naturalised.

 Table 4.6
 Macrocrustaceans recorded during December 2019 and April 2020

		December 2019			Ap	ril 2020							
		Up- stream	Within	Down- stream			Upstr	eam		Within	Downs	tream	
Family Species	Common Name	U1D	HT1D	LW1	Total Dec-19	U1D	Ch1	Ca1	Ch2	HTD1	LW1	G1	Total Apr-20
Gecarcinucidae													
Austrothelphusa transversa	freshwater crab	-	-	-	-	1	8	1	18	-	-	9	37
Palaemonidae													
Macrobrachium sp.	freshwater prawn	-	50	50	100	_	_	_	_	22	44	_	66
Parastacidae													
Cherax depressus	orange-fingered yabby	-	-	-	-	_	_	_	-	3	6	-	9
Cherax destructor	common yabby	3	_	-	3	_	7	_	_	_	_	_	7
Cherax quadricarinatus	redclaw yabby	_	1	_	1	_	_	_	_	_	_	_	_
Total Abundance		3	51	50	104	1	15	1	18	25	50	9	119

⁻ Species not recorded

4.6 Aquatic Vertebrates

4.6.1 Fish

4.6.1.1 Fish Communities of the Region

There are 29 native species of fish known from the waterways of the Isaac River sub-basin (DES 2020b) (**Table 4.7**). Of these taxa, three are considered endemic to the Fitzroy region: southern saratoga (*Scleropages leichardti*), leathery grunter (*Scortum hilli*) and golden perch (*Macquaria ambigua*) (DERM 2011b).

No exotic species are listed by the Department of Environment and Science (DES) as occurring in the Isaac River sub-basin (DES 2020b); however, tilapia (*Oreochromus mossambicus*), mosquitofish (*Gambusia holbrooki*) and platy (*Xiphophorus maculatus*) have been recorded in waterways within the region in the Isaac River around Moranbah during previous surveys (Catchment Solutions 2015, DPM Envirosciences 2018). Tilapia and mosquitofish are restricted noxious fish under the *Biosecurity Act 2014*, and platy are a non-indigenous fish that are declared a pest fish when in the wild.

One threatened species of fish listed under the EPBC Act was identified as possibly occurring in the Isaac River sub-basin: silver perch (*Bidyanus bidyanus*). The habitat preferences and ecology of this species is discussed in **Section 4.9.1.1** below.

Table 4.7 Freshwater fish recorded from the region

Family Species Name	Common Name	Fitzroy River Basin ^a	Isaac River Sub-Basin ^a
Ambassidae			
Ambassis agassizii	Agassiz's glassfish	Yes	Yes
Anguillidae			
Anguilla reinhardtii	longfin eel	Yes	Yes
Apogonidae			
Glossamia aprion	mouth almighty	Yes	Yes
Ariidae			
Neoarius graeffei	blue catfish	Yes	Yes
Atherinidae			
Craterocephalus marjoriae	silverstreak hardyhead	Yes	No
Craterocephalus stercusmuscarum	flyspecked hardyhead	Yes	Yes
Belonidae			
Strongylura krefftii	freshwater longtom	Yes	Yes
Centropomidae			
Lates calcarifer	barramundi	Yes	No
Ceratodontidae			
Neoceratodus forsteri***	Australian lungfish	Yes	No
Cichlidae			
Oreochromis mossambicus**	tilapia	Yes ^b	Yes ^b

Family	O a marriera Nama	Fitzroy River	Isaac River
Species Name	Common Name	Basin ^a	Sub-Basin ^a
Clupeidae			
Nematalosa erebi	bony bream	Yes	Yes
Cyprinidae			
Carassius auratus*	goldfish	Yes	No
Cyprinus carpio**	European carp	Yes	No
Eleotridae			
Gobiomorphus australis	striped gudgeon	Yes	No
Hypseleotris compressa	empire gudgeon	Yes	Yes
Hypseleotris galii	firetail gudgeon	Yes	Yes
Hypseleotris klunzingeri	western carp gudgeon	Yes	Yes
<i>Hypseleotris</i> spp.	common carp gudgeon	Yes	Yes
Mogurnda adspersa	southern purple-spotted gudgeon	Yes	Yes
Oxyeleotris aruensis	Aru gudgeon	Yes	Yes
Oxyeleotris lineolata	sleepy cod	Yes	Yes
Philypnodon grandiceps	flathead gudgeon	Yes	Yes
Gobiidae			
Redigobius bikolanus	speckled goby	Yes	No
Hemiramphidae			
Arrhamphus sclerolepis	snubnose garfish	Yes	Yes
Megalopidae			
Megalops cyprinoides	oxeye herring	Yes	No
Melanotaeniidae			
Melanotaenia splendida splendida	eastern rainbowfish	Yes	Yes
Rhadinocentrus ornatus	ornate rainbowfish	Yes	No
Mugilidae			
Mugil cephalus	sea mullet	Yes	No
Trachystoma petardi	freshwater mullet	Yes	No
Osteoglossidae			
Scleropages leichardti	southern saratoga	Yes	Yes
Percichthyidae	<u> </u>		
Maccullochella peelii***	Murray cod	Yes	No
Macquaria ambigua	golden perch	Yes	Yes
Plotosidae			
Piotosidae Neosilurus ater	black catfish	Yes	Yes
	Hyrtl's catfish	Yes	Yes
Neosilurus hyrtlii			
Porochilus rendahli	Rendahl's tandan	Yes	Yes ^d
Tandanus tandanus	freshwater catfish	Yes	Yes
Poeciliidae			
Gambusia holbrooki**	mosquitofish	Yes	Yes ^c
Poecilia reticulata*	guppy	Yes	No
Xiphophorus maculatus*	platy	Yes ^b	Yes ^b

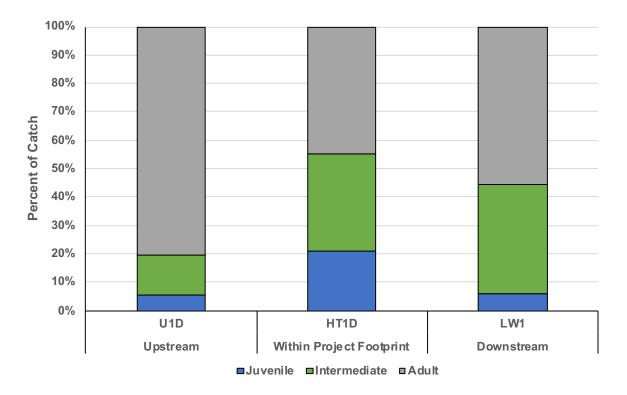
Family Species Name	Common Name	Fitzroy River Basin ^a	Isaac River Sub-Basin ^a
Pseudomugilidae			
Pseudomugil signifer	Pacific blue eye	Yes	Yes
Retropinnidae			
Retropinna semoni	Australian smelt	Yes	Yes ^c
Scorpaenidae			
Notesthes robusta	bullrout	Yes	No
Terapontidae			
Amniataba percoides	barred grunter	Yes	Yes
Bidyanus bidyanus***	silver perch	Yes	Yes
Hephaestus fuliginosus	sooty grunter	Yes	Yes ^b
Leiopotherapon unicolor	spangled perch	Yes	Yes
Scortum hillii	leathery grunter	Yes	Yes
Terapon jarbua	crescent grunter	Yes	No
Grand Total		48	33

- * indicates introduced species
- ** indicates restricted noxious pest species under the *Biosecurity Act 2014*
- *** indicates listed threatened species under the EPBC Act
- ^a Source: DES 2020b
- Source: Catchment Solutions 2015
 Source: DPM Envirosciences 2018
- Source: URS 2014

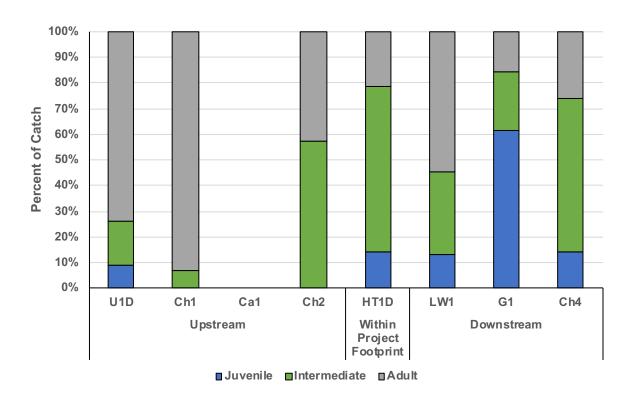
4.6.1.2 Fish Communities in the Vicinity of the Project

A total of 2,374 native fish, comprising seven species from six families, were recorded from the waterways and wetlands within the vicinity of the Project across the December 2019 and April 2020 surveys (**Table 4.8**). Fish communities were dominated by small bodied species, with the lack of large-bodied fish likely due to the paucity of deep pool habitat. Most sites contained fish communities, except for site Ca1 (Caval Creek upstream of the Project footprint) where no fish were recorded. This site consisted of small, isolated pools that provided poor habitat for fish communities.

Overall, the abundance and diversity of fish was relatively similar between surveys. Agassiz's glassfish (*Ambassis agassizii*), carp gudgeons (*Hypseloetris* spp.) and eastern rainbowfish (*Melanotaenia splendida* splendida) were the most abundant native species recorded during the December 2019 and April 2020 surveys, although bony bream (*Nematalosa erebi*) were also relatively abundant in December 2019. These species were also widespread in both the December 2019 and April 2020 surveys, occurring at all or most sites. In surveys, predominantly adult and intermediate fish were caught; though juveniles were also caught at most sites (**Figure 4.14** and **Figure 4.15**).


One threatened species of fish listed under the EPBC Act was identified as possibly occurring in the Isaac River sub-basin: silver perch (*Bidyanus bidyanus*) (DES 2020b). This species was not captured during the surveys.

Two pest species of fish were recorded downstream of the Project in April 2020: tilapia and platy (**Table 4.8**). Tilapia were caught at one waterway site on Cherwell Creek (i.e. Ch4) and


one lacustrine wetland site (i.e. LW1) on Horse Creek. Platy were caught at one site on Grosvenor Creek (i.e. G1). The abundance of pest species was low at most sites where they were caught relative to the abundance of native species (total abundance contributed to approximately 2 per cent and 7 per cent of total catch at sites Ch4 and G1, respectively), except at the lacustrine wetland (i.e. LW1), where total abundance of tilapia contributed to approximately 30 per cent of the total catch (**Table 4.8**).

Overall, the species (native and pest species) caught in December 2019 and April 2020 are known to occur in the region and have been recorded in previous surveys (BAAM 2009; DPM Envirosciences 2018; **Table 4.7**). The native species recorded have a wide range of habitat preferences (e.g. smaller drainage lines, larger rivers and wetlands) and are tolerant of a range of water quality conditions (pH, salinity and dissolved oxygen concentrations).

Photos of representative fish from each species are presented in **Table D2**, **Attachment D**.

Figure 4.14 Proportion of native fish from juvenile, intermediate and adult life stages caught at sites in December 2019

Figure 4.15 Proportion of native fish from juvenile, intermediate and adult life stages caught at sites in April 2020

 Table 4.8
 Fish species abundance and richness recorded during aquatic ecology surveys completed in December 2019 and April 2020

			Decemb	er 2019						April 2020				
Family	Common Name	Up^	Within^	Down^	Total		Upst	tream		Within^	Do	wnstr	eam	Total
Species Name		U1D	HT1D	LW1	2019	Ca1	Ch1	Ch2	U1D	HT1D	Ch4	G1	LW1	Total 2020
Ambassidae														
Ambassis agassizi	Agassiz's glassfish	166	145	439	750	_	_	3	465	4	70	1	100	643
Cichlidae Oreochromis mossambicus*	Mozambique mouthbrooder / tilapia*	_	_	-	_	_	_	_	_	_	4	_	85	89
Clupeidae Nematalosa erebi	hany braam		400	40	145		2			4	58	4	4	70
	bony bream	_	126	19	145	_	3	_	_	4	58	1	4	70
Eleotridae														
Hypseleotris spp.	carp gudgeon	91	20	77	188	_	-	_	26	24	2	_	90	142
Mogurnda adspersa	purple-spotted gudgeon	12	1	_	13	-	_	_	_	_	_	_	_	
Melanotaeniidae														
Melanotaenia splendida splendida	eastern rainbowfish	5	73	60	138	_	2	_	109	3	100	9	4	227
Plotosidae														
Neosilurus hyrtlii	Hyrtl's tandan	-	6	2	8	_	_	_	-	_	2	1	-	3
Poeciliidae														
Xiphophorus maculatus*	Platy*	_	_	_	_	_	_	_	_	_	_	1	_	1
Terapontidae														
Leiopotherapon unicolor	spangled perch	_	_	2	2	_	9	4	7	_	24	1	_	45
Na	tive Species Abundance	274	371	599	1244	0	14	7	607	35	256	13	198	1130
Ex	otic Species Abundance	0	0	0	0	0	0	0	0	0	4	1	85	90
1	Native Species Richness	4	6	6	7	0	3	2	4	4	6	5	4	6
I	Exotic Species Richness	0	0	0	0	0	0	0	0	0	1	1	1	2

[^] Up = Upstream, Within = Within Project Footprint, Down = Downstream; * Pest species; - Species not recorded

4.6.2 Turtles

4.6.2.1 Freshwater Turtles of the Region

Five species of native freshwater turtles are known to occur in the Isaac River sub-basin (DES 2020b):

- broad-shelled river turtle (Chelodina expansa)
- eastern snake-necked turtle (Chelodina longicollis)
- Krefft's river turtle (Emydura macquarii krefftii)
- white throated snapping turtle (Elseya albagula), and
- Fitzroy River turtle (Rheodytes leukops).

The broad-shelled river turtle, eastern snake-necked turtle and Krefft's river turtle are widely distributed on the east coast of Australia in rivers and wetlands. These turtle species are not listed under the EPBC Act and are listed as least concern under the NC Act (ALA 2020, DES 2020b). These species have been recorded within approximately 30 km of the Project in previous surveys (DPM Envirosciences 2018).

The white-throated snapping turtle is listed as critically endangered under the EPBC Act and endangered under the NC Act, while the Fitzroy River turtle is listed as vulnerable under both the EPBC Act and the NC Act. Their preferred habitat, distribution and ecology is discussed in **Section 4.8.3.1** below.

4.6.2.2 Freshwater Turtles in the Vicinity of the Project

Turtles were not particularly abundant or widespread throughout the waterways and wetlands in the vicinity of the Project, which is likely a reflection of the ephemeral nature of the region, where only isolated pools persist year-round and act as refugia for turtles.

One species of turtle was recorded across the December 2019 and April 2020 surveys: Krefft's river turtle (**Figure 4.16**; **Table 4.9**). This species was caught in a mapped lacustrine wetland on Horse Creek downstream of the Project footprint. A higher number of individuals were caught in the late wet season (i.e. April 2020) than in the early wet season (i.e. December 2019).

Krefft's river turtle is considered widespread and common throughout waterways in Queensland. This turtle species occurs in the region, and has been caught during previous surveys completed on the Isaac River, surrounding waterways and wetlands (DPM Envirosciences 2018).

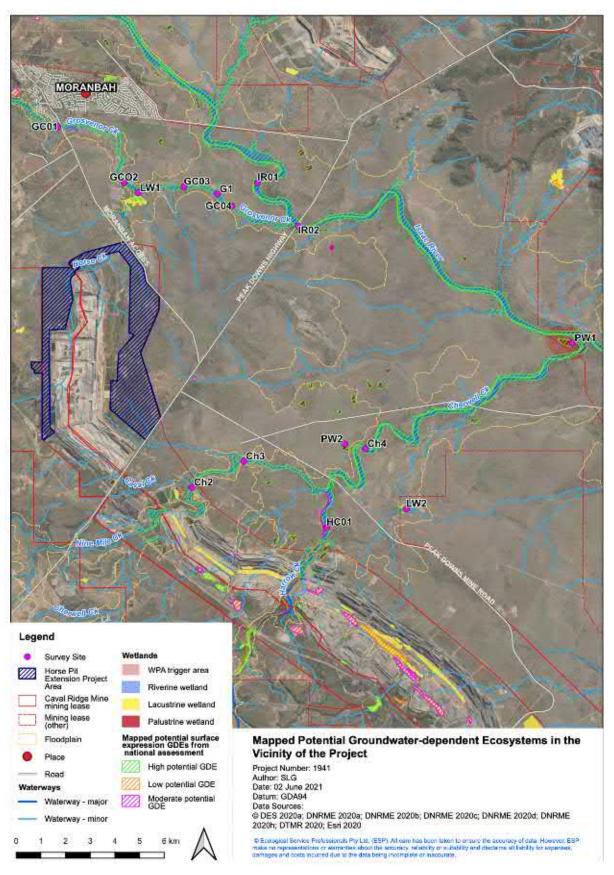
Figure 4.16 Photograph taken of a Krefft's river turtle at site LW1

Table 4.9 Turtles recorded during aquatic ecology surveys completed in December 2019 and April 2020

		Dec-19	Apr-20	
Family Species Name	Common Name	LW1 (Dov	wnstream)	Total
Chelidae				
Emydura macquarii krefftii	Krefft's river turtle	2	7	9

4.6.3 Other Vertebrates

4.6.3.1 Platypus of the Region


Platypus (*Ornithorhynchus anatinus*) are listed as occurring within the Isaac River sub-basin (DES 2020b). This species is not listed as threatened under the EPBC Act. Under the NC Act platypus are considered to be an iconic species and are protected generally as 'Special Least Concern' under the NC Act. Their preferred habitat, distribution and ecology is discussed in **Section 4.8.3.2** below.

Platypus populations and habitat are found within the Fitzroy basin. However, there are no records of platypus from within 50 km of the Project (ALA 2020; DES 2019a). No platypus or potential habitat for this species were recorded during field surveys or during previous surveys in the broader region (DPM Envirosciences 2018).

4.7 Groundwater-Dependent Ecosystems

Groundwater-dependent ecosystems (GDEs) are ecosystems whose species and ecological processes rely on groundwater, either entirely or intermittently (Doody et al 2019). Several riverine and wetland systems within the vicinity of the Project are mapped as low, moderate and high potential to be dependent on surface-expression of groundwater (BOM 2019c; **Figure 4.17**). No potential surface expression GDEs are mapped within the Project footprint.

Overall, field assessments concluded that aquatic habitat condition at mapped potential surface-expression GDE sites in the vicinity of the Project was representative of ephemeral waterway and wetland sites in the broader area (as summarised in **Sections 4.1** to **4.6**). The field assessment concluded that the aquatic ecological value of mapped potential surface-expression GDEs was low to moderate at wetland and waterway sites. No consistent differences in aquatic ecological indicators were observed between wetland and waterway sites mapped as potential surface-expression GDEs compared with those that are not mapped; though the value of sites on Grosvenor and Cherwell Creek was higher than at other riverine sites as these waterways have a higher stream order (and therefore provide greater value in terms of fish passage, connectivity and aquatic habitat availability and quality).

Figure 4.17 Waterways mapped as low, moderate and high potential to be dependent on surface-expression of groundwater (GDEs) in the vicinity of the Project and sites surveyed in the aquatic ecology assessment

4.8 Matters of State Environmental Significance

Several MSES relevant to aquatic ecology occur or have the potential to occur in the vicinity of the Project, including:

- HES wetlands, which are also WPAs in Great Barrier Reef catchments (i.e. including the Fitzroy basin)
- waterways providing for fish passage, and
- listed threatened species.

These matters are discussed in more detail in the sections below. No other aquatic MSES occur in the vicinity of the Project.

4.8.1 HES Wetlands

No HES wetlands are present within the Project footprint. There is one HES palustrine wetland (also a WPA) mapped approximately 20 km east and downstream of the Project footprint in the Isaac River floodplain. Although mapped as an HES wetland, no aquatic habitat or aquatic fauna species were recorded in the December 2019 survey. Aquatic habitat condition at this wetland is discussed in detail in **Section 4.1.2.3**.

4.8.2 Waterways Providing for Fish Passage

Many species of native fish known from the region migrate upstream and downstream, and between different aquatic habitats, at different stages of their life cycle (Marsden & Power 2007). Stimuli for movement include small and large flow events and increases in water temperature. Spring and summer are generally the most important months for migration; however, maintaining fish passage is important throughout the year (Marsden & Power 2007). The waterways in the vicinity of the Project provide temporary habitat and aquatic fauna movement corridors during flow events.

The DAF (2020) Queensland Waterways for Waterway Barrier Works mapping indicates the level of 'risk' associated with undertaking waterway barrier works within Queensland waterways with regards to fish passage. This dataset represents pre-development conditions, and shows waterways which have been affected by mining activities in the region (and therefore does not reflect the current locations of waterways in the area).

Where the works associated with the Project are undertaken on the mining lease under the conditions of an EA (and not a development approval), a waterway barrier works approval under the *Fisheries Act 1994* will not be required; however, fish passage requirements in the study area need to be considered. In the vicinity of the Project:

- the Isaac River, Grosvenor Creek, Harrow Creek and Cherwell Creek are mapped as major risk (purple) of adverse impact to fish movement
- Horse Creek is mapped as high risk (red) of adverse impact to fish movement, and
- all other waterways are mapped as moderate risk (amber) or low risk (green) of adverse impact to fish movement (Figure 4.18).

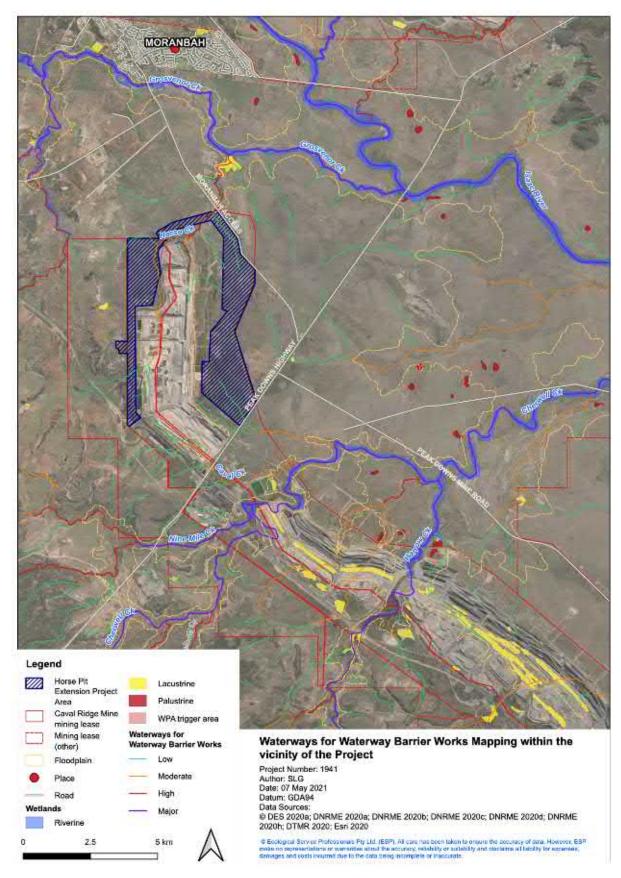


Figure 4.18 Waterway Barrier Works mapping in the vicinity of the Project

4.8.3 Listed Threatened Species

4.8.3.1 Turtles

Two species of turtle listed as potentially occurring within 30 km of the Project footprint are threatened under the EPBC Act: Fitzroy River turtle and white-throated snapping turtle.

The Fitzroy River turtle is endemic to the natural, permanent riverine habitats in the middle to lower areas of the Fitzroy River basin in Queensland (Limpus et al 2011, DAWE 2020a), and has an estimated occurrence in a range of less than 10,000 km² (Cogger et al 1993). This species prefers permanent freshwater riverine reaches (particularly deep pools interspersed with areas of riffle habitat) and large, isolated permanent waterholes (Cogger 2000). Preferred areas have high water clarity, and are often associated with ribbonweed (*Vallisneria* sp.) beds (Cogger et al 1993, DAWE 2020a). Their distribution extends from the Fitzroy Barrage to the upper areas of the Dawson, Nogoa and Connors rivers. Known sites include Boolburra, Gainsford, Glenroy Crossing, Theodore, Baralaba, the Mackenzie River, the Connors River, Duaringa, Marlborough Creek and Gogango (Cogger et al 1993). Known key sites for the Fitzroy River turtle include Glenroy and Redbank crossings on the Fitzroy River, Theodore Weir on the Dawson River, Cardowan pump pool on the Connors River and Marlborough Creek (Limpus et al 2011).

The white-throated snapping turtle is endemic to New Guinea and south-eastern Queensland, where it occurs in the Fitzroy, Mary and Burnett River basins and associated smaller drainages in south eastern Queensland (Limpus et al 2011, DAWE 2020b). This species prefers clear, flowing and well oxygenated rivers with sandy-gravel substrate that have suitable shelters and refuges (e.g. submerged rock crevices, undercut banks and/or submerged logs and fallen tree (Limpus et al 2011)). During the day, turtles are affiliated with habitats of high shade (i.e. submerged logs, overhanging riparian vegetation), and at night they inhabit shallow riffles. White-throated snapping turtles are well-adapted for maintaining their position at specific foraging sites in very structured habitats such as log tangles and rocky outcrops with or without currents (Limpus et al 2011).

Both of these species were listed as potentially occurring within 30 km of the Project (DoEE 2019, **Attachment A**). However, none of the waterways in the vicinity of the Project contain suitable habitat for these species (such as permanent riverine flowing and pool habitat), and there are no records of either species in the vicinity of the Project (ALA 2020, Limpus et al 2011). The closest known records for both species are from tributaries in the Connors River catchment in the Isaac River sub-basin, approximately 80 km east north-east of the Project. Therefore, based on desktop review of known distribution, habitat preferences, and field assessments in the dry and wet season surveys, individual turtles are unlikely to occur in the vicinity of the Project, and no core foraging or nesting habitat for these species exists. This conclusion is consistent with results from other recent assessments in the Isaac River catchment (DPM Envirosciences 2018).

4.8.3.2 Platypus

Platypus are considered to be an iconic species and are protected generally as 'Special Least Concern' under the NC Act.

Platypus occur in eastern Australia from Cooktown in north Queensland to Victoria and Tasmania. Platypus inhabit freshwater streams, rivers, lakes and dams. Platypus are

typically nocturnal, feeding on aquatic invertebrates along the stream bed from dusk until dawn (Carrick et al 2008). When not active, platypus rest in burrows in the river bank that typically open at the water's edge amongst tree roots and overhanging vegetation. Platypus can tolerate a relatively wide range of environmental conditions, but prefer habitat that has an abundance of invertebrate prey, permanent pools and runs, moderate to good water quality, and steep well-vegetated banks for burrows. In Queensland, platypus are usually found in rivers east of the Great Dividing Range, but do occur in some western-flowing streams (ALA 2020).

There are no records of platypus from within 30 km of the Project (ALA 2019; DES 2019a), and no platypus or potential habitat for this species were recorded during the field surveys or previous surveys in the broader region (DPM Envirosciences 2018). Therefore, platypus are considered highly unlikely to occur in the vicinity of the Project.

4.9 Matters of National Environmental Significance

Two controlling provisions relevant to aquatic ecology have been identified for this Project under the EPBC Act and are discussed in more detail in the subsections below, specifically:

- listed threatened species, and
- a water resource, in relation to coal seam has and large coal mining.

No other MNES occur or are likely to occur within the vicinity of the Project.

4.9.1 Listed Threatened Species

4.9.1.1 Fish

One listed threatened fish species was recorded as occurring in the Isaac River sub-basin under the Wetland*Info* database (DES 2020b): silver perch, listed as Critically Endangered under the EPBC Act. The natural distribution of the silver perch is limited to the Murray-Darling basin and their preferred habitat is high flowing rivers (DoE 2013; DAWE 2020c), although it has been frequently translocated across Queensland (Pusey et al 2004). This species was not listed in the EPBC Protected Matters Search Tool Report (**Attachment A**) as potentially occurring within 50 km of the Project. It was listed as occurring approximately 50 km from the Project in the Wildlife Online database; however, this is likely an erroneous waypoint coordinate as the location description of this record is Bundoora Dam near Middlemount, in the Mackenzie River sub-basin (approximately 100 km southeast of the Project). There are no known records of this species occurring in the vicinity of the Project footprint (DES 2019, DPM Envirosciences 2018, ALA 2020). The Project footprint does not provide the preferred habitat of this species (i.e. flowing riverine habitat).

4.9.1.2 Turtles

Two species of turtle listed as potentially occurring within 30 km of the Project footprint are threatened under the NC Act: Fitzroy River turtle and white-throated snapping turtle. These species are considered unlikely to occur in the vicinity of the Project, as discussed above in **Section 4.8.3.1**.

4.9.2 Water Resources

Water resources were recorded within the vicinity of the Project footprint during the field surveys, including:

- waterways (which were generally ephemeral in nature, except sites GC01 located on Grosvenor Creek upstream of the Project); see Section 4.1.2.1)
- lacustrine wetlands and farm dams (all if which were modified by the presence of dams; see Section 4.1.2.2)
- palustrine wetlands (all of which were dry during the field surveys (although PW1 was not assessed in the wet season due to access restrictions); see Section 4.1.2.3)
- mapped potential aquatic (i.e. surface expression) groundwater dependent ecosystems (see Section 4.7 and Figure 4.17), and
- subterranean groundwater-dependent ecosystems, for example aquifers that may support stygofauna (see **Section 5** and **Figure 4.17**).

4.10 Summary of Aquatic Ecosystem Values

Overall, aquatic ecosystem values in the vicinity of the Project were low to moderate. Aquatic ecosystem values of waterway and wetlands are summarised in the sections below.

4.10.1 Waterways

Aquatic ecosystem value of Grosvenor Creek and Cherwell Creek was assessed as moderate due to:

- a wide variety of instream habitat types during the late-wet season, which provided habitat for a range of aquatic flora and fauna typical of ephemeral systems in the region
- provision of breeding habitat during the wet season, with juvenile, intermediate and adult fish recorded at most sites
- provision of important connectivity and fauna passage to upstream and downstream habitats during periods of high rainfall and flow
- absence of dry season refugia for aquatic flora and fauna, with no water present at sites in the dry season even at sites located on potential surface expression GDEs (except at site GC01 located on Grosvenor Creek upstream of the Project), and
- absence of listed protected species, communities, areas and habitats.

Aquatic ecological value of smaller creeks and drainage channels (including Caval Creek, Horse Creek, and unnamed tributaries in the upper reaches of Cherwell Creek, Caval Creek and Horse Creek) was lower than at Cherwell and Grosvenor creeks, and was assessed as low due to:

- low to moderate variety of instream habitat types (shallow pools only at the site on Caval Creek, with sites on Horse Creek and unnamed tributaries dry), which provided habitat for aquatic flora and fauna typical of ephemeral systems in the region for short periods following high rainfall
- no provision of fish habitat, with no fish recorded during the late-wet season at Caval Creek (with sites on Horse Creek and unnamed tributaries dry during December 2019 and April 2020 surveys)
- limited potential to provide connectivity or fauna passage to upstream habitats, except during brief periods of high rainfall and flow
- absence of dry season refugia for aquatic flora and fauna, with no water present at sites surveyed in the dry season, and
- absence of listed protected species, communities, areas and habitats.

4.10.2 Mapped Lacustrine Wetlands and Farm Dams

Aquatic ecosystem value of State-mapped lacustrine wetlands (i.e. site LW1 and LW2) and unmapped farm dams (i.e. sites HT1D and U1D) in the vicinity of the Project was assessed as moderate due to:

- a moderate variety of instream habitat types, including deep pools which provided habitat for a range of aquatic flora and fauna common in the region
- provision of breeding habitat during the wet season, with juvenile, intermediate and adult fish recorded
- limited potential to provide connectivity or fauna passage to upstream habitats, due to locations on waterways in the catchment
- provision of dry season refugia for aquatic flora and fauna, and
- absence of listed protected species, communities, areas and habitats.

4.10.3 Mapped Palustrine Wetlands

Aquatic ecosystem value of State mapped palustrine wetlands in the vicinity of the Project was moderate. The field assessment confirmed that site PW1 met the definition of a wetland under the *Queensland Wetland Definition and Delineation Guideline* (DERM 2011a). In contrast, site PW2 did not contain any aquatic habitat features, and therefore was only of terrestrial ecological value and is not considered further.

Although designated as a HES wetland, site PW1 was assessed in December 2019 as having low aquatic ecosystem value due to:

- a low to moderate variety of potential instream habitat types (noting that this site was
 dry during the field survey), which would provide habitat for aquatic flora and fauna
 common in the region during periods of high rainfall
- would likely only hold water (and therefore provide aquatic habitat) for short periods during flood events or periods of high rainfall
- would occasionally connect to the Isaac River floodplain during periods of high flow, but has limited potential to provide connectivity or fauna passage to upstream habitats due to its location
- absence of dry season refugia for aquatic flora and fauna, with no water present during the dry season, and
- absence of listed protected species, communities, areas and habitats.

5 Stygofauna Communities

5.1 Desktop Literature Review

5.1.1 Stygofauna Overview

Stygofauna are subterranean aquatic fauna that live part of or all of their lives in groundwater systems (DES 2018c). Stygofauna are thought to play key roles in nutrient and organic matter cycling (Danielopol et al 2003), water filtration (Asmyhr et al 2014), and modification of water flow though changes to interstitial pore spaces and mineral formation (Murray et al 2006). Stygofauna are key contributors to Australia's biodiversity (Humphreys 2006), and can act as indicators of groundwater ecosystem health (Tomlinson et al 2007).

Habitats for stygofauna include underground aquifers and caves, where they occur in water filled pore spaces and voids. Depending on where they occur, stygofauna are also referred to as (Glanville et al 2016, Tomlinson 2011):

- stygophilic fauna, which inhabit surface water and groundwater environments
- stygoxenic fauna, which inhabit mostly surface environments, and only inhabit groundwater inadvertently and are unable to establish subterranean populations, and
- stygobitic fauna, which live exclusively in groundwater throughout their entire lifecycle.

The lithologies where most stygofauna taxa are found include alluvium, basalt and coal, gravel and sands, and sandstones (Glanville et al 2016, DES 2018c). These habitats are typically restricted in their distribution (Eberhard et al 2005, Glanville et al 2016 and references within) and unchanged over long time periods (Humphreys 2006). These factors contribute to the high degree of endemism and narrow distribution of stygofauna (Humphreys 2006).

Stygofauna communities in Australia are dominated by crustaceans, however oligochaetes, insects, molluscs, rotifers and fish have also been recorded (4T 2012, DES 2018c, frc environmental 2013, Glanville et al 2016). The majority of stygofauna species identified in Australia are not found anywhere else in the world (Humphreys 2006). Common adaptations of stygofauna to the absence of light and restricted space are:

- small body size (<1 mm total body length)
- lack of pigmentation
- · absence of eyes, and
- elongated appendages for tactile sensing.

In Australia, most studies on the composition of stygofauna communities and description of taxa to date have been in the Pilbara (where a highly diverse and regionally endemic community exists), New South Wales and Tasmania. In Queensland, comparatively fewer studies have been undertaken, with the majority of studies conducted in the Surat, Bowen, Fitzroy and Galilee basins in the context of Environmental Impact Studies (Hose et al 2015, Glanville et al 2016). Subsequently, knowledge of the biodiversity and value of stygofauna

communities is relatively poor but is expected to increase as more studies are conducted and taxonomic knowledge improves.

5.1.2 Habitat Preferences and Ecology

Stygofauna are tolerant of a relatively wide range of environmental conditions and can occur in a variety of aquifer types, however they require favourable conditions to survive and not all aquifers are suitable (Doody et al 2019). Important habitat characteristics known to influence the presence of stygofauna include:

- · aquifer type
- hydraulic conductivity
- groundwater quality
- food supply
- water extraction and use, and
- depth to groundwater.

Stygofauna are most commonly found in karstic and alluvial aquifers, which have high porosity. These large pores and fractures allow stygofauna to pass through them and facilitate water movement and connectivity, which is important in supplying dissolved oxygen and nutrients (Strayer 1994, Hahn & Fuchs 2009, Hose et al 2015). Although stygofauna have also been recorded from fractured rock aquifers (such as sandstone, coal and basalt), these will often only contain stygofauna when there is sufficient hydrological connection to either limestone or alluvial aquifers (Doody et al 2019).

Stygofauna can occur across a range of depths, however a higher diversity and abundance of stygofauna is typically found near the water table (when the water table is shallower than 20 to 30 m) (Datry et al 2005). Stygofauna are also more likely to occur in aquifer recharge areas where the water table is close to the land surface (<10 m), and near deep rooted trees (Humphries 2000, Hancock and Boulton 2008). This is because these areas generally have higher concentrations of organic matter and dissolved oxygen (Hyde et al 2018). Diversity and abundance of stygofauna communities then decline with depth (Datry 2005).

Water quality can be an important determinant in the presence and abundance of stygofauna. Stygofauna are typically most likely to occur where electrical conductivity is less than 5,000 microsiemens/cm (μ S/cm). Although stygofauna have been collected from aquifers with electrical conductivity of up to 56,000 μ S/cm, the diversity and abundance of stygofauna typically decreases with increasing electrical conductivity above 5,000 μ S/cm (Hancock & Boulton 2008, Watts & Humphreys 2009, Schulz et al 2013, Glanville et al 2016). Stygofauna can also tolerate a pH range of 3.5 to 10.3, but a higher diversity is likely to occur in aquifers with a pH range of 6.5 to 7.5 (4T 2012).

The occurrence of stygofauna communities within the Bowen basin is poorly understood. A previous review of stygofauna studies in the Bowen basin concluded that stygofauna are rare or unlikely to occur within the bedrock (4T 2012). However, they are considered likely to occur in some of the unconsolidated sandy sediments associated with the Isaac River floodplain due to the high porosity, suitable hydraulic conductivity and interconnectivity. In alluvial sediments, stygofauna are typically found in shallow depths (<20 m), and at electrical

conductivity levels of less than 2,000 μ S/cm, though they still may occur outside of this range (4T 2012).

5.1.3 Hydrogeology in the Vicinity of the Project

The Bowen basin in the vicinity of the Project is characterised by a relatively thin accumulation of consolidated sediments, gentle easterly dips and minor to moderate deformation (URS 2009a). The litho-stratigraphy of the region is shown in the **Groundwater Chapter**. Three distinct units occur within the Project site, including Cainozoic sediments (alluvium and regolith), Cainozoic basalt and Permian coal measures. The Quaternary alluvial formations, Tertiary sediment and basalt formations, and the Permian coal measures, generally yield low sustainable volumes of poor quality groundwater, and are not recognised aquifers of the area.

Alluvial deposits in the vicinity of the Project occur predominantly along creeks such as Horse Creek, Grosvenor Creek and Cherwell Creek (URS 2009a). The Quaternary alluvial aquifers are not extensive in the vicinity of the Project; however, they become more significant along and adjacent to the Isaac River main channel. The minimum distance between the Project open cut pit and the Isaac River alluvium is approximately 9 km (SLR 2021a). Tertiary to Quaternary aged alluvium deposits are distributed along the courses of Cherwell Creek and Harrow Creek, located 1.7 km to the south of Horse Pit, extending to the south and south east. Within the Project site the Cherwell Creek alluvium extends from the creek approximately 1.7 km north towards Horse Pit. Adjacent to Cherwell Creek the alluvium comprises between 6 to 9 m of clay and silt, which is underlain by up to 10 m of fine to coarse sand and gravel. The thickness of the alluvium decreases towards Horse Pit. Alluvial deposits located adjacent to Harrow Creek extend approximately 3 km south and 1 km south east, and comprise 2 m of silt and clay, overlying 6 m of sands and gravels with bands of silt and clay (SLR 2021a). While there is potential for groundwater to exist within the sand and gravel deposits of the alluvium close to the Project, the alluvium is not considered a significant aguifer due to the shallow depth (approximately 10 to 20 m below ground level, where saturated), limited extent and continuity. The aguifer is likely to only become temporarily saturated in the vicinity of the Project following significant creek flow events (URS 2009).

Regolith material in the vicinity of the Project comprises Cainozoic (Quaternary to Tertiary) aged sediments, including alluvium and colluvium. The regolith in the Project site comprises a heterogeneous distribution of fine to coarse grained sand, clay, sandstone and claystone, with regolith material generally 15 m to 45 m thick. The regolith is considered to be densely compacted and largely unsaturated, with the presence of water restricted to lower elevation areas along the Isaac River and the lower reaches of its tributaries (i.e. Cherwell Creek and Ripstone Creek). Flow within the regolith where it is saturated is a reflection of topography, flowing towards nearby drainage lines (SLR 2021a).

Tertiary basalts mapped in the vicinity of the Project are not regionally extensive, occurring only along the western edge of the Project site. The occurrence is generally discontinuous and isolated. Recharge to the basalt aquifers is likely to be via surface infiltration and overland flow in areas where the basalt is exposed and/or no substantial clay barriers occur in the shallow subsurface. Recharge may also occur via vertical seepage from overlying alluvium aquifers. Exploration boreholes and monitoring wells across the Project site found

the basalt ranged from fresh to highly weathered with variable clay, and to be up to 35 m thick (SLR 2021a).

Permian sequences consist of coal seam aquifers confined above and below by very low permeability geological formations. Faulting and seam splitting is common throughout the region. Due to the clay characteristics of the regolith overlying the coal seams in the vicinity of the Project, it is considered that recharge is limited. Any leakage between aquifers through the faults is dictated by a variety of factors, including the hydraulic conductivity of the fault, the interburden thickness between the aquifers, and the piezometric level in the aquifers. Monitoring of groundwater levels in the Permian aquifers in the vicinity of CVM indicates drawdown in response to current mining activities in both Horse and Heyford Pits, as well as the adjacent Peak Downs Mine (URS 2009a).

Overall, the Project site comprises the following key hydrogeological units (SLR 2021a):

- Cainozoic sediments:
 - Quaternary alluvium unconfined aquifer (water-bearing strata of permeable rock, sand, or gravel) localised along Cherwell Creek and the Isaac River.
 - Quaternary to Tertiary colluvium and weathered units (regolith) unconfined and largely unsaturated unit bordering alluvium.
- Tertiary Basalt unconfined, heterogenous and discontinuous and highly variable permeability, dependant on degree of weathering and nature of fracturing / vesicularity.
- Permian coal measures low permeability interburden units with aquitard properties, and coal sequences that exhibit water bearing properties associated with secondary porosity through cracks and fissures.

5.1.4 Stygofauna Communities in the Vicinity of the Project

Overall, aquifers within the Project site are considered to have a low likelihood of supporting stygofauna communities. Although stygofauna have been recorded from fractured rock aquifers (e.g. basalt and coal), they are less likely to occur where there is insufficient hydrological connection to limestone or alluvial aquifers (Doody 2019). The alluvium aquifer is unconfined and likely fed by surface water; as such groundwater available for stygofauna communities is likely to be limited and spatially sporadic.

Stygofauna may be present in the Quaternary alluvial aquifers in the wider vicinity of the Project. The Isaac River and its tributaries are ephemeral, particularly in the upper reaches (which often experience prolonged dry periods) (4T 2012). Along with varied permeability, this indicates that the distribution of stygofauna in the upper reaches of the alluvium further from the main rivers, may only be highly localised (i.e. where there is sufficient groundwater storage to sustain populations) (4T 2012). In the lower reaches, and where there are confluences and extensive river alluvium deposits, the likelihood of saturation and therefore the likelihood of occurrence of stygofauna is greater.

Of the 33 bores that have been sampled within 30 km of the Project, none have recorded true stygofauna present. Eight of these bores have stygoxene recorded, including bores downstream of the Project site (Queensland Herbarium 2021).

Two bores in the Isaac River alluvium were sampled recently as part of a stygofauna pilot study completed for the Olive Downs Coking Coal Project EIS (DPM Envirosciences 2018). No stygofauna were recorded from bore sampling during the assessment. However, stygofauna are known to occur in unconsolidated sediments, where they are most likely to occur in shallow depths (< 20 m, though often up to 50 m). Therefore, they were considered likely to occur in the unconsolidated sediments of the Isaac River alluvium, in the lower reaches of the Isaac River and at the confluences of larger tributaries (DPM Envirosciences 2018).

5.2 Field Survey Results

5.2.1 In Situ Water Quality

Electrical conductivity and pH of groundwater was within the range known to support stygofauna at most bores. The exceptions were:

- pH at bores MB19CVM08P (11.82 pH units) and MB19CVM10P (11.35 pH units), which was high and alkaline, and therefore unlikely to support diverse stygofauna communities (Table 5.1). Elevated pH at these two bores may be indicative of underdeveloped bores (i.e. the bores are compromised by residual drilling fluids or a lack of adequate purging).
- Electrical conductivity at bores PZ09 (13,919 μS/cm) and PZ01 (13,623 μS/cm), which was high and above the range known to support stygofauna communities (< 5,000 μS/cm preferred but also occur regularly at < 10,000 μS/cm) (Table 5.1).

Table 5.1 In situ water quality recorded at each bore during the pilot studies

Bore ID	рН	EC
	(pH units)	(μS/cm)
MB19CVM03T	9.76	-
MB19CVM05T	7.56	1,455
MB19CVMO6P	6.84	9,226
MB19CVMP07T	7.59	1,216
MB19CVM08P	11.82	7,046
MB19CVMP09A	6.70	3,013
MB19CVM10P	11.35	3,050
PZ07D	6.92	6,020
PZ09	7.00	13,919
162145	6.61	3,120
162807	7.52	3,147
162144	6.66	2,363

Bore ID	рН	EC
	(pH units)	(µS/cm)
162044	7.44	2,427
162142	7.46	9,350
162816	6.97	686
162045	6.99	2,049
182164	7.23	983
162043	7.29	1,369
182048	7.25	1,447
PZ01	6.99	13,623
PZ04	6.52	5,581
PZ12D	6.82	5,355
PZ12S	6.82	6,206

⁻ reading not available

5.2.2 Bore Depth

Bores sampled included a variety of aquifers from available lithologies, although alluvium bores were generally dry, with only two bores sampled (**Table 5.2**). A range of bore depths were sampled, including bores within the range known to support higher diversity and abundance (i.e. when the water table is shallower than 20 to 30 m; Datry et al. 2005). Some bores were deep, which may limit stygofauna communities (**Table 5.2**). Stygofauna are known to occur across a range of depths including, though rarely, at depths beyond 100 m below ground level (Hose et al. 2015).

 Table 5.2
 Depths and strata of each bore sampled during the pilot studies

Bore ID	Bore depth (mBGL)	Depth to water level (mBGL)	Slotting / Screen Unit ^
MB19CVM03T	35	20	Basalt
MB19CVM05T	44	35	Basalt / basal sands
MB19CVMO6P	72	38	Coal / siltstone
MB19CVMP07T	27	12	Basalt
MB19CVM08P	164	28	Coal / siltstone
MB19CVMP09A	18	15	Alluvium
MB19CVM10P	128	57	Coal / siltstone
PZ07D	44	16	Coal seam

Bore ID	Bore depth (mBGL)	Depth to water level (mBGL)	Slotting / Screen Unit ^
PZ09	70	40	Coal seam
162145	23	21	Coal / sandstone
162807	12	10	Unknown
162144	17	12	Alluvium
162044	72	30	Basalt
162142	137	38	Coal / sandstone
162816	67	8	Unknown
162045	83	22	Sandstone
182164	63	2	Basalt
162043	73	23	Basalt
182048	73	17	Basalt
PZ01	85	17	Coal seam
PZ04	93 ^	68 ^	Coal seam
PZ12D	57	30	Non-coal Permian - siltstone
PZ12S	31	26	Regolith - sandstone / siltstone

⁻ reading not available

5.2.3 Stygofauna Communities

No stygofauna specimens were recorded from bores sampled during the field survey. Of the 13 bores sampled in May 2020 and 10 bores sampled in November 2020, eight bores from each survey contained invertebrates. Most taxa identified were terrestrial specimens, including species of Araneae (spiders), Acarina (mites), Collembola (springtail), Ixodidae (ticks), Culicidae (mosquito larvae), Thysanoptera (thrips), Formicidae (ants), Polyxenida (millipede), Coleoptera (beetles) and Hemiptera (true bugs).

One Oligochaeta species, two Acarina (mites) species and a cyclopoid copepod were identified as potentially being stygofauna in bores. However, as outlined below, these were generally likely to be stygoxene and not true stygofauna.

Oligocheates were identified in bores 162044, 162048, 162043 and 162807 in November 2020. There is a taxonomic and ecological knowledge gap for oligochaetes (Eco Logical Australia 2015) and further identification, even to species level, does not guarantee confirmation as stygofauna. While oligochaetes can occur within the stygofauna community, many consider them obligates of groundwater, and their presence in groundwater is usually linked to adjacent soil communities (Eco Logical Australia 2015, Halse and Pearson 2014). The oligochaetes sampled were in low numbers (1 to 14 individuals per sample) and the only other taxa found in the same bore were terrestrial. This suggests the oligochaetes collected,

[^] information from bore records

while possibly stygal (e.g. stygoxenic), are unlikely to be a groundwater dependent (stygobitic) species.

Eight individual mites with reduced pigmentation, classified as belonging to the order Oribatida, were found in bore 162816 in November 2020. Most oribatid mites are terrestrial, with less than 1% of species being truly aquatic (Schatz and Behan-Pelletier 2008, Schuppenhauer et al. 2019). Some of these aquatic oribatid species have been referred to as stygofauna in other studies (Bennelongia Pty Ltd 2007, Biota Environmental Sciences 2010). Terrestrial oribatids have high tolerance to submersion, with some species demonstrating survival for up to a year when submerged in flowing waters (Schuppenhauer et al. 2019). There were also terrestrial ants within this bore. As such the Acarina with reduced pigmentation were most likely a stygoxene rather than a stygobitic groundwater obligate. One individual mite was also found in bore 182164. This mite had a dark eye spot, and as such unlikely to be stygobitic (there were also several terrestrial specimens in this bore).

One individual cyclopoid copepod was found in bore 182164 in November 2020. Copepods are among the most abundant type of stygofauna, but can also be washed into bores in floods or blown in as eggs. Several terrestrial specimens also occurred within this bore indicating the potential for this copepod to be derived from surface waters. While the origin of this cyclopoid copepod is unknown, given the only other specimens detected in the bore were terrestrial, it is likely that this copepod is a stygoxene rather than true stygobitic fauna.

The results of the pilot studies were consistent with the findings of the desktop assessment, which concluded that the aquifer formations within the Project footprint are unlikely to support stygofauna communities. Invertebrate communities were generally either terrestrial or stygoxene (i.e. inhabit mostly surface environments, only inhabit groundwater inadvertently and are unable to establish subterranean populations). Stygofauna communities are highly likely to be present further downstream of the Project, in the alluvium associated with the Isaac River, and the lower reaches of its major tributaries.

6 Impact Assessment and Proposed Mitigation Measures

6.1 Habitat Modification and Loss

The Project would directly remove or modify waterways and associated aquatic habitat within the pit extension area and zone for dragline crossing (**Figure 6.1**), including:

- upper reaches of Horse Creek within the pit extension area to the north
- upper reaches of Cherwell Creek within the pit extension area and zone for dragline crossing to the south, and
- an unmapped (artificial) farm dam (Site HTD1) within the pit extension area to the north.

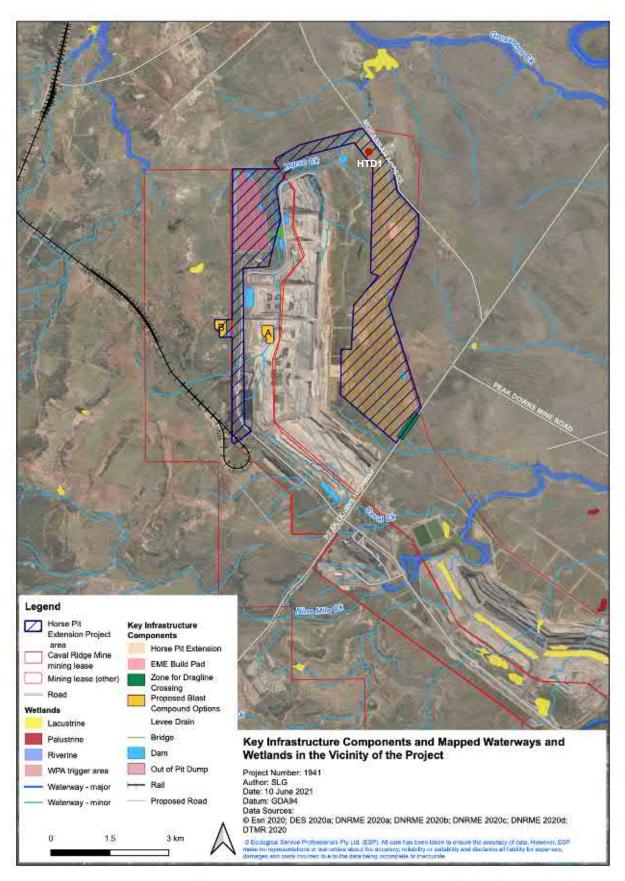
Waterways within the pit extension area are located high in the catchment at the headwaters of Horse Creek and Cherwell Creek and are stream order 1. They are ephemeral, only likely to flow during periods of high rainfall, and are unlikely to hold water for extended periods of time following rainfall events. As such, these waterways do not provide aquatic habitat for the majority of the year. Aquatic flora and fauna in the upper reaches of Horse Creek and Cherwell Creek were limited and aquatic ecological value was low.

The unmapped (artificial) farm dam within the Project site was of moderate aquatic ecological value. It provided a dry season refuge but was poorly connected (isolated from the main waterway). Aquatic plants, freshwater prawns, yabbies and fish were caught in the dam and macroinvertebrate richness was moderate, with some sensitive taxa present and communities indicative of harsh physical conditions and agricultural impacts.

Waterways within the Project site have been either defined as drainage features (upstream reaches of Cherwell Creek) or are unmapped (upstream reaches of Horse Creek and the artificial dam) under the Water Act (refer to **Section 1.3.1**). All aquatic species within this area were considered common to the region (no aquatic species listed under the EPBC Act or NC Act were detected or considered likely to occur in this area). No wetlands are mapped within the Project site. The aquatic habitats, flora and fauna of waterways within the Project site are common and typical of the region. While their removal will mean a direct loss of available aquatic habitat, this is not expected to impact aquatic ecology on a regional scale, but rather on a very localised scale within the Project site.

Key management measures for the removal or modification of habitat include:

- Limiting the area disturbed at any one time by careful mine stage planning, which
 minimises the area of the overall disturbed landform (notably the area of the
 operating pits).
- Progressive and timely re-instatement and rehabilitation of the disturbed landform, where practical. As the front of the mined pit advances, waste spoil overburden material and coarse rejects are initially placed in OOPDs, and then progressively placed into the already worked pit void as mining advances further to the east. The landforms of the spoil material placed in OOPDs and in-pit spoil dumps are then shaped and reinstated in a timely manner.


A final void will remain in the far east of ML 1775 at the conclusion of mining, which
will provide a useable water storage or biologically viable water resource (although
potentially high salinity levels will need to be considered, refer to Section 6.9).

6.2 Relocation of Minor Waterway

There are no proposed watercourse diversions or modifications to existing watercourse diversions required to facilitate the Project. There is a minor waterway (not mapped under the Water Act) that intercepts with the north-west corner of the proposed OOPD that will be realigned around the toe of the OOPD (**Figure 6.1**). This waterway is located high in the catchment at the headwaters of Horse Creek, rarely holds water and is of low aquatic ecological value. The relocation is this waterway is expected to have a temporary and low risk of potential impact to aquatic ecology. The low aquatic ecological value is expected to be reinstated within the realigned waterway.

6.3 Changes to Habitat

Vegetation removal and earthworks associated with the Project may reduce or limit aquatic habitat available to fauna (e.g. woody debris, tree roots or undercut banks) in downstream areas (as the source of habitat material is removed), indirectly impacting aquatic fauna. These aquatic habitats can provide shelter, contribute organic matter and be important for reproduction and feeding areas for aquatic fauna. However, while these aquatic habitats (e.g. woody debris, tree roots or undercut banks) occur in some areas in the vicinity of the Project site, they are generally limited and unlikely to be significantly impacted.

Figure 6.1 Key infrastructure components and mapped waterways and wetlands in the vicinity of the Project

6.4 Restriction of Fish Passage

The removal of sections of waterways and the installation of waterway crossings has the potential to prevent or restrict the movement of aquatic fauna, such as fish (**Section 4.8.2** outlines the importance of fish passage).

The Project will result in the removal of sections of the headwaters of Horse Creek and Cherwell Creek within the pit extension area and zone for dragline crossing (as discussed in **Section 6.1** and shown on **Figure 6.1**). These sections of waterways are classified as low risk of adverse impacts to fish movements (refer to **Section 4.8.2**). Based on the results of the field survey, waterways within the pit extension area provide low to moderate aquatic ecological value and are largely disturbed by surrounding land use, including existing mine operations, and agricultural operations. They are low stream-order waterways that do not connect to important fish habitat upstream (while the farm dam, site HTD1, provided some dry season refuge it was poorly connected to the waterway).

There will be two potential waterway crossings associated with the Project, specifically:

- the extension of the haul road will include a bridge over Horse Creek required to access the proposed OOPD to the northwest of Horse Pit, and
- where the location B option is selected for the blasting compound, a medium vehicle access road to the relocated blasting compound over the existing Horse Creek diversion (noting that this section of Horse Creek is not a mapped watercourse under the Water Act and therefore did not require approval for diversion).

The reaches of Horse Creek crossed by the haul road extension and medium vehicle access road are classified as medium risk of adverse impacts to fish movement (refer to **Section 4.8.2**). Based on the results of the field survey, these waterways provide low aquatic ecological value, and are largely disturbed by surrounding land use, including existing mine operations. These upper reaches are low stream-order waterways that do not connect to important fish habitat upstream (while the upstream farm dam in the Horse Creek catchment provides some dry season refuge it was poorly connected to the waterway).

Results of the flood modelling indicate the culvert crossing on Horse Creek will generally cause minor changes to surface water hydrology and flows under most scenarios. For example, there will be minor localised changes to surface water inundation and stream velocity will increase slightly from 1.0–1.5 m/s to 1.0–1.8 m/s post levee construction for the 2 per cent Annual Exceedance Probability (AEP) event. However, it will cause flood affluxes upstream that are contained within the extents of the Horse Creek floodplain (SLR 2021b) and higher flows for the 0.1 per cent AEP event. The haul road bridge over Horse Creek should be constructed and designed to minimise direct impacts, including designing the waterway crossings (e.g. culverts) in consideration of fish passage and water flow (during high flow events) to the extent practical. The use of temporary waterway barriers during construction of any road crossings will also include the provision to transfer flows from upstream of the works to the downstream channel without passing though the disturbed construction site.

There are two access route options associated with the location B site option for the relocated blasting compound. The most direct route option requires crossing of Horse Creek and as a result there is a potential impact to fish passage. The alternative route option runs

south to connect with an existing access road that avoids the crossing of the Horse Creek diversion. Where possible, the access route option that avoids the crossing of the Horse Creek diversion should be considered, where the location B site option for the blasting compound is selected.

No other infrastructure (e.g. roads, substations, drains or pipelines) or equipment (e.g. dragline or vehicles) associated with the Project will traverse waterways (SLR 2020), including the small section of Horse Creek within the Project Site classified as high risk of adverse impacts to fish movement.

Overall, connectivity through the waterways and wetlands within and upstream of the Project site is currently very limited due to the ephemeral nature of the area, and there are no important upstream breeding, feeding or refuge areas to consider (e.g. for threatened or priority species). Species that are found within the Project site are common within the region, are resilient, and have likely established communities that are not reliant on connections throughout the Project site. Therefore, removal and crossing of these waterways will have an insignificant direct impact on fish habitat and fish passage, particularly where the design of crossings considers fish passage and water flow to the extent practical.

6.5 Changes in Flow and Surface Water Hydrology

Changes to the flood regime, and the timing and magnitude of flows in watercourses, have the potential to directly and indirectly impact on aquatic ecosystems by (Bunn and Arthington 2002, Poff and Zimmerman 2010, Rolls et al. 2012):

- influencing the success of the life cycles of aquatic species that have adapted to natural flow regimes and have evolved in response to natural variation (i.e. affecting cues for movement, migration and breeding)
- changing the diversity and structure of instream physical habitats, which can influence the composition of biotic communities
- affecting water quality through changes to the flushing of water
- increasing scouring and erosion of watercourses influences habitat conditions and further affects water quality
- changing the variation in connectivity along the length of rivers and between rivers and floodplains, and
- decreasing the successful invasion of exotic and pest species.

General presumptive standards have been developed to provide riverine ecosystems protection, with a less than 10 per cent change in flows likely to achieve a high level of ecosystem protection; and 11 to 20 per cent change in flows likely to achieve a moderate level of ecosystem protection (Richter et al 2011).

There are no diversions (refer to **Section 6.2**) or water extractions proposed for the Project (with water mainly reused or sourced from the Sunwater owned Eungella-Bingegang pipeline). The water balance modelling indicated that the Project water management infrastructure is sufficient to manage mine affected water (MAW) within the current EA conditions (SLR 2021b; refer to **Section 6.8.3**). As such, changes in flow and surface water hydrology as a result of the Project are largely restricted to those caused by changes in the

catchment area in the upper reaches of waterways (i.e. catchment loss of 7 per cent of Horse Creek; 0.5 per cent of Grosvenor Creek; and 0.4 per cent of Cherwell Creek) and those caused by the construction of the bridge over Horse Creek and two proposed flood levees (Horse Pit North and Horse Pit West levees). Given minor changes are expected, a basic risk assessment framework for assessing the level of potential impact of changes in flow as a result of the Project on aquatic ecosystems was developed based on the Richter et al 2011 presumptive standards as outlined in **Table 6.1**.

Table 6.1 Criteria for assessing potential impacts to flow for the Project (based on the presumptive standards outlined in Richter et al 2011)

Aquatic Ecological Value	Required Level of Protection	Acceptable Reduction in Flow
Low	Low	> 20 per cent change
Moderate	Moderate	11 – 20 per cent change
High	High	< 10 per cent change

Very minor changes in water flows are expected in the Isaac River, with the Project resulting in a very small reduction (0.2 per cent) in catchment area at the confluence of Grosvenor Creek (SLR 2021b). Groundwater modelling also estimated that there will be an increase in seepage of less than 0.1 per cent from the Isaac River to the alluvium as a result of mining for the Project (due to the increased hydraulic gradient between the Isaac River and the underlying alluvium) (SLR 2021a). This increase represents an insignificant potential for flow rate changes in the Isaac River (SLR 2021a).

Minor changes to the timing of flows and time of inundation for an event are expected as a result of the Project. There will be minor to moderate changes (< 20 per cent) to the occurrence (number of events) and duration (number of days) during higher or medium flows (greater than 1 m³/s but less than 3 m³/s) as a result of the Project (SLR 2021b; **Table 6.2**). Further, changes to the volume and peak discharge during 1 and 10 percent AEP events are expected to be moderate (< 20 per cent change) for Cherwell Creek near the Peak Downs Highway and very low (≤ 1 per cent change) for Horse Creek approximately 500 m downstream of the Moranbah Access Road (**Table 6.3**). Given Cherwell Creek was assessed as having moderate aquatic ecosystem value and Horse Creek was assessed as having low aquatic ecosystem value, these changes in flow are considered acceptable for protecting the environmental values.

Modelling indicates flood immunity for the Project is achieved for flood events up to and including 0.1 per cent AEP events. The haul road over Horse Creek and levees will cause affluxes that are contained within the Horse Creek floodplain, particularly during 0.1 percent AEP events. Results of the flood model indicate that the confinement of the floodplain due to the levees construction does not result in adverse impacts to Horse Creek largely due to some reduction in retardment of flows due to the construction of the Haul Road crossing to the OOPD. However, the construction of the levee has the potential to increase scour and erosion particularly given the sodic soils in the region. At the conclusion of mining, the final landform is free draining and designed to be a stable landform, with the final void (643 ha

and approximately 125 m deep) expected to contain water that is approximately 25 m deep (SLR 2021b).

Overall, potential impacts to flows and surface water hydrology are expected to be acceptable and can be further reduced by:

- Limiting the area disturbed at any one time by careful mine stage planning, which minimises the area of catchment loss.
- Progressive and timely re-instatement and rehabilitation of the disturbed landform where practical (refer to **Section 6.1**).
- Design and construct the bridge over Horse Creek to minimise impacts to water flow and surface water hydrology (refer to Section 6.4).

Table 6.2 Summary of changes to average flow duration in days (with days of flow shown in brackets) in Horse Creek (at the confluence of Grosvenor Creek and Horse Creek) and Cherwell Creek (at the confluence of Cherwell Creek and the Isaac River) for flows greater than 1 m³/s but less than 3 m³/s

	Horse Creek			C	herwell Cree	k
	Existing	Project	Per cent change	Existing	Project	Per cent change
Jan	46 (1.65)	43 (1.70)	7 (-3)	59 (2.24)	60 (2.27)	2 (-1)
Feb	13 (1.31)	11 (1.36)	15 (-4)	44 (1.91)	44 (1.91)	0 (0)
Mar	7 (1.14)	7 (1.14)	0 (0)	24 (2.33)	24 (2.33)	0 (0)
Apr	6 (1.50)	5 (1.60)	17 (-7)	11 (1.91)	11 (1.91)	0 (0)
May	4 (1.25)	4 (1.25)	0 (0)	18 (2.06)	19 (2.26)	-6 (-10)
Jun	0 (0.00)	0 (0.00)	_	9 (1.67)	9 (1.67)	0 (0)
Jul	0 (0.00)	0 (0.00)	_	0 (0)	0 (0)	_
Aug	0 (0.00)	0 (0.00)	_	3 (1.33)	3 (1.33)	0 (0)
Sep	0 (0.00)	0 (0.00)	_	0 (0)	0 (0)	_
Oct	6 (1.50)	5 (1.20)	17 (20)	20 (1.75)	20 (1.75)	0 (0)
Nov	5 (1.20)	4 (1.25)	20 (4)	33 (1.33)	33 (1.33)	0 (0)
Dec	32 (1.28)	32 (1.34)	0 (-5)	42 (1.29	42 (1.29)	0 (0)
Total	119 (0.90)	111 (0.90)	7 (0)	263 (1.48)	265 (1.5)	-1 (-1)

Table 6.3 Summary of changes to volume and peak flows in Horse Creek (approx. 500 m downstream of the Moranbah Access Road) and Cherwell Creek (near the Peak Downs Highway) during 1% and 10% AEP (results provided by SLR)

Horse Creek				Cherwell Creek			
Indicator	Existing	Project	Per cent change	Existing	Project	Per cent change	
Volume							
1% AEP (m³)	769,720	773,142	0	289,145.21	252,979.32	13	
10% AEP (m ³)	663,189	659,971	0	120,299	102,348	15	
Peak flow			I	1			
1% AEP (m ³ /s)	74.0	74.8	1	18.2	14.7	19	
10% AEP (m ³ /s)	35.4	35.3	0	7.6	6.3	17	

6.6 Bank Stability, Erosion and Stormwater Runoff

Vegetation clearing and earthworks (e.g. topsoil stripping) for the Project has the potential to influence bank stability and erosion, which, in turn, can increase turbidity, sedimentation and nutrients in downstream waterways. Risks are greater during times of high flow (when there is a greater risk of erosion and stormwater runoff) and close to the disturbed area, and decrease with distance downstream.

Increased suspended sediment and/or sedimentation can potentially impact the health, composition and resilience of aquatic fauna and flora indirectly, by affecting respiration, breeding and feeding (e.g. clogging fish gills), or directly, by burying benthic communities. High levels of turbidity can impact growth and diversity of aquatic plants and algae as light required for photosynthesis is reduced (although aquatic plants were not highly abundant in the receiving environment; see **Section 4.4.2**). Increased nutrients can also lead to aquatic plant and algal blooms, potentially resulting in high dissolved oxygen concentrations during the day (during net photosynthesis), but very low dissolved oxygen concentrations during the night and early morning (when there is a net consumption of oxygen during respiration). In extreme cases, this can lead to eutrophication and fish kills. However, species in the area are tolerant of variable water quality conditions, including periods of high suspended sediments, sedimentation, turbidity, and nutrients.

CVM has an existing Erosion and Sediment Control Plan (ESCP) for the site. Key guiding principles of the ESCP are derived from the Best Practice Erosion and Sediment Control Guidelines (International Erosion Control Association (IECA)).

The risk of bank stability, erosion and stormwater runoff due to vegetation clearing and earthworks on the aquatic ecology will be reduced where:

 The existing CVM ESCP and Mine Water Management Plan (MWMP) are expanded to incorporate construction and operation of the Project, including:

- appropriate sediment control measures (e.g. sediment fences and sediment filters) established as required to reduce the amount of runoff from disturbed areas in accordance with industry standards and guidelines, and
- stormwater runoff directed away from the waterways (e.g. by levees or ditches).
- A water quality monitoring program for the construction phase of the Project is developed to ensure the MWMP is effective and downstream water quality (physicochemical parameters at a minimum) is not adversely impacted.
- Construction adjacent to waterways and waterway crossings occurs over the dry season, where possible, to minimise soil disturbance on adjacent waterways.
- Earthworks and stockpiles are planned prior to works and are minimised where possible in accordance with the existing Topsoil Management Plan and the EA.
- The Project is completed over stages over the life of the mine and land is progressively rehabilitated in accordance with the requirements of the EA.

The management plans outlined above have been unitised to control erosion and sedimentladen runoff of existing operations. Potential impacts to aquatic ecology are expected to be minor where the existing ESCP, MWMP and measures to reduce impacts outlined above are implemented.

6.7 Dust and Particulate Matter

Dust from increased mining activities may enter waterways and increase turbidity, sedimentation, nutrients and contaminants (e.g. from mining waste) in downstream and / or adjacent waterways. Potential impacts of these changes to water quality to the aquatic ecology are outlined in **Section 6.6**. The release of dust and / or particulate matter from the mining activities at CVM is managed under the EA and Air Emissions Management Plan. As such, potential impacts to aquatic ecology are expected to be low.

6.8 Water Releases

Surface water runoff from mining or waste disposal areas (e.g. the proposed OOPD) and the release of MAW and associated contaminants (typically metals and hydrocarbons) can indirectly impact downstream environmental values. MAW releases can influence the health, reproduction and, at high enough concentrations, can cause direct mortality of aquatic flora and fauna. The type, volume and concentration of contaminants, along with environmental factors (e.g. dilution, mixing, existing exposure levels), determines the severity of impact. Risks are likely to be greater:

- close to the release point and decrease with distance downstream, and
- during periods of low flow, as releases during high flows are mixed with natural waterway flows and diluted.

The existing water management strategy at CVM involves surface water infrastructure (such as drains, pipelines, sediment dams and MAW dams) to separate, transfer and store clean and dirty water for reuse or release, which is managed under the MWMP. No changes to the

water demand or the existing supplies, including sewage treatment management, are required (SLR 2020). However, relocation of MAW dams and additional water management infrastructure will be required to facilitate the Project.

6.8.1 Clean Water Management

The Project will require additional surface water drains to manage separation of clean water and MAW in addition to the existing drains at CVM. There is one proposed clean water drain designed to convey a 100-year average recurrence interval (ARI) flood immunity and capture the clean water catchment to the west of the proposed OOPD. The clean water drain flows south to north and parallel to the proposed OOPD in the west. The drain will direct flow to a natural drainage feature north of the proposed OOPD and outflow to Horse Creek approximately 1 km to the east. Clean water captured on site in clean water storages is expected to have the same water quality as the receiving environment waterways. This is not expected to have any impacts to the water quality, and therefore aquatic ecological values of the receiving environment.

6.8.2 Dirty Water Management

The Project will require additional surface water drains to manage dirty water in addition to the existing drains at CVM. There are four proposed MAW drains that bound the outer extents of the proposed OOPD. The MAW drains are designed to convey a 10-year ARI flood immunity capturing all MAW within the stockpile area and directing flow to sediment dams. Four new sediment dams and the extension of five existing sediment dams are proposed as part of the Project. These dams will capture runoff from the mining lease, the proposed OOPD and / or the proposed blasting compound (location B option only). The majority of these sediment dams will overflow to Horse Creek in an emergency, with the exception being one expanded sediment dam, which will overflow to Caval Creek in an emergency. Each sediment dam will have permanent pump and pipeline infrastructure to enable dewatering to a larger storage as required (SLR 2020). It is expected that any emergency overflow would be in conjunction with high rainfall and flow, which would dilute any contaminants in the receiving environment. This overflow is an existing feature of the water management system at CVM in accordance with Condition F19 of the EA.

6.8.3 Release of MAW

The volume of MAW is not expected to increase from current operations at CVM as a result of the Project. Therefore, no extension to volumes or additional MAW dams are required. The existing water management strategy involves the use of the MAW dams as transfer points, with MAW from CVM ultimately being directed towards 12N Dam south of the Peak Downs Highway. MAW will continue to be dewatered from Horse Pit over the highwall and piped into either N1 dam or N2 dam, which will be progressively relocated (along with the associated pipelines). These dams may overflow to Cherwell Creek in an emergency (SLR 2021b), which is part of the current water management system.

Under the existing CVM EA, the release of MAW can occur from 12N Dam into the receiving waters of Cherwell Creek at release point RP1 or via overflow of the MAW dams to receiving waters. The release of MAW at release point RP1 must only take place during periods of natural flow events (as per specified minimum receiving water flow criteria for discharge in

the EA). The CVM EA includes water contaminant limits for pH, electrical conductivity and release contaminant trigger investigation levels for a suite of metals and metalloids, to protect the aquatic ecosystem of Cherwell Creek downstream of active mining areas.

The CVM REMP has been developed and implemented to monitor and assess the potential impacts that releases of MAW and associated contaminants have on the receiving environment. Previous studies have found that CVM MAW releases are likely to be of low risk to the Cherwell Creek receiving environment, and that local environmental values in the receiving environment are not being adversely impacted by mining operations (Gauge Industrial & Environmental 2018, 2020). This demonstrates that the discharge limits that are implemented at the mine are sufficient to protect the downstream environmental values. The results of the water balance modelling indicate that the Project water management infrastructure is sufficient to manage MAW within the current EA conditions (SLR 2021b). The controlled release regime aims to minimise impacts to downstream water users and the environment through (SLR 2021b):

- allowing discharge of good quality water when appropriate baseflow conditions exist in Cherwell Creek and the Isaac River, and
- a release regime that is based on known flow and water quality thresholds, minimising the risk of uncontrolled releases.

Overall, potential impacts to aquatic ecology resulting from water releases can be minimised by:

- Expanding the existing water management strategy and MWMP to incorporate the construction and operational phase of the Project to ensure the separation and management of clean and dirty water catchments, including:
 - diverting water captured within the clean areas around operational areas and where practical and discharge off site as part of normal overland flow, and
 - diverting water from disturbed areas to sediment dams for treatment and possible reuse for dust suppression and process water requirements.
- Expanding the current REMP and associated water quality monitoring program to
 incorporate the construction, operation and decommissioning phases of the Project to
 ensure the water management strategy is effective, to demonstrate compliance with
 the discharge limits specified in the EA, and to ensure the downstream water quality
 (physico-chemical parameters, at a minimum) is not being adversely impacted.
- Design, construct and manage the proposed OOPD, levees, sediment dams, pit
 water storage and other water management structures (e.g. bunds and drains) in
 accordance with the water management strategy and EA (including regulated
 structures, where relevant) to ensure that any surface water runoff is contained within
 the mine affected water management system and managed in accordance with the
 existing MWMP and EA.
- Manage overflow released from new and expanded dams and MAW releases in accordance with the existing EA.
- Install additional monitoring points to monitor controlled releases from the water management system

 Establish additional monitoring locations in Horse Creek into Table F7 of the EA for the new sediment dams proposed to overflow to this reach.

Where water releases remain in accordance with existing EA Conditions and potential impacts are assessed in the existing CVM REMP (including measures outlined above), the potential impacts to flora, fauna and environmental values of the receiving environment from releases of MAW as a result of the Project, are not expected.

6.9 Saline or Acid Drainage

There is a potential risk of saline or acid drainage from mining activities within the site or seepage generated by the proposed OOPD. Where saline or acid drainage or seepage reaches the receiving environment, impacts to aquatic ecology can include (Commonwealth of Australia 2016, Dunlop et al 2005):

- · contamination of water quality and sediment quality
- poor health and possible death of fish and other aquatic organisms
- reduction of in-stream and riparian vegetation
- promotion of noxious plant growth
- visual changes to waterways: waterways can become red coloured or unnaturally clear, or introduce precipitates on the surface or water or bank edges, and
- loss of EVs associated with the waterways.

The geochemical characteristics of mineral waste materials associated with the Project are mostly non-acid forming, with less than 1.5 per cent of samples classified as potentially acid forming (Terrenus Earth Sciences 2021). Non-carbonaceous overburden / interburden is expected to generate low to medium salinity run-off and seepage; due to very low total sulfur concentrations, the potential for sulfate-derived salinity is negligible (Terrenus Earth Sciences 2021). Furthermore, potential impacts of saline or acid drainage and seepage at CVM are currently managed by maintaining compliance with the EA. Therefore, potential indirect (e.g. impacts to environmental values, health and reproduction of aquatic species) and direct (e.g. mortality of aquatic species due to toxicity) impacts from saline or acid drainage and seepage, are expected to be low risk where they are managed under the existing EA, including the MWMP.

The salinity of water in the final void at the conclusion of mining is predicted to increase significantly post closure due to the constant inflow from highly saline groundwater, with predicted salinity values increasing in excess of 35,000 μ s/cm over 100 years post closure (SLR 2021b). A final void closure monitoring and management plan will be developed to identify management measures to reduce the impacts of the final void water quality on the environment (including aquatic ecology) and any potential water users.

6.10 Spills of Hydrocarbons and Other Contaminants

There is a potential risk of fuels, oils and other chemicals required for vehicles and equipment used during the Project (including chemicals for blasting) to spill and enter

waterways, impacting water quality and aquatic ecology (as outlined for MAW in **Section 6.8**). Where spills are small and short-term, aquatic ecosystems are likely to recover.

Provided the appropriate management of chemicals is maintained through the existing CVM EA requirements and Waste Management Plan during pre-mining and operational activities, the Project is unlikely to result in leaks / spills that would eventuate in serious environmental harm to aquatic species or their habitat. Appropriate management may include:

- Management of fuel, dangerous goods and hazardous chemicals in accordance with current standards, guidelines and in compliance with statutory requirements, including:
 - storage, transportation and use of explosives will be in accordance with Australian Standard AS 2187.2-2006 Explosives - Storage and use - Use of explosives, the *Explosives Act 1999*, BMA's policies and procedures including the CVM Standard Work Instruction (SWI) Blast Control & Blast Guard (CVM-SWI-0275), and all other relevant legislation, and
 - appropriate storage of chemicals and hydrocarbons, including bunding and storage of fuels and other hazardous and flammable materials in accordance with AS1940:2004, and where practical, will be located away from any waterbodies.
- Expanding the existing Standard Operating Procedures (SOP) for spills and emergency response to incorporate the Project activities.
- Ensuring spill recovery and containment equipment is available when working
 adjacent to waterways, drainage channels and within other high risk areas, such as
 workshops, and spill kits are available to construction crews conducting activities with
 the potential for spills.
- Ensuring refueling locations and handling of fuels are undertaken away from waterbodies.

Where these measures are implemented, any potential indirect (e.g. impacts to environmental values, health and reproduction of aquatic species) and direct (e.g. mortality of aquatic species due to toxicity) impacts associated with leaks and spills are likely to be low.

6.11 Litter and Waste

Where litter and waste associated with pre-mining activities, vehicle maintenance and mining operations enter aquatic ecosystems they have the potential to directly impact aquatic fauna due to entanglement. They can also indirectly impact aquatic flora and fauna by contributing to the degradation of water and sediment quality. Where appropriate controls are in place, including the existing CVM Waste Management Plan, ESCP and EA requirements, the risk to aquatic ecology from litter and spilt waste from the Project is likely to be very low.

6.12 Proliferation of Aquatic Pests

Increases in invasive species can lead to significant indirect impacts to the community structure and health of aquatic ecosystems through:

- out-competing native species for resources and space
- degrading habitat conditions as a result of feeding behaviors (fish) and growth patterns (plants)
- reducing water quality (e.g. changing dissolved oxygen levels or increasing turbidity),
 and
- resulting in the decline and/or displacement of species reducing the overall diversity of the community.

However, the Project is unlikely to result in the addition of new invasive species of aquatic flora or fauna, or the growth and spread of aquatic pest species. This is due to its location within the catchment; because it does not involve the diversion of waterways into adjacent catchments; and because it does not result in additional habitat for invasive species. Provided that standard weed hygiene protocols are implemented for vehicles and machinery during pre-mining and operational activities (in accordance with the existing CVM Land and Biodiversity Management Plan), no impacts are expected.

6.13 Changes to Groundwater

Although no true stygofauna were recorded during the pilot study and they are considered unlikely to occur within the Project site, stygofauna communities may occur in the broader region, particularly in the unconsolidated sediments of the Isaac River alluvium, and therefore potential impacts associated with the Project were considered to the extent the Project may impact these areas.

6.13.1 Physical Disruption of Aquifers

The physical disruption of aquifers can directly impact stygofauna communities inhabiting them. This can be due to excavation of mining pits and compaction of aquifer sediments by heavy machinery and equipment. Physical disruption of aquifers can reduce the amount of favourable subterranean aquatic habitat available for stygofauna communities.

As stygofauna are considered unlikely to occur within the Project site (as discussed in **Section 5.1**), direct impacts to stygofauna from physical disruption of aquifers are not relevant to the Project.

6.13.2 Changes to Water Quantity

Changes to groundwater quantity have the potential to directly and indirectly influence stygofauna communities. These can result from alterations in groundwater level, pressures, and fluxes that may be associated with:

- vegetation clearing (which can reduce evapotranspiration and increase recharge rates)
- surface compaction (which can elevate runoff and reduce recharge rates)
- · dewatering of groundwater (which reduces quantity, pressure and flows), and
- evaporative discharge.

Where recharge rates are less than extraction rates, stygofauna communities can be directly affected, particularly as they prefer shallow aquifer systems. A reduction in hydraulic pressure (e.g. from depressurising coal seams) can also potentially result in induced flow from overlying aquifers, potentially resulting in decreased available groundwater resources and indirectly impacting stygofauna communities. Stygofauna can often cope with small and slow declines in aquifer storage levels, but rapid declines can have detrimental impacts. The extent to which they are impacted depends on the timing, frequency, duration, extent and depth of water extraction (Car 2010).

Groundwater modelling demonstrated that changes to groundwater quantity due to drawdown associated with the Project are likely to be localised, with no predicted direct or indirect interference with alluvial groundwater as a result of the Project (refer to the **Groundwater Chapter**; SLR 2021a). Changes to groundwater quantity are not expected in the unconsolidated sediments of the Isaac River alluvium, in the lower reaches of the Isaac River and at the confluences of larger tributaries (i.e. where stygofauna communities are likely to occur). Therefore, no impacts to stygofauna communities as a result of changes in groundwater quantity are expected as a result of the Project.

6.13.3 Changes to Water Quality

Many stygofauna taxa have strict water quality requirements to survive, and therefore require stable conditions within a narrow physico-chemical range. Although they can tolerate fluctuations in water quality to a certain extent, major changes in water chemistry (e.g. due to pollution plumes) can directly impact the biodiversity and community composition of stygofauna (Eamus et al 2005). Changes to water quality (including any increased concentrations of salts or contaminants associated with mining) of groundwater systems therefore have the potential to influence stygofauna communities.

Impacts to groundwater quality may result from saline or acid drainage, seepage, tailings disposal, hazardous and dangerous goods storage, and hydrocarbon and chemical spills (e.g. from fuels, lubricants and oils required for the operation of vehicles and machinery). Where these are managed in accordance with existing Management Plans and the EA, any impacts are expected to be low risk.

6.13.4 Changes to Groundwater Interactions

Groundwater systems require connectivity to the surface to provide organic matter and oxygen. Organic carbon in aquifers is sourced externally due to the lack of photosynthesis and enters the aquifers through recharge waters passing through shallow geological units (Nevill et al 2010). If this connection is disrupted and nutrients and oxygen are not replenished, habitat condition declines and stygofauna communities can be indirectly impacted over time.

Stygofauna are highly endemic due to the natural hydrological barriers within aquifer matrices that can restrict their movement. While natural barriers lead to genetic diversity, artificial barriers created by rapid changes in water level or chemistry can limit connectivity between aquifers and prevent dispersal or recolonization of the habitat following disturbances. Changes to the interactions between groundwater systems, and between groundwater and surface systems can therefore indirectly impact stygofauna communities.

Impacts to groundwater interactions may result from:

- reduced catchment area
- vegetation clearing, particularly where the depth to the water table is less than 20 m (which can reduce potential habitat for stygofauna associated with root systems)
- decreased and / or increased surface flows
- surface sealing and / or compaction, and
- backfilling and rehabilitation works.

Areas potentially impacted by vegetation clearing, surface sealing / compaction, backfilling and rehabilitation works are within the Project site where stygofauna are unlikely to occur. Further, as discussion in **Section 6.5**, changes in catchment area and surface flow are likely to be localised and not expected to impact areas where stygofauna are likely to occur (i.e. unconsolidated sediments of the Isaac River alluvium, lower reaches of the Isaac River and at the confluences of larger tributaries). As such, any potential impacts are expected to be low risk.

6.14 Matters of National Environmental Significance

No significant impacts to aquatic ecosystem function as a result of impacts to hydrology or water quality are predicted (refer to **Sections 6.5** and **6.8**). Potential impacts to downstream waterways and wetlands are expected to be low risk. Any actions that impact water resources (including the interaction between surface and groundwaters) may have the potential to influence stygofauna communities; however, the stygofauna assessment indicated that stygofauna are unlikely to be present within the Project site and therefore no impacts are expected. Stygofauna communities are highly likely to occur in the unconsolidated sediments of the Isaac River alluvium, in the lower reaches of the Isaac River and at the confluences of larger tributaries. However, these areas are unlikely to be impacted by the Project (refer to **Section 6.13**).

More substantial water resources (including waterways and wetlands) are present downstream of the Project in the broader study area, including the Isaac River. These waterways are also mapped as potential surface expression GDEs (refer to **Section 4.7**). However, provided that appropriate mitigation measures are implemented to maintain water quality downstream of the Project (i.e. maintain compliance with existing CVM EA conditions (including the REMP), Waste Management Plan and ESCP), impacts to these water resources are not expected as a result of the Project (refer to **Section 7**).

There were no MNES aquatic flora or fauna species recorded within the Project site or the broader study area, and they are highly unlikely to occur given the lack of aquatic habitat and the low value of these waterways (refer to **Section 4.9.1**). Therefore, no direct or indirect impacts to these species as a result of the Project are expected.

6.15 Matters of State Environmental Significance

Drainage features (i.e. tributaries of Horse and Cherwell creeks) and watercourses (i.e. Horse Creek) are mapped within the Project site under the Water Act. These channels are mostly mapped as having low and moderate impact to fish passage in the *Waterway Barrier*

Works mapping layer, except for Horse Creek, which is mapped as high impact (although operational works approvals for waterway barrier works are not required within the ML). The waterways are considered to be of low aquatic ecological value based on the field assessment, and were dry, except for an unmapped farm dam (which was considered to be of moderate aquatic ecological value due to provision of a dry season refuge, though connectivity was poor). The Project waterways are also unlikely to flow and connect to downstream waterways, except for short periods during very high rainfall, when they would convey surface flows. Impacts to aquatic ecology as a result of removal of these channels are considered insignificant in a regional context (refer to **Section 6.4** for potential impacts to fish passage).

There also are mapped waterways under the Water Act downstream of the Project site and the CVM. These waterways include Cherwell and Grosvenor creeks, and the Isaac River. However, provided that appropriate mitigation measures (refer to **Sections 6.1** and **6.13**) are implemented, impacts to these waterways are not expected as a result of the Project.

No HES wetlands are present within the Project footprint. There is one HES palustrine wetland (also a WPA) mapped approximately 20 km east and downstream of the Project footprint in the Isaac River floodplain. Releases of MAW will occur in compliance with current EA conditions, and will be monitored as part of the existing REMP requirements for the CVM. Therefore, no adverse impacts to water quality in these wetlands are expected as a result of the Project.

There were no MSES aquatic flora or fauna species recorded within the Project site and broader study area, and they are highly unlikely to occur given the lack of aquatic habitat and the low value of these waterways. Therefore, no direct or indirect impacts to these species as a result of the Project are expected.

7 Risk Assessment

7.1 Risk Assessment and Mitigation Measures

Risks of potential impacts were assessed according to the criteria outlined in **Table 7.1**, **Table 7.2** and **Table 7.3**. The unmitigated risks were assessed as well as the mitigated risks. The outcomes of the assessments, including a summary of the appropriate mitigation measures, are presented in **Table 7.4**.

Table 7.1 Risk matrix, including likelihood of an impact occurring, and the severity of subsequent consequences

Likelihood of Consequence	Severity of Consequence							
	Insignificant	Minor	Moderate	Major	Serious	Severe	Permanent Severe	
Almost Certain	Low	Medium	High	Very High	Very High	Very High	Very High	
Likely	Low	Medium	High	High	Very High	Very High	Very High	
Possible	Low	Medium	Medium	High	High	Very High	Very High	
Unlikely	Low	Low	Medium	Medium	High	High	Very High	
Rare	Low	Low	Low	Medium	Medium	High	High	
Very Rare	Low	Low	Low	Low	Medium	Medium	High	

Table 7.2 Definitions of likelihood for the risk assessment

Level of Likelihood	Definitions
Almost certain	The event is expected to occur in most circumstances (the event is expected to occur multiple times a year or incident is clearly imminent).
Likely	The event will probably occur in most circumstances (the event is expected to occur approximately once per year).
Possible	The event may occur at some time (the event is likely to occur approximately once every five years).
Unlikely	The event is not expected to occur (the event is likely to occur approximately once every five to 10 years).
Rare	The event may occur only in exceptional circumstances (the event is likely to occur approximately once every 10 to 20 years).
Very rare	The event may occur only in highly exceptional circumstances (the event is likely to occur less than once every 20 years).

 Table 7.3
 Definitions of consequence for the risk assessment

Severity of Consequence	Definitions
Permanent severe	Extensive long-term environment harm and / or harm that is extremely widespread. Impacts considered to be permanent.
Severe	Extensive long-term environment harm and / or harm that is extremely widespread. Damage caused may take more than 20 years to recover
Serious	Serious or widespread major effect. Significant resources required to respond and rehabilitate, and damage caused may take 15 to 20 years to recover with long-term evidence of the incident resulting.
Major	Major or widespread moderate effect. Significant resources required to respond and rehabilitate, and damage caused may take 10 to 15 years to recover with long-term evidence of the incident resulting.
Moderate	Localised, short-term to moderate unplanned environmental impact. Moderate but repairable damage that may take up to 10 years to recover.
Minor	Localised short-term effect. Minor environmental impact that is contained on-site. It will take less than two years for the asset to fully recover or it will only require minor repair.
Insignificant	No impact or no lasting effect. Negligible damage that is contained on-site and is fully recoverable with no permanent effects, taking less than six months to fully recover.

7.2 Significant Residual Impacts and Offsets

The Project is not expected to have any significant residual impacts on aquatic MNES or MSES where appropriate mitigation and management measures are implemented (refer to **Table 7.4**) during construction and operation.

 Table 7.4
 Risk assessment and proposed mitigation measures

Potential Impact	Potential Impacts to the Aquatic Ecosystem	Mitigation Measures	Risk (Unmitigated)	Risk (Mitigated)
Direct modification and loss of aquatic habitat resulting in removal of aquatic flora and fauna species.	Direct and permanent loss of available aquatic habitat associated with two unnamed tributaries of Horse Creek and Cherwell Creeks and an unmapped artificial farm dam. The tributaries are highly ephemeral and considered to be habitat types common to the region, did not provide fish habitat during the field surveys, and have low aquatic ecological value. The farm dam provides a dry season refuge for aquatic flora and fauna and is of moderate aquatic ecological value.	Limit the area disturbed at any one time; progressive and timely reinstatement of the disturbed landform; and grading the finished surface slopes of all re-shaped landforms to allow for natural runoff to drain freely.	Likelihood: Almost certain Consequence: Minor Risk: Medium	Likelihood: Almost certain Consequence: Insignificant Risk: Low
Relocation of minor waterway resulting in the modification of aquatic habitat	Direct temporary loss of aquatic habitat, flora and fauna within minor waterway (unnamed tributaries of Horse Creek). This reach is highly ephemeral and of low aquatic ecological value.	None.	Likelihood: Almost certain Consequence: Insignificant Risk: Low	NA
Removing sources of habitat material resulting in reduced habitat available to aquatic fauna.	Reduce or limit aquatic habitat (e.g. woody debris, tree roots or undercut banks) available to fauna in downstream areas (as the source of habitat material is removed). While aquatic habitats occur in some areas in the vicinity of the Project, they are generally ephemeral and unlikely to be significantly impacted.	None.	Likelihood: Almost certain Consequence: Insignificant Risk: Low	NA
Loss of the waterways or waterway crossings preventing or restricting movement of fish.	Loss of fish passage to waterways within and upstream of the Project site. The waterways do not connect to any important breeding, feeding or refuge areas and fish habitat and passage is currently very limited due to the ephemeral waterways.	Design waterway crossings to consider fish passage and flow.	Likelihood: Almost certain Consequence: Minor Risk: Medium	Likelihood: Almost certain Consequence: Insignificant Risk: Low

Potential Impact	Potential Impacts to the Aquatic Ecosystem	Mitigation Measures	Risk (Unmitigated)	Risk (Mitigated)	
Changes in flow or surface water hydrology in Cherwell Creek and Horse Creek influencing aquatic habitat and communities downstream.	Minor loss of catchment area may reduce flow in Cherwell Creek and Horse Creek causing localised changes to habitat and biotic communities downstream. Changes in surface water hydrology are restricted to the floodplain areas. Modelling indicates that loss in catchment will result in acceptable changes to hydrology or hydraulics of Cherwell and Horse creeks. All releases will occur in compliance with existing EA Conditions.	Consider limiting the area disturbed at any one time by careful mine stage planning, which minimises the area of catchment loss; progressive and timely re-instatement and rehabilitation of the disturbed landform where practical and design and constructed the bridge over Horse Creek to minimise impacts to water flow and surface water hydrology.	Likelihood: Almost certain Consequence: Minor Risk: Medium	Likelihood: Almost certain Consequence: Insignificant Risk: Low	
Decreased bank stability, increased erosion and stormwater runoff influencing water quality downstream.	Reduced water quality, including high suspended sediments, sedimentation, turbidity, and nutrients concentrations. Potential impacts to health, composition and resilience of flora and fauna; respiration and feeding of fauna; reduce growth and diversity in aquatic plants and algae; and/or bury benthic communities.	Expand the CVM ESCP and MWMP to include construction and operation of the Project, including sediment control measures and directing runoff away from waterways; monitor the downstream water quality during construction; complete construction adjacent to waterways and of waterway crossings during the dry season, where possible; plan earthworks and stockpiles prior to works and minimised, where possible; complete the Project over stages over the life of the mine; and, rehabilitate and, where appropriate.	Likelihood: Possible Consequence: Moderate Risk: Medium	Likelihood: Unlikely Consequence: Minor Risk: Low Likelihood: Unlikely Consequence: Minor Risk: Low	
Dust and particulate matter entering waterways and influencing water quality, potentially impacting aquatic habitat value, flora and fauna.	Dust from increased mining activities may enter waterways and increase turbidity, sedimentation, nutrients and contaminants (e.g. from mining waste) in downstream and / or adjacent waterways, potentially reducing aquatic ecosystem value and directly and indirectly impacting flora and fauna.	Manage under the existing EA requirements and Air Emissions Management Plan.	Likelihood: Possible Consequence: Moderate Risk: Medium		

Potential Impact	Potential Impacts to the Aquatic Ecosystem	Mitigation Measures	Risk (Unmitigated)	Risk (Mitigated)	
Release of water resulting in declines in water and sediment quality downstream.	Direct impacts to water quality and sediment quality and indirect impacts to aquatic habitat, flora and fauna in the receiving environment. MAW released through the CVM water management system will be managed in accordance with the requirements of the CVM EA. Ongoing monitoring of MAW releases will continue to occur as part of the existing CVM REMP. Additional MAW volume as a result of the Project are not expected. Uncontrolled releases from new sediment dams will be managed in accordance with existing EA conditions. Clean water releases from proposed drains are unlikely to influence water quality in Horse Creek.	Designing water management infrastructure and structures in accordance with the water management strategy and EA; expanding the existing water management strategy and MWMP to incorporate the construction and operational phase of the Project; expanding the current REMP to incorporate the construction, operation and decommissioning phases of the Project; manage overflow and MAW releases in accordance with the existing EA; install additional monitoring points to monitor controlled releases from the water management system; and, establish additional monitoring locations in Horse Creek to assess overflows to this reach.	Likelihood: Likely Consequence: Minor Risk: Medium	Likelihood: Likely Consequence: Insignificant Risk: Low	
Saline and acid mine drainage and seepage resulting in declines in water quality.	Potential changes to seepage (e.g. pH, salinity, risk of PAF from in-pit or out of pit spoil dumps) that could influence water quality. Seepage to be managed under the existing EA Conditions.	Continuation of current management procedures in place at the CVM to control the risk of acid drainage generation; and, develop final void closure monitoring and management plan.	Likelihood: Possible Consequence: Moderate Risk: Medium	Likelihood: Unlikely Consequence: Minor Risk: Low	
Leaks and spills of hydrocarbons and other contaminants resulting in declines in water quality or direct toxicity to aquatic flora and fauna.	Direct impact to water quality and indirect impacts to aquatic ecology in the receiving environment (e.g. toxicity to flora and fauna).	Implement measures outlined in existing Waste Management Plan; appropriate storage of chemicals and hydrocarbons; implementation of appropriate containment and spill response procedures and, ensure refueling location and handling of fuels are undertaken away from waterways.	Likelihood: Possible Consequence: Moderate Risk: Medium	Likelihood: Unlikely Consequence: Minor Risk: Low	

Potential Impact	Potential Impacts to the Aquatic Ecosystem	Mitigation Measures	Risk (Unmitigated)	Risk (Mitigated)
Litter and waste resulting in reduces habitat quality and mortality of aquatic fauna.	Potentially be ingested by fauna; entangle or entrap aquatic flora and fauna and / or negatively impact water quality.	Implement measures outlined in existing Waste Management Plan, Erosion and Sediment Control Plan and EA requirements.	Likelihood: Possible Consequence: Moderate Risk: Medium	Likelihood: Unlikely Consequence: Minor Risk: Low
Introduction of invasive species reducing habitat quality and availability for native aquatic species.	Changes in community structure and general health of aquatic fauna and flora in downstream and / or adjacent waterways.	existing Land and Biodiversity Consequence: Moderate C		Likelihood: Unlikely Consequence: Minor Risk: Low
Physical disruption of aquifers influencing habitat quality and availability for stygofauna.	Modification or removal of aquifers can reduce the amount of favourable subterranean aquatic habitat available for stygofauna communities. Stygofauna are considered unlikely to occur within the Project site as this area contains units unlikely to support communities. As such, impacts to stygofauna from physical disruption of aquifers are considered unlikely.	None.	Likelihood: Unlikely Consequence: Insignificant Risk: Low	NA
Changes to groundwater quantity influencing habitat quality and availability for stygofauna.	Where recharge rates are less than extraction rates, stygofauna communities can be affected. A reduction in hydraulic pressure can also result in induced flow from overlying aquifers, potentially resulting in decreased available groundwater resources. Stygofauna are considered unlikely to occur within the Project site as this area contains units unlikely to support communities. As such, impacts to stygofauna from drawdown are	None.	Likelihood: Unlikely Consequence: Insignificant Risk: Low	NA

Potential Impact	Potential Impacts to the Aquatic Ecosystem	Mitigation Measures	Risk (Unmitigated)	Risk (Mitigated)
	considered unlikely. Changes to groundwater quantity are not expected outside of the Project site in the Isaac River alluvium where stygofauna are likely to occur.			
Changes to groundwater quality influencing habitat quality and availability for stygofauna.	Changes to water quality of groundwater dependent ecosystems have the potential to influence stygofauna communities due to increased concentrations of salts and contaminants due to mining. Stygofauna are considered unlikely to occur within the Project site as this area contains units unlikely to support communities.	Managed in accordance with existing Management Plans and the EA conditions.	Likelihood: Unlikely Consequence: Minor Risk: Low	Likelihood: Unlikely Consequence: Insignificant Risk: Low
Changes to groundwater interactions influencing habitat quality and availability for stygofauna.	Disruption of provision and replenishment of nutrients and oxygen, leading to habitat condition decline. Creation of artificial barriers caused by rapid changes in water level or chemistry, limiting connectivity between aquifers and preventing dispersal or recolonization of the habitat following disturbances. Areas potentially impacted by vegetation clearing, surface sealing / compaction and backfilling rehabilitation works are within the Project site where stygofauna are unlikely to occur. Changes in catchment area and surface flow are unlikely to significantly impact the Isaac River. As such, any potential stygofauna communities within the alluvium in this area is unlikely to be	None.	Likelihood: Unlikely Consequence: Minor Risk: Low	NA

8 Summary and Conclusions

8.1 Aquatic Ecology

Aquatic habitat in waterways and wetlands in the vicinity of the Project was typical of ephemeral systems in the broader region, with seasonal patterns in habitat availability and quality evident at all sites. During the early-wet season survey in December 2019, sites located on waterways (i.e. creeks and tributaries) were generally dry; some isolated dry season refuges were recorded at mapped lacustrine wetlands and unmapped farm dams. During the late-wet season survey in April 2020, most sites in both higher stream order waterways and wetlands contained isolated pools, which would only connect and flow during and following periods of heavy rainfall.

Water quality in waterways and wetlands in the vicinity of the Project was highly variable, which is typical of ephemeral systems in the region. Overall, water quality measured in situ was characterised by neutral to slightly alkaline pH, moderate to high electrical conductivity, variable saturation of dissolved oxygen, and high turbidity. Laboratory-analysed results also indicated moderate to high concentrations of nutrients and some metals (particularly aluminium and copper). Concentrations of these parameters were outside of the relevant WQOs at several sites during the field surveys.

Sediment quality was moderate to good in the vicinity of the Project. Concentrations of most parameters were below the relevant DGVs during the surveys, except for chromium and nickel, which exceeded the DGVs or the GV-high at some sites in the vicinity of the Project in some surveys.

Biological communities (including aquatic plants, macroinvertebrates, macrocrustaceans, fish and turtles) recorded at sites in the vicinity of the Project were typical of ephemeral systems in central Queensland. All taxa recorded were common in the broader region, and no listed threatened species known from the catchment (or potential habitat for these species) were identified.

Emergent growth forms dominated aquatic plant communities, with few submerged and floating species, indicating that water is not likely to persist for the majority of the year (except at wetland and farm dam sites). Macroinvertebrate communities were in low to moderate condition relative to those expected in the broader region, and results indicated that a range of factors influenced communities at most sites (including anthropogenic factors such as mining, industrial and / or agricultural pollution, high concentrations of nutrients, and harsh environmental conditions).

Most sites that contained water provided habitat for fish from a range of life-history stages during the late-wet season, including adults, intermediates and juveniles. Two exotic species of fish were also recorded in the April 2020 survey: Mozambique tilapia (*Oreochromis mossambicus*) and platy (*Xiphophorus maculatus*). Tilapia is listed as a restricted biosecurity matter and a noxious fish under the *Biosecurity Act 2014*; platy is a pest species, but is not restricted or prohibited under Queensland legislation.

Turtles were not particularly abundant or widespread in the vicinity of the Project and were only caught in the mapped lacustrine wetland. The species captured (Krefft's river turtle) is

considered widespread and common throughout waterways in Queensland. No potential habitat for platypus (*Ornithorhynchus anatinus*) was identified.

Results of all aquatic indicators surveyed as part of this assessment were consistent with results from previous aquatic ecology surveys at CVM and in the broader region. No differences were observed in aquatic ecological indicators between sites on mapped potential surface-expression GDEs and sites on other waterways and wetlands in the region.

Overall, aquatic ecosystem values of waterways and wetlands in the vicinity of the Project were low to moderate, and were considered to be similar to and representative of ephemeral systems in the broader region. Sites on waterways with higher stream orders (i.e. Cherwell Creek and Grosvenor Creek) typically had higher ecological value than sites on waterways with low stream orders (i.e. Horse Creek, Caval Creek and unnamed tributaries). Mapped lacustrine wetlands were assessed as having moderate aquatic ecological value (particularly due to their provision of dry season refuge for aquatic flora and fauna) and palustrine wetlands were assessed as having low aquatic ecological value (as they were dry during the field surveys). The value of wetlands in the vicinity of the Project to terrestrial flora and fauna was limited to riverine wetland areas within ML 1775 and ML 70403 along Nine Mile Creek and Cherwell Creek (E2M 2020).

Of the aquatic listed threatened species known to occur in the broader catchment, none were considered likely to occur in the vicinity of the Project. One HES palustrine wetland, also mapped as a WPA, is present approximately 20 km downstream of the Project. This wetland is a MSES. However, it was dry during the field survey and was assessed as having low habitat value for aquatic flora and fauna, as it was in similar condition to other mapped palustrine wetlands in the vicinity area and would rarely be inundated (and therefore would rarely provide aquatic habitat).

Waterways in the vicinity of the Project are mapped as waterways providing for fish passage in the *Waterway Barrier Works* spatial layer, a MSES, with a low, moderate, high and major risk of adverse impacts to fish passage as a result of waterway barrier works. Water resources were recorded within the vicinity of the Project during the field surveys, which are a MNES in relation to coal seam gas and large coal mining development. These included: waterways (all of which were ephemeral in nature), lacustrine wetlands and farm dams (all of which were modified by the presence of dams), palustrine wetlands (all of which were dry during the field surveys), mapped potential aquatic (i.e. surface expression) GDEs, and subterranean GDEs.

No other MNES or MSES were identified within the vicinity of the Project.

8.2 Stygofauna

No true stygofauna specimens were recorded from bores sampled during two pilot study surveys. This is consistent with the findings of the desktop assessment, which concluded that the aquifer formations within the Project site are unlikely to support diverse stygofauna communities. Stygofauna communities may be present further downstream of the Project, in the alluvium associated with the Isaac River and the lower reaches of its major tributaries.

8.3 Potential Impacts and Proposed Mitigation Measures

The Project has the potential to directly and indirectly impact aquatic ecosystems through:

- loss or modification of aquatic habitat, flora and fauna within the pit extension area and zone for dragline crossing
- temporary loss of minor waterway to be relocated
- changes to aquatic habitat (e.g. loss of habitat features) adjacent to and downstream of the Project
- altering fish passage via loss of sections of waterways and at water crossings, specifically the extension of the haul road requiring a bridge over Horse Creek and (where the location B option is selected for the blasting compound) a medium vehicle access road to the relocated blasting compound requiring a crossing over the existing Horse Creek diversion (although there is another road route option being considered where location B for the blasting compound is selected)
- changes to flow and flood regimes or waterways and wetlands downstream of the Project as a result of loss of catchment
- changes to water and sediment quality associated with vegetation and excavation works, dust and particulate matter, surface water run-off, controlled and emergency releases, seepage and saline or acid drainage
- leaks and spills of contaminants
- production of litter and waste, and
- proliferation of aquatic pests.

The Project is an extension of an existing operational mine. As such, these potential impacts will largely be managed and mitigated through implementation of existing EA conditions (including the CVM REMP) and existing management plans developed for the management of water, waste, hydrocarbons and contaminants, and pests. Potential impacts to aquatic ecosystems will further be minimised through the following mitigation measures:

- limiting area disturbed at any one time; progressive and timely reinstatement of the disturbed landform
- avoiding waterway crossings, where possible, or to consider fish passage and flow in crossing designs
- ensuring earthworks and stockpile are planned (and minimise where possible), including stormwater directed away from waterways
- design and construct infrastructure in accordance with the principles in existing strategies and management plans as well as best practice procedures
- adhering to and / or expanding exiting EA, REMP, water management systems and management plans developed for the management of water, waste, hydrocarbons and contaminants and pests.

Changes to groundwater quantity, quality, and interactions are not expected in the unconsolidated sediments of the Isaac River alluvium, in the lower reaches of the Isaac River

and at the confluences of larger tributaries (i.e. where stygofauna communities are likely to occur). Therefore, no impacts to stygofauna communities are expected as a result of the Project.

Overall, where these mitigation measures are implemented, potential direct and indirect impacts were considered acceptable, with a low risk of impacts to aquatic ecosystem values on a local and regional scale. Furthermore, no significant impacts to water resources are expected as a result of the Project.

9 References

4T (2012) Desktop assessment of likelihood of stygofauna occurrence in the Bowen Basin, Report to URS Australia Pty Ltd.

ALA (2020) Occurrence Records, Atlas of Living Australia, available from: www.spatial.ala.org.au, accessed January 2020.

ANZECC and ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand.

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, available from: www.waterquality.gov.au/anz-guidelines, accessed February 2020.

Aquatic Ecosystems Taskforce Group (2012) Aquatic Ecosystems Toolkit, *Module 3:* Guidelines for Identifying High Ecological Value Aquatic Ecosystems (HEVAE), Australian Government Department of Sustainability, Environment, Water, Population and Communities, Canberra.

Asmyhr, M. Linke, S. Hose, G. and Nipperess, D. (2014) 'Systematic Conservation Planning for Groundwater Ecosystems Using Phylogenetic Diversity', *PLoS ONE*.

BAAM (2009) Caval Ridge Coal Project: Ecological Assessment, report prepared by Biodiversity Assessment and Management Pty Ltd for URS Australia.

Bennelongia Pty Ltd (2007) *Stygofauna Sampling Results for the Devil Creek Development Project*, Apache Energy Ltd, report prepared for Apache Energy Ltd.

BHP (2018) Design Document for the Receiving Environment Monitoring Program (REMP): BMA & BMC Sites. October 2018. Version 3.

Biota Environmental Sciences (2010) West Pilbara Iron Ore Project Stygofauna Assessment, report prepared for API Management.

BOM (2020a) *Climate Data Online*, Australian Government Bureau of Meteorology, available from: http://www.bom.gov.au/climate/data/index.shtml, accessed January 2020.

BOM (2020b) *Daily Rainfall Moranbah Airport*, Australian Government Bureau of Meteorology, available from: http://www.bom.gov.au/climate/data/index.shtml, accessed April 2020.

BOM (2020c) *Groundwater Dependent Ecosystems Atlas*, Australian Government Bureau of Meteorology, available from: http://www.bom.gov.au/water/groundwater/gde/index.shtml, accessed November 2019.

Bunn, S.E. and Arthington, A.H. (2002) Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity, *Environmental Management*, 30 (4): 492-507.

Burgess, J.W. (2003) Land Resources Assessment of the Windeyers Hill Area, Isaac-Connors and Mackenzie River Catchments, Central Queensland, Volume 1, State of Queensland, Department of National Resources and Mines, Brisbane.

Car, C. (2010) 'Gold Fields, St Ices Gold Mines Stygofauna Desktop Assessment', Subterranean Ecology.

Carrick, F. N. Grant, T. R. and Temple-Smith, P. D. (2008) *Platypus*, In 'The Mammals of Australia', 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 32–35, Reed New Holland: Sydney.

Catchment Solutions (2015) *Preliminary investigation into the distribution of Tilapia in the Upper Fitzroy Catchment*, Catchment Solutions – Fisheries and Aquatic Ecosystems.

Chessman, B. (2003) Signal 2 A Scoring System for Macro-Invertebrates ('water-bugs') in Australian Rivers, Monitoring River Health Initiative Technical Report Number 31. Commonwealth of Australia, Canberra.

Cogger, H.G. Cameron, E.E. Sadlier, R.A. and Eggler, P. (1993) *The Action Plan for Australian Reptiles*, Australian Nature Conservation Agency, Canberra.

Cogger, H.G. (2000) Reptiles and Amphibians of Australia, Reed Books Australia Pty Ltd, Melbourne.

Commonwealth of Australia (2016) Preventing Acid and Metalliferous Drainage: Leading Practice Sustainable Development Program for the Mining Industry, Canberra.

Commonwealth of Australia (2011) Survey guidelines for Australia's threatened reptiles: Guidelines for detecting reptiles listed as threatened under the Environment Protection and Biodiversity Conservation Act 1999, Australian Government Department of Sustainability, Environment, Water, Population and Communities.

CQU (2018) Caval Ridge Mine Report AQUA-ECO Health Sampling 2018 Wet Season, report prepared for BHP Billiton Mitsubishi Alliance.

CQU (2019) Caval Ridge Mine Report AQUA-ECO Health Sampling 2019 Wet Season, report prepared for BHP Billiton Mitsubishi Alliance.

DAF (2020) Queensland Spatial Catalogue: Queensland waterways for waterway barrier works, Qiueensland Department of Agriculture and Fisheries, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed February 2020.

Danielopol, D. Griebler, C. Gunatilaka, A. and Notenboom, J. (2003) 'Present state and future prospects for groundwater ecosystems', *Environmental Conservation* 30: 104–130.

Datry, T., Malard, F. and Gibert, J. (2005) 'Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer', *Journal of the North American Benthological Society* 24, 461-477.

DAWE (2020a) *Rheodytes leukops* in Species Profile and Threats Database, Australian Government Department of Agriculture, Water and the Environment, Canberra, available from: http://www.environment.gov.au/sprat, accessed May 2020.

DAWE (2020b) *Elseya albagula* in Species Profile and Threats Database, Australian Government Department of Agriculture, Water and the Environment, Canberra, available from: http://www.environment.gov.au/sprat, accessed May 2020.

DAWE (2020c) *Bidyanus bidyanus* in Species Profile and Threats Database, Australian Government Department of Agriculture, Water and the Environment, Canberra, available from: http://www.environment.gov.au/sprat, accessed May 2020.

DEHP (2011a) Environmental Protection (Water) Policy Comet River Sub-basin Environmental Values and Water Quality Objectives Basin No. 130 (part), including all waters of the Comet River Sub-basin, September 2011, Queensland Department of Environment and Heritage Protection. Re-published in July 2013.

DEHP (2011b) WQ1301 – Isaac River Sub-basin; Part of basin 130, Queensland Department of Environment and Heritage Protection, Re-published in July 2013.

DEHP (2013a) Environmental Protection (Water) Policy 2009 Isaac River Sub-basin Environmental Values and Water Quality Objectives Basin No. 130 (part), including all waters of the Isaac River Sub-basin (including Connors River), September 2011, Queensland Department of Environment and Heritage Protection.

DEHP (2013b) Queensland Water Quality Guidelines, Version 3, ISBN 978-0-9806986-0-2, Queensland Department of Environment and Heritage Protection.

DERM (2011a) Queensland Wetland Definition and Delineation Guidelines, Queensland Government, Brisbane.

DERM (2011b) Fish Water Quality Guidelines for Fitzroy Basin Freshwaters, September 2011, Department of Environment and Resource Management, pp 15.DES (2018a). Monitoring and Sampling Manual: Environmental Protection (Water) Policy, Department of Environment and Science Government. Brisbane.

DES (2018b) Guideline: Model Water Conditions for Coal Mines in the Fitzroy Basin, Queensland Department of Environment and Science.

DES (2018c) Biological assessment – Background information on sampling bores for stygofauna, State of Queensland.

DES (2019a) Wildlife Online Extract, Species list for a specified point with a 30 km and 50 km distance at Latitude -22.1343 and Longitude 148.0704. Queensland Department of Environment and Science.

DES (2019b) Guideline for the Environmental Assessment of Subterranean Aquatic Fauna Queensland Government Department of Environment and Science, licensed under Creative Commons Attribution 4.0 sourced on 19 October 2019

DES (2020a). Wetland data – version 5 – wetland areas – Queensland, Department of Environment and Science, available from: http://qldspatial.qld.gov.au/catalogue/, accessed May 2020.

DES (2020b) *WetlandSummary—facts and maps, WetlandInfo*, Department of Environment and Science, Queensland, available from: https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/, accessed June 2020.

DES (2020d) *Protected areas of Queensland,* Department of Environment and Science, available from: http://qldspatial.qld.gov.au/catalogue/, accessed May 2020.

DNRM (2001) Queensland Australian River Assessment System (AusRivAS) Sampling and Processing Manual: August 2001, Queensland Department of Natural Resources and Mines.

DNRME (2020a) *Place names gazetteer,* Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020b) *Ordered drainage 100K*, Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020c) *Major watercourse lines - Queensland,* Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020d) *Coal resource sites - Queensland,* Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020e) *Dams and weirs - Queensland,* Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020f) *Drainage basins - Queensland,* Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020g) *Drainage basin sub-area - Queensland*, Department of Natural Resources, Mines and Energy, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DNRME (2020h) *Queensland flood plain assessment overlay,* Department of Natural Resources, Mines and Energy, available from:

http://qldspatial.information.qld.gov.au/catalogue/, accessed May 2020.

DoE (2013) Conservation Advice Bidyanus bidyanus (silver perch), Australian Government Department of the Environment, Canberra.

DoEE (2019) *EPBC Act Protected Matters Report*, Coordinates and a 30 km and 50 km buffer at Latitude -22.1343 and Longitude 148.0704. Commonwealth of Australia, Department of the Environment and Energy.

Doody, T.M. Hancock, P.J. and Pritchard, J.L. (2019) *Information Guidelines explanatory note: Assessing groundwater-dependent ecosystems,* report prepared for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development through the Department of Environment and Energy, Commonwealth of Australia.

DPM Envirosciences (2018) *Olive Downs Coking Coal Project – Aquatic Ecology Assessment*, report prepared for Pembroke Resources Pty Ltd.

DTMR (2020) Baseline Roads and Tracks, Department of Transport and Main Roads, available from: http://qldspatial.information.qld.gov.au/catalogue/, accessed January 2020.

Dunlop, J. McGregor, G. and Horrigan, N. (2005) Characterisation of impacts and a discussion of regional target setting for riverine ecosystems in Queensland, report prepared by The State of Queensland.

E2M (2020) Terrestrial Ecology Assessment: Cherwell Pit Development Project – Caval Ridge Mine, report prepared for SLR Consulting Australia on behalf of BM Allliance Coal Operations Pty Ltd.

E2M (2021) Significant Impact Assessment Report – Terrestrial Ecology, Horse Pit Extension Project, Caval Ridge Mine, report prepared for SLR Consulting Australia on behalf of BM Alliance Coal Operations Pty Ltd.

Eamus, D. Macinnis-Ng, C.M.O. Hose, G.C. Zeppel, M.J.B. Taylor, D.T. and Murray, B.R. (2005) 'Ecosystem services: an ecophysiological examination', *Australian Journal of Botany*, 53(1): 1-19.

Terrenus Earth Sciences (2021) Geochemical Assessment of Potential Spoil, Coal and Coal Reject Materials, Caval Ridge Mine: Horse Pit Extension Project, report prepared for BHP by Terrenus Earth Sciences.

Eberhard, S.M. Halse, S.A. and Humphreys, W.F. (2005) 'Stygofauna in the Pilbara region, north-west Western Australia: a review', *Journal of the Royal Society of Western Australia*, 88, 167.

Eco Logical Australia (2015) Bylong Coal Project Environmental Impact Statement – Stygofauna Impact Assessment, report prepared for Hansen Bailey.

Esri (2020) *World Ocean References (for export)*, Esria, GEBCO, NOAA, National Geographic, HERE, Garmin, Geonames.ord, and other contributors, available from: https://tiledbasemaps.arcgis.com/arcgis/rest/services/Ocean/World_Ocean_Reference/MapServer, accessed January 2020.

Eyre T. J. Ferguson D. J. Hourigan C. L. Smith G. C. Mathieson M. T. Kelly, A. L. Venz M. F. Hogan, L. D. and Rowland, J. (2018) *Terrestrial Vertebrate Fauna Survey Assessment Guidelines for Queensland*, Queensland Government Department of Environment and Science (DES), Brisbane.

frc environmental (2013) Boundary Hill Expansion Environmental Impact Statement – Stygofauna Pilot Study, report prepared by frc environmental for AECOM on behalf of Anglo American (Callide Mine).

Gauge Industrial and Environmental (2018) *Receiving Environment Monitoring Program* (*REMP*) *Annual Report* – *end June 2017; BMA Caval Ridge Mine*, report prepared for BHP Mitsubishi Alliance.

Gauge Industrial and Environmental (2020) Receiving Environment Monitoring Program (REMP) Annual Report – July 2018 – June 2019; BMA Caval Ridge Mine, report prepared for BHP Mitsubishi Alliance.

Glanville, K. Schulz, C. Tomlinson, M. and Butler, D. (2016) 'Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia', *Subterranean Biology*, 17, 55.

Hahn, H.J. and Fuchs, A. (2009) 'Distribution patterns of groundwater communities across aquifer types in south-western Germany', *Freshwater Biology*, 54: 848–860.

Halse S.A. and Pearson G.B. (2014) 'Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy', *Subterranean Biology*, 13: 17-34.

Hancock, P.J. and Boulton, A.J. (2008) 'Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia', *Invertebrate Systematics* 22, 117-126.

Hatch (2018) Olive Downs Coking Coal Project – Surface Water Quality Assessment, report prepared for Pembroke Resources Pty Ltd.

Hose, G.C. Sreekanth, J. Barron, O. and Pollino, C. (2015) *Stygofauna in Australian groundwater systems: Extent of knowledge,* Report to the Australian Coal Association Research Program (ACARP), CSIRO, Australia.

Humphreys, W.F. (2000) First in, last out: Should aquifer ecosystems be at the vangard of remediation assessment? Contaminated Site Remediation Conference, Melbourne, 4-8 December, 2000.

Humphreys, W.F. (2006) *Groundwater fauna*, Department of the Environment and Heritage, Canberra.

Hyde, J. Cooper, S.J.B. Humphreys, W.F. Austin, A.D. and Munguia, P. (2018) 'Diversity patterns of subterranean invertebrate fauna in calcretes of the Yilgarn Region, Western Australia', *Marine and Freshwater Research*, 69: 114–121.

Limpus, C. J. Limpus, D. J. Parmenter, C. J. Hodge, J. Forest M. and McLachlan J. (2011) The Biology and Management Strategies for Freshwater Turtles in the Fitzroy Catchment, with particular emphasis on Elseya albagula and Rheodytes leukops: A study initiated in response to the proposed construction of Rookwood Weir and the raising of Eden Bann Weir, Department of Environment and Resource Management, Brisbane.

Marsden, T. and Power, T. (2007) *Proposal for raising Eden Bann Weir and construction of Rookwood Weir; An Assessment of the Potential Requirements for Fish Passage*, Department of Natural Resources and Water.

Murray, B. Hose, G. Eamus, D. and Licari, D. (2006) 'Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services', *Australian Journal of Botany* 54: 221–229.

Nevill, T.C. Hancock, P.J. Murray, B.R. Ponder, W.F. Humphreys, W.F. Phillips, M.L. and Groom, P.K. (2010) 'Groundwater-dependent ecosystems and the dangers of groundwater overdraft: A review and an Australian perspective', *Pacific Conservation Biology*, 16, 187-208.

Poff, N.L. and Zimmerman, J.K.H. (2010) 'Ecological responses to altered flow regimes: a literature review to inform science and management of environmental flows', *Freshwater Biology* 55: 194-205.

Pusey, B. Kennard, M. and Arthington, A. (2004) *Freshwater fishes of north-eastern Australia*, CSIRO publishing.

Queensland Herbarium (2021) Queensland subterranean aquatic fauna database, available from: https://www.data.qld.gov.au/dataset/queensland-subterranean-aquatic-fauna-database, accessed April 2021.

Richter, B.D. Davis, M.M. Apse, C. and Konrad, C. (2011) 'Short Communication: A presumptive standard for environmental flow protection', *River Research and Applications*.

Rollason, S.N. and Howell, S. (2012) *Aquatic Conservation Assessments (ACA), using AquaBAMM, for the non-riverine wetlands of the Great Barrier Reef catchment, Version 1.3,* Department of Environment and Resource Management, Brisbane.

Rolls, R.J. Leigh, C. and Sheldon, F. (2012) 'Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration', *Freshwater Science* 31(4): 1163-1186.

Schatz, H. and Behan-Pelletier, V. (2008) 'Global diversity of oribatids (Oribatida: Acari: Arachnida)', *Hydrobiologia*: 595: 323-328.

Schulz, C. Steward, A.L. and Prior, A. (2013) 'Stygofauna presence within fresh and highly saline aquifers of the Border Rivers region in southern Queensland', *Proceedings of the Royal Society of Queensland*, 118: 27–35.

Schuppenhauer, M.M. Lehmitz, R. and Xylander, W.E.R. (2019) 'Slow-moving soil organisms on a water highway: aquatic dispersal and survival potential of Oribatida and Collembola in running water', *Movement Ecology*: 7:20.

Simpson, S. L. Batley, G. B. and Chariton, A. A. (2013) *Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines*, CSIRO Land and Water Science Report 08/07.

Simpson, S. and Batley, G. (2016) Sediment Quality Assessment: A Practical Guide Second Edition, CSIRO Publishing.

SLR (2021a) Caval Ridge Mine: Horse Pit Extension Project Groundwater Impact Assessment Baseline Report, SLR Ref: 620:13593.00005-R01, report prepared for BHP by SLR Australia Pty Ltd.

SLR (2021b) Caval Ridge Mine: Horse Pit Extension Project Surface Water Impact Assessment Baseline Report, SLR Ref: 620:13593-R01-SW-v1.0_20210611, report prepared for BHP by SLR Australia Pty Ltd.

Strayer, D.L. (1994) 'Limits to biological distributions in groundwater', in Gibert, J., Danielopol, D.L., Stanford, J.A. (eds) *Groundwater ecology,* Academic Press, San Diego.

Tomlinson, M. Boulton, A. Hancock, P. and Cook, P. (2007) 'Deliberate omission or unfortunate oversight: Should stygofaunal surveys be included in routine groundwater monitoring programs?' *Hydrogeology Journal* 15: 1317–1320.

Tomlinson, M. (2011) *Ecological Water Requirements of Groundwater Systems: A Knowledge and Policy Review*, Waterlines Report Series No. 68, National Water Commission, Canberra.

URS (2014) Supplementary Aquatic Ecology Technical Report, Bowen Gas Project SREIS, report prepared for Arrow Energy.

URS (2013) *Red Hill Mining Lease Aquatic Ecology Technical Report,* report prepared for BM Alliance Coal Operations Pty Ltd by URS Australia.

URS (2009a). Caval Ridge Groundwater Impact Assessment, report prepared for BM Alliance Coal Operations Pty Ltd by URS Australia.

URS (2009b) *Caval Ridge Surface Water*, report prepared for BM Alliance Coal Operations Pty Ltd by URS Australia.

van Looij, E. (2009) WA AUSRIVAS sampling and processing manual. Water Science Technical Series Report No. 13. Department of Water, Western Australia.

Watts, C.H.S. and Humphreys, W.F. (2009) 'Fourteen new Dytiscidae (Coleoptera) of the genera *Limbodessus* Guignot, *Paroster* Sharp and *Exocelina* Broun, from underground waters in Australia', *Transactions of the Royal Society of South Australia*, 133: 62–107.

Attachment A Database Search Results

Wildlife Online Extract

Search Criteria: Species List for a Specified Point

Species: All Type: All Status: All Records: All

Date: All

Latitude: -22.1343 Longitude: 148.0704

Distance: 50

Email: kkeating@ecosp.com.au

Date submitted: Tuesday 08 Oct 2019 08:54:38 Date extracted: Tuesday 08 Oct 2019 09:00:02

The number of records retrieved = 1287

Disclaimer

As the DSITIA is still in a process of collating and vetting data, it is possible the information given is not complete. The information provided should only be used for the project for which it was requested and it should be appropriately acknowledged as being derived from Wildlife Online when it is used.

The State of Queensland does not invite reliance upon, nor accept responsibility for this information. Persons should satisfy themselves through independent means as to the accuracy and completeness of this information.

No statements, representations or warranties are made about the accuracy or completeness of this information. The State of Queensland disclaims all responsibility for this information and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs you may incur as a result of the information being inaccurate or incomplete in any way for any reason.

Kingdom	Class	Family	Scientific Name	Common Name	l	Q	Α	Records
animals	amphibians	Bufonidae	Rhinella marina	cane toad	Υ			47
animals	amphibians	Hylidae	Cyclorana alboguttata	greenstripe frog		С		14
animals	amphibians	Hylidae	Litoria latopalmata	broad palmed rocketfrog		С		13
animals	amphibians	Hylidae	Litoria nasuta	striped rocketfrog		С		1
animals	amphibians	Hylidae	Cyclorana verrucosa	rough collared frog				2/1
animals	amphibians	Hylidae	Litoria inermis	bumpy rocketfrog		C C		8
animals	amphibians	Hylidae	Litoria rubella	ruddy treefrog		С		18
animals	amphibians	Hylidae	Litoria caerulea	common green treefrog		С		86
animals	amphibians	Hylidae	Cyclorana brevipes	superb collared frog		С		6
animals	amphibians	Hylidae	Cyclorana cultripes	grassland collared frog		С		1
animals	amphibians	Hylidae	Cyclorana novaehollandiae	eastern snapping frog		C C		27
animals	amphibians	Hylidae	Litoria rothii	northern laughing treefrog		С		2
animals	amphibians	Limnodynastidae	Limnodynastes terraereginae	scarlet sided pobblebonk		С		7
animals	amphibians	Limnodynastidae	Limnodynastes tasmaniensis	spotted grassfrog		С		25
animals	amphibians	Limnodynastidae	Limnodynastes peronii	striped marshfrog		С		4
animals	amphibians	Limnodynastidae	Limnodynastes salmini	salmon striped frog		С		10
animals	amphibians	Limnodynastidae	Platyplectrum ornatum	ornate burrowing frog		С		62
animals	amphibians	Myobatrachidae	Uperoleia sp.					1
animals	birds	Acanthizidae	Acanthiza chrysorrhoa	yellow-rumped thornbill		C		5
animals	birds	Acanthizidae	Sericornis frontalis	white-browed scrubwren		C C		5
animals	birds	Acanthizidae	Acanthiza reguloides	buff-rumped thornbill		C		11
animals	birds	Acanthizidae	Acanthiza apicalis	inland thornbill		C		6
animals	birds	Acanthizidae	Smicrornis brevirostris	weebill		C		151
animals	birds	Acanthizidae	Acanthiza pusilla	brown thornbill		C		2
animals	birds	Acanthizidae	Acanthiza nana	yellow thornbill		C		12
animals	birds	Acanthizidae	Pyrrholaemus sagittatus	speckled warbler		C C		12
animals	birds	Acanthizidae	Gerygone olivacea	white-throated gerygone		C		63
animals	birds	Accipitridae	Aquila audax	wedge-tailed eagle		С		25
animals	birds	Accipitridae	Circus assimilis	spotted harrier		C		3
animals	birds	Accipitridae	Milvus migrans	black kite		C		16
animals	birds	Accipitridae	Elanus axillaris	black-shouldered kite		С		8
animals	birds	Accipitridae	Accipiter cirrocephalus	collared sparrowhawk		C C		/
animals	birds	Accipitridae	Hieraaetus morphnoides	little eagle		C		1
animals	birds	Accipitridae	Haliaeetus leucogaster	white-bellied sea-eagle		С		5
animals	birds	Accipitridae	Haliastur sphenurus	whistling kite		С		46
animals	birds	Accipitridae	Aviceda subcristata	Pacific baza		С		3
animals	birds	Accipitridae	Accipiter fasciatus	brown goshawk		С		4
animals	birds	Accipitridae	Lophoictinia isura	square-tailed kite		C		1
animals	birds	Accipitridae	Circus approximans	swamp harrier		C		1
animals	birds	Acrocephalidae	Acrocephalus australis	Australian reed-warbler		С		11
animals	birds	Aegothelidae	Aegotheles cristatus	Australian owlet-nightjar		C		18
animals	birds	Alaudidae	Mirafra javanica	Horsfield's bushlark		C		5
animals	birds	Anatidae	Malacorhynchus membranaceus	pink-eared duck		С		2
animals	birds	Anatidae	Nettapus coromandelianus	cotton pygmy-goose		С		10
animals	birds	Anatidae	Dendrocygna arcuata	wandering whistling-duck		С		6
animals	birds	Anatidae	Dendrocygna eytoni	plumed whistling-duck		С		16

Kingdom	Class	Family	Scientific Name	Common Name	I Q	Α	Records
animals	birds	Anatidae	Chenonetta jubata	Australian wood duck	С		37
animals	birds	Anatidae	Anas superciliosa	Pacific black duck	С		41
animals	birds	Anatidae	Oxyura australis	blue-billed duck	С		1
animals	birds	Anatidae	Aythya australis	hardhead	С		24
animals	birds	Anatidae	Cygnus atratus	black swan	С		15
animals	birds	Anatidae	Anas castanea	chestnut teal			2
animals	birds	Anatidae	Anas gracilis	grey teal	C C C		31
animals	birds	Anhingidae	Anhinga novaehollandiae	Australasian darter	С		24
animals	birds	Ardeidae	Egretta novaehollandiae	white-faced heron	С		26
animals	birds	Ardeidae	Bubulcus ibis	cattle egret	C		3
animals	birds	Ardeidae	Ardea pacifica	white-necked heron	C		18
animals	birds	Ardeidae	Ardea intermedia	intermediate egret	C		14
animals	birds	Ardeidae	Egretta garzetta	little egret	Č		4
animals	birds	Ardeidae	Ardea alba modesta	eastern great egret	Č		22
animals	birds	Ardeidae	Nycticorax caledonicus	nankeen night-heron	Č		_ <u>_</u> 5
animals	birds	Artamidae	Cracticus nigrogularis	pied butcherbird	č		161
animals	birds	Artamidae	Artamus minor	little woodswallow	Č		2
animals	birds	Artamidae	Artamus cinereus	black-faced woodswallow	Č		13
animals	birds	Artamidae	Gymnorhina tibicen	Australian magpie	C C		162
animals	birds	Artamidae	Strepera graculina	pied currawong	č		60
animals	birds	Artamidae	Cracticus torquatus	grey butcherbird	Č		104
animals	birds	Artamidae	Artamus leucorynchus	white-breasted woodswallow	Č		26
animals	birds	Burhinidae	Burhinus grallarius	bush stone-curlew	č		5
animals	birds	Cacatuidae	Eolophus roseicapilla	galah	Č		61
animals	birds	Cacatuidae	Cacatua galerita	sulphur-crested cockatoo	Č		83
animals	birds	Cacatuidae	Nymphicus hollandicus	cockatiel	Č		10
animals	birds	Campephagidae	Lalage tricolor	white-winged triller	Č		16
animals	birds	Campephagidae	Coracina papuensis	white-bellied cuckoo-shrike	Č		10
animals	birds	Campephagidae	Coracina tenuirostris	cicadabird	Č		31
animals	birds	Campephagidae	Coracina novaehollandiae	black-faced cuckoo-shrike	Č		84
animals	birds	Campephagidae	Coracina maxima	ground cuckoo-shrike	Č		4
animals	birds	Casuariidae	Dromaius novaehollandiae	emu	Č		20
animals	birds	Charadriidae	Vanellus miles novaehollandiae	masked lapwing (southern subspecies)	Č		9
animals	birds	Charadriidae	Elseyornis melanops	black-fronted dotterel	Č		15
animals	birds	Charadriidae	Vanellus tricolor	banded lapwing	Č		1
animals	birds	Charadriidae	Vanellus miles	masked lapwing	Č		18
animals	birds	Ciconiidae	Ephippiorhynchus asiaticus	black-necked stork	Č		4
animals	birds	Cisticolidae	Cisticola exilis	golden-headed cisticola	Č		19
	birds	Climacteridae	Climacteris picumnus		C		2
animals animals	birds	Columbidae	Ocyphaps lophotes	brown treecreeper crested pigeon	Č		38
	birds	Columbidae		peaceful dove	C		41
animals	birds	Columbidae	Geopelia striata Geopelia cuneata	diamond dove	C		
animals animals	birds	Columbidae	Phaps chalcoptera	common bronzewing	C		2 13
		Columbidae			V	V	
animals	birds		Geophaps scripta scripta	squatter pigeon (southern subspecies) bar-shouldered dove		V	59
animals	birds	Columbidae	Geopelia humeralis		C C		21 55
animals	birds	Coraciidae	Eurystomus orientalis	dollarbird	C		55

Kingdom	Class	Family	Scientific Name	Common Name	1	Q	Α	Records
animals	birds	Corcoracidae	Corcorax melanorhamphos	white-winged chough		С		12
animals	birds	Corcoracidae	Struthidea cinerea	apostlebird		С		77
animals	birds	Corvidae	Corvus bennetti	little crow		С		1
animals	birds	Corvidae	Corvus orru	Torresian crow		С		247
animals	birds	Corvidae	Corvus coronoides	Australian raven		С		1
animals	birds	Cuculidae	Chalcites minutillus	little bronze-cuckoo		C C		5
animals	birds	Cuculidae	Cacomantis flabelliformis	fan-tailed cuckoo		С		6
animals	birds	Cuculidae	Scythrops novaehollandiae	channel-billed cuckoo		С		21
animals	birds	Cuculidae	Cacomantis pallidus	pallid cuckoo		С		11
animals	birds	Cuculidae	Chalcites osculans	black-eared cuckoo		С		1
animals	birds	Cuculidae	Centropus phasianinus	pheasant coucal		C C		36
animals	birds	Cuculidae	Chalcites basalis	Horsfield's bronze-cuckoo		С		7
animals	birds	Cuculidae	Chalcites minutillus barnardi	Eastern little bronze-cuckoo		С		2
animals	birds	Cuculidae	Eudynamys orientalis	eastern koel		С		10
animals	birds	Cuculidae	Cacomantis variolosus	brush cuckoo		С		1
animals	birds	Cuculidae	Chalcites lucidus	shining bronze-cuckoo		С		8
animals	birds	Dicruridae	Dicrurus bracteatus	spangled drongo		С		9
animals	birds	Estrildidae	Neochmia modesta	plum-headed finch		C C		2
animals	birds	Estrildidae	Neochmia temporalis	red-browed finch		С		1
animals	birds	Estrildidae	Taeniopygia guttata	zebra finch		C		4
animals	birds	Estrildidae	Taeniopygia bichenovii	double-barred finch		С		52
animals	birds	Estrildidae	Lonchura castaneothorax	chestnut-breasted mannikin		С		4
animals	birds	Eurostopodidae	Eurostopodus mystacalis	white-throated nightjar		C C		5
animals	birds	Falconidae	Falco berigora	brown falcon		С		23
animals	birds	Falconidae	Falco subniger	black falcon		С		1
animals	birds	Falconidae	Falco longipennis	Australian hobby		C C		6
animals	birds	Falconidae	Falco cenchroides	nankeen kestrel		С		39
animals	birds	Falconidae	Falco peregrinus	peregrine falcon		С		1
animals	birds	Gruidae	Antigone rubicunda	brolga		C		28
animals	birds	Halcyonidae	Dacelo leachii	blue-winged kookaburra		С		22
animals	birds	Halcyonidae	Dacelo novaeguineae	laughing kookaburra		С		90
animals	birds	Halcyonidae	Todiramphus pyrrhopygius	red-backed kingfisher		C C		9
animals	birds	Halcyonidae	Todiramphus macleayii	forest kingfisher		С		19
animals	birds	Halcyonidae	Todiramphus sanctus	sacred kingfisher		С		25
animals	birds	Hirundinidae	Hirundo neoxena	welcome swallow		С		11
animals	birds	Hirundinidae	Petrochelidon ariel	fairy martin		С		13
animals	birds	Hirundinidae	Petrochelidon nigricans	tree martin		С		16
animals	birds	Jacanidae	Irediparra gallinacea	comb-crested jacana		С		4
animals	birds	Laridae	Chlidonias hybrida	whiskered tern		C		1
animals	birds	Laridae	Chroicocephalus novaehollandiae	silver gull		С		2
animals	birds	Laridae	Gelochelidon nilotica	gull-billed tern		SL		1
animals	birds	Maluridae	Malurus cyaneus	superb fairy-wren		C		1
animals	birds	Maluridae	Malurus lamberti	variegated fairy-wren		С		33
animals	birds	Maluridae	Malurus melanocephalus	red-backed fairy-wren		C		79
animals	birds	Megaluridae	Megalurus gramineus	little grassbird		C		1
animals	birds	Megaluridae	Megalurus timoriensis	tawny grassbird		С		3

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
animals	birds	Megaluridae	Cincloramphus mathewsi	rufous songlark		С		6
animals	birds	Megapodiidae	Alectura lathami	Australian brush-turkey		С		5
animals	birds	Meliphagidae	Meliphaga lewinii	Lewin's honeyeater		С		17
animals	birds	Meliphagidae	Plectorhyncha lanceolata	striped honeyeater		С		47
animals	birds	Meliphagidae	Melithreptus albogularis	white-throated honeyeater		С		108
animals	birds	Meliphagidae	Acanthagenys rufogularis	spiny-cheeked honeyeater		С		6
animals	birds	Meliphagidae	Philemon citreogularis	little friarbird		С		76
animals	birds	Meliphagidae	Manorina melanocephala	noisy miner		С		44
animals	birds	Meliphagidae	Myzomela obscura	dusky honeyeater		С		1
animals	birds	Meliphagidae	Caligavis chrysops	yellow-faced honeyeater		С		3
animals	birds	Meliphagidae	Entomyzon cyanotis	blue-faced honeyeater		С		72
animals	birds	Meliphagidae	Manorina flavigula	yellow-throated miner		С		50
animals	birds	Meliphagidae	Gavicalis virescens	singing honeyeater		С		44
animals	birds	Meliphagidae	Lichmera indistincta	brown honeyeater		С		28
animals	birds	Meliphagidae	Melithreptus gularis	black-chinned honeyeater		С		1
animals	birds	Meliphagidae	Melithreptus lunatus	white-naped honeyeater		С		1
animals	birds	Meliphagidae	Philemon corniculatus	noisy friarbird		С		111
animals	birds	Meropidae	Merops ornatus	rainbow bee-eater		С		82
animals	birds	Monarchidae	Monarcha melanopsis	black-faced monarch		SL		1
animals	birds	Monarchidae	Grallina cyanoleuca	magpie-lark		С		92
animals	birds	Monarchidae	Myiagra rubecula	leaden flycatcher		С		36
animals	birds	Monarchidae	Myiagra inquieta	restless flycatcher		С		4
animals	birds	Motacillidae	Anthus novaeseelandiae	Australasian pipit		С		18
animals	birds	Nectariniidae	Dicaeum hirundinaceum	mistletoebird		С		52
animals	birds	Neosittidae	Daphoenositta chrysoptera	varied sittella		С		27
animals	birds	Oriolidae	Oriolus sagittatus	olive-backed oriole		С		16
animals	birds	Oriolidae	Sphecotheres vieilloti	Australasian figbird		С		9
animals	birds	Otididae	Ardeotis australis	Australian bustard		С		23
animals	birds	Pachycephalidae	Pachycephala rufiventris	rufous whistler		С		54
animals	birds	Pachycephalidae	Colluricincla harmonica	grey shrike-thrush		С		57
animals	birds	Pachycephalidae	Colluricincla megarhyncha	little shrike-thrush		С		1
animals	birds	Pardalotidae	Pardalotus punctatus	spotted pardalote		C		1
animals	birds	Pardalotidae	Pardalotus striatus	striated pardalote		С		156
animals	birds	Passeridae	Passer domesticus	house sparrow	Υ	_		1
animals	birds	Pelecanidae	Pelecanus conspicillatus	Australian pelican		C		12
animals	birds	Petroicidae	Eopsaltria australis	eastern yellow robin		C		
animals	birds	Petroicidae	Microeca fascinans	jacky winter		C		11
animals	birds	Petroicidae	Petroica goodenovii	red-capped robin		C		2
animals	birds	Phalacrocoracidae	Phalacrocorax carbo	great cormorant		C		1
animals	birds	Phalacrocoracidae	Phalacrocorax varius	pied cormorant		С		4
animals	birds	Phalacrocoracidae	Microcarbo melanoleucos	little pied cormorant		C		29
animals	birds	Phalacrocoracidae	Phalacrocorax sulcirostris	little black cormorant		С		18
animals	birds	Phasianidae	Coturnix pectoralis	stubble quail		С		2
animals	birds	Phasianidae	Coturnix sp.	1		_		1
animals	birds	Phasianidae	Coturnix ypsilophora	brown quail		C		12
animals	birds	Podargidae	Podargus strigoides	tawny frogmouth		С		30

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
animals	birds	Podicipedidae	Tachybaptus novaehollandiae	Australasian grebe		С		24
animals	birds	Podicipedidae	Podiceps cristatus	great crested grebe		С		8
animals	birds	Pomatostomidae	Pomatostomus temporalis	grey-crowned babbler		С		81
animals	birds	Psittacidae	Trichoglossus haematodus moluccanus	rainbow lorikeet		С		90
animals	birds	Psittacidae	Platycercus adscitus palliceps	pale-headed rosella (southern form)		С		5
animals	birds	Psittacidae	Platycercus adscitus	pale-headed rosella		С		120
animals	birds	Psittacidae	Trichoglossus chlorolepidotus	scaly-breasted lorikeet		С		2
animals	birds	Psittacidae	Aprosmictus erythropterus	red-winged parrot		С		53
animals	birds	Ptilonorhynchidae	Ptilonorhynchus nuchalis	great bowerbird		С		2
animals	birds	Ptilonorhynchidae	Ptilonorhynchus maculatus	spotted bowerbird		С		11
animals	birds	Rallidae	Fulica atra	Eurasian coot		С		13
animals	birds	Rallidae	Porzana fluminea	Australian spotted crake		С		1
animals	birds	Rallidae	Gallinula tenebrosa	dusky moorhen		С		14
animals	birds	Rallidae	Porphyrio melanotus	purple swamphen		С		13
animals	birds	Rallidae	Gallirallus philippensis	buff-banded rail		С		1
animals	birds	Recurvirostridae	Himantopus himantopus	black-winged stilt		С		9
animals	birds	Rhipiduridae	Rhipidura albiscapa	grey fantail		С		49
animals	birds	Rhipiduridae	Rhipidura rufifrons	rufous fantail		SL		1
animals	birds	Rhipiduridae	Rhipidura leucophrys	willie wagtail		С		53
animals	birds	Scolopacidae	Tringa nebularia	common greenshank		SL		1
animals	birds	Scolopacidae	Calidris acuminata	sharp-tailed sandpiper		SL		1
animals	birds	Scolopacidae	Tringa stagnatilis	marsh sandpiper		SL		3
animals	birds	Strigidae	Ninox boobook	southern boobook		С		30
animals	birds	Strigidae	Ninox connivens	barking owl		С		2
animals	birds	Threskiornithidae	Plegadis falcinellus	glossy ibis		SL		1
animals	birds	Threskiornithidae	Threskiornis molucca	Australian white ibis		С		8
animals	birds	Threskiornithidae	Platalea flavipes	yellow-billed spoonbill		С		5
animals	birds	Threskiornithidae	Platalea regia	royal spoonbill		С		12
animals	birds	Threskiornithidae	Threskiornis spinicollis	straw-necked ibis		С		16
animals	birds	Timaliidae	Zosterops lateralis	silvereye		Č		1
animals	birds	Turnicidae	Turnix varius	painted button-quail		С		4
animals	birds	Tytonidae	Tyto delicatula	eastern barn owl		C		8
animals	insects	Lycaenidae	Zizina otis labradus	common grass-blue (Australian				1
		•		subspecies)				
animals	insects	Nymphalidae	Junonia orithya albicincta	blue argus				4
animals	insects	Nymphalidae	Hypolimnas bolina nerina	varied eggfly				1
animals	insects	Nymphalidae	Junonia villida villida	meadow argus				7
animals	insects	Nymphalidae	Melanitis leda bankia	evening brown				1
animals	insects	Nymphalidae	Danaus petilia	lesser wanderer				2
animals	insects	Nymphalidae	Euploea corinna	common crow				9
animals	insects	Nymphalidae	Acraea andromacha andromacha	glasswing				2
animals	insects	Nymphalidae	Tirumala hamata hamata	blue tiger				3
animals	insects	Papilionidae	Cressida cressida	clearwing swallowtail				1
animals	insects	Papilionidae	Papilio demoleus sthenelus	chequered swallowtail				2
animals	insects	Papilionidae	Graphium choredon	blue triangle				1
animals	insects	Papilionidae	Papilio anactus	dainty swallowtail				2

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
animals	insects	Pieridae	Eurema smilax	small grass-yellow				5
animals	insects	Pieridae	Elodina parthia	striated pearl-white				1
animals	insects	Pieridae	Catopsilia pomona	lemon migrant				7
animals	insects	Pieridae	Belenois java teutonia	caper white				11
animals	insects	Pieridae	Cepora perimale scyllara	caper gull (Australian subspecies)				1
animals	mammals	Bovidae	Capra hircus	goat	Υ			1
animals	mammals	Bovidae	Bos taurus	European cattle	Υ			1
animals	mammals	Canidae	Canis lupus familiaris	dog	Υ			5
animals	mammals	Canidae	Vulpes vulpes	red fox	Υ			3
animals	mammals	Canidae	Canis sp.		Υ			15
animals	mammals	Canidae	Canis lupus dingo	dingo				2
animals	mammals	Cervidae	Axis axis	chital	Υ			3
animals	mammals	Cervidae	Cervus timorensis	rusa deer	Υ			1
animals	mammals	Dasyuridae	Planigale ingrami	long-tailed planigale		С		3
animals	mammals	Dasyuridae	Planigale tenuirostris	narrow-nosed planigale		С		2
animals	mammals	Dasyuridae	Sminthopsis macroura	stripe-faced dunnart		С		19
animals	mammals	Dasyuridae	Dasyurus hallucatus	northern quoll		С	Е	1
animals	mammals	Dasyuridae	Sminthopsis crassicaudata	fat-tailed dunnart		С		1
animals	mammals	Dasyuridae	Planigale sp.					2
animals	mammals	Emballonuridae	Saccolaimus flaviventris	yellow-bellied sheathtail bat		С		38
animals	mammals	Emballonuridae	Taphozous australis	coastal sheathtail bat		NT		3
animals	mammals	Emballonuridae	Taphozous troughtoni	Troughton's sheathtail bat		С		10
animals	mammals	Felidae	Felis catus	cat	Υ			10
animals	mammals	Leporidae	Oryctolagus cuniculus	rabbit	Υ			18
animals	mammals	Macropodidae	Lagorchestes conspicillatus	spectacled hare-wallaby		С		1
animals	mammals	Macropodidae	Petrogale inornata	unadorned rock-wallaby		С		6
animals	mammals	Macropodidae	Petrogale herberti	Herbert's rock-wallaby		С		3
animals	mammals	Macropodidae	Macropus giganteus	eastern grey kangaroo		С		32
animals	mammals	Macropodidae	Macropus robustus	common wallaroo		C		6
animals	mammals	Macropodidae	Macropus dorsalis	black-striped wallaby		C		3
animals	mammals	Macropodidae	Wallabia bicolor	swamp wallaby		С		5
animals	mammals	Macropodidae	Macropus parryi	whiptail wallaby		C C		2
animals	mammals	Macropodidae	Macropus rufus	red kangaroo		C		3
animals	mammals	Miniopteridae	Miniopterus australis	little bent-wing bat		C		13
animals	mammals	Miniopteridae	Miniopterus schreibersii oceanensis	eastern bent-wing bat		C		7
animals	mammals	Molossidae	Mormopterus lumsdenae	northern free-tailed bat		C		17
animals	mammals	Molossidae	Chaerephon jobensis	northern freetail bat		C		22
animals	mammals	Molossidae	Tadarida australis	white-striped freetail bat		C		1
animals	mammals	Molossidae	Mormopterus ridei	eastern free-tailed bat		С		9
animals	mammals	Molossidae	Mormopterus sp.			_		2
animals	mammals	Molossidae	Mormopterus norfolkensis	east coast freetail bat		C		<u>1</u>
animals	mammals	Muridae	Pseudomys delicatulus	delicate mouse		С		7
animals	mammals	Muridae	Pseudomys gracilicaudatus	eastern chestnut mouse		С		5
animals	mammals	Muridae	Hydromys chrysogaster	water rat		С		/
animals	mammals	Muridae	Mus musculus	house mouse	Y			12
animals	mammals	Muridae	Rattus rattus	black rat	Υ			1

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
animals	mammals	Muridae	Rattus fuscipes	bush rat		С		3
animals	mammals	Muridae	Pseudomys patrius	eastern pebble-mound mouse		С		22/1
animals	mammals	Peramelidae	Isoodon macrourus	northern brown bandicoot		С		3
animals	mammals	Petauridae	Petaurus norfolcensis	squirrel glider		С		3
animals	mammals	Petauridae	Petaurus sp.					1
animals	mammals	Petauridae	Petaurus breviceps	sugar glider		C		13
animals	mammals	Phalangeridae	Trichosurus vulpecula	common brushtail possum		С		14
animals	mammals	Phascolarctidae	Phascolarctos cinereus	koala		V	V	118
animals	mammals	Potoroidae	Aepyprymnus rufescens	rufous bettong		С		16
animals	mammals	Pseudocheiridae	Petauroides volans minor	northern greater glider		V	V	43
animals	mammals	Pseudocheiridae	Petauroides volans	greater glider		V	V	57
animals	mammals	Pteropodidae	Pteropus scapulatus	little red flying-fox		С		4
animals	mammals	Suidae	Sus scrofa	pig	Υ	٥.		13
animals	mammals	Tachyglossidae	Tachyglossus aculeatus	short-beaked echidna		SL		20
animals	mammals	Vespertilionidae	Chalinolobus gouldii	Gould's wattled bat		C		55
animals	mammals	Vespertilionidae	Chalinolobus picatus	little pied bat		C		20
animals	mammals	Vespertilionidae	Scotorepens balstoni	inland broad-nosed bat		C		11
animals	mammals	Vespertilionidae	Scotorepens sanborni	northern broad-nosed bat		C		3
animals	mammals	Vespertilionidae	Vespadelus troughtoni	eastern cave bat		C		18
animals	mammals	Vespertilionidae	Vespadelus baverstocki	inland forest bat		С		14
animals	mammals	Vespertilionidae	Chalinolobus nigrogriseus	hoary wattled bat		С		21
animals	mammals	Vespertilionidae	Scotorepens sp. (Parnaby)	central-eastern broad-nosed bat		С		1
animals	mammals	Vespertilionidae	Chalinolobus dwyeri	large-eared pied bat		V	V	1
animals	mammals	Vespertilionidae	Scotorepens greyii	little broad-nosed bat		C		31
animals	mammals	Vespertilionidae	Nyctophilus gouldi	Gould's long-eared bat		С		9
animals	mammals	Vespertilionidae	Nyctophilus bifax	northern long-eared bat		С		1
animals	mammals	Vespertilionidae	Chalinolobus sp.					15
animals	mammals	Vespertilionidae	Scotorepens sp.					2
animals	mammals	Vespertilionidae	Nyctophilus sp.					7
animals	mammals	Vespertilionidae	Vespadelus sp.					1
animals	mammals	Vespertilionidae	Chalinolobus morio	chocolate wattled bat		С		15
animals	ray-finned fishes	Ambassidae	Ambassis agassizii	Agassiz's glassfish				1
animals	ray-finned fishes	Ariidae	Neoarius graeffei	blue catfish				1
animals	ray-finned fishes	Atherinidae	Craterocephalus stercusmuscarum	flyspecked hardyhead				1
animals	ray-finned fishes	Clupeidae	Nematalosa erebi	bony bream				1
animals	ray-finned fishes	Eleotridae	Oxyeleotris lineolata	sleepy cod				1
animals	ray-finned fishes	Eleotridae	Mogurnda adspersa	southern purplespotted gudgeon				1
animals	ray-finned fishes	Eleotridae	Hypseleotris species 1	Midgley's carp gudgeon				1
animals	ray-finned fishes	Melanotaeniidae	Melanotaenia splendida splendida	eastern rainbowfish				1
animals	ray-finned fishes	Osteoglossidae	Scleropages leichardti	southern saratoga				1
animals	ray-finned fishes	Percichthyidae	Macquaria ambigua	golden perch				1
animals	ray-finned fishes	Terapontidae	Bidyanus bidyanus	silver perch			CE	1
animals	ray-finned fishes	Terapontidae	Leiopotherapon unicolor	spangled perch		_		1
animals	reptiles	Agamidae	Pogona vitticeps	central bearded dragon		C		2
animals	reptiles	Agamidae	Amphibolurus burnsi	Burns's dragon		С		5
animals	reptiles	Agamidae	Chlamydosaurus kingii	frilled lizard		С		3

Kingdom	Class	Family	Scientific Name	Common Name	<u> </u>	Q	Α	Records
animals	reptiles	Agamidae	Diporiphora australis	tommy roundhead		С		20/1
animals	reptiles	Agamidae	Lophognathus gilberti sensu lato	Gilbert's dragon		С		1
animals	reptiles	Agamidae	Pogona barbata	bearded dragon		С		40
animals	reptiles	Boidae	Aspidites melanocephalus	black-headed python		CCC		11
animals	reptiles	Boidae	Antaresia maculosa	spotted python		Ċ		46
animals	reptiles	Carphodactylidae	Nephrurus asper	spiny knob-tailed gecko		Č		15
animals	reptiles	Chelidae	Chelodina sp.	opini, mios tamos goons		•		1
animals	reptiles	Chelidae	Emydura sp.					1
animals	reptiles	Chelidae	Chelodina longicollis	eastern snake-necked turtle		С		2
animals	reptiles	Colubridae	Dendrelaphis punctulatus	green tree snake		C C		4
animals	reptiles	Colubridae	Tropidonophis mairii	freshwater snake		č		8
animals	reptiles	Colubridae	Boiga irregularis	brown tree snake		Ċ		7
animals	reptiles	Diplodactylidae	Oedura monilis	ocellated velvet gecko		Č		51/1
animals	reptiles	Diplodactylidae	Amalosia rhombifer	zig-zag gecko		CCC		1
animals	reptiles	Diplodactylidae	Diplodactylus platyurus	eastern fat-tailed gecko				38
animals	reptiles	Diplodactylidae	Diplodactylus vittatus	wood gecko		C		22/1
animals	reptiles	Diplodactylidae	Lucasium steindachneri	Steindachner's gecko		C C C		41
animals	reptiles	Diplodactylidae	Strophurus williamsi	soft-spined gecko		\sim		37
animals	reptiles	Elapidae	Suta suta	myall snake		CCC		43
			Sula sula Furina diadema	red-naped snake		\sim		43
animals	reptiles	Elapidae		•		V	V	
animals	reptiles	Elapidae	Denisonia maculata	ornamental snake			V	62
animals	reptiles	Elapidae	Cryptophis boschmai	Carpentaria whip snake		C		37
animals	reptiles	Elapidae	Hoplocephalus bitorquatus	pale-headed snake		С		10
animals	reptiles	Elapidae	Pseudonaja textilis	eastern brown snake		C C		24
animals	reptiles	Elapidae	Vermicella annulata	bandy-bandy		C		2
animals	reptiles	Elapidae	Acanthophis antarcticus	common death adder		V		1
animals	reptiles	Elapidae	Brachyurophis australis	coral snake		С		9
animals	reptiles	Elapidae	Demansia psammophis	yellow-faced whipsnake		С		27
animals	reptiles	Gekkonidae	Gehyra sp.			_		1
animals	reptiles	Gekkonidae	Gehyra dubia	dubious dtella		C		163/2
animals	reptiles	Gekkonidae	Heteronotia binoei	Bynoe's gecko		CCC		118/1
animals	reptiles	Gekkonidae	Gehyra versicolor			C		30
animals	reptiles	Gekkonidae	Gehyra catenata	chain-backed dtella		C		24
animals	reptiles	Pygopodidae	Delma tincta	excitable delma		С		1
animals	reptiles	Pygopodidae	Paradelma orientalis	brigalow scaly-foot		С		1
animals	reptiles	Pygopodidae	Pygopus schraderi	eastern hooded scaly-foot		C C		3
animals	reptiles	Pygopodidae	Lialis burtonis	Burton's legless lizard		С		48
animals	reptiles	Scincidae	Carlia sp.					2
animals	reptiles	Scincidae	Cryptoblepharus virgatus sensu lato			С		8
animals	reptiles	Scincidae	Carlia munda	shaded-litter rainbow-skink		C C		7
animals	reptiles	Scincidae	Carlia vivax	tussock rainbow-skink		С		4
animals	reptiles	Scincidae	Morethia sp.					2
animals	reptiles	Scincidae	Carlia rubigo	orange-flanked rainbow skink		С		103
animals	reptiles	Scincidae	Eulamprus sp.	-				2
animals	reptiles	Scincidae	Lygisaurus sp.					1
animals	reptiles	Scincidae	Menetia grevii	common dwarf skink		С		18
			5 ,					-

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
animals	reptiles	Scincidae	Tiliqua rugosa	shingle-back		С		1
animals	reptiles	Scincidae	Lerista allanae	Allan's lerista		C E	Е	1/1
animals	reptiles	Scincidae	Ctenotus ingrami	unspotted yellow-sided ctenotus		C C		16
animals	reptiles	Scincidae	Lerista fragilis	eastern mulch slider		С		24/1
animals	reptiles	Scincidae	Carlia schmeltzii	robust rainbow-skink		С		8/1
animals	reptiles	Scincidae	Egernia striolata	tree skink		С		2
animals	reptiles	Scincidae	Bellatorias frerei	major skink		CCC		1
animals	reptiles	Scincidae	Concinnia sokosoma	stout bar-sided skink		Č		1
animals	reptiles	Scincidae	Ctenotus spaldingi	straight-browed ctenotus		C		49
animals	reptiles	Scincidae	Ctenotus strauchii	eastern barred wedgesnout ctenotus		C C		3
animals	reptiles	Scincidae	Tiliqua scincoides	eastern blue-tongued lizard		Č		4
animals	reptiles	Scincidae	Cryptoblepharus sp.	odoto bido toguoda.a		•		1
animals	reptiles	Scincidae	Ctenotus allotropis	brown-blazed wedgesnout ctenotus		С		1
animals	reptiles	Scincidae	Lygisaurus foliorum	tree-base litter-skink		Č		51/1
animals	reptiles	Scincidae	Morethia boulengeri	south-eastern morethia skink		Č		48
animals	reptiles	Scincidae	Concinnia brachysoma	northern bar-sided skink		C C		1
animals	reptiles	Scincidae	Ctenotus taeniolatus	copper-tailed skink		Č		23
animals	reptiles	Scincidae	Morethia taeniopleura	fire-tailed skink		Ċ		9
animals	reptiles	Scincidae	Anomalopus brevicollis	short-necked worm-skink		CCC		3
animals	reptiles	Scincidae	Pygmaeascincus timlowi	dwarf litter-skink		Ċ		9
animals	reptiles	Scincidae	Lerista punctatovittata	eastern robust slider		C		2
animals	reptiles	Scincidae	Cryptoblepharus pannosus	ragged snake-eyed skink		C		5
animals	reptiles	Scincidae	Eremiascincus fasciolatus	narrow-banded sand swimmer		Ċ		1
animals	reptiles	Scincidae	Glaphyromorphus punctulatus	fine-spotted mulch-skink		CCCC		6/1
animals	reptiles	Scincidae	Carlia pectoralis sensu lato	into apolica maiori akirik		C		30/1
animals	reptiles	Scincidae	Cryptoblepharus pulcher pulcher	elegant snake-eyed skink		Č		25
animals	reptiles	Scincidae	Lerista sp.	ciogani chake cyca ckink		0		1
animals	reptiles	Typhlopidae	Anilios sp.					1
animals	reptiles	Typhlopidae	Anilios unguirostris	claw-snouted blind snake		С		2
animals	reptiles	Typhlopidae	Anilios ligatus	robust blind snake		C		15
animals	reptiles	Typhlopidae	Anilios affinis	small-headed blind snake		C		2
animals	reptiles	Varanidae	Varanus tristis	black-tailed monitor		Č		15
animals	uncertain	Indeterminate	Indeterminate	Unknown or Code Pending		C		2
fungi	lecanoromycetes	Cladoniaceae	Cladia muelleri	Officiowit of Code i chaing		C		1/1
fungi	lecanoromycetes		Ramalinora glaucolivida			Č		1/1
fungi	lecanoromycetes	Lecideaceae	Lecidea			C		3/3
fungi	lecanoromycetes	Parmeliaceae	Xanthoparmelia ballingalliana			C		2/2
fungi	lecanoromycetes		Xanthoparmelia exuviata			Č		1/1
	lecanoromycetes	Physciaceae	Rinodina			C		1/1
fungi fungi	lecanoromycetes	Porinaceae	Porina subargillacea			Č		1/1
	lecanoromycetes		Caloplaca cinnabarina			Č		1/1
fungi fungi	lichinomycetes	Peltulaceae	Peltula placodizans					1/1
plants	land plants	Acanthaceae	Dipteracanthus australasicus subsp. corynothecus			C C		3/3
plants	land plants	Acanthaceae	Dipteracanthus australasicus subsp. corynomecus Dipteracanthus australasicus subsp. australasicus			Č		3/3 1/1
plants	land plants	Acanthaceae	Brunoniella australis	blue trumpet		Č		34/1
plants	land plants	Acanthaceae	Rostellularia adscendens	oluo tiumpet		Č		37/2
ριαιτιο	ianu piants	Acammaceae	เ งงเษแนเลเล สนงบบเนษเเง			C		31/2

Paints Iand plants Acanthaceae Rostellularia adscendens var. dementii Iand plants Iand plants Acanthaceae Harrieota sp. (Lomeslegh E.J.Thompson+CHA75) pastel flower C 11	Kingdom	Class	Family	Scientific Name	Common Name	l	Q	Α	Records
plants land plants Acanthaceae Hamileria sp. (Lornesleigh E.J.Thompson+ CHA75) plants land plants Acanthaceae Pseuderanthemum variable plants land plants Acanthaceae Acanthaceae Rostellularia adscendens var. hispida c	plants	land plants	Acanthaceae	Rostellularia adscendens var. clementii			С		1/1
plants land plants Acanthaceae Pseuderanthemum variabile pastel flower C 1/11	plants		Acanthaceae	Harnieria sp. (Lornesleigh E.J.Thompson+ CHA75)			С		1/1
plants land plants Acanthaceae Psouderanhemum tenellum red spinach C 3 3 3 3 3 3 3 3 3	•	•	Acanthaceae		pastel flower		С		
plants land plants Acanthaceae Psouderanhemum tenellum red spinach C 3 3 3 3 3 3 3 3 3				Rostellularia adscendens var. hispida	•		С		
plants land plants Aizoaceae			Acanthaceae				С		
plants land plants Aizoaceae	•		Aizoaceae		red spinach				
plants land plants Aizoaceae Zaleya galericulate C			Aizoaceae			Υ			4
Plants Iand plants Amaranthaceae Alternanthera denticulate var. micrantha lesser joyweed C 3 3 3 3 3 3 3 3 3			Aizoaceae				С		1/1
Palants Iand plants Amaranthaceae Pillotus polystachyus C 2/2	•	land plants	Amaranthaceae						6
Palants Iand plants Amaranthaceae Pillotus polystachyus C 2/2					lesser joyweed		С		
Plants Iand plants Amaranthaceae Ptilotus polystachyus G			Amaranthaceae	Alternanthera nodiflora			С		1
plants land plants Amaranthaceae Picitous uncinellus gomphrena weed Y 8 1/11 plants land plants Iand p	•	land plants	Amaranthaceae	Ptilotus polystachyus	• •		С		2/2
plants land plants Amaranthaceae Alternathiera nana hair joyweed C 18/2 plants land plants Amaranthaceae Alternathiera nana hair joyweed C 6 18/2 plants land plants Amaranthaceae Achyranthes aspera C 6 18/2 plants land plants Amaranthaceae Ptilous C 6 19 plants land plants Amaranthaceae Ptilous C 11/1 plants land plants Amaranthaceae Prilous C 11/1 plants land plants Amaryllidaceae Proiphys cunninghamii Moreton Bay lily C 11/1 plants land plants Amaryllidaceae C irinum flaccidum Murray lily C 11/1 plants land plants Amaryllidaceae C irinum flaccidum Murray lily C 1 1 plants land plants Anacyllidaceae C irinum flaccidum Murray lily C 1 1 plants land plants Anacardiaceae Proiphys cunninghamii morense Burdekin plum C 1 1 plants land plants Apacynaceae C petrea dumicologa C 1 1 plants land plants Apocynaceae C petrea dumicologa C 1 1 plants land plants Apocynaceae Wrightia saligna C 2 1 plants land plants Apocynaceae Alyxia ruscifolia C 2 2 2 plants land plants Apocynaceae C 2 2 2 2 plants land plants Apocynaceae C 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Amaranthaceae		gomphrena weed	Υ			8
Palants land plants Amaranthaceae Alternanthera nana hairy joyweed C 6 6 6 6 6 6 6 6 6		•	Amaranthaceae				Е		1/1
plants land plants Amaranthaceae Pillotus Amaranthaceae Pillotus Amaranthaceae Pillotus I and plants I and plants Amaranthaceae Pillotus I and plants I and plants Amaranthaceae Pillotus I I I I I I I I I I I I I I I I I I I	plants	land plants	Amaranthaceae	Alternanthera nana	hairy joyweed		С		18/2
plants land plants Amaranthaceae Ptilotus C 1 1 1 1 1 1 1 1 1			Amaranthaceae	Achyranthes aspera	• • •		С		6
plants land plants Anacardiaceae Pleiogynium timorense Burdekin plum C 1 plants land plants Apiaceae Eryngium plantagineum long eryngium C 2/2 plants land plants Apocynaceae Wrightia sailgna NT 8/5 plants land plants Apocynaceae Wrightia sailgna C 1/1 plants land plants Apocynaceae Alyxa ruscifolia C 2/2 plants land plants Apocynaceae Alyxa ruscifolia C 2/1 plants land plants Apocynaceae Secamone elliptica C 2/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Marsdenia australis doubah C 1 plants land plants Apocynaceae Wrightia versicolor			Amaranthaceae				С		1
plants land plants Anacardiaceae Pleiogynium timorense Burdekin plum C 1 plants land plants Apiaceae Eryngium plantagineum long eryngium C 2/2 plants land plants Apocynaceae Wrightia sailgna NT 8/5 plants land plants Apocynaceae Wrightia sailgna C 1/1 plants land plants Apocynaceae Alyxa ruscifolia C 2/2 plants land plants Apocynaceae Alyxa ruscifolia C 2/1 plants land plants Apocynaceae Secamone elliptica C 2/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Marsdenia australis doubah C 1 plants land plants Apocynaceae Wrightia versicolor	plants	land plants	Amaranthaceae	Nyssanthes erecta			С		1/1
plants land plants Anacardiaceae Pleiogynium timorense Burdekin plum C 1 plants land plants Apiaceae Eryngium plantagineum long eryngium C 2/2 plants land plants Apocynaceae Wrightia sailgna NT 8/5 plants land plants Apocynaceae Wrightia sailgna C 1/1 plants land plants Apocynaceae Alyxa ruscifolia C 2/2 plants land plants Apocynaceae Alyxa ruscifolia C 2/1 plants land plants Apocynaceae Secamone elliptica C 2/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Marsdenia australis doubah C 1 plants land plants Apocynaceae Wrightia versicolor			Amaryllidaceae	Proiphys cunninghamii	Moreton Bay lily		С		1/1
plants land plants Anacardiaceae Pleiogynium timorense Burdekin plum C 1 plants land plants Apiaceae Eryngium plantagineum long eryngium C 2/2 plants land plants Apocynaceae Wrightia sailgna NT 8/5 plants land plants Apocynaceae Wrightia sailgna C 1/1 plants land plants Apocynaceae Alyxa ruscifolia C 2/2 plants land plants Apocynaceae Alyxa ruscifolia C 2/1 plants land plants Apocynaceae Secamone elliptica C 2/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Marsdenia australis doubah C 1 plants land plants Apocynaceae Wrightia versicolor							С		1
plants land plants Anacardiaceae Pleiogynium timorense Burdekin plum C 1 plants land plants Apiaceae Eryngium plantagineum long eryngium C 2/2 plants land plants Apocynaceae Wrightia sailgna NT 8/5 plants land plants Apocynaceae Wrightia sailgna C 1/1 plants land plants Apocynaceae Alyxa ruscifolia C 2/2 plants land plants Apocynaceae Alyxa ruscifolia C 2/1 plants land plants Apocynaceae Secamone elliptica C 2/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Marsdenia australis doubah C 1 plants land plants Apocynaceae Wrightia versicolor	plants	land plants	Amaryllidaceae	Crinum			С		1
plants land plants Apiaceae Eryngium plantagineum long eryngium C 2/2 plants land plants Apocynaceae Cerbera dumicola NT 8/5 plants land plants Apocynaceae Wrightia saligna C 1/1 plants land plants Apocynaceae Alyxia ruscifolia C 2/2 plants land plants Apocynaceae Carissa lanceolata C 2/1 plants land plants Apocynaceae Secamone elliptica C 2/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Alstonia constricta bitterbark C 4/1 plants land plants Apocynaceae Parsonsia straminea doubah C 1 plants land plants Apocynaceae Parsonsia atraminea monthey rope C 1 plants land plants Apocynaceae Mrightia versicolor <				Pleiogynium timorense	Burdekin plum		С		1
plants land plants Apocynaceae Cerbera dumicola plants land plants Apocynaceae Wrightia saligna plants land plants Apocynaceae Alyxia ruscifolia plants land plants Apocynaceae Alyxia ruscifolia plants land plants Apocynaceae Carissa lanceolata plants land plants Apocynaceae Secamone elliptica plants land plants Apocynaceae Alstonia constricta plants land plants Apocynaceae Alstonia constricta plants land plants Apocynaceae Marsdenia australis plants land plants Apocynaceae Parsonsia straminea plants land plants Apocynaceae Wrightia versicolor plants land plants Apocynaceae Wrightia versicolor plants land plants Apocynaceae Marsdenia microlepis plants land plants Apocynaceae Parsonsia lanceolata plants land plants Apocynaceae Asclepias curassavica plants land plants Apocynaceae Asclepias curassavica plants land plants Apocynaceae Asclepias curassavica plants land plants Apocynaceae Bomphocarpus physocarpus plants land plants Apocynaceae Parsonsia eucalyptophylla plants land plants Apocynaceae Parsonsia eucalyptophylla plants land plants Apocynaceae Hoya australis subsp. australis land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Hoya australis subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora C C 1/1 plants land plants Apocynaceae Marsdenia viridiflora Subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora land plants Apocynaceae Asclepias curantbush land plants Apocynaceae Asclepias curantbush land plants Apocynaceae Asclepias viridiflora land pla	plants	land plants	Apiaceae				С		2/2
plants land plants Apocynaceae Alyxia ruscifolia plants land plants Apocynaceae Carissa lanceolata plants land plants Apocynaceae Secamone elliptica plants land plants Apocynaceae Secamone elliptica plants land plants Apocynaceae Alstonia constricta plants land plants Apocynaceae Marsdenia australis doubah plants land plants Apocynaceae Marsdenia australis plants land plants Apocynaceae Marsdenia australis plants land plants Apocynaceae Wrightia versicolor plants land plants Apocynaceae Marsdenia microlepis plants land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo plants land plants Apocynaceae Cynanchum viriniale subsp. brunonianum plants land plants Apocynaceae Cynanchum viriniale subsp. brunonianum plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Apocynaceae Carissa ovata plants land plants Apocynaceae Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Arstrotricha biddulphiana	plants	land plants	Apocynaceae	Cerbera dumicola			NT		8/5
plants land plants Apocynaceae Alyxia ruscifolia plants land plants Apocynaceae Carissa lanceolata plants land plants Apocynaceae Secamone elliptica plants land plants Apocynaceae Secamone elliptica plants land plants Apocynaceae Alstonia constricta plants land plants Apocynaceae Marsdenia australis doubah plants land plants Apocynaceae Marsdenia australis plants land plants Apocynaceae Marsdenia australis plants land plants Apocynaceae Wrightia versicolor plants land plants Apocynaceae Marsdenia microlepis plants land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Marsdenia viridiflora plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo plants land plants Apocynaceae Cynanchum viriniale subsp. brunonianum plants land plants Apocynaceae Cynanchum viriniale subsp. brunonianum plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Apocynaceae Carissa ovata plants land plants Apocynaceae Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Arstrotricha biddulphiana	plants	land plants	Apocynaceae	Wrightia saligna			С		1/1
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/3 16/3 16/3 17/1 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/3 18/2	plants	land plants		Alyxia ruscifolia			С		2/2
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/3 16/3 16/3 17/1 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/3 18/2	plants	land plants	Apocynaceae	Carissa lanceolata			С		1
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/3 16/3 16/3 17/1 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/3 18/2	plants	land plants	Apocynaceae	Secamone elliptica			С		2/1
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/3 16/3 16/3 17/1 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/2 18/3 18/2		land plants		Alstonia constricta	bitterbark		С		4/1
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/4 16/5 16/5 16/3 17/1 18/4				Marsdenia australis	doubah		С		1
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/4 16/5 16/5 16/3 17/1 18/4	plants	land plants	Apocynaceae	Parsonsia straminea	monkey rope		С		1
plants land plants Apocynaceae Parsonsia lanceolata northern silkpod C 16/3 plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood C 16/3 16/4 16/5 16/5 16/3 17/1 18/4	plants	land plants		Wrightia versicolor	•		С		1/1
plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora C 1 plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans plants land plants Araliaceae C C 11/1	plants	land plants	Apocynaceae	Marsdenia microlepis					-
plants land plants Apocynaceae Asclepias curassavica red-head cottonbush Y 1 plants land plants Apocynaceae Marsdenia viridiflora	plants	land plants	Apocynaceae	Parsonsia lanceolata	northern silkpod		С		16/3
plants land plants Apocynaceae Gomphocarpus physocarpus balloon cottonbush Y 1 plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans celery wood balloon cottonbush Y 1 1 2 2 3 3 4 3 5 6 6 1 7 6 7 6 1 7 7 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	plants	land plants		Asclepias curassavica	red-head cottonbush	Υ			1
plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans plants land plants Araliaceae Celery wood C 1/1	plants	land plants	Apocynaceae	Marsdenia viridiflora			С		1
plants land plants Apocynaceae Parsonsia eucalyptophylla gargaloo C 1 plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans plants land plants Araliaceae Celery wood C 1/1	plants	land plants	Apocynaceae	Gomphocarpus physocarpus	balloon cottonbush	Υ			1
plants land plants Apocynaceae Hoya australis subsp. australis plants land plants Apocynaceae Cynanchum viminale subsp. brunonianum plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans C 1/1 C 5/1 C 6/1 C 1/1	plants	land plants	_	Parsonsia eucalyptophylla	gargaloo		С		1
plants land plants Apocynaceae Marsdenia viridiflora subsp. viridiflora plants land plants Apocynaceae Marsdenia plants land plants Apocynaceae Carissa ovata plants land plants Araliaceae Astrotricha biddulphiana plants land plants Araliaceae Polyscias elegans C 6/1 C 1 C 1 C 31/1 C 31/1 C 31/1 C 1/1	plants	land plants	Apocynaceae	Hoya australis subsp. australis					1/1
plants land plants Araliaceae Astrotricha biddulphiana C 1/1 plants land plants Araliaceae Polyscias elegans celery wood C 1/1	plants	land plants	Apocynaceae	Cynanchum viminale subsp. brunonianum			С		7
plants land plants Araliaceae Astrotricha biddulphiana C 1/1 plants land plants Araliaceae Polyscias elegans celery wood C 1/1	plants	land plants	Apocynaceae	Marsdenia viridiflora subsp. viridiflora			С		6/1
plants land plants Araliaceae Astrotricha biddulphiana C 1/1 plants land plants Araliaceae Polyscias elegans celery wood C 1/1	plants	land plants	Apocynaceae	Marsdenia			С		1
plants land plants Araliaceae Astrotricha biddulphiana C 1/1 plants land plants Araliaceae Polyscias elegans celery wood C 1/1	plants	land plants			currantbush		С		31/1
plants land plants Araliaceae <i>Polyscias elegans</i> celery wood C 1/1 plants land plants Asphodelaceae <i>Bulbine bulbosa</i> golden lily C 2		land plants	Araliaceae	Astrotricha biddulphiana			С		
plants land plants Asphodelaceae Bulbine bulbosa golden lily C 2	plants	land plants		Polyscias elegans	celery wood		С		
	plants	land plants	Asphodelaceae	Bulbine bulbosa	golden lily		С		2

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Asteraceae	Calotis cuneifolia	burr daisy		С		7/2
plants	land plants	Asteraceae	Senecio pinnatifolius var. pinnatifolius	·		С		2
plants	land plants	Asteraceae	Pterocaulon serrulatum var. serrulatum			С		1/1
plants	land plants	Asteraceae	Peripleura hispidula var. hispidula			С		1
plants	land plants	Asteraceae	Apowollastonia spilanthoides			C C		20/4
plants	land plants	Asteraceae	Sphaeromorphaea subintegra			С		1/1
plants	land plants	Asteraceae	Sphaeromorphaea australis			С		5/1
plants	land plants	Asteraceae	Chrysocephalum apiculatum	yellow buttons		С		5
plants	land plants	Asteraceae	Symphyotrichum subulatum	·	Υ			1
plants	land plants	Asteraceae	Streptoglossa adscendens	desert daisy		С		1/1
plants	land plants	Asteraceae	Parthenium hysterophorus	parthenium weed	Υ			55/1
plants	land plants	Asteraceae	Pterocaulon sphacelatum	applebush		С		2
plants	land plants	Asteraceae	Gamochaeta pensylvanica	• •	Υ			1/1
plants	land plants	Asteraceae	Acanthospermum hispidum	star burr	Υ			3/1
plants	land plants	Asteraceae	Bidens pilosa		Υ			2
plants	land plants	Asteraceae	Calotis dentex	white burr daisy		С		1/1
plants	land plants	Asteraceae	Pluchea dentex	bowl daisy		C		1/1
plants	land plants	Asteraceae	Calotis cuneata	,		С		1/1
plants	land plants	Asteraceae	Bidens bipinnata	bipinnate beggar's ticks	Υ			1
plants	land plants	Asteraceae	Blumea axillaris	, ,		С		2/2
plants	land plants	Asteraceae	Camptacra barbata			Č		1/1
plants	land plants	Asteraceae	Eclipta prostrata	white eclipta	Υ			1/1
plants	land plants	Asteraceae	Olearia xerophila		-	С		2/1
plants	land plants	Asteraceae	Sonchus oleraceus	common sowthistle	Υ			9/1
plants	land plants	Asteraceae	Tridax procumbens	tridax daisy	Ý			3/2
plants	land plants	Asteraceae	Trioncinia patens	indan dailey	•	Ε		1/1
plants	land plants	Asteraceae	Xerochrysum bracteatum subsp. (Mount Elliot A.R.Bean 3593)			Ċ		1/1
plants	land plants	Asteraceae	Calotis lappulacea	yellow burr daisy		С		2/2
plants	land plants	Asteraceae	Emilia sonchifolia	yonow burn daiby	Υ	J		8
plants	land plants	Asteraceae	Vittadinia sulcata	native daisy	•	С		1/1
plants	land plants	Asteraceae	Coronidium rupicola	nanvo daloj		Č		1/1
plants	land plants	Asteraceae	Minuria integerrima	smooth minuria		Č		1/1
plants	land plants	Asteraceae	Praxelis clematidea	omootii miirana	Υ	Ū		1/1
plants	land plants	Asteraceae	Rutidosis leucantha		•	С		1/1
plants	land plants	Asteraceae	Lagenophora gracilis			č		2
plants	land plants	Asteraceae	Peripleura hispidula			č		2
plants	land plants	Asteraceae	Pterocaulon redolens			Č		7
plants	land plants	Asteraceae	Vittadinia pustulata			č		1/1
plants	land plants	Asteraceae	Xanthium occidentale		Υ	Ŭ		1, 1
plants	land plants	Asteraceae	Ageratum houstonianum	blue billygoat weed	Ϋ́			1
plants	land plants	Asteraceae	Cyanthillium cinereum	Side Siny godt weed	•	С		16/2
plants	land plants	Asteraceae	Euchiton involucratus			č		3
plants	land plants	Asteraceae	Senecio brigalowensis			Ċ		1/1
plants	land plants	Bignoniaceae	Pandorea jasminoides			C C		1
plants	land plants	Bignoniaceae	Pandorea pandorana	wonga vine		Č		2
ριαιτιδ	iana pianto	Digitorilaceae	т апиотва раниотана	wonga vine		U		4

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Bignoniaceae	Pandorea			С		1/1
plants	land plants	Boraginaceae	Ehretia membranifolia	weeping koda		С		18/2
plants	land plants	Boraginaceae	Trichodesma zeylanicum			С		8
plants	land plants	Boraginaceae	Heliotropium brachygyne			С		1/1
plants	land plants	Boraginaceae	Heliotropium tenuifolium			С		1/1
plants	land plants	Boraginaceae	Heliotropium			С		1
plants	land plants	Byttneriaceae	Waltheria indica			С		8/1
plants	land plants	Byttneriaceae	Hannafordia shanesii			С		1/1
plants	land plants	Cactaceae	Opuntia stricta		Υ			4
plants	land plants	Cactaceae	Harrisia martinii		Υ			22
plants	land plants	Cactaceae	Opuntia tomentosa	velvety tree pear	Υ			20
plants	land plants	Cactaceae	Opuntia			С		4
plants	land plants	Caesalpiniaceae	Lysiphyllum hookeri	Queensland ebony		С		9
plants	land plants	Caesalpiniaceae	Senna coronilloides	•		С		2/1
plants	land plants	Caesalpiniaceae	Lysiphyllum carronii	ebony tree		С		7
plants	land plants	Caesalpiniaceae	Chamaecrista concinna	-		С		2
plants	land plants	Caesalpiniaceae	Petalostylis labicheoides			С		1/1
plants	land plants	Caesalpiniaceae	Chamaecrista absus var. absus			С		2/2
plants	land plants	Caesalpiniaceae	Senna artemisioides subsp. zygophylla			C C		1
plants	land plants	Caesalpiniaceae	Senna			С		2
plants	land plants	Caesalpiniaceae	Lysiphyllum					3
plants	land plants	Caesalpiniaceae	Senna costata			С		1/1
plants	land plants	Caesalpiniaceae	Cassia brewsteri			С		20
plants	land plants	Caesalpiniaceae	Senna barclayana			С		4/2
plants	land plants	Caesalpiniaceae	Cassia tomentella			С		10
plants	land plants	Caesalpiniaceae	Chamaecrista absus			C C		5
plants	land plants	Campanulaceae	Wahlenbergia			С		1
plants	land plants	Campanulaceae	Lobelia concolor			С		1
plants	land plants	Campanulaceae	Lobelia leucotos			00000		2/1
plants	land plants	Campanulaceae	Lobelia purpurascens	white root		С		1
plants	land plants	Campanulaceae	Wahlenbergia gracilis	sprawling bluebell		С		8
plants	land plants	Campanulaceae	Wahlenbergia queenslandica			С		1/1
plants	land plants	Capparaceae	Capparis Ioranthifolia			С		1
plants	land plants	Capparaceae	Capparis loranthifolia var. bancroftii			С		1/1
plants	land plants	Capparaceae	Capparis shanesiana			C C E		1/1
plants	land plants	Capparaceae	Capparis mitchellii			С		1
plants	land plants	Capparaceae	Capparis humistrata			Е		1/1
plants	land plants	Capparaceae	Apophyllum anomalum	broom bush		С		8
plants	land plants	Capparaceae	Capparis			С		2
plants	land plants	Capparaceae	Capparis umbonata			С		1/1
plants	land plants	Capparaceae	Capparis canescens			С		5
plants	land plants	Capparaceae	Capparis lasiantha	nipan		С		21
plants	land plants	Caryophyllaceae	Polycarpaea longiflora			С		5
plants	land plants	Caryophyllaceae	Polycarpaea corymbosa			С		2/1
plants	land plants	Casuarinaceae	Casuarina cunninghamiana subsp. cunninghamiana			С		6
plants	land plants	Casuarinaceae	Casuarina cunninghamiana			С		1

Kingdom	Class	Family	Scientific Name	Common Name	l	Q	Α	Records
plants	land plants	Casuarinaceae	Allocasuarina luehmannii	bull oak		С		5
plants	land plants	Casuarinaceae	Casuarina cristata	belah		С		14
plants	land plants	Celastraceae	Elaeodendron australe var. australe			С		1/1
plants	land plants	Celastraceae	Denhamia disperma			С		4/1
plants	land plants	Celastraceae	Denhamia oleaster			С		2
plants	land plants	Celastraceae	Denhamia bilocularis			С		1
plants	land plants	Celastraceae	Denhamia cunninghamii			С		13/1
plants	land plants	Celastraceae	Elaeodendron australe			С		3
plants	land plants	Centrolepidaceae	Centrolepis exserta			С		1/1
plants	land plants	Chenopodiaceae	Einadia nutans			С		1/1
plants	land plants	Chenopodiaceae	Dysphania kalpari			С		1/1
plants	land plants	Chenopodiaceae	Salsola australis			C C		5
plants	land plants	Chenopodiaceae	Rhagodia parabolica			С		1/1
plants	land plants	Chenopodiaceae	Einadia polygonoides	knotweed goosefoot		С		1
plants	land plants	Chenopodiaceae	Enchylaena tomentosa	-		С		16
plants	land plants	Chenopodiaceae	Dysphania melanocarpa forma melanocarpa			С		2
plants	land plants	Chenopodiaceae	Sclerolaena tetracuspis	brigalow burr		С		1/1
plants	land plants	Chenopodiaceae	Einadia nutans subsp. linifolia			С		1/1
plants	land plants	Chenopodiaceae	Sclerolaena muricata var. villosa			C C		3
plants	land plants	Chenopodiaceae	Sclerolaena muricata var. muricata			С		3/1
plants	land plants	Chenopodiaceae	Enchylaena tomentosa var. tomentosa			С		7/1
plants	land plants	Chenopodiaceae	Maireana microphylla			С		5/1
plants	land plants	Cleomaceae	Cleome viscosa	tick-weed		С		7/1
plants	land plants	Clusiaceae	Hypericum gramineum			С		4/4
plants	land plants	Combretaceae	Terminalia oblongata subsp. oblongata			С		4/1
plants	land plants	Combretaceae	Terminalia oblongata			C C		13
plants	land plants	Commelinaceae	Commelina ensifolia	scurvy grass		С		1/1
plants	land plants	Commelinaceae	Murdannia graminea	murdannia		С		6/1
plants	land plants	Commelinaceae	Cyanotis axillaris			С		7/2
plants	land plants	Commelinaceae	Commelina diffusa	wandering jew		C C		14
plants	land plants	Commelinaceae	Commelina			С		2
plants	land plants	Convolvulaceae	Polymeria longifolia	polymeria		C C		22
plants	land plants	Convolvulaceae	Xenostegia tridentata			С		1/1
plants	land plants	Convolvulaceae	Convolvulus erubescens	Australian bindweed		С		1
plants	land plants	Convolvulaceae	Jacquemontia paniculata			С		18/2
plants	land plants	Convolvulaceae	Convolvulus graminetinus			С		1/1
plants	land plants	Convolvulaceae	Evolvulus alsinoides var. decumbens			С		2
plants	land plants	Convolvulaceae	Jacquemontia paniculata var. tomentosa			С		1/1
plants	land plants	Convolvulaceae	Ipomoea lonchophylla			С		31/1
plants	land plants	Convolvulaceae	Evolvulus alsinoides			С		19
plants	land plants	Convolvulaceae	Polymeria pusilla			С		7
plants	land plants	Convolvulaceae	Jacquemontia paniculata var. paniculata			С		1/1
plants	land plants	Convolvulaceae	Ipomoea coptica			С		1/1
plants	land plants	Convolvulaceae	lpomoea calobra			С		1/1
plants	land plants	Convolvulaceae	İpomoea brownii			С		2/1
plants	land plants	Convolvulaceae	İpomoea plebeia	bellvine		С		9

Kingdom	Class	Family	Scientific Name	Common Name	l	Q	Α	Records
plants	land plants	Cucurbitaceae	Cucumis melo			С		6/1
plants	land plants	Cucurbitaceae	Cucurbitaceae			С		1
plants	land plants	Cucurbitaceae	Cucumis anguria var. anguria	West Indian gherkin	Υ			4
plants	land plants	Cucurbitaceae	Diplocyclos palmatus			С		1/1
plants	land plants	Cucurbitaceae	Cucumis argenteus			С		1/1
plants	land plants	Cyperaceae	Cyperus			С		2
plants	land plants	Cyperaceae	Cyperus cunninghamii subsp. cunninghamii			C C C		1/1
plants	land plants	Cyperaceae	Cyperus bifax	western nutgrass		С		3/3
plants	land plants	Cyperaceae	Gahnia aspera	-		С		2/1
plants	land plants	Cyperaceae	Cyperus fulvus			С		5/2
plants	land plants	Cyperaceae	Cyperus betchei			CCC		2
plants	land plants	Cyperaceae	Cyperus distans			С		2
plants	land plants	Cyperaceae	Cyperus gilesii			С		26/1
plants	land plants	Cyperaceae	Scleria brownii			CCC		2/2
plants	land plants	Cyperaceae	Cyperus flavidus			С		1/1
plants	land plants	Cyperaceae	Cyperus gracilis			С		13/1
plants	land plants	Cyperaceae	Cyperus rotundus	nutgrass	Υ			1
plants	land plants	Cyperaceae	Cyperus concinnus	ŭ		С		6/2
plants	land plants	Cyperaceae	Cyperus difformis	rice sedge		С		3
plants	land plants	Cyperaceae	Cyperus exaltatus	tall flatsedge		C		8
plants	land plants	Cyperaceae	Cyperus javanicus	Ŭ		С		1/1
plants	land plants	Cyperaceae	Cyperus scariosus			C		1
plants	land plants	Cyperaceae	Fimbristylis nuda			C		1
plants	land plants	Cyperaceae	Abildgaardia ovata			С		5/1
plants	land plants	Cyperaceae	Cyperus compressus		Υ			1/1
plants	land plants	Cyperaceae	Cyperus cyperoides			С		3
plants	land plants	Cyperaceae	Cyperus esculentus	yellow nutgrass	Υ			1/1
plants	land plants	Cyperaceae	Cyperus leiocaulon	, 0		С		3/3
plants	land plants	Cyperaceae	Cyperus rigidellus			С		10
plants	land plants	Cyperaceae	Cyperus squarrosus	bearded flatsedge		С		7
plants	land plants	Cyperaceae	Scleria sphacelata	ŭ		C C C		4/3
plants	land plants	Cyperaceae	Cyperus cristulatus			С		3
plants	land plants	Cyperaceae	Cyperus isabellinus			C		2/2
plants	land plants	Cyperaceae	Cyperus perangustus			C C		1
plants	land plants	Cyperaceae	Fimbristylis nutans			С		1
plants	land plants	Cyperaceae	Cyperus sesquiflorus		Υ	_		1/1
plants	land plants	Cyperaceae	Cyperus victoriensis			С		1/1
plants	land plants	Cyperaceae	Scleria mackaviensis			С		14/1
plants	land plants	Cyperaceae	Cyperus alopecuroides			Č		1/1
plants	land plants	Cyperaceae	Fimbristylis dichotoma	common fringe-rush		Č		14/1
plants	land plants	Cyperaceae	Fimbristylis microcarya			Č		1/1
plants	land plants	Cyperaceae	Fimbristylis sieberiana			Č		1/1
plants	land plants	Cyperaceae	Lipocarpha microcephala			C		2
plants	land plants	Cyperaceae	Eleocharis philippinensis			Č		_ 1/1
plants	land plants	Cyperaceae	Fimbristylis quinquangularis			Č		1/1
plants	land plants	Cyperaceae	Schoenoplectiella dissachantha			C C		4/1
Pianto	.and planto	0,70.40040	5550/10p/00tiona dioddonaritia			_		1/ 1

Kingdom	Class	Family	Scientific Name	Common Name	l	Q	Α	Records
plants	land plants	Cyperaceae	Cyperus dietrichiae var. dietrichiae			С		1/1
plants	land plants	Cyperaceae	Cyperus polystachyos var. polystachyos			С		1/1
plants	land plants	Cyperaceae	Cyperus iria			С		4/2
plants	land plants	Droseraceae	Drosera			С		5
plants	land plants	Ebenaceae	Diospyros humilis	small-leaved ebony		C		13/2
plants	land plants	Erpodiaceae	Venturiella hodgkinsoniae	· · · · · · · · · · · · · · · · · · ·		Č		1/1
plants	land plants	Erythroxylaceae	Erythroxylum australe	cocaine tree		Č		30/2
plants	land plants	Euphorbiaceae	Ricinus communis	castor oil bush	Υ	•		1
plants	land plants	Euphorbiaceae	Acalypha eremorum	soft acalypha	•	С		3
plants	land plants	Euphorbiaceae	Bertya pedicellata	oon acarypma		ŇT		20/19
plants	land plants	Euphorbiaceae	Euphorbia tannensis subsp. eremophila			C		4
plants	land plants	Euphorbiaceae	Euphorbia biconvexa			Č		1/1
plants	land plants	Euphorbiaceae	Euphorbia coghlanii			č		6
plants	land plants	Euphorbiaceae	Alchornea ilicifolia	native holly		č		1
plants	land plants	Euphorbiaceae	Euphorbia drummondii	native nony		Č		19
plants	land plants	Euphorbiaceae	Mallotus philippensis	red kamala		Č		1
plants	land plants	Euphorbiaceae	Euphorbia hyssopifolia	red kamala	Υ	O		9
plants	land plants	Euphorbiaceae	Excoecaria dallachyana	scrub poison tree	'	С		1
	land plants	Euphorbiaceae	Excoecaria dallacriyaria Euphorbia sarcostemmoides	climbing caustic		Č		1/1
plants	land plants	Euphorbiaceae	Adriana tomentosa var. tomentosa	climbing caustic		Č		1/1
plants			Croton insularis	Queensland cascarilla		C		5/3
plants	land plants	Euphorbiaceae		Queensianu cascanna	Υ	C		2
plants	land plants	Euphorbiaceae	Euphorbia hirta		ĭ	_		2 1/1
plants	land plants	Euphorbiaceae	Euphorbia	normally labored areton		С		
plants	land plants	Euphorbiaceae	Croton phebalioides	narrow-leaved croton		C		7/4
plants	land plants	Fabaceae	Zornia muelleriana subsp. muelleriana			С		1/1
plants	land plants	Fabaceae	Crotalaria mitchellii subsp. mitchellii			С		2
plants	land plants	Fabaceae	Macroptilium lathyroides var. semierectum		Υ	_		3
plants	land plants	Fabaceae	Tephrosia sp. (Miriam Vale E.J.Thompson+ MIR33)			C		1/1
plants	land plants	Fabaceae	Crotalaria novae-hollandiae subsp. novae-hollandiae	9		С		1
plants	land plants	Fabaceae	Tephrosia filipes var. (Mt Blackjack A.R.Bean+ 7332)			С		2/2
plants	land plants	Fabaceae	Zornia			С		1
plants	land plants	Fabaceae	Glycine			С		1
plants	land plants	Fabaceae	Desmodium			С		1
plants	land plants	Fabaceae	Tephrosia			С		1/1
plants	land plants	Fabaceae	Crotalaria			С		1
plants	land plants	Fabaceae	Indigofera			С		1
plants	land plants	Fabaceae	Cullen tenax	emu-foot		С		9
plants	land plants	Fabaceae	Stylosanthes			С		1
plants	land plants	Fabaceae	Hovea longipes	brush hovea		С		1
plants	land plants	Fabaceae	Glycine falcata			С		14
plants	land plants	Fabaceae	Lotus australis	Australian trefoil		С		3/3
plants	land plants	Fabaceae	Glycine tabacina	glycine pea		Č		18
plants	land plants	Fabaceae	Lablab purpureus	lablab	Υ	-		1/1
plants	land plants	Fabaceae	Tephrosia juncea		-	С		5
plants	land plants	Fabaceae	Vigna lanceolata			Č		36

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Fabaceae	Canavalia papuana	wild jack bean		С		1/1
plants	land plants	Fabaceae	Clitoria ternatea	butterfly pea	Υ			1
plants	land plants	Fabaceae	Crotalaria juncea	sunhemp	Υ			17/1
plants	land plants	Fabaceae	Desmodium varians	slender tick trefoil		С		3
plants	land plants	Fabaceae	Galactia muelleri			С		7
plants	land plants	Fabaceae	Glycine latifolia			000000000000		3/1
plants	land plants	Fabaceae	Rhynchosia minima			С		19
plants	land plants	Fabaceae	Tephrosia filipes			С		3
plants	land plants	Fabaceae	Zornia muriculata			С		8
plants	land plants	Fabaceae	Crotalaria montana			С		8
plants	land plants	Fabaceae	Glycine tomentella	woolly glycine		С		12/2
plants	land plants	Fabaceae	Indigofera colutea	sticky indigo		С		6
plants	land plants	Fabaceae	Indigofera hirsuta	hairy indigo		С		1/1
plants	land plants	Fabaceae	Indigofera linnaei	Birdsville indigo		С		7/1
plants	land plants	Fabaceae	Sesbania cannabina	· ·		С		9
plants	land plants	Fabaceae	Zornia muelleriana			С		2
plants	land plants	Fabaceae	Aeschynomene indica	budda pea		С		2
plants	land plants	Fabaceae	Desmodium filiforme	•		С		2/2
plants	land plants	Fabaceae	Desmodium tortuosum	Florida beggar-weed	Υ			1/1
plants	land plants	Fabaceae	Galactia tenuiflora	33		С		4
plants	land plants	Fabaceae	Stylosanthes hamata		Υ			14/1
plants	land plants	Fabaceae	Stylosanthes scabra		Υ			23
plants	land plants	Fabaceae	Tephrosia barbatala			С		1/1
plants	land plants	Fabaceae	Alysicarpus muelleri					1/1
plants	land plants	Fabaceae	Indigofera linifolia			00000000		12
plants	land plants	Fabaceae	Tephrosia leptoclada			С		3
plants	land plants	Fabaceae	Desmodium brachypodum	large ticktrefoil		С		9/1
plants	land plants	Fabaceae	Desmodium macrocarpum	G		С		9/7
plants	land plants	Fabaceae	Tephrosia dietrichiae			С		3/1
plants	land plants	Fabaceae	Tephrosia flagellaris			С		2/2
plants	land plants	Fabaceae	Crotalaria medicaginea	trefoil rattlepod		С		5
plants	land plants	Fabaceae	Crotalaria dissitiflora	·		С		1
plants	land plants	Fabaceae	Crotalaria sessiliflora					8
plants	land plants	Fabaceae	Desmodium campylocaulon			С		9
plants	land plants	Fabaceae	Indigofera queen slandica			С		1/1
plants	land plants	Fabaceae	Indigofera sericovexilla			С		2
plants	land plants	Fabaceae	Macroptilium atropurpureum	siratro	Υ			7
plants	land plants	Fabaceae	Vigna radiata var. sublobata			С		8/3
plants	land plants	Fabaceae	Rhynchosia minima var. minima			Č		18
plants	land plants	Fabaceae	Crotalaria incana subsp. incana		Υ			1/1
plants	land plants	Fabaceae	Galactia tenuiflora var. lucida			С		2/2
plants	land plants	Fabaceae	Zornia prostrata var. prostrata			Č		1/1
plants	land plants	Fabaceae	Rhynchosia minima var. australis			CCC		12
plants	land plants	Fabaceae	Sesbania cannabina var. cannabina			Č		4/1
plants	land plants	Fabaceae	Zornia dyctiocarpa var. filifolia			Č		1/1
plants	land plants	Fabaceae	Zornia muriculata subsp. angustata			C C		1/1
12.00	.3		= 2aaaa.a.aaaapi aiigaatata			•		., .

	Class	Family	Scientific Name	Common Name	<u> </u>	Q	Α	Records
plants	land plants	Fabaceae	Zornia muriculata subsp. muriculata			С		1/1
plants	land plants	Fabaceae	Tephrosia brachyodon var. longifolia			С		2
plants	land plants	Fabaceae	Indigofera australis subsp. australis			С		1/1
plants	land plants	Fabroniaceae	Fabronia australis			С		1/1
plants	land plants	Frullaniaceae	Frullania			С		2/2
plants	land plants	Gentianaceae	Schenkia australis			С		1/1
plants	land plants	Goodeniaceae	Goodenia			С		2
plants	land plants	Goodeniaceae	Goodenia glabra			С		20
plants	land plants	Goodeniaceae	Goodenia sp. (Mt Castletower M.D.Crisp 2753)			С		2/2
plants	land plants	Goodeniaceae	Goodenia gracilis			С		1/1
plants	land plants	Goodeniaceae	Brunonia australis	blue pincushion		С		1
plants	land plants	Goodeniaceae	Goodenia grandiflora	•		С		3/3
plants	land plants	Goodeniaceae	Goodenia rotundifolia			C C C		1
plants	land plants	Goodeniaceae	Velleia			C		5
plants	land plants	Goodeniaceae	Goodenia hirsuta			С		1/1
plants	land plants	Haloragaceae	Haloragis aspera	raspweed		Č		1/1
plants	land plants	Haloragaceae	Haloragis stricta			Č		13
plants	land plants	Hemerocallidaceae	Dianella longifolia			Č		3
plants	land plants	Hemerocallidaceae	Dianella nervosa			CCCC		1
plants	land plants	Hemerocallidaceae	Dianella			Č		3
plants	land plants	Hypoxidaceae	Hypoxis pratensis var. pratensis			Č		4
plants	land plants	Hypoxidaceae	Hypoxis arillacea			Č		2/2
plants	land plants	Johnsoniaceae	Tricoryne elatior	yellow autumn lily		Č		4
plants	land plants	Johnsoniaceae	Caesia parviflora var. parviflora	, e		Č		1/1
plants	land plants	Juncaceae	Juncus usitatus			Č		2
plants	land plants	Juncaceae	Juncus subglaucus			Č		_ 1/1
plants	land plants	Lamiaceae	Mentha			C C		1
plants	land plants	Lamiaceae	Clerodendrum			Č		1
plants	land plants	Lamiaceae	Plectranthus			Č		2/1
plants	land plants	Lamiaceae	Teucrium junceum			C C		<u>-</u> / 1
plants	land plants	Lamiaceae	Ocimum tenuiflorum			Č		3
plants	land plants	Lamiaceae	Prostanthera collina			Č		2/2
plants	land plants	Lamiaceae	Plectranthus parviflorus			C C		4
plants	land plants	Lamiaceae	Ocimum caryophyllinum			Č		1/1
plants	land plants	Lamiaceae	Plectranthus diversus			Č		1/1
plants	land plants	Lamiaceae	Basilicum polystachyon			č		7/2
plants	land plants	Lamiaceae	Teucrium integrifolium			č		1/1
plants	land plants	Lamiaceae	Plectranthus graveolens	flea bush		Č		1/1
plants	land plants	Lamiaceae	Clerodendrum floribundum	noa baon		č		8
plants	land plants	Lamiaceae	Leucas lavandulifolia		Υ	Ū		1/1
plants	land plants	Lauraceae	Cassytha pubescens	downy devil's twine	•	С		1
plants	land plants	Lauraceae	Cassytha filiformis	dodder laurel		Č		i
plants	land plants	Laxmanniaceae	Laxmannia gracilis	slender wire lily		Č		2/1
plants	land plants	Laxmanniaceae	Lomandra multiflora subsp. multiflora	Condon who my		Č		1
plants	land plants	Laxmanniaceae	Lomandra confertifolia subsp. pallida			Č		3
plants	land plants	Laxmanniaceae	Eustrephus latifolius	wombat berry		Č		11/1

Kingdom	Class	Family	Scientific Name	Common Name	1	Q	Α	Records
plants	land plants	Laxmanniaceae	Lomandra multiflora			С		5
plants	land plants	Laxmanniaceae	Lomandra longifolia			С		8/3
plants	land plants	Laxmanniaceae	Lomandra filiformis			С		1
plants	land plants	Lecythidaceae	Planchonia careya	cockatoo apple		С		1
plants	land plants	Loganiaceae	Mitrasacme alsinoides	• •		C		5
plants	land plants	Loganiaceae	Mitrasacme pygmaea			С		9/1
plants	land plants	Loganiaceae	Mitrasacme			С		1/1
plants	land plants	Loranthaceae	Lysiana subfalcata			С		2/2
plants	land plants	Lythraceae	Ámmannia multiflora	jerry-jerry		С		3
plants	land plants	Lythraceae	Lythrum paradoxum			C C		1
plants	land plants	Lythraceae	Rotala mexicana			С		1/1
plants	land plants	Malvaceae	Hibiscus sp. (Emerald S.L.Everist 2124)			С		1/1
plants	land plants	Malvaceae	Malvastrum àmericanum var. americanum		Υ			1
plants	land plants	Malvaceae	Sida sp. (Charters Towers E.J.THompson+ CHA456)			С		2/2
plants	land plants	Malvaceae	Sida sp. (Musselbrook M.B.Thomas+ MRS437)			С		3
plants	land plants	Malvaceae	Sida			С		21
plants	land plants	Malvaceae	Abutilon			С		2/1
plants	land plants	Malvaceae	Sida spinosa	spiny sida	Υ			29/3
plants	land plants	Malvaceae	Sida rohlenae	, ,		С		7
plants	land plants	Malvaceae	Sida corrugata			С		23/1
plants	land plants	Malvaceae	Abutilon hannii			С		2
plants	land plants	Malvaceae	Abutilon nobile			С		1/1
plants	land plants	Malvaceae	Sida cordifolia		Υ			21
plants	land plants	Malvaceae	Sida fibulifera			С		2/2
plants	land plants	Malvaceae	Sida trichopoda			С		18/2
plants	land plants	Malvaceae	Abutilon fraseri	dwarf lantern flower		С		1
, plants	land plants	Malvaceae	Hibiscus sturtii			С		4/2
plants	land plants	Malvaceae	Hibiscus trionum					29
plants	land plants	Malvaceae	Sida atherophora			С		2/1
plants	land plants	Malvaceae	Sida everistiana			С		2/1
plants	land plants	Malvaceae	Sida hackettiana			С		11
, plants	land plants	Malvaceae	Sida rhombifolia		Υ			13
, plants	land plants	Malvaceae	Sida cunninghamii			С		5
, plants	land plants	Malvaceae	Abutilon guineense		Υ			2/2
plants	land plants	Malvaceae	Gossypium australe			С		2/2
, plants	land plants	Malvaceae	Hibiscus splendens	pink hibiscus		С		2/2
, plants	land plants	Malvaceae	Abutilon malvifolium	bastard marshmallow		С		1
plants	land plants	Malvaceae	Abutilon subviscosum			С		1/1
plants	land plants	Malvaceae	Gossypium sturtianum			С		2/1
, plants	land plants	Malvaceae	Hibiscus divaricatus			С		2/2
plants	land plants	Malvaceae	Hibiscus meraukensis	Merauke hibiscus		С		2
plants	land plants	Malvaceae	Hibiscus verdcourtii	·		C		_ 1/1
plants	land plants	Malvaceae	Abelmoschus ficulneus	native rosella		С		12/1
plants	land plants	Malvaceae	Abutilon leucopetalum			Č		12
plants	land plants	Malvaceae	Abutilon micropetalum			Č		2/2
plants	land plants	Malvaceae	Malvastrum americanum		Υ	•		37

Kingdom	Class	Family	Scientific Name	Common Name	l	Q	Α	Records
plants	land plants	Malvaceae	Hibiscus heterophyllus			С		1/1
plants	land plants	Malvaceae	Hibiscus krichauffianus			С		1/1
plants	land plants	Malvaceae	Sida aprica var. aprica			С		1/1
plants	land plants	Malvaceae	Hibiscus sturtii var. sturtii			C C		10/2
plants	land plants	Malvaceae	Sida filiformis - S.macropoda			С		1
plants	land plants	Malvaceae	Sida rohlenae subsp. rohlenae			С		2
plants	land plants	Malvaceae	Abutilon fraseri subsp. fraseri			C C		2/2
plants	land plants	Malvaceae	Abutilon oxycarpum var. incanum			С		1/1
plants	land plants	Malvaceae	Abutilon oxycarpum var. oxycarpum			С		1
plants	land plants	Malvaceae	Malvastrum americanum var. stellatum			C		2/2
plants	land plants	Malvaceae	Abutilon oxycarpum var. subsagittatum			С		16
, plants	land plants	Malvaceae	Sida sp. (Aramac E.J.Thompson+ JER192)			С		1/1
plants	land plants	Marsileaceae	Marsilea drummondii	common nardoo		C		1
plants	land plants	Marsileaceae	Marsilea mutica	shiny nardoo		Č		3
plants	land plants	Marsileaceae	Marsilea exarata	sway-back nardoo		Č		1/1
plants	land plants	Meliaceae	Owenia x reliqua	ona, baomia do		Č		1/1
plants	land plants	Meliaceae	Owenia acidula	emu apple		C		12
plants	land plants	Menispermaceae	Tinospora smilacina	snakevine		Č		3
plants	land plants	Mimosaceae	Vachellia farnesiana	Shake vine	Υ			23
plants	land plants	Mimosaceae	Archidendropsis basaltica	red lancewood	•	С		15
plants	land plants	Mimosaceae	Archidendropsis thozetiana	roa lancowood		Č		1
plants	land plants	Mimosaceae	Acacia blakei subsp. blakei			Ċ		1/1
plants	land plants	Mimosaceae	Acacia crassa subsp. crassa			C C		1
plants	land plants	Mimosaceae	Acacia excelsa subsp. excelsa			č		2
plants	land plants	Mimosaceae	Acacia julifera subsp. julifera			Ċ		<u>-</u> 1/1
plants	land plants	Mimosaceae	Neptunia gracilis forma gracilis			00000		34/2
plants	land plants	Mimosaceae	Acacia leiocalyx subsp. leiocalyx			Ċ		3
plants	land plants	Mimosaceae	Acacia julifera subsp. curvinervia			Ċ		6/6
plants	land plants	Mimosaceae	Acacia			C		5/1
plants	land plants	Mimosaceae	Acacia crassa			č		1
plants	land plants	Mimosaceae	Acacia aprepta	Miles mulga		Č		1/1
plants	land plants	Mimosaceae	Acacia arbiana	wiics maiga		NT		1/1
plants	land plants	Mimosaceae	Acacia excelsa			Ċ		9
plants	land plants	Mimosaceae	Acacia faucium			C		1/1
plants	land plants	Mimosaceae	Acacia radicidin Acacia cambagei	aidaee		C C		1
plants	land plants	Mimosaceae	Acacia cambagei Acacia conferta	gidgee		Č		5/5
plants	land plants	Mimosaceae	Acacia covilenta Acacia cowleana			Č		1/1
	•	Mimosaceae	Acacia comeana Acacia oswaldii	milion		Č		6/4
plants	land plants land plants		Acacia oswaidii Acacia salicina	miljee doolan				11
plants		Mimosaceae Mimosaceae		lancewood		C C		46/2
plants	land plants	Mimosaceae	Acacia shirleyi	lancewood		C		
plants	land plants		Acacia tephrina	for loof wattle		\sim		1/1
plants	land plants	Mimosaceae	Acacia amblygona	fan-leaf wattle		C		2/1
plants	land plants	Mimosaceae	Acacia fodinalis					3/3
plants	land plants	Mimosaceae	Acacia leiocalyx		\/	С		1
plants	land plants	Mimosaceae	Prosopis pallida	handaa	Υ	_		1/1
plants	land plants	Mimosaceae	Acacia catenulata	bendee		С		2

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Mimosaceae	Acacia flavescens	toothed wattle		С		6
plants	land plants	Mimosaceae	Acacia rhodoxylon	ringy rosewood		С		18
plants	land plants	Mimosaceae	Albizia canescens			С		4/2
plants	land plants	Mimosaceae	Acacia burdekensis			C		6/1
plants	land plants	Mimosaceae	Acacia falciformis	broad-leaved hickory		С		2
plants	land plants	Mimosaceae	Acacia harpophylla	brigalow		С		16
plants	land plants	Mimosaceae	Acacia holosericea	G		C C		2
plants	land plants	Mimosaceae	Acacia sparsiflora			С		1/1
plants	land plants	Mimosaceae	Neptunia monosperma			С		1/1
plants	land plants	Mimosaceae	Vachellia bidwillii			C		5/2
plants	land plants	Mimosaceae	Acacia bancroftiorum			С		4/4
plants	land plants	Molluginaceae	Glinus lotoides	hairy carpet weed		С		2/2
plants	land plants	Moraceae	Ficus rubiginosa forma rubiginosa	, , , , , , , , , , , , , , , , , , , ,		Ċ		1/1
plants	land plants	Moraceae	Ficus opposita			C C		5/1
plants	land plants	Moraceae	Ficus coronata	creek sandpaper fig		С		1
plants	land plants	Myrsinaceae	Myrsine variabilis			Č		1/1
plants	land plants	Myrtaceae	Corymbia tessellaris	Moreton Bay ash		C		22
plants	land plants	Myrtaceae	Melaleuca hemisticta			Č		 1/1
plants	land plants	Myrtaceae	Corymbia clarksoniana			Č		40/4
plants	land plants	Myrtaceae	Eucalyptus cambageana	Dawson gum		C C		8/1
plants	land plants	Myrtaceae	Eucalyptus persistens	- a 9		Č		5/4
plants	land plants	Myrtaceae	Eucalyptus thozetiana			Č		6/5
plants	land plants	Myrtaceae	Melaleuca fluviatilis			CCC		2/2
plants	land plants	Myrtaceae	Melaleuca leucadendra	broad-leaved tea-tree		Č		2
plants	land plants	Myrtaceae	Melaleuca viridiflora			Č		2
plants	land plants	Myrtaceae	Corymbia erythrophloia	variable-barked bloodwood		C C		- 6/1
plants	land plants	Myrtaceae	Eucalyptus orgadophila	mountain coolibah		Č		1
plants	land plants	Myrtaceae	Eucalyptus platyphylla	poplar gum		Č		3
plants	land plants	Myrtaceae	Eucalyptus raveretiana	black ironbox		C C	V	2/2
plants	land plants	Myrtaceae	Eucalyptus tholiformis			Č	-	3/3
plants	land plants	Myrtaceae	Leptospermum neglectum			Č		3/3
plants	land plants	Myrtaceae	Thryptomene parviflora			C C		1/1
plants	land plants	Myrtaceae	Eucalyptus melanophloia			Č		1
plants	land plants	Myrtaceae	Eucalyptus tereticornis			Č		3
plants	land plants	Myrtaceae	Corymbia intermedia	pink bloodwood		C C C		1
plants	land plants	Myrtaceae	Eucalyptus apothalassica	p 2.000000		Č		4
plants	land plants	Myrtaceae	Eucalyptus camaldulensis			Č		1
plants	land plants	Myrtaceae	Eucalyptus drepanophylla			Č		2/1
plants	land plants	Myrtaceae	Lysicarpus angustifolius	budgeroo		Č		2/2
plants	land plants	Myrtaceae	Corymbia citriodora subsp. citriodora	a dage. ee		Č		34
plants	land plants	Myrtaceae	Eucalyptus camaldulensis subsp. acuta			Č		5
plants	land plants	Myrtaceae	Eucalyptus crebra x Eucalyptus populnea			č		5
plants	land plants	Myrtaceae	Corymbia trachyphloia subsp. trachyphloia			Č		1/1
plants	land plants	Myrtaceae	Eucalyptus crebra x Eucalyptus orgadophila			C C		1/1
plants	land plants	Myrtaceae	Eucalyptus crebra x Eucalyptus melanophloia			Ċ		1/1
plants	land plants	Myrtaceae	Eucalyptus tereticornis subsp. tereticornis			C C		17
pianto	iana pianto	Wyrtaocac	Education to to to to the other to to the other			J		17

Kingdom	Class	Family	Scientific Name	Common Name	<u> </u>	Q	Α	Records
plants	land plants	Myrtaceae	Corymbia			С		3
plants	land plants	Myrtaceae	Melaleuca			С		1
plants	land plants	Myrtaceae	Myrtaceae			С		2
plants	land plants	Myrtaceae	Eucalyptus			С		5
plants	land plants	Myrtaceae	Corymbia aureola			C C		9/9
plants	land plants	Myrtaceae	Gossia bidwillii			С		1/1
plants	land plants	Myrtaceae	Eucalyptus crebra	narrow-leaved red ironbark		С		19/4
plants	land plants	Myrtaceae	Melaleuca nervosa			С		7/1
plants	land plants	Myrtaceae	Calytrix tetragona	fringe myrtle		С		1/1
plants	land plants	Myrtaceae	Eucalyptus brownii	Reid River box		С		2
plants	land plants	Myrtaceae	Eucalyptus exserta	Queensland peppermint		C C		4/2
plants	land plants	Myrtaceae	Corymbia dallachiana			С		11
plants	land plants	Myrtaceae	Melaleuca bracteata			С		2
plants	land plants	Myrtaceae	Eucalyptus tenuipes	narrow-leaved white mahogany		С		1/1
plants	land plants	Myrtaceae	Eucalyptus populnea	poplar box		С		54
plants	land plants	Myrtaceae	Corymbia terminalis			С		1/1
plants	land plants	Myrtaceae	Micromyrtus capricornia			С		1/1
plants	land plants	Nyctaginaceae	Boerhavia			C		2
plants	land plants	Nyctaginaceae	Boerhavia dominii			C		11
plants	land plants	Nyctaginaceae	Boerhavia sp. (St George A.Hill AQ399299)			C		3/3
plants	land plants	Nyctaginaceae	Boerhavia burbidgeana			С		1
plants	land plants	Nyctaginaceae	Boerhavia sp. (Bargara L.Pedley 5382)			Č		1/1
plants	land plants	Nyctaginaceae	Boerhavia pubescens			Č		1/1
plants	land plants	Oleaceae	Jasminum simplicifolium subsp. australiense			C C C		1/1
plants	land plants	Oleaceae	Jasminum didymum subsp. lineare			Č		7
plants	land plants	Oleaceae	Notelaea microcarpa					1
plants	land plants	Oleaceae	Jasminum didymum			C C C		1
plants	land plants	Onagraceae	Ludwigia			Č		1/1
plants	land plants	Onagraceae	Ludwigia octovalvis	willow primrose		C		4
plants	land plants	Orchidaceae	Cymbidium canaliculatum			CCC		8
plants	land plants	Orthotrichaceae	Macromitrium aurescens			C		2/2
plants	land plants	Oxalidaceae	Oxalis radicosa			C		4/1
plants	land plants	Oxalidaceae	Oxalis			Č		2
plants	land plants	Passifloraceae	Passiflora foetida		Υ			1/1
plants	land plants	Phrymaceae	Glossostigma diandrum			С		1/1
plants	land plants	Phyllanthaceae	Breynia oblongifolia			C		14
plants	land plants	Phyllanthaceae	Phyllanthus virgatus			C		30
plants	land plants	Phyllanthaceae	Bridelia leichhardtii			C		1/1
plants	land plants	Phyllanthaceae	Phyllanthus lacerosus			Č		1/1
plants	land plants	Phyllanthaceae	Notoleptopus decaisnei			Č		1/1
plants	land plants	Phyllanthaceae	Phyllanthus mitchellii			C		1
plants	land plants	Phyllanthaceae	Phyllanthus fuernrohrii			C C		1
plants	land plants	Phyllanthaceae	Flueggea leucopyrus			Č		2/1
plants	land plants	Phyllanthaceae	Phyllanthus			Č		2/1
plants	land plants	Phyllanthaceae	Phyllanthus carpentariae			C C		<u> </u>
plants	land plants	Phyllanthaceae	Phyllanthus maderaspatensis var. maderaspatensis			Č		5/1

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Phyllanthaceae	Phyllanthus sp. (Pentland R.J.Cumming 9742)			С		2
plants	land plants	Phyllanthaceae	Phyllanthus maderaspatensis			С		10/1
plants	land plants	Phyllanthaceae	Synostemon rhytidospermus			С		1/1
plants	land plants	Picrodendraceae	Petalostigma pubescens	quinine tree		000000		23
plants	land plants	Pittosporaceae	Bursaria incana	'		С		11/1
plants	land plants	Pittosporaceae	Pittosporum spinescens			С		2/1
plants	land plants	Pittosporaceae	Bursaria spinosa subsp. spinosa			С		2
plants	land plants	Pittosporaceae	Pittosporum angustifolium			С		5
plants	land plants	Plantaginaceae	Stemodia pubescens			С		1/1
plants	land plants	Plantaginaceae	Scoparia dulcis	scoparia	Υ			7/1
plants	land plants	Poaceae	Bothriochloa decipiens var. decipiens	•		С		11/3
plants	land plants	Poaceae	Aristida queenslandica var. dissimilis					1
plants	land plants	Poaceae	Panicum decompositum var. decompositum			C C		25/2
plants	land plants	Poaceae	Panicum queenslandicum var. acuminatum			С		2/2
plants	land plants	Poaceae	Urochloa holosericea subsp. holosericea			С		3
plants	land plants	Poaceae	Aristida jerichoensis var. subspinulifera			С		13/5
plants	land plants	Poaceae	Bothriochloa decipiens var. cloncurrensis			С		1
plants	land plants	Poaceae	Calyptochloa gracillima subsp. gracillima			С		10/4
plants	land plants	Poaceae	Panicum queenslandicum var. queenslandicum			С		2/2
plants	land plants	Poaceae	Digitaria divaricatissima var. divaricatissima			С		1/1
plants	land plants	Poaceae	Eriachne mucronata forma (Alpha C.E.Hubbard 788	82)		С		4/4
plants	land plants	Poaceae	Heteropogon contortus	black speargrass		С		47/2
plants	land plants	Poaceae	Heteropogon triticeus	giant speargrass		С		5
plants	land plants	Poaceae	Iseilema membranaceum	small flinders grass		С		1/1
plants	land plants	Poaceae	Iseilema vaginiflorum	red flinders grass		000000000000		34/1
plants	land plants	Poaceae	Pseudoraphis paradoxa	slender mudgrass				1/1
plants	land plants	Poaceae	Schizachyrium fragile	firegrass		С		1/1
plants	land plants	Poaceae	Sporobolus natalensis		Υ			1/1
plants	land plants	Poaceae	Alloteropsis semialata	cockatoo grass		С		7/1
plants	land plants	Poaceae	Aristida caput-medusae			С		1
plants	land plants	Poaceae	Aristida queenslandica			C C C		1
plants	land plants	Poaceae	Arundinella nepalensis	reedgrass		С		1/1
plants	land plants	Poaceae	Bothriochloa decipiens			С		1
plants	land plants	Poaceae	Bothriochloa ewartiana	desert bluegrass		C C		40/4
plants	land plants	Poaceae	Brachyachne convergens	common native couch		С		37/2
plants	land plants	Poaceae	Chionachne hubbardiana			C		1/1
plants	land plants	Poaceae	Cleistochloa subjuncea			С		1
plants	land plants	Poaceae	Enneapogon lindleyanus			С		1
plants	land plants	Poaceae	Enneapogon polyphyllus	leafy nineawn		С		2/2
plants	land plants	Poaceae	Enteropogon acicularis	curly windmill grass		С		6
plants	land plants	Poaceae	Enteropogon unispiceus			С		14/1
plants	land plants	Poaceae	Moorochloa eruciformis		Υ			9/1
plants	land plants	Poaceae	Panicum queenslandicum			С		9
plants	land plants	Poaceae	Paspalidium criniforme			С		3/2
plants	land plants	Poaceae	Paspalidium globoideum	sago grass		C C		23/1
plants	land plants	Poaceae	Setaria paspalidioides			С		3/3

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Poaceae	Thyridolepis xerophila			С		1/1
, plants	land plants	Poaceae	Urochloa mosambicensis	sabi grass	Υ			11/1
plants	land plants	Poaceae	Ancistrachne uncinulata	hooky grass		С		13/2
plants	land plants	Poaceae	Dactyloctenium radulans	button grass		С		7
plants	land plants	Poaceae	Digitaria hystrichoides	umbrella grass		С		2/2
plants	land plants	Poaceae	Eragrostis leptostachya	· ·		С		13/1
plants	land plants	Poaceae	Eragrostis megalosperma			C C		4/4
plants	land plants	Poaceae	Paspalidium caespitosum	brigalow grass		С		12/1
plants	land plants	Poaceae	Paspalidium constrictum			С		15/1
plants	land plants	Poaceae	Sporobolus actinocladus	katoora grass		С		2/1
plants	land plants	Poaceae	Ċapillipedium spicigerum	spicytop		С		3
plants	land plants	Poaceae	Cenchrus pennisetiformis		Υ			1/1
plants	land plants	Poaceae	Paspalidium albovillosum			С		3/2
plants	land plants	Poaceae	Sporobolus australasicus			С		1
plants	land plants	Poaceae	Thaumastochloa pubescens			С		1/1
plants	land plants	Poaceae	Bothriochloa erianthoides	satintop grass		C C		3/1
plants	land plants	Poaceae	Capillipedium parviflorum	scented top		С		1/1
plants	land plants	Poaceae	Cymbopogon queenslandicus	·		С		3/2
plants	land plants	Poaceae	Digitaria divaricatissima	spreading umbrella grass		С		7/2
plants	land plants	Poaceae	Thyridolepis mitchelliana	mulga mitchell grass		С		1
plants	land plants	Poaceae	Dichanthium queenslandicum			V	Е	8/8
plants	land plants	Poaceae	Diplachne fusca var. fusca			С		2/2
plants	land plants	Poaceae	Eriochloa pseudoacrotricha			С		37/2
plants	land plants	Poaceae	Eragrostis longipedicellata			С		3/3
plants	land plants	Poaceae	Dinebra panicea var. panicea		Υ			1/1
plants	land plants	Poaceae	Hyparrhenia rufa subsp. rufa		Υ			3/3
plants	land plants	Poaceae	Cynodon dactylon var. dactylon		Υ			3
plants	land plants	Poaceae	Aristida calycina var. calycina			С		11/1
plants	land plants	Poaceae	Dinebra decipiens var. asthenes			С		1
plants	land plants	Poaceae	Dinebra decipiens var. decipiens			С		6
plants	land plants	Poaceae	Dinebra decipiens var. peacockii			С		1/1
plants	land plants	Poaceae	Megathyrsus maximus var. maximus		Υ			1
plants	land plants	Poaceae	Aristida benthamii var. benthamii			С		4/2
plants	land plants	Poaceae	Aristida holathera var. holathera			С		10/4
plants	land plants	Poaceae	Panicum decompositum var. tenuius			С		11/1
plants	land plants	Poaceae	Chloris divaricata var. divaricata	slender chloris		С		3/1
plants	land plants	Poaceae	Bothriochloa bladhii subsp. bladhii			С		7/1
plants	land plants	Poaceae	Megathyrsus maximus var. pubiglumis		Υ			5
plants	land plants	Poaceae	Dichanthium sericeum subsp. sericeum			С		7/4
plants	land plants	Poaceae	Aristida contorta	bunched kerosene grass		С		1
plants	land plants	Poaceae	Astrebla lappacea	curly mitchell grass		С		10/3
plants	land plants	Poaceae	Cenchrus ciliaris		Υ			85/1
plants	land plants	Poaceae	Chloris pectinata	comb chloris		С		1/1
plants	land plants	Poaceae	Cymbopogon gratus			С		1/1
plants	land plants	Poaceae	Dichanthium tenue	small bluegrass		С		2
plants	land plants	Poaceae	Digitaria brownii			С		14/1

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Poaceae	Dinebra decipiens			С		1
plants	land plants	Poaceae	Enneapogon virens			С		3/2
plants	land plants	Poaceae	Entolasia stricta	wiry panic		C		2
plants	land plants	Poaceae	Eriochloa procera	slender cupgrass		С		4
plants	land plants	Poaceae	Paspalidium rarum			С		1/1
plants	land plants	Poaceae	Phalaris paradoxa	paradoxa grass	Υ			1/1
plants	land plants	Poaceae	Sorghum halepense	Johnson grass	Υ			1
plants	land plants	Poaceae	Sporobolus caroli	fairy grass		С		14
plants	land plants	Poaceae	Sporobolus creber	, ,		С		15
plants	land plants	Poaceae	Thellungia advena	coolibah grass		С		8/4
plants	land plants	Poaceae	Urochloa piligera	G		С		3
plants	land plants	Poaceae	Urochloa pubigera			С		8
plants	land plants	Poaceae	Aristida benthamii			С		3
plants	land plants	Poaceae	Aristida holathera			000000		3
plants	land plants	Poaceae	Enneapogon gracilis	slender nineawn		C		1/1
plants	land plants	Poaceae	Enneapogon pallidus	conetop nineawn		Č		7
plants	land plants	Poaceae	Enteropogon ramosus	F		Č		6/2
plants	land plants	Poaceae	Eragrostis elongata			Č		17/2
plants	land plants	Poaceae	Eragrostis speciosa			C		2/2
plants	land plants	Poaceae	Imperata cylindrica	blady grass		Č		_, _ 1
plants	land plants	Poaceae	Leptochloa digitata	alaay glaco		Č		4/1
plants	land plants	Poaceae	Megathyrsus maximus		Υ	Ū		5
plants	land plants	Poaceae	Oxychloris scariosa	winged chloris	•	С		1/1
plants	land plants	Poaceae	Panicum larcomianum	god ooo				1
plants	land plants	Poaceae	Paspalidium distans	shotgrass		C		4
plants	land plants	Poaceae	Paspalidium gracile	slender panic		Č		3/1
plants	land plants	Poaceae	Sporobolus sessilis	ololidor parillo		č		2/1
plants	land plants	Poaceae	Tragus australianus	small burr grass		Č		4
plants	land plants	Poaceae	Bothriochloa bladhii	oman graec		Č		1
plants	land plants	Poaceae	Bothriochloa pertusa		Υ			33/2
plants	land plants	Poaceae	Cymbopogon refractus	barbed-wire grass	•	С		10
plants	land plants	Poaceae	Dichanthium fecundum	curly bluegrass		Č		8/4
plants	land plants	Poaceae	Dichanthium sericeum	carry blacgrace		Č		36
plants	land plants	Poaceae	Digitaria lanceolata			C		1/1
plants	land plants	Poaceae	Enneapogon nigricans	niggerheads		Č		1
plants	land plants	Poaceae	Enneapogon truncatus	mggemeade		Č		36
plants	land plants	Poaceae	Eragrostis lacunaria	purple lovegrass		Č		17/3
plants	land plants	Poaceae	Eragrostis tenellula	delicate lovegrass		Č		13/1
plants	land plants	Poaceae	Iseilema macratherum	donodio lovogrado		Č		3/3
plants	land plants	Poaceae	Panicum decompositum			Č		8
plants	land plants	Poaceae	Paspalum mandiocanum		Υ	Ŭ		1/1
plants	land plants	Poaceae	Sporobolus elongatus		'	С		1, 1
plants	land plants	Poaceae	Sporobolus crahridus			č		3/2
plants	land plants	Poaceae	Themeda quadrivalvis	grader grass	Υ	9		1
plants	land plants	Poaceae	Tripogon Ioliiformis	five minute grass		С		3/1
plants	land plants	Poaceae	Urochloa praetervisa	iivo iiiiidto grado		Č		2

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Poaceae	Whiteochloa airoides			С		2
plants	land plants	Poaceae	Alloteropsis cimicina			С		5/2
plants	land plants	Poaceae	Cymbopogon bombycinus	silky oilgrass		С		5/1
plants	land plants	Poaceae	Dichanthium annulatum	sheda grass	Υ			1
plants	land plants	Poaceae	Dichanthium aristatum	angleton grass	Υ			5/3
plants	land plants	Poaceae	Dichanthium caricosum	ğ ğ	Υ			1/1
plants	land plants	Poaceae	Digitaria breviglumis			С		1
plants	land plants	Poaceae	Elytrophorus spicatus			С		5/1
plants	land plants	Poaceae	Eragrostis leptocarpa	drooping lovegrass		С		5
plants	land plants	Poaceae	Eragrostis parviflora	weeping lovegrass		С		8/1
plants	land plants	Poaceae	Eremochloa bimaculata	poverty grass		C C		2/1
plants	land plants	Poaceae	Aristida latifolia	feathertop wiregrass		С		33/4
plants	land plants	Poaceae	Aristida leptopoda	white speargrass		Č		14/1
plants	land plants	Poaceae	Aristida personata			C		6
plants	land plants	Poaceae	Astrebla elymoides	hoop mitchell grass		Č		6/1
plants	land plants	Poaceae	Astrebla squarrosa	bull mitchell grass		Č		29/2
plants	land plants	Poaceae	Chloris divaricata	g.acc		C C		2/2
plants	land plants	Poaceae	Chloris ventricosa	tall chloris		Č		12
plants	land plants	Poaceae	Chrysopogon fallax	tan ornerio		Č		26/3
plants	land plants	Poaceae	Digitaria bicornis			Č		6/1
plants	land plants	Poaceae	Digitaria ciliaris	summer grass	Υ	Ū		2/1
plants	land plants	Poaceae	Echinochloa colona	awnless barnyard grass	Ý			7/2
plants	land plants	Poaceae	Eragrostis brownii	Brown's lovegrass	•	С		4/2
plants	land plants	Poaceae	Eragrostis sororia	Brown a levegrade		Č		15/5
plants	land plants	Poaceae	Eriaghodio dorona Eriachne mucronata			Č		2
plants	land plants	Poaceae	Ophiuros exaltatus			Č		3
plants	land plants	Poaceae	Paspalum dilatatum	paspalum	Υ	•		1
plants	land plants	Poaceae	Triodia mitchellii	buck spinifex	•	С		1/1
plants	land plants	Poaceae	Cymbopogon ambiguus	lemon grass		Č		3/1
plants	land plants	Poaceae	Cymbopogon obtectus	icinon grass		Č		1/1
plants	land plants	Poaceae	Digitaria ammophila	silky umbrella grass		č		17/4
plants	land plants	Poaceae	Digitaria ammioprilia Digitaria ramularis	onky ambrena grass		Č		1/1
plants	land plants	Poaceae	Poaceae			Č		5
plants	land plants	Poaceae	Setaria			C		1
plants	land plants	Poaceae	Aristida			C C C		8
plants	land plants	Poaceae	Astrebla			C		1
plants	land plants	Poaceae	Paspalum			Č		1
	land plants	Poaceae	Urochloa			Č		1
plants	land plants	Poaceae						1
plants		Poaceae	Enneapogon Erographia			C		7
plants	land plants		Eragrostis Dishanthium			C C		•
plants	land plants	Poaceae	Dichanthium			C		6/6
plants	land plants	Poaceae	Paspalidium Pothriochlos			\sim		2
plants	land plants	Poaceae	Bothriochloa	comet areas		0		1 2/4
plants	land plants	Poaceae	Perotis rara	comet grass		0		3/1
plants	land plants	Poaceae	Eriachne rara	oilla chrowston		CCCC		7/3
plants	land plants	Poaceae	Eulalia aurea	silky browntop		C		15/2

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Poaceae	Chloris gayana	rhodes grass	Υ			8
plants	land plants	Poaceae	Melinis repens	red natal grass	Υ			38
plants	land plants	Poaceae	Sarga plumosum	•		С		1/1
plants	land plants	Poaceae	Aristida ramosa	purple wiregrass		С		16/2
plants	land plants	Poaceae	Aristida spuria			С		1/1
plants	land plants	Poaceae	Chloris inflata	purpletop chloris	Υ			21
plants	land plants	Poaceae	Chloris virgata	feathertop rhodes grass	Υ			11
plants	land plants	Poaceae	Eriachne obtusa	·		С		4/1
plants	land plants	Poaceae	Panicum effusum			С		21/2
plants	land plants	Poaceae	Sehima nervosum			С		1/1
plants	land plants	Poaceae	Setaria surgens			С		7/2
plants	land plants	Poaceae	Aristida ingrata			С		1/1
plants	land plants	Poaceae	Aristida lignosa			C		3/2
plants	land plants	Poaceae	Chloris truncata			C		5
plants	land plants	Poaceae	Cynodon dactylon		Υ	_		2
plants	land plants	Poaceae	Digitaria blakei		•	С		_ 1/1
plants	land plants	Poaceae	Digitaria minima			Č		2/1
plants	land plants	Poaceae	Digitaria orbata			Č		1
plants	land plants	Poaceae	Eriochloa crebra	spring grass		Č		36/1
plants	land plants	Poaceae	Sarga leiocladum	opinig grace		C		1/1
plants	land plants	Poaceae	Themeda avenacea			Č		3
plants	land plants	Poaceae	Themeda triandra	kangaroo grass		Ċ		37/2
plants	land plants	Poaceae	Triraphis mollis	purple plumegrass		C C		1/1
plants	land plants	Poaceae	Urochloa foliosa	parpio piarriograco		Č		2/2
plants	land plants	Poaceae	Urochloa reptans			Ċ		1
plants	land plants	Poaceae	Aristida calycina			CCC		3
plants	land plants	Polygalaceae	Polygala pycnantha			C		1/1
plants	land plants	Polygalaceae	Polygala crassitesta			č		14/1
plants	land plants	Polygonaceae	Persicaria attenuata			Č		1/1
plants	land plants	Polygonaceae	Rumex hypogaeus		Υ	O		7
plants	land plants	Polygonaceae	Fallopia convolvulus	black bindweed	Ý			1
plants	land plants	Pontederiaceae	Monochoria cyanea	black billiaweed	•	С		5
plants	land plants	Portulacaceae	Portulaca filifolia			č		8
plants	land plants	Portulacaceae	Portulaca pilosa		Υ	C		3
plants	land plants	Portulacaceae	Calandrinia pickeringii		•	С		3/1
	land plants	Portulacaceae	Portulaca oleracea	nigwood	Υ	C		6
plants plants	land plants		Potamogeton tepperi	pigweed	1	C		1/1
	•	Potamogetonaceae Pottiaceae				Č		1/1
plants	land plants	Proteaceae	Trichostomum brachydontium Hakea lorea subsp. lorea					
plants	land plants			golden narret tree		C C		3 2/1
plants	land plants	Proteaceae	Grevillea pteridifolia	golden parrot tree		C		Z/ I 4
plants	land plants	Proteaceae	Grevillea juncifolia	honeysuckle spider flower		C		1
plants	land plants	Proteaceae	Grevillea parallela			C		2
plants	land plants	Proteaceae	Hakea chordophylla			C C		1
plants	land plants	Proteaceae	Persoonia falcata			\sim		5
plants	land plants	Proteaceae	Persoonia amaliae	baatusad		C C		3/2
plants	land plants	Proteaceae	Grevillea striata	beefwood		C		2

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Proteaceae	Grevillea			С		2
plants	land plants	Pteridaceae	Cheilanthes nudiuscula			С		1/1
plants	land plants	Pteridaceae	Cheilanthes distans	bristly cloak fern		С		1/1
plants	land plants	Pteridaceae	Adiantum atroviride	,		С		1/1
plants	land plants	Pteridaceae	Cheilanthes sieberi subsp. sieberi			С		11/1
plants	land plants	Ptychomitriaceae	Ptychomitrium australe .			С		1/1
plants	land plants	Putranjivaceae	Drypetes deplanchei	grey boxwood		C		1
plants	land plants	Ranunculaceae	Ranunculus meristus			С		1/1
plants	land plants	Rhamnaceae	Ventilago viminalis	supplejack		С		19/1
plants	land plants	Rhamnaceae	Alphitonia excelsa	soap tree		С		20
plants	land plants	Rubiaceae	Psydrax oleifolia	·		С		4
plants	land plants	Rubiaceae	Pavetta australiensis var. australiensis			С		1/1
·	·		var. australiensis - Pavetta granitica					
plants	land plants	Rubiaceae	Oldenlandia mitrasacmoides subsp. trachymenoides			С		7/1
plants	land plants	Rubiaceae	Everistia vacciniifolia forma vacciniifolia			С		2
plants	land plants	Rubiaceae	Everistia vacciniifolia forma crassa			С		1/1
plants	land plants	Rubiaceae	Psydrax odorata subsp. australiana			С		2/2
plants	land plants	Rubiaceae	Psydrax odorata forma buxifolia			CCC		7
plants	land plants	Rubiaceae	Psydrax saligna forma saligna			С		1/1
plants	land plants	Rubiaceae	Oldenlandia coerulescens			С		1/1
plants	land plants	Rubiaceae	Spermacoce multicaulis			С		15
plants	land plants	Rubiaceae	Spermacoce brachystema			С		4/2
plants	land plants	Rubiaceae	Psydrax odorata			CCC		2
plants	land plants	Rubiaceae	Psydrax forsteri			С		1/1
plants	land plants	Rubiaceae	Pavetta granitica			С		2/2
plants	land plants	Rubiaceae	Psydrax attenuata			С		4
plants	land plants	Rubiaceae	Larsenaikia ochreata			С		6/3
plants	land plants	Rubiaceae	Richardia brasiliensis	white eye	Y			1/1
plants	land plants	Rutaceae	Citrus glauca			С		2
plants	land plants	Rutaceae	Phebalium nottii	pink phebalium		С		2
plants	land plants	Rutaceae	Geijera					1
plants	land plants	Rutaceae	Phebalium glandulosum subsp. glandulosum			С		1/1
plants	land plants	Rutaceae	Murraya ovatifoliolata			C		2/2
plants	land plants	Rutaceae	Acronychia laevis	glossy acronychia		C		1/1
plants	land plants	Rutaceae	Flindersia australis	crow's ash		C		2
plants	land plants	Rutaceae	Geijera salicifolia	brush wilga		C		16/3
plants	land plants	Rutaceae	Flindersia maculosa	leopardwood		C		1
plants	land plants	Rutaceae	Geijera parviflora	wilga		C		3
plants	land plants	Rutaceae	Flindersia dissosperma			C		20/1
plants	land plants	Santalaceae	Santalum lanceolatum			C		6
plants	land plants	Sapindaceae	Dodonaea lanceolata			C		2
plants	land plants	Sapindaceae	Diploglottis macrantha			C C C		1
plants	land plants	Sapindaceae	Dodonaea stenophylla			C		2/2
plants	land plants	Sapindaceae	Alectryon oleifolius subsp. elongatus			C		5
plants	land plants	Sapindaceae	Cupaniopsis anacardioides	tuckeroo		С		1/1
plants	land plants	Sapindaceae	Alectryon diversifolius	scrub boonaree		С		12/1

Kingdom	Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Sapindaceae	Atalaya hemiglauca			С		21
plants	land plants	Sapindaceae	Alectryon connatus	grey birds-eye		С		1/1
plants	land plants	Sapindaceae	Dodonaea viscosa	3 , ,		С		1
plants	land plants	Sapindaceae	Atalaya			С		6
plants	land plants	Sapindaceae	Dodonaea viscosa subsp. spatulata			C		1/1
plants	land plants	Sapotaceae	Planchonella pohlmaniana var. (Gilbert River C.T.White 1409)			С		1/1
plants	land plants	Sapotaceae	Planchonella pohlmaniana			С		2/2
plants	land plants	Scrophulariaceae	Eremophila debilis	winter apple		С		9
plants	land plants	Scrophulariaceae	Myoporum acuminatum	coastal boobialla		Č		8/3
plants	land plants	Scrophulariaceae	Eremophila deserti			C C		6/1
plants	land plants	Scrophulariaceae	Eremophila longifolia	berrigan		С		2/1
plants	land plants	Scrophulariaceae	Eremophila mitchellii			Č		19
plants	land plants	Scrophulariaceae	Eremophila bignoniiflora	eurah		C		1
plants	land plants	Scrophulariaceae	Eremophila maculata subsp. maculata			Č		1/1
plants	land plants	Solanaceae	Datura leichhardtii	native thornapple	Υ	•		1/1
plants	land plants	Solanaceae	Solanum adenophorum	mauro mornappio		Ε		4/4
plants	land plants	Solanaceae	Physalis lanceifolia		Υ	_		2/2
plants	land plants	Solanaceae	Solanum parvifolium subsp. parvifolium			С		7/4
plants	land plants	Solanaceae	Solanum			Č		1
plants	land plants	Solanaceae	Nicotiana forsteri			Č		1/1
plants	land plants	Solanaceae	Datura stramonium	common thornapple	Υ	•		3
plants	land plants	Solanaceae	Solanum esuriale	quena	-	С		9
plants	land plants	Solanaceae	Solanum opacum	green berry nightshade		Č		1/1
plants	land plants	Solanaceae	Solanum ellipticum	potato bush		Č		5/1
plants	land plants	Sparrmanniaceae	Corchorus trilocularis	persons assess		Č		24/4
plants	land plants	Sparrmanniaceae	Grewia savannicola			Č		1/1
plants	land plants	Sparrmanniaceae	Grewia retusifolia			Č		12
plants	land plants	Sparrmanniaceae	Grewia latifolia	dysentery plant		C C		25/1
plants	land plants	Sparrmanniaceae	Corchorus aestuans	-,, μ		Č		1/1
plants	land plants	Sterculiaceae	Brachychiton populneus subsp. trilobus			Č		1/1
plants	land plants	Sterculiaceae	Brachychiton australis	broad-leaved bottle tree		С		1
plants	land plants	Sterculiaceae	Brachychiton rupestris			Č		2
plants	land plants	Stereophyllaceae	Stereophyllum radiculosum			C		1/1
plants	land plants	Stylidiaceae	Stylidium eglandulosum			С		2/2
plants	land plants	Thymelaeaceae	Wikstroemia indica	tie bush		Č		1
plants	land plants	Thymelaeaceae	Pimelea linifolia subsp. linifolia			C		4/1
plants	land plants	Thymelaeaceae	Pimelea haematostachya			С		22/3
plants	land plants	Thymelaeaceae	Pimelea microcephala			C		2/1
plants	land plants	Verbenaceae	Lantana camara	lantana	Υ			2
plants	land plants	Verbenaceae	Glandularia aristigera		Υ			1
plants	land plants	Verbenaceae	Verbena macrostachya			С		1
plants	land plants	Verbenaceae	Stachytarpheta jamaicensis	Jamaica snakeweed	Υ	-		1
plants	land plants	Verbenaceae	Verbena gaudichaudii			С		1/1
plants	land plants	Violaceae	Afrohybanthus stellarioides			C		3
plants	land plants	Violaceae	Afrohybanthus enneaspermus			Č		13/2

Kingdor	n Class	Family	Scientific Name	Common Name	I	Q	Α	Records
plants	land plants	Vitaceae	Clematicissus opaca			С		1
plants	land plants	Zygophyllaceae	Tribulus terrestris	caltrop		С		1
plants	land plants	Zygophyllaceae	Tribulus eichlerianus	bull head		С		1
plants	land plants	Zygophyllaceae	Tribulus micrococcus	yellow vine		С		1/1

CODES

- I Y indicates that the taxon is introduced to Queensland and has naturalised.
- Q Indicates the Queensland conservation status of each taxon under the *Nature Conservation Act 1992*. The codes are Extinct in the Wild (PE), Endangered (E), Vulnerable (V), Near Threatened (NT), Least Concern (C) or Not Protected ().
- A Indicates the Australian conservation status of each taxon under the *Environment Protection and Biodiversity Conservation Act 1999.* The values of EPBC are Conservation Dependent (CD), Critically Endangered (CE), Endangered (E), Extinct (EX), Extinct in the Wild (XW) and Vulnerable (V).

Records – The first number indicates the total number of records of the taxon for the record option selected (i.e. All, Confirmed or Specimens).

This number is output as 99999 if it equals or exceeds this value. The second number located after the / indicates the number of specimen records for the taxon. This number is output as 999 if it equals or exceeds this value.

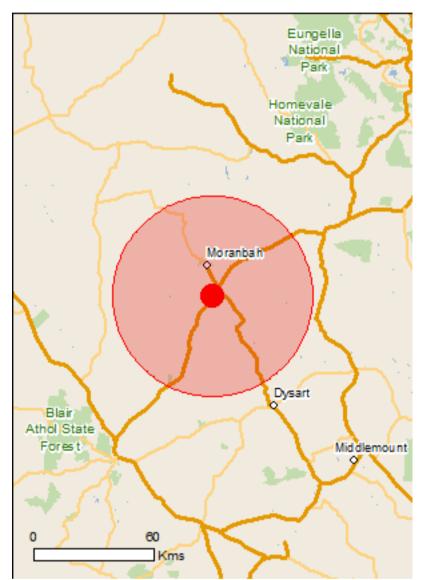
EPBC Act Protected Matters Report

This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected.

Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report.

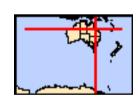
Information is available about <u>Environment Assessments</u> and the EPBC Act including significance guidelines, forms and application process details.

Report created: 08/10/19 09:55:31


Summary

Details

Matters of NES
Other Matters Protected by the EPBC Act
Extra Information


Caveat

<u>Acknowledgements</u>

This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2010

Coordinates
Buffer: 50.0Km

Summary

Matters of National Environmental Significance

This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the <u>Administrative Guidelines on Significance</u>.

World Heritage Properties:	None
National Heritage Places:	None
Wetlands of International Importance:	None
Great Barrier Reef Marine Park:	None
Commonwealth Marine Area:	None
Listed Threatened Ecological Communities:	5
Listed Threatened Species:	26
Listed Migratory Species:	12

Other Matters Protected by the EPBC Act

This part of the report summarises other matters protected under the Act that may relate to the area you nominated. Approval may be required for a proposed activity that significantly affects the environment on Commonwealth land, when the action is outside the Commonwealth land, or the environment anywhere when the action is taken on Commonwealth land. Approval may also be required for the Commonwealth or Commonwealth agencies proposing to take an action that is likely to have a significant impact on the environment anywhere.

The EPBC Act protects the environment on Commonwealth land, the environment from the actions taken on Commonwealth land, and the environment from actions taken by Commonwealth agencies. As heritage values of a place are part of the 'environment', these aspects of the EPBC Act protect the Commonwealth Heritage values of a Commonwealth Heritage place. Information on the new heritage laws can be found at http://www.environment.gov.au/heritage

A <u>permit</u> may be required for activities in or on a Commonwealth area that may affect a member of a listed threatened species or ecological community, a member of a listed migratory species, whales and other cetaceans, or a member of a listed marine species.

Commonwealth Land:	None
Commonwealth Heritage Places:	None
Listed Marine Species:	18
Whales and Other Cetaceans:	None
Critical Habitats:	None
Commonwealth Reserves Terrestrial:	None
Australian Marine Parks:	None

Extra Information

This part of the report provides information that may also be relevant to the area you have nominated.

State and Territory Reserves:	1
Regional Forest Agreements:	None
Invasive Species:	26
Nationally Important Wetlands:	None
Key Ecological Features (Marine)	None

Details

Matters of National Environmental Significance

Listed Threatened Ecological Communities		[Resource Information]
For threatened ecological communities where the distributions, State vegetation maps, remote sensing imagery community distributions are less well known, existing vegetation produce indicative distribution maps.	and other sources. Where	threatened ecological
Name	Status	Type of Presence
Brigalow (Acacia harpophylla dominant and codominant)	Endangered	Community known to occur within area
Natural Grasslands of the Queensland Central Highlands and northern Fitzroy Basin	Endangered	Community likely to occur within area
Poplar Box Grassy Woodland on Alluvial Plains	Endangered	Community likely to occur within area
Semi-evergreen vine thickets of the Brigalow Belt (North and South) and Nandewar Bioregions	Endangered	Community likely to occur within area
Weeping Myall Woodlands	Endangered	Community likely to occur within area
Listed Threatened Species		[Resource Information]
Name	Status	Type of Presence
Birds		
Calidris ferruginea Curlew Sandpiper [856]	Critically Endangered	Species or species habitat
Erythrotriorchis radiatus		may occur within area
Red Goshawk [942]	Vulnerable	Species or species habitat likely to occur within area
Geophaps scripta scripta Squatter Pigeon (southern) [64440]	Vulnerable	Species or species habitat
3 (known to occur within area
Grantiella picta Painted Honeyeater [470]	Vulnerable	Species or species habitat
		may occur within area
Neochmia ruficauda ruficauda Star Finch (eastern), Star Finch (southern) [26027]	Endangered	Species or species habitat likely to occur within area
Poephila cincta cincta		incery to occur within area
Southern Black-throated Finch [64447]	Endangered	Species or species habitat may occur within area
Rostratula australis Australian Painted-snipe, Australian Painted Snipe	Endangered	Species or species habitat
[77037]	.	may occur within area
Mammals		
Dasyurus hallucatus Northern Quoll, Digul [Gogo-Yimidir], Wijingadda [Dambimangari], Wiminji [Martu] [331]	Endangered	Species or species habitat likely to occur within area
Macroderma gigas Chost Bat [174]	Vulnerable	Species or species
Ghost Bat [174]	vuirierable	Species or species

Name	Status	Type of Presence
Nh satan la Usan a a ula a ul		habitat likely to occur within area
Nyctophilus corbeni Corben's Long-eared Bat, South-eastern Long-eared Bat [83395]	Vulnerable	Species or species habitat may occur within area
Petauroides volans		
Greater Glider [254]	Vulnerable	Species or species habitat known to occur within area
Phascolarctos cinereus (combined populations of Qld,	NSW and the ACT)	
Koala (combined populations of Queensland, New South Wales and the Australian Capital Territory) [85104]	Vulnerable	Species or species habitat known to occur within area
Pteropus poliocephalus		
Grey-headed Flying-fox [186]	Vulnerable	Foraging, feeding or related behaviour likely to occur within area
Plants Aristida appus		
Aristida annua [17906]	Vulnerable	Species or species habitat likely to occur within area
Cadellia pentastylis		
Ooline [9828]	Vulnerable	Species or species habitat may occur within area
Cycas ophiolitica		
[55797]	Endangered	Species or species habitat likely to occur within area
Dichanthium queenslandicum	En den sened	On a sing on an arian habitat
King Blue-grass [5481]	Endangered	Species or species habitat known to occur within area
<u>Dichanthium setosum</u>	Vulnarabla	Species or appoint habitat
bluegrass [14159]	Vulnerable	Species or species habitat known to occur within area
Eucalyptus raveretiana		
Black Ironbox [16344]	Vulnerable	Species or species habitat likely to occur within area
Samadera bidwillii		
Quassia [29708]	Vulnerable	Species or species habitat likely to occur within area
Reptiles		
Denisonia maculata Ornamental Snake [1193]	Vulnerable	Species or species habitat known to occur within area
Egernia rugosa		
Yakka Skink [1420]	Vulnerable	Species or species habitat may occur within area
Elseya albagula		
Southern Snapping Turtle, White-throated Snapping Turtle [81648]	Critically Endangered	Species or species habitat likely to occur within area
Furina dunmalli	Mada a Li	
Dunmall's Snake [59254]	Vulnerable	Species or species habitat likely to occur within area
Lerista allanae		Charles or anastra balling
Allan's Lerista, Retro Slider [1378]	Endangered	Species or species habitat likely to occur within area
Rheodytes leukops Fitzroy River Turtle, Fitzroy Tortoise, Fitzroy Turtle,	Vulnerable	Species or species habitat
White-eyed River Diver [1761]	v un ici abic	likely to occur within area

Listed Migratory Species [Resource Information] Species is listed under a different scientific name on the EPBC Act - Threatened Species list. Type of Presence Name Threatened Migratory Marine Birds Apus pacificus Fork-tailed Swift [678] Species or species habitat likely to occur within area Migratory Terrestrial Species **Cuculus optatus** Oriental Cuckoo, Horsfield's Cuckoo [86651] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Migratory Wetlands Species Actitis hypoleucos Common Sandpiper [59309] Species or species habitat may occur within area Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat known to occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Species or species habitat may occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat may occur within area Other Matters Protected by the EPBC Act **Listed Marine Species** [Resource Information] * Species is listed under a different scientific name on the EPBC Act - Threatened Species list. Type of Presence Name Threatened Birds **Actitis hypoleucos** Common Sandpiper [59309] Species or species habitat may occur within area Anseranas semipalmata Magpie Goose [978] Species or species habitat may occur within

Acus pacificus Fork-tailed Swift (678) Species or species habitat Robert Egret, White Egret (59541) Species or species habitat Robert Egret, White Egret (59541) Species or species habitat Robert Egret (59542) Species or species habitat Robert Egret (59542) Species or species habitat Robert In Robert In Species or species habitat Robert In Rober	Name	Threatened	Type of Presence
Fork-tailed Swift [678] Ardea alba Great Egret, White Egret [59541] Ardea alba Great Egret, White Egret [59541] Ardea bis Cattle Egret [59542] Cattle Egret [59542] Cattle Egret [59542] Cattle Egret [59542] Cattle Egret [59542] Species or species habitat known to occur within area way occur within area way occur within area way occur within area way occur within area curies and piper [874] Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat known to occur within area way occur within area wa			area
Ardea alba Great Egret, White Egret [59541] Great Egret, White Egret [59541] Ardea bis Cattle Egret [59542] Cattle Egret [59542] Species or species habitat may occur within area Ardea bis Cattle Egret [59542] Species or species habitat may occur within area Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat known to occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococoxy osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Merops omatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Merops omatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanocsis Black-faced Monarch [609] Monarcha melanocsis Black-faced Monarch [609] Species or species habitat may occur within area Monarcha melanocsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Merops or species habitat may occur within area Merops or species habitat may occur within area Merops or species habitat may occur within area Mer			Species or species habitat
Great Egret, White Egret [59541] Ardea bis Cattle Egret [59542] Species or species habitat known to occur within area Ardea bis Cattle Egret [59542] Species or species habitat may occur within area Calidris acuminata Sharp-balled Sandpiper [874] Species or species habitat known to occur within area Calidris ferruginea Curtlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococyx osculans Black-eared Cuckoo [705] Species or species habitat may occur within area Callingo hardwicki Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops omatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Motacilla flava Yellow Tringa nebularia Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Palinted Snipe [889] Endangered' Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]			•
Great Egret, White Egret [59541] Ardea bis Cattle Egret [59542] Species or species habitat known to occur within area Ardea bis Cattle Egret [59542] Species or species habitat may occur within area Calidris acuminata Sharp-balled Sandpiper [874] Species or species habitat known to occur within area Calidris ferruginea Curtlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococyx osculans Black-eared Cuckoo [705] Species or species habitat may occur within area Callingo hardwicki Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops omatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Motacilla flava Yellow Tringa nebularia Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Palinted Snipe [889] Endangered' Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	Ardea alba		
Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat may occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat known to occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Callinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops omatus Rainbow Bee-eater [870] Species or species habitat may occur within area Monarcha melanopsis Black-laced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Species or species habitat may occur within area Mylagra cyanoleuca Species or species habitat may occur within area Mylagra cyanoleuca Species or species habitat may occur within area Mylagra cyanoleuca Species or species habitat may occur within area Mylagra cyanoleuca Species or species habitat may occur within area Mylagra cyanoleuca Species or species habitat may occur within area Monarcha melanopsis			·
Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat may occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat may occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Species or species habitat may occur within area Myiagra cyanoleuca Species or species habitat may occur within area Myiagra cyanoleuca Species or species habitat may occur within area Finga nebularia Common Greenshank, Greenshank [832]			known to occur within area
Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat known to occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Species or species habitat may occur within area Chysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Callinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Miagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Endangered* Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]			
Calidris acuminata Sharp-tailed Sandpiper [874] Species or species habitat known to occur within area Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area	Cattle Egret [59542]		•
Sharp-tailed Sandpiper [874] Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myliagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myliagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			may cood mam area
Calidris ferruginea Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtali [644] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mylagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			Species or species habitat
Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Monarcha melanopsis Black-faced Monarch [609] Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			•
Curlew Sandpiper [856] Critically Endangered Species or species habitat may occur within area Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Monarcha melanopsis Black-faced Monarch [609] Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	Calidris ferruginea		
Calidris melanotos Pectoral Sandpiper [858] Pectoral Sandpiper [858] Species or species habitat may occur within area Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Mosprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]		Critically Endangered	•
Pectoral Sandpiper [858] Chrysococcyx osculans Black-eared Cuckoo [705] Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [852] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat species or species habitat may occur within area			may occur within area
Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			
Chrysococcyx osculans Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	Pectoral Sandpiper [858]		•
Black-eared Cuckoo [705] Species or species habitat known to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Haliaeetus leucogaster White-bellied Sea-Eagle [943] Reinbow Bee-eater [670] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]			may occar within area
Rown to occur within area Gallinago hardwickii Latham's Snipe, Japanese Snipe [863] Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]			Species or species habitat
Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	Diack carea odokoo [100]		·
Latham's Snipe, Japanese Snipe [863] Species or species habitat may occur within area Haliaeetus leucogaster White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat known to occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	Gallinago hardwickii		
Haliaeetus leucogaster White-bellied Sea-Eagle [943] Species or species habitat known to occur within area Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	•		Species or species habitat
White-bellied Sea-Eagle [943] Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat may occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat known to occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]			may occur within area
Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	Haliaeetus leucogaster		
Merops ornatus Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]	White-bellied Sea-Eagle [943]		•
Rainbow Bee-eater [670] Species or species habitat may occur within area Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832]			miomi to occur minim area
Monarcha melanopsis Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat may occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	•		Species or species habitat
Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	rambon Dec cater [ere]		·
Black-faced Monarch [609] Species or species habitat known to occur within area Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	Monarcha melanopsis		
Motacilla flava Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	•		•
Yellow Wagtail [644] Species or species habitat may occur within area Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			known to occur within area
Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			
Myiagra cyanoleuca Satin Flycatcher [612] Species or species habitat may occur within area Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	Yellow Wagtail [644]		·
Satin Flycatcher [612] Pandion haliaetus Osprey [952] Species or species habitat may occur within area Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	NA dia ana la companya dia comp		,
Pandion haliaetus Osprey [952] Species or species habitat likely to occur within area Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			Species or species habitat
Osprey [952] Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat likely to occur within area Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			•
Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	Pandion haliaetus		
Rostratula benghalensis (sensu lato) Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	Osprey [952]		·
Painted Snipe [889] Endangered* Species or species habitat may occur within area Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat			likely to occur within area
Tringa nebularia Common Greenshank, Greenshank [832] may occur within area Species or species habitat	· · · · · · · · · · · · · · · · · · ·	-	
Tringa nebularia Common Greenshank, Greenshank [832] Species or species habitat	Painted Snipe [889]	⊏naangerea^	•
Common Greenshank, Greenshank [832] Species or species habitat	Tringa nebularia		-
			Species or species habitat
			•

Extra Information

State and Territory Reserves	[Resource Information]
Name	State
Peak Range	QLD

Invasive Species [Resource Information]

Weeds reported here are the 20 species of national significance (WoNS), along with other introduced plants that are considered by the States and Territories to pose a particularly significant threat to biodiversity. The following feral animals are reported: Goat, Red Fox, Cat, Rabbit, Pig, Water Buffalo and Cane Toad. Maps from Landscape Health Project, National Land and Water Resouces Audit, 2001.

Landsdape Health Froject, National Land and Water No	5500005 / (dait, 2001.	
Name	Status	Type of Presence
Birds		
Anas platyrhynchos		
Mallard [974]		Species or species habitat likely to occur within area
Columba livia		
Rock Pigeon, Rock Dove, Domestic Pigeon [803]		Species or species habitat likely to occur within area
Lonchura punctulata		
Nutmeg Mannikin [399]		Species or species habitat likely to occur within area
Passer domesticus		
House Sparrow [405]		Species or species habitat likely to occur within area
Streptopelia chinensis		
Spotted Turtle-Dove [780]		Species or species habitat likely to occur within area
Sturnus vulgaris		
Common Starling [389]		Species or species habitat likely to occur within area
Frogs		
Rhinella marina		
Cane Toad [83218]		Species or species habitat known to occur within area
Mammals		
Bos taurus		
Domestic Cattle [16]		Species or species habitat likely to occur within area
Canis lupus familiaris		
Domestic Dog [82654]		Species or species habitat likely to occur within area
Capra hircus		
Goat [2]		Species or species habitat likely to occur within area
Felis catus		
Cat, House Cat, Domestic Cat [19]		Species or species habitat likely to occur within area
Feral deer		
Feral deer species in Australia [85733]		Species or species habitat likely to occur within area
Mus musculus		
House Mouse [120]		Species or species habitat likely to occur within area
Oryctolagus cuniculus		
Rabbit, European Rabbit [128]		Species or species

Name	Status	Type of Presence habitat likely to occur within area
Rattus rattus Black Rat, Ship Rat [84]		Species or species habitat likely to occur within area
Sus scrofa Pig [6]		Species or species habitat likely to occur within area
Vulpes vulpes Red Fox, Fox [18]		Species or species habitat likely to occur within area
Plants		
Acacia nilotica subsp. indica Prickly Acacia [6196]		Species or species habitat may occur within area
Cryptostegia grandiflora Rubber Vine, Rubbervine, India Rubber Vine, India Rubbervine, Palay Rubbervine, Purple Allamanda [18913]		Species or species habitat likely to occur within area
Jatropha gossypifolia Cotton-leaved Physic-Nut, Bellyache Bush, Cotton-lea Physic Nut, Cotton-leaf Jatropha, Black Physic Nut [7507] Lantana camara	af	Species or species habitat likely to occur within area
Lantana, Common Lantana, Kamara Lantana, Large- leaf Lantana, Pink Flowered Lantana, Red Flowered Lantana, Red-Flowered Sage, White Sage, Wild Sage [10892]		Species or species habitat likely to occur within area
Opuntia spp. Prickly Pears [82753]		Species or species habitat likely to occur within area
Parkinsonia aculeata Parkinsonia, Jerusalem Thorn, Jelly Bean Tree, Hors Bean [12301]	е	Species or species habitat likely to occur within area
Parthenium hysterophorus Parthenium Weed, Bitter Weed, Carrot Grass, False Ragweed [19566]		Species or species habitat likely to occur within area
Vachellia nilotica Prickly Acacia, Blackthorn, Prickly Mimosa, Black Piquant, Babul [84351]		Species or species habitat likely to occur within area
Reptiles Hemidaetylus fronatus		

Species or species habitat likely to occur within area

Hemidactylus frenatus

Asian House Gecko [1708]

Caveat

The information presented in this report has been provided by a range of data sources as acknowledged at the end of the report.

This report is designed to assist in identifying the locations of places which may be relevant in determining obligations under the Environment Protection and Biodiversity Conservation Act 1999. It holds mapped locations of World and National Heritage properties, Wetlands of International and National Importance, Commonwealth and State/Territory reserves, listed threatened, migratory and marine species and listed threatened ecological communities. Mapping of Commonwealth land is not complete at this stage. Maps have been collated from a range of sources at various resolutions.

Not all species listed under the EPBC Act have been mapped (see below) and therefore a report is a general guide only. Where available data supports mapping, the type of presence that can be determined from the data is indicated in general terms. People using this information in making a referral may need to consider the gualifications below and may need to seek and consider other information sources.

For threatened ecological communities where the distribution is well known, maps are derived from recovery plans, State vegetation maps, remote sensing imagery and other sources. Where threatened ecological community distributions are less well known, existing vegetation maps and point location data are used to produce indicative distribution maps.

Threatened, migratory and marine species distributions have been derived through a variety of methods. Where distributions are well known and if time permits, maps are derived using either thematic spatial data (i.e. vegetation, soils, geology, elevation, aspect, terrain, etc) together with point locations and described habitat; or environmental modelling (MAXENT or BIOCLIM habitat modelling) using point locations and environmental data layers.

Where very little information is available for species or large number of maps are required in a short time-frame, maps are derived either from 0.04 or 0.02 decimal degree cells; by an automated process using polygon capture techniques (static two kilometre grid cells, alpha-hull and convex hull); or captured manually or by using topographic features (national park boundaries, islands, etc). In the early stages of the distribution mapping process (1999-early 2000s) distributions were defined by degree blocks, 100K or 250K map sheets to rapidly create distribution maps. More reliable distribution mapping methods are used to update these distributions as time permits.

Only selected species covered by the following provisions of the EPBC Act have been mapped:

- migratory and
- marine

The following species and ecological communities have not been mapped and do not appear in reports produced from this database:

- threatened species listed as extinct or considered as vagrants
- some species and ecological communities that have only recently been listed
- some terrestrial species that overfly the Commonwealth marine area
- migratory species that are very widespread, vagrant, or only occur in small numbers

The following groups have been mapped, but may not cover the complete distribution of the species:

- non-threatened seabirds which have only been mapped for recorded breeding sites
- seals which have only been mapped for breeding sites near the Australian continent

Such breeding sites may be important for the protection of the Commonwealth Marine environment.

Coordinates

-22.1343 148.0704

Acknowledgements

This database has been compiled from a range of data sources. The department acknowledges the following custodians who have contributed valuable data and advice:

- -Office of Environment and Heritage, New South Wales
- -Department of Environment and Primary Industries, Victoria
- -Department of Primary Industries, Parks, Water and Environment, Tasmania
- -Department of Environment, Water and Natural Resources, South Australia
- -Department of Land and Resource Management, Northern Territory
- -Department of Environmental and Heritage Protection, Queensland
- -Department of Parks and Wildlife, Western Australia
- -Environment and Planning Directorate, ACT
- -Birdlife Australia
- -Australian Bird and Bat Banding Scheme
- -Australian National Wildlife Collection
- -Natural history museums of Australia
- -Museum Victoria
- -Australian Museum
- -South Australian Museum
- -Queensland Museum
- -Online Zoological Collections of Australian Museums
- -Queensland Herbarium
- -National Herbarium of NSW
- -Royal Botanic Gardens and National Herbarium of Victoria
- -Tasmanian Herbarium
- -State Herbarium of South Australia
- -Northern Territory Herbarium
- -Western Australian Herbarium
- -Australian National Herbarium, Canberra
- -University of New England
- -Ocean Biogeographic Information System
- -Australian Government, Department of Defence
- Forestry Corporation, NSW
- -Geoscience Australia
- -CSIRO
- -Australian Tropical Herbarium, Cairns
- -eBird Australia
- -Australian Government Australian Antarctic Data Centre
- -Museum and Art Gallery of the Northern Territory
- -Australian Government National Environmental Science Program
- -Australian Institute of Marine Science
- -Reef Life Survey Australia
- -American Museum of Natural History
- -Queen Victoria Museum and Art Gallery, Inveresk, Tasmania
- -Tasmanian Museum and Art Gallery, Hobart, Tasmania
- -Other groups and individuals

The Department is extremely grateful to the many organisations and individuals who provided expert advice and information on numerous draft distributions.

Please feel free to provide feedback via the Contact Us page.

Attachment B Laboratory Certificates of Analysis

CERTIFICATE OF ANALYSIS

Work Order : EB1933691 Page : 1 of 15

Amendment : 1

Client Laboratory **ECOLOGICAL SERVICE PROFESSIONALS** : Environmental Division Brisbane

Contact : REBECCA KING Contact : David Buckley

Address Address : 2 Byth Street Stafford QLD Australia 4053 : Unit 1 / 16 Industry Place, Wynnum, QLD, 4178 PO Box 5815,

Manly, QLD, 4179

MANLY NSW, AUSTRALIA 4178

Telephone Telephone : +61-7-3243 7222

: 1941 Caval Ridge Project **Date Samples Received** : 13-Dec-2019 12:30 Order number

Date Analysis Commenced : 14-Dec-2019 C-O-C number Issue Date : 14-Jan-2020 16:14

Sampler : REBECCA KING

Site

Quote number : EN/222 No. of samples received : 18

No. of samples analysed : 18

Accreditation No. 825 Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Dave Gitsham	Metals Instrument Chemist	Brisbane Inorganics, Stafford, QLD
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Mark Hallas	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD
Matt Frost	Assistant Laboratory Manager	Brisbane Organics, Stafford, QLD
Santusha Pandra	Senior Chemist	Brisbane Inorganics, Stafford, QLD
Santusha Pandra	Senior Chemist	Brisbane Organics, Stafford, QLD

Page : 2 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

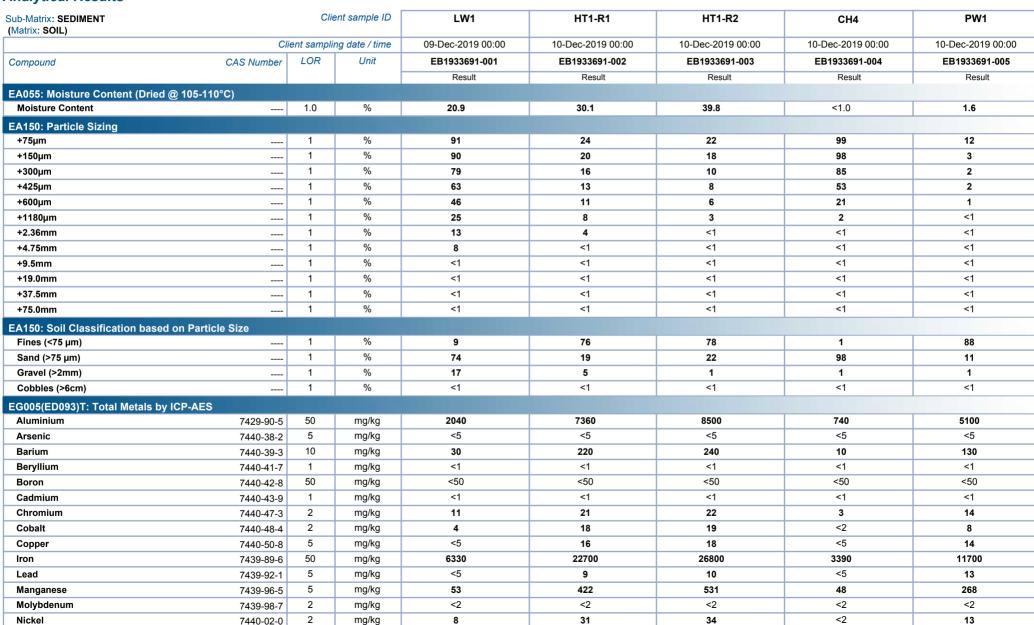
When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- It is recognised that EG020-T (Total Metals by ICP-MS) is less than EG020-F (Dissolved Metals by ICP-MS). However, the difference is within experimental variation of the methods.
- EG005T (Total Metals by ICP-AES): Sample EB1933418-001 shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- EG005T (Total Metals by ICP-AES): Sample CA1 (EB1933691-010) shows poor duplicate results due to sample heterogeneity. Confirmed by visual inspection.
- Amendment (14/01/2020): This report has been amended following changes to the EB1933691 018 (U1-Dam R2) Total Al & Mn results due to a carry-over error. The quality system is being utilised to resolve this issue. All details are recorded in client query 20BNCC026.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

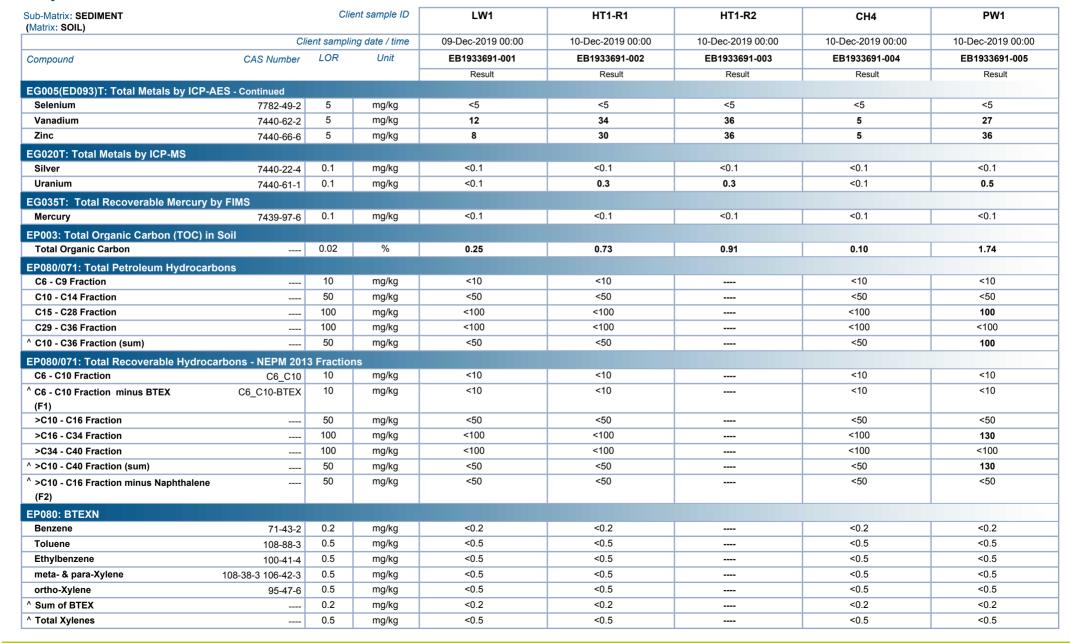


Page : 3 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

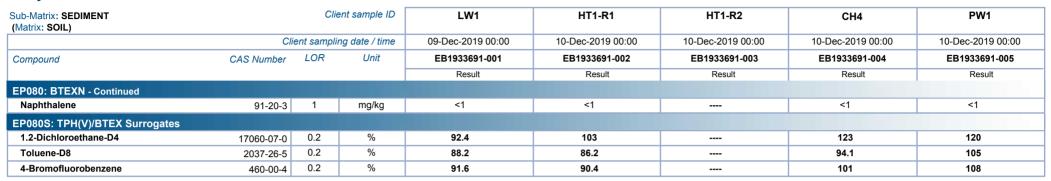


Page : 4 of 15

Work Order · EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

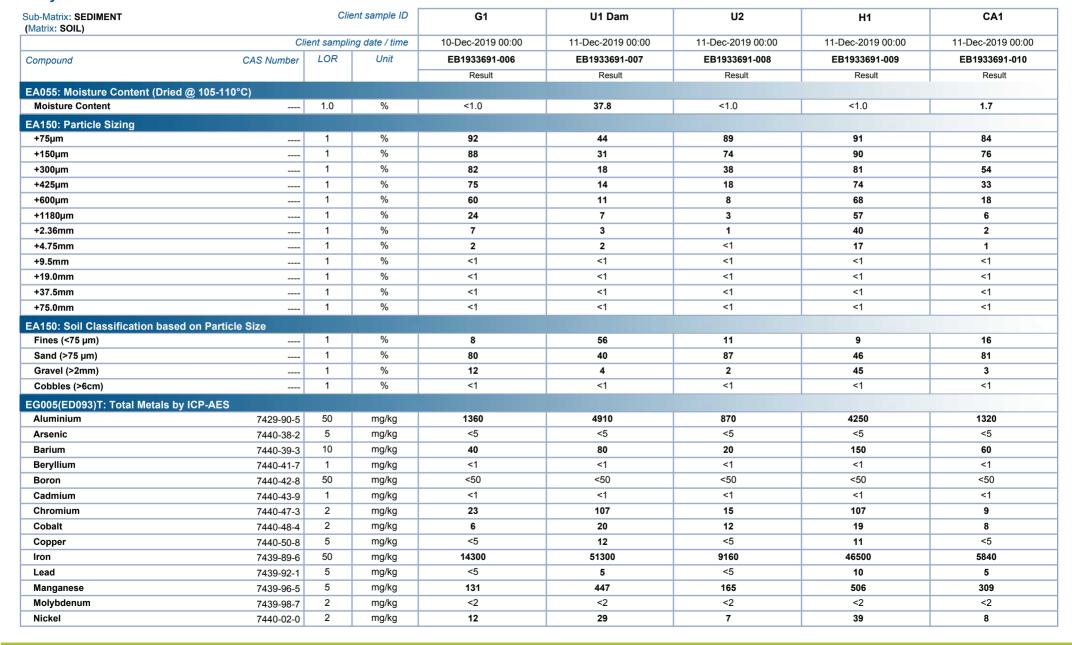


Page : 5 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

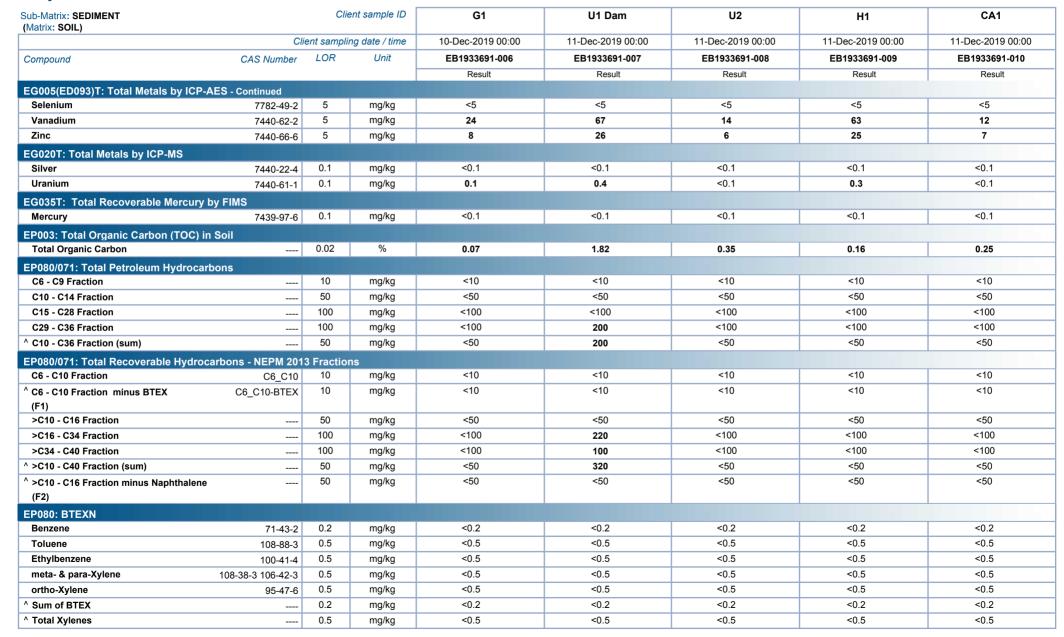


Page : 6 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

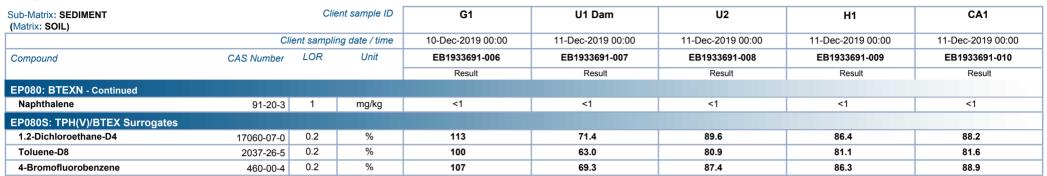


Page : 7 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge



Page : 8 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

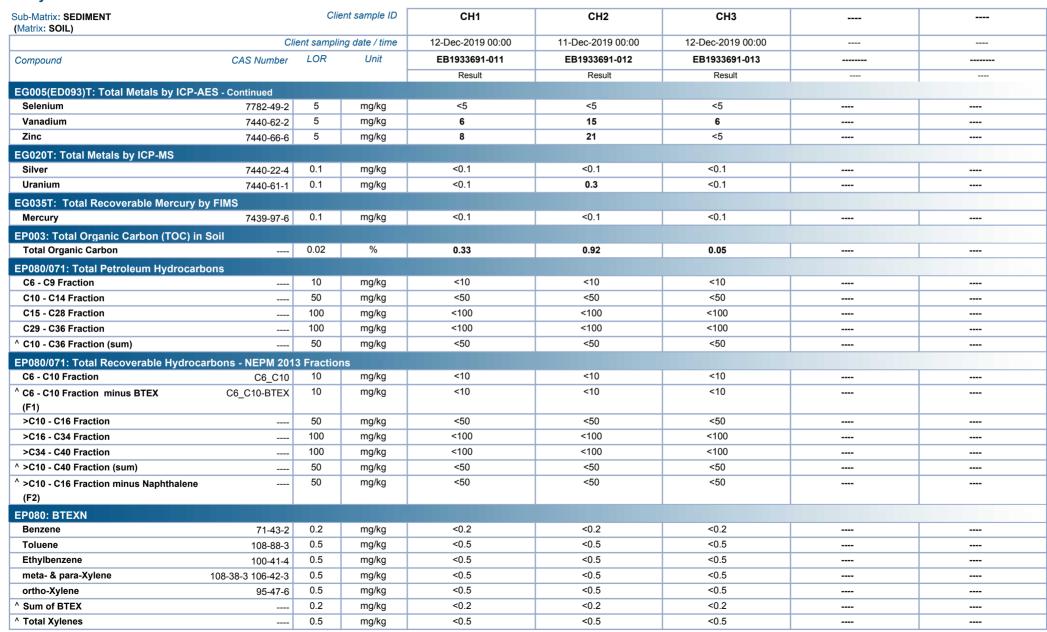
Project : 1941 Caval Ridge

Page

: 9 of 15 : EB1933691 Amendment 1 Work Order

: ECOLOGICAL SERVICE PROFESSIONALS Client

: 1941 Caval Ridge Project

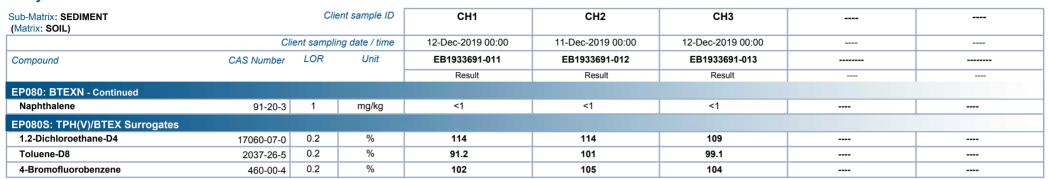

	Clie	ent sample ID	CH1	CH2	СНЗ		
Client sampling date / time		12-Dec-2019 00:00	11-Dec-2019 00:00	12-Dec-2019 00:00			
CAS Number	LOR	Unit	EB1933691-011	EB1933691-012	EB1933691-013		
			Result	Result	Result		
D 105-110°C)							
	1.0	%	<1.0	<1.0	<1.0		
	1	%	89	40	98		
	1	%	79	38	95		
	1	%	46	35	67		
	1	%	24	24	42		
	1	%	12	12	24		
	1	%	5	3	7		
	1	%	<1	1	<1		
	1	%	<1	<1	<1		
	1	%	<1	<1	<1		
	1	%	<1	<1	<1		
	1	%	<1	<1	<1		
	1	%	<1	<1	<1		
on Particle Size							
	1	%	11	60	2		
	1	%	87	38	96		
	1		2	2	2		
	1	%	<1	<1	<1		
CP-AES							
	50	ma/ka	810	3210	520		
				<1			
			<50	<50	<50		
					<2		
7440-02-0	2	mg/kg	2	12	<2		
	CAS Number CAS Number CAS Number CAS Number CAS Number CP-AES CP-AES 7429-90-5 7440-38-2 7440-43-9 7440-47-3 7440-42-8 7440-43-9 7440-48-4 7440-50-8 7439-98-6 7439-98-7	Client samplin CAS Number LOR	CAS Number LOR Unit 105-110°C	Client sampling date / time 12-Dec-2019 00:00	Client sampling date / time 12-Dec-2019 00:00 11-Dec-2019 00:00 CAS Number LOR Unit EB1933691-011 EB1933691-012 Result Result Result	Cilient sampling date / time 12-Dec-2019 00:00 11-Dec-2019 00:00 12-Dec-2019 0	Client sampling date / time

Page : 10 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

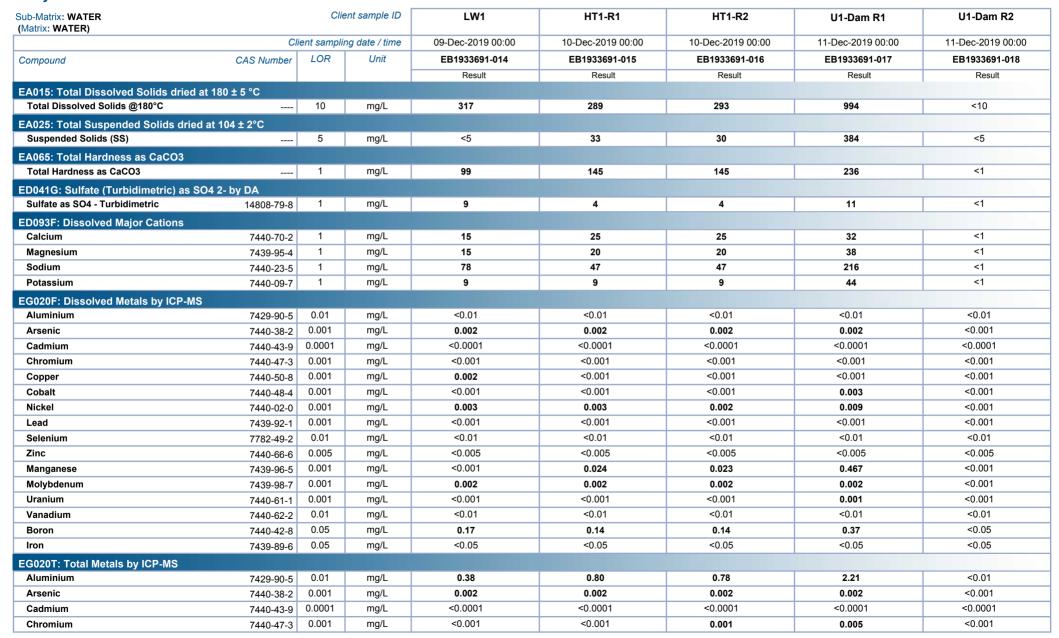


Page : 11 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

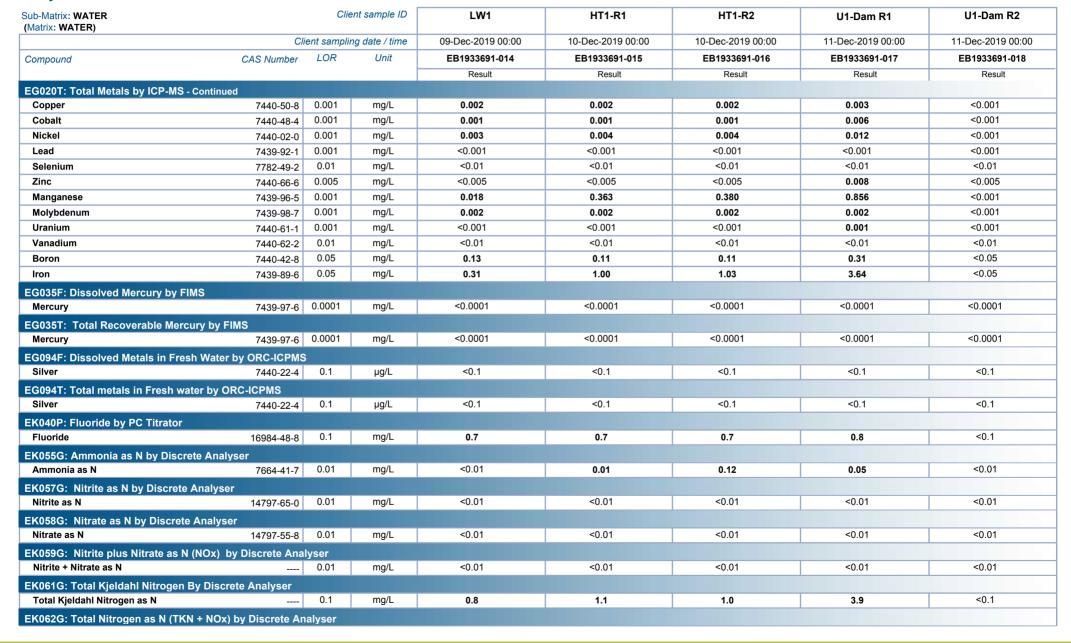


Page : 12 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

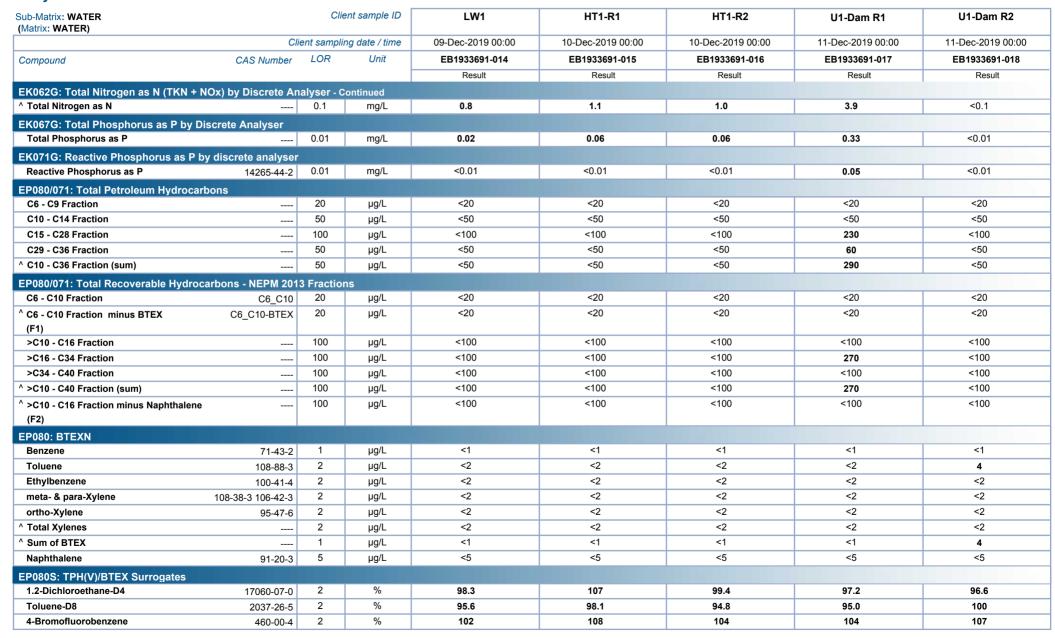


Page : 13 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge



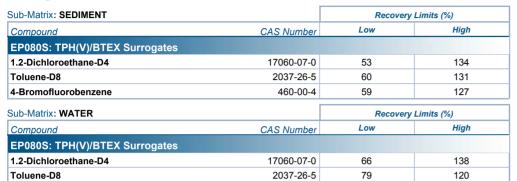
Page : 14 of 15

Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

Page : 15 of 15


Work Order : EB1933691 Amendment 1

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

Surrogate Control Limits

4-Bromofluorobenzene

460-00-4

74

118

CERTIFICATE OF ANALYSIS

Work Order : **EB2009561** Page : 1 of 21

Client : ECOLOGICAL SERVICE PROFESSIONALS Laboratory : Environmental Division Brisbane

Contact : REBECCA KING Contact : David Buckley

Address : Unit 1 / 16 Industry Place, Wynnum, QLD, 4178 PO Box 5815, Address : 2 Byth Street Stafford QLD Australia 4053

Manly, QLD, 4179

MANLY NSW, AUSTRALIA 4178

Telephone : +61 7 3552 8659

Project : 1941 Caval Ridge Date Samples Received : 06-Apr-2020 14:10

Order number : ---- Date Analysis Commenced : 07-Apr-2020

C-O-C number : ---- Issue Date : 24-Apr-2020 08:16

Sampler : REBECCA KING

Site : ----

Quote number : EN/222
No. of samples received : 24
No. of samples analysed : 24

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ben Felgendrejeris Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Diana Mesa2IC Organic ChemistBrisbane Organics, Stafford, QLDKim McCabeSenior Inorganic ChemistBrisbane Inorganics, Stafford, QLDMorgan LennoxBrisbane Organics, Stafford, QLDSantusha PandraSenior ChemistBrisbane Inorganics, Stafford, QLD

Page : 2 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

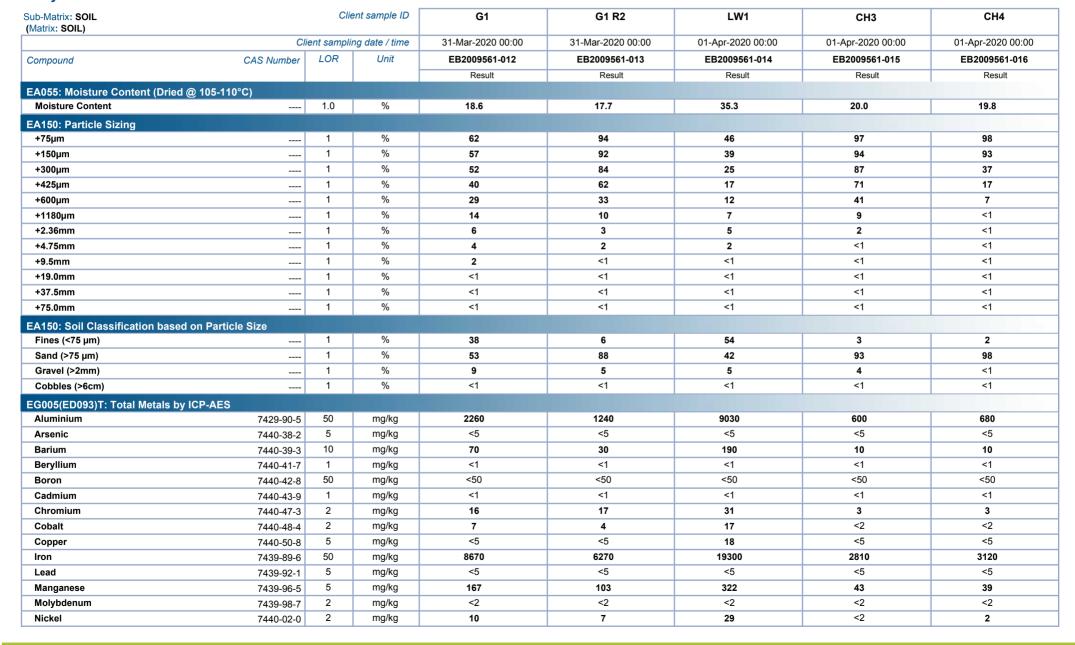
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

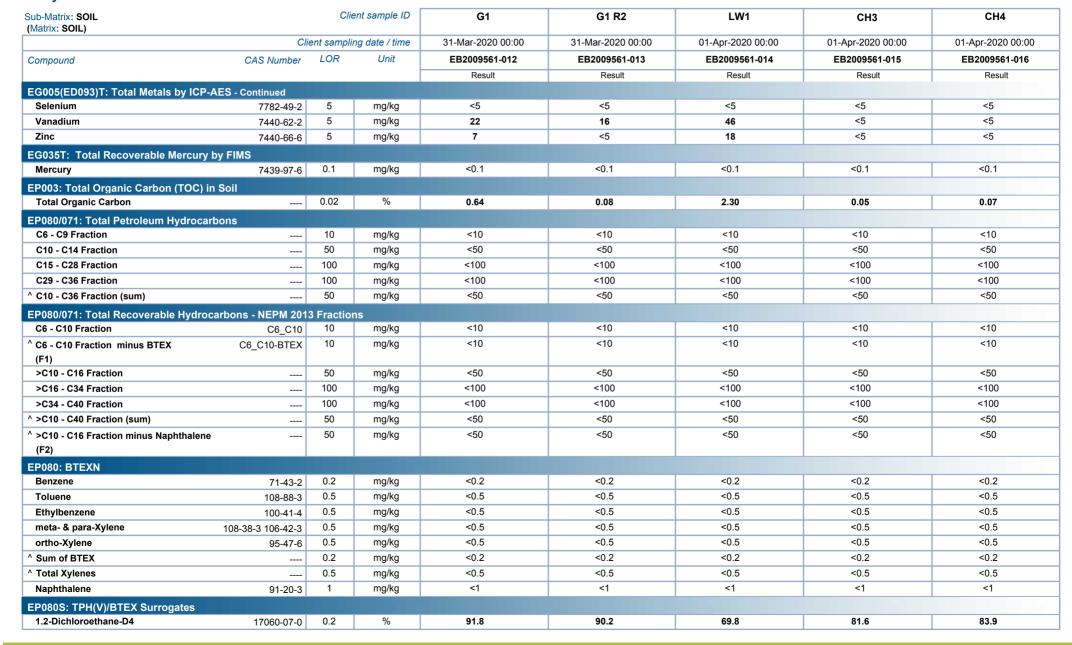
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- It is recognised that EG020T (Total Metals) is less than EG020F (Dissolved Metals) for some samples. However, the difference is within experimental variation of the methods.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge



Page : 4 of 21 Work Order : EB2009561

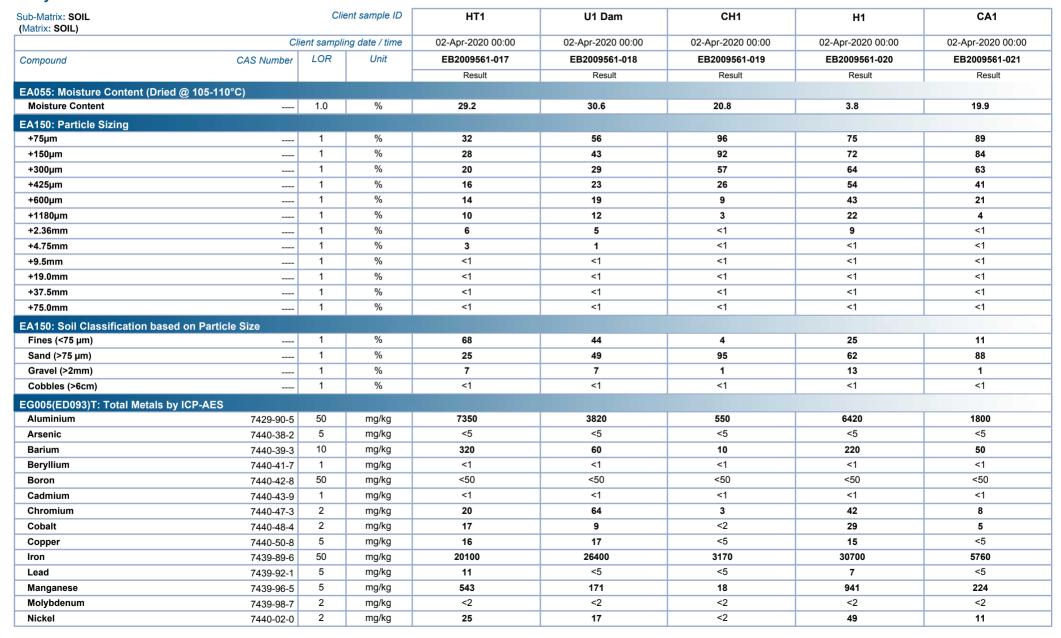
Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

Page : 5 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

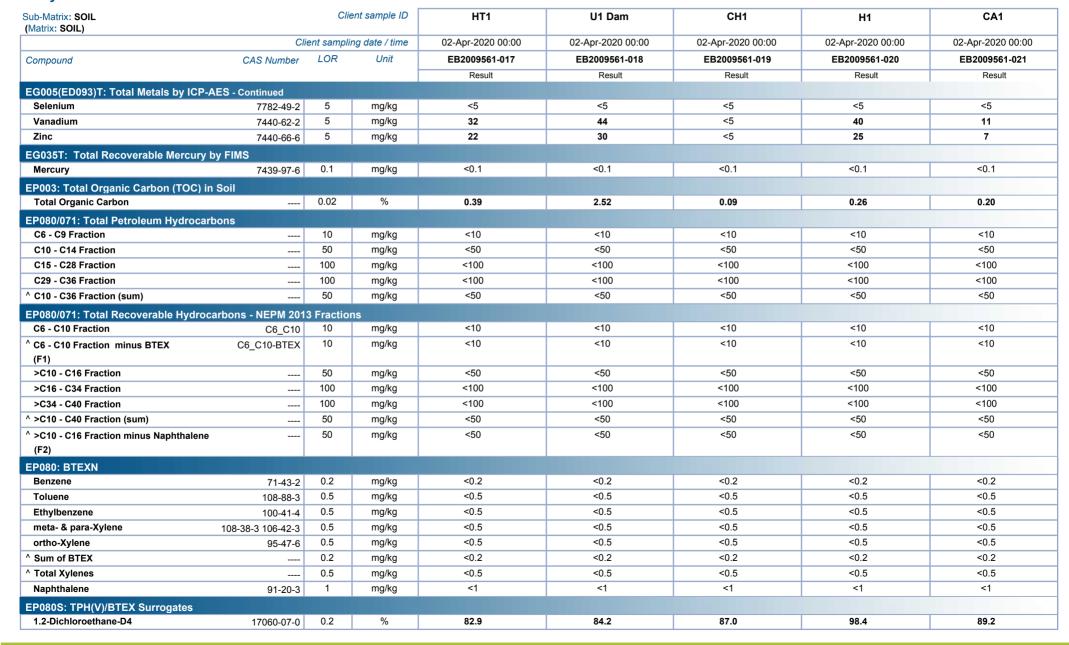
Project : 1941 Caval Ridge



Page : 6 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

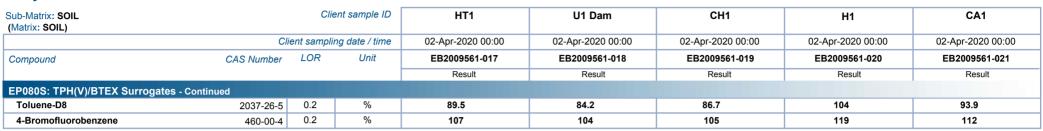
Project : 1941 Caval Ridge



Page : 7 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

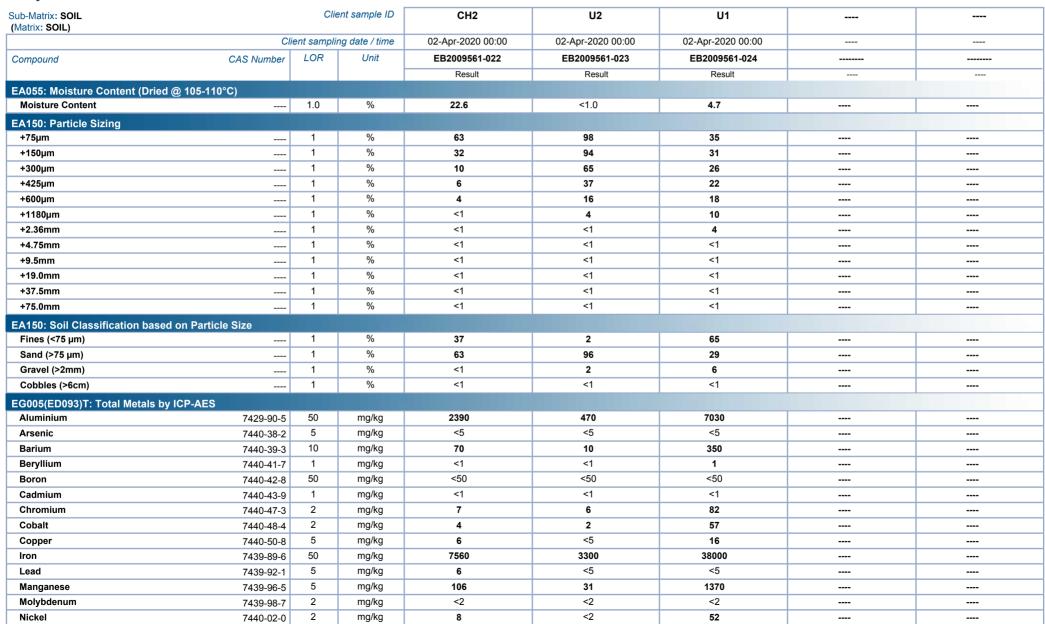
Project : 1941 Caval Ridge



Page : 8 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

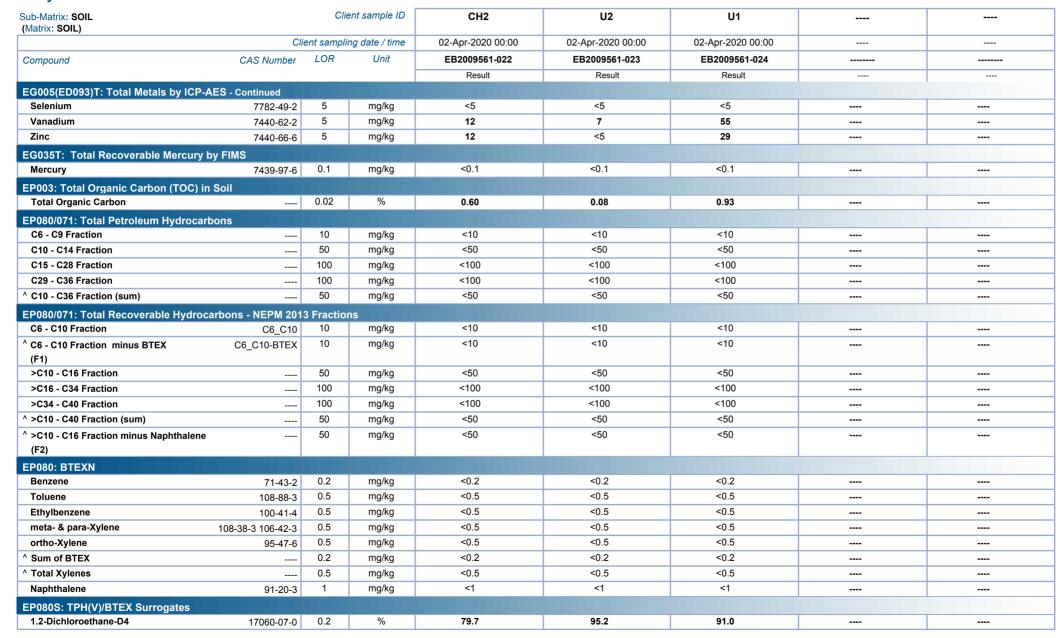
Project : 1941 Caval Ridge



Page : 9 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

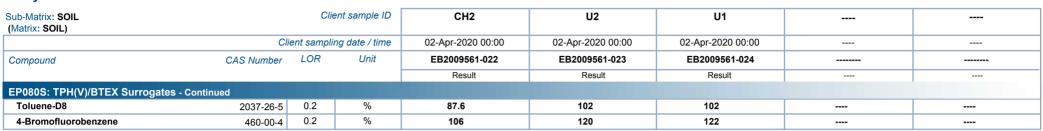
Project : 1941 Caval Ridge



Page : 10 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

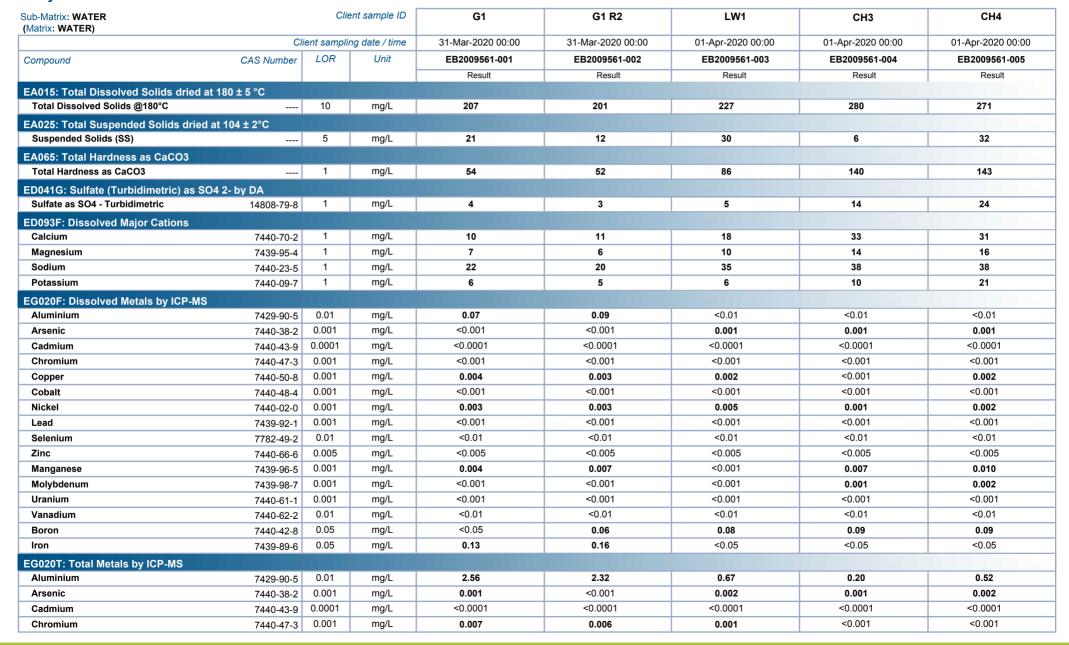
Project : 1941 Caval Ridge



Page : 11 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge



Page : 12 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

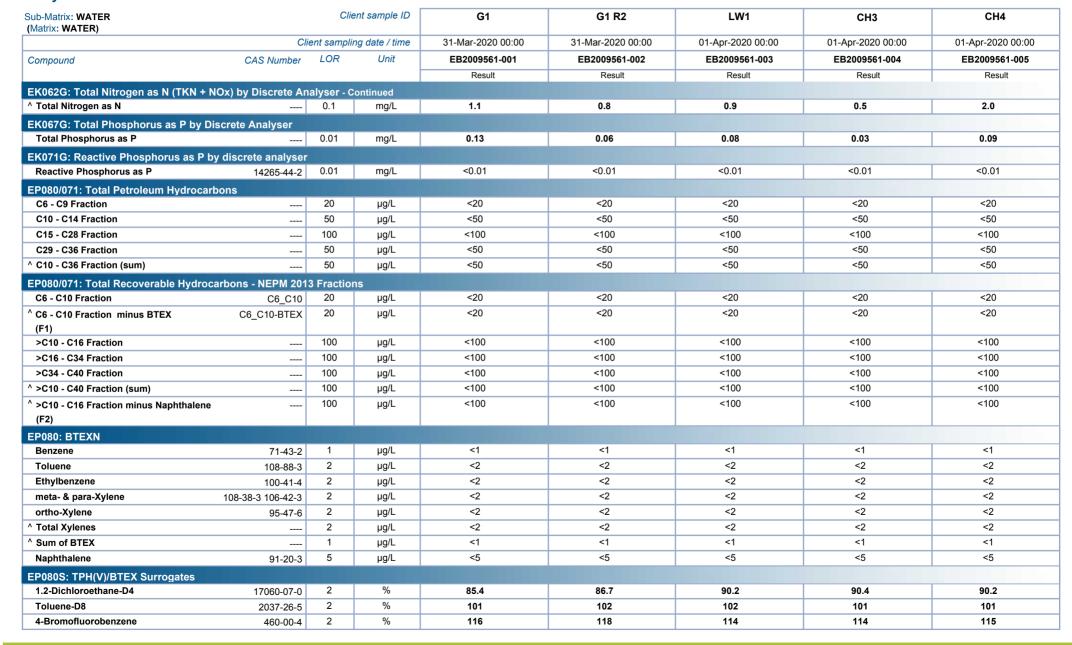
Project : 1941 Caval Ridge



Page : 13 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

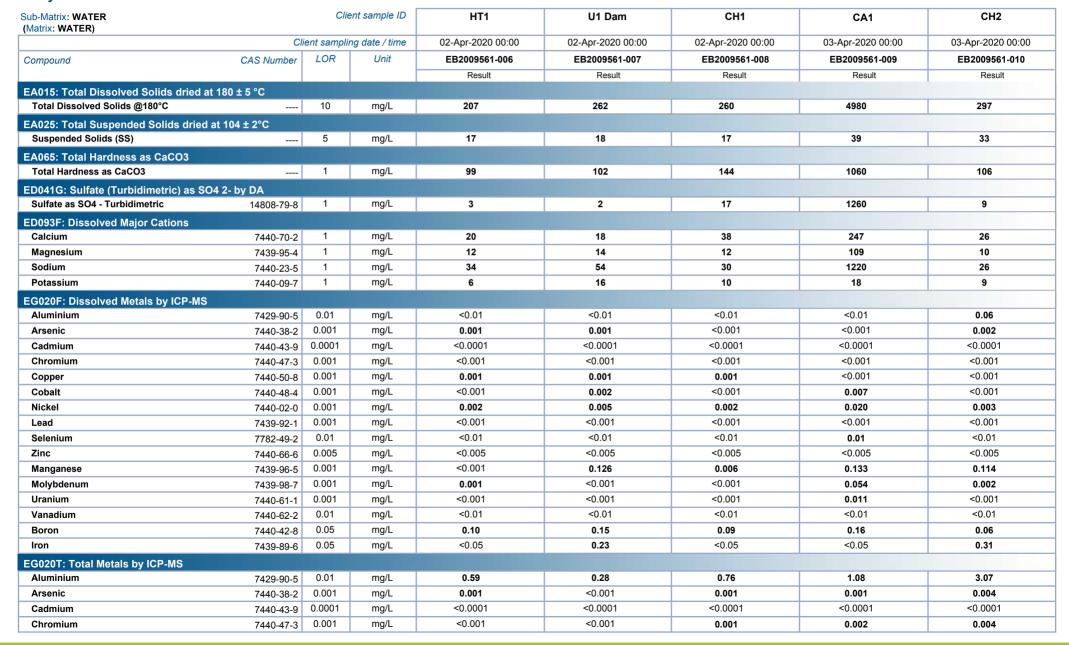
Project : 1941 Caval Ridge



Page : 14 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

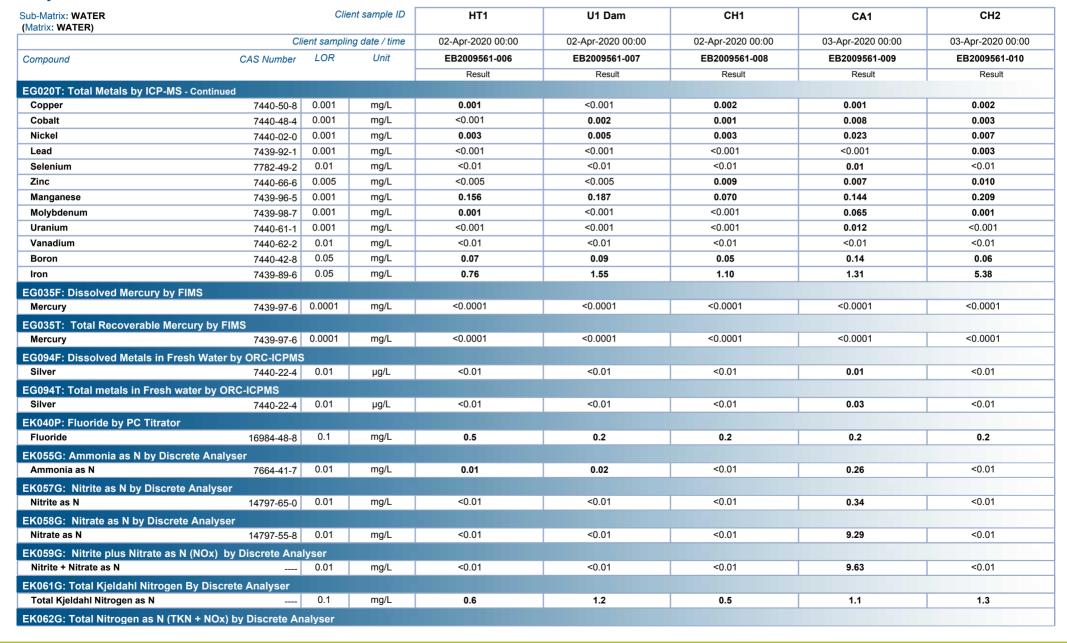
Project : 1941 Caval Ridge



Page : 15 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

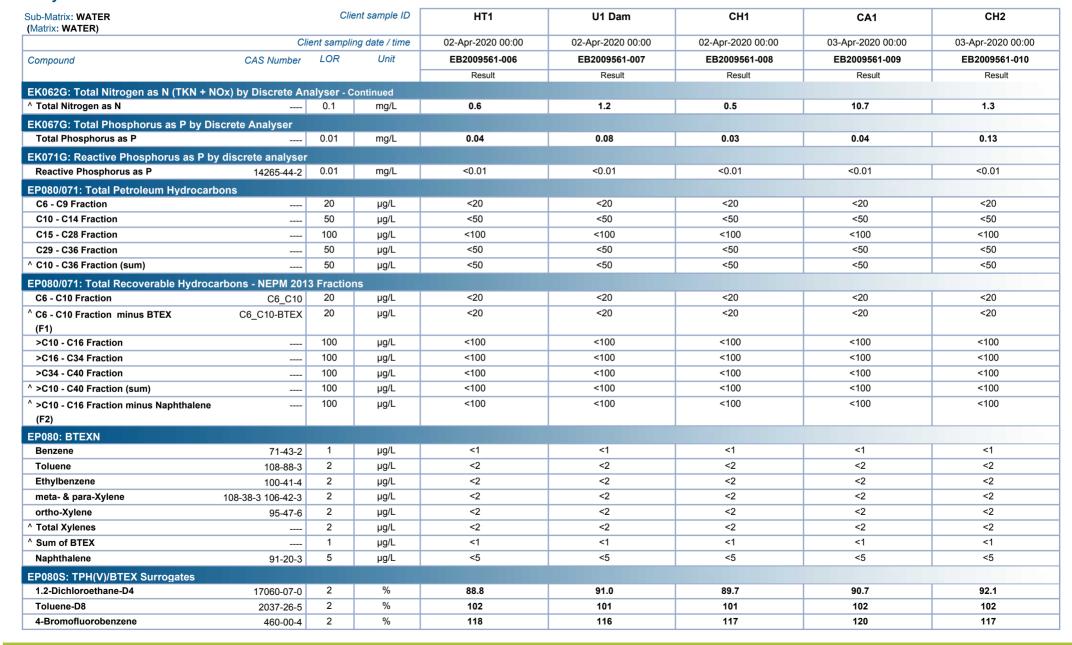
Project : 1941 Caval Ridge



Page : 16 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge



Page : 17 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

Page : 18 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

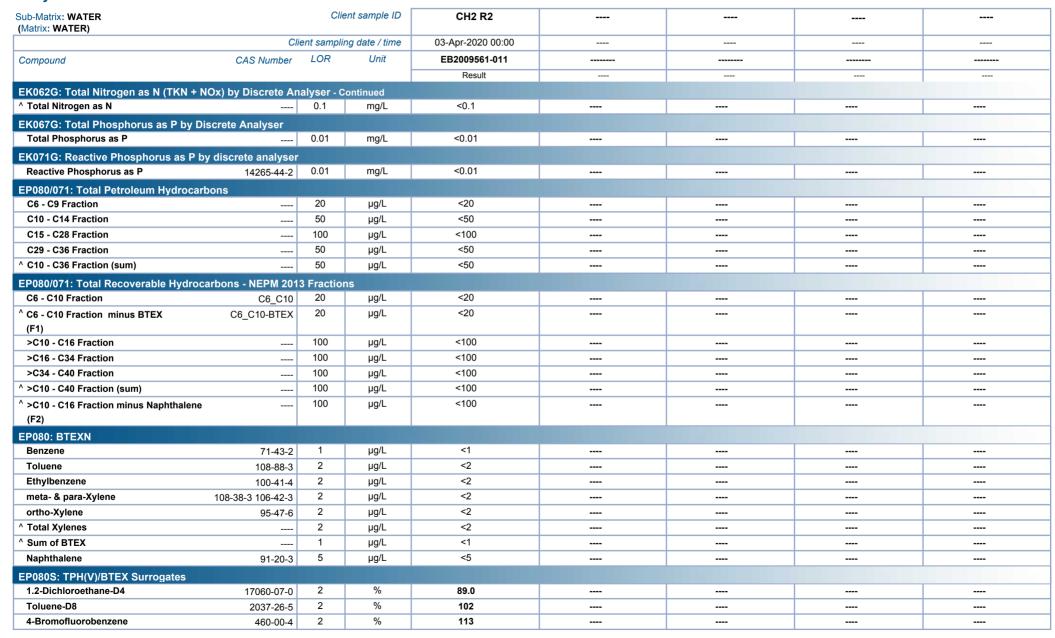
Project : 1941 Caval Ridge



Page : 19 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

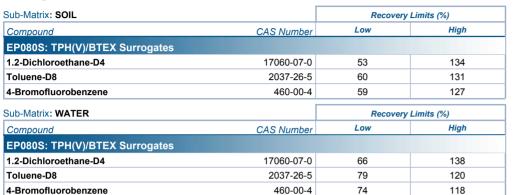
Project : 1941 Caval Ridge



Page : 20 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge



Page : 21 of 21 Work Order : EB2009561

Client : ECOLOGICAL SERVICE PROFESSIONALS

Project : 1941 Caval Ridge

Surrogate Control Limits

Attachment C Aquatic Habitat Assessment Tables

Table C1 Aquatic habitat descriptions from each site during the field surveys; grey/blue highlighted water quality cells indicate values that are outside of the relevant WQOs

Site: U1	Location: Upstream	Stream Order: 1	Waterway: Unnamed tributary of Hors Creek		
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Low	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Limited due to location in catchment and presence of CVM downstream		
In-stream condition: Fair	Riparian condition: Poor	External Impacts: High	Water Quality: N	/A	
Key potential habitat features included:	The riparian zone was semi-continuous	External impacts at the site were mostly	Survey:	Dec-19	Apr-20
 small amounts of small and large woody debris and detritus 	around the perimeter of the waterway, although the extent of the vegetation	associated with the surrounding land- ough the extent of the vegetation been reduced due to historic iring. Vegetation consisted of grass,	Condition:	Dry	Dry
 a limited range of sediment grain sizes (predominately silt/clay with some 	clearing. Vegetation consisted of grass,		Temp (°C):	_	_
sand), and	shrubs and some trees (predominantly eucalyptus and casuarina). Banks were	·	EC (µS/cm):	_	_
 little trailing and overhanging bank vegetation. 	low (1 m – 1.5 m high) and gently sloping with minimal erosion. There were some exotic terrestrial riparian		DO (% sat):	_	_
The site was dry during both the			pH (pH units):	_	_
December and April surveys. species at the site.		Turbidity (NTU):	_	_	

Site: U1D	Location: Upstream	Stream Order: 1	Waterway: Unma	apped farm	dam	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020		
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: Yes	Connectivity: Poor due to high dam walls, location in catchment and presence of CVM downstream			
In-stream condition: Fair	Riparian condition: Poor	External Impacts: High	Water Quality: Po	oor		
Key habitat features included:	The riparian zone was continuous around the perimeter of the waterway,	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20	
diverse and abundant aquatic plantsa variety of woody debris	although the extent of the vegetation	use and included:	Condition:	Wet	Wet	
periphyton	of grass, ferns and weeds. Banks were	 reduced riparian vegetation as a result of land clearing 	Temp (°C):	32.4	26.7	
sediment grain sizes predominately	low (1.5 m – 2 m high) and gently sloping with some erosion. There were	grazing by livestock	EC (µS/cm):	1664	466	
silt/clay, and sandy gravel shallow & deep pools, and	some exotic terrestrial riparian species at the site.	sandy gravel some exotic terrestrial riparian species ep pools, and at the site. • feral animals, and • the presence of an artificial dam.	feral animals, and	DO (% sat):	181	76.4
trailing and overhanging bank			pH (pH units):	8.88	7.56	
vegetation.			Turbidity (NTU):	190	54.2	

Site: U2	Location: Upstream	Stream Order: 1	Waterway: Unna Creek	med tributa	ry of Caval
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Low	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Lin catchment and prodownstream		
In-stream condition: Fair	Riparian condition: Poor	External Impacts: High	Water Quality: N	/A	
Key potential habitat features included: ephemeral channel some woody debris predominately sandy sediments with some cobbles and boulders, and little trailing and overhanging bank vegetation. The site was dry during both the December and April surveys.	The riparian zone was semi-continuous around the perimeter of the waterway, although the extent of the vegetation had been reduced due to historic clearing. Vegetation consisted of trees, grasses and weeds. Banks were low (approximately 1 m high) and gently sloping with some erosion. There were some exotic terrestrial riparian species at the site.	External impacts at the site were mostly associated with the surrounding landuse and included: reduced riparian vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Dec-19 Dry	Apr-20 Dry — — — — — —

Site: U3	Location: Upstream	Stream Order: 2	Waterway: Unna Cherwell Creek	Waterway: Unnamed Tributary of Cherwell Creek		
Upstream: December 2019 N/A	Downstream: December 2019 N/A	Upstream: April 2020	Downstream: April	2020		
Aquatic Ecosystem Value: Low	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Lim catchment and pre downstream			
In-stream condition: Fair	Riparian condition: Fair	External Impacts: High	Water Quality: N	/A		
Key potential habitat features in April included:	The riparian zone was continuous around the perimeter of the waterway,	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20	
well defined ephemeral channel	although the extent of the vegetation in the broader region had been reduced	use and included:	Condition:	N/A	Dry	
some woody debris	due to historic clearing. Vegetation	grazing by livestock foral animals, and	Temp (°C):	_	_	
 predominately sandy sediments with some cobbles and boulders, and 	consisted of trees, grasses and weeds. Banks were low (approximately 0.5 m	feral animals, and vehicle track crossing.	EC (µS/cm):	_	_	
little trailing and overhanging bank	high) and gently sloping with some erosion. There were some exotic	ū	DO (% sat):	_	_	
vegetation. The site was not sampled during the	terrestrial riparian species at the site.		pH (pH units):	_	_	
December survey and was dry during the April survey.			Turbidity (NTU):	_	_	

Site: Ca1	Location: Upstream	Stream Order: 2	Waterway: Caval	Creek	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Low	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Mo	derate, durir	ng periods
In-stream condition: Fair	Riparian condition: Fair	External Impacts: High	Water Quality: Fa	air	
Key habitat features in April included:	The riparian zone was semi-continuous around the perimeter of the waterway,	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20
sandy ephemeral channelshallow pools	although the extent of the vegetation	use and included:	Condition:	Dry	Wet
some woody debris & detritus	had been reduced due to historic clearing. Vegetation consisted of trees,	 reduced riparian vegetation as a result of land clearing 	Temp (°C):	_	26.3
predominately sand and silt/clay	grasses, shrubs, ferns/sedges and weeds. Banks were low (1.8 m – 2 m	grazing by livestock, and	EC (µS/cm):	_	7403
sediments with some pebbles & gravel, and	high) and gently sloping with moderate levels erosion. There were some exotic	feral animals.	DO (% sat):	_	72.9
some trailing and overhanging bank	terrestrial riparian species at the site.		pH (pH units):	_	7.84
vegetation. The site was dry during the December			Turbidity (NTU):	_	44.5
survey.					

Site: Ch1	Location: Upstream	Stream Order: 4	Waterway: Cherv	well Creek		
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	Downstream: April 2020		
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Go	od, during p	eriods of	
In-stream condition: Fair	Riparian condition: Good	External Impacts: Moderate	Water Quality: G	ood		
Key habitat features in April included:	The riparian zone was semi-continuous around the perimeter of the waterway,	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20	
some woody debrisshallow pools	although the extent of the vegetation	use and included: reduced riparian vegetation as a result of land clearing	Condition:	Dry	Wet	
 predominately sand and silt/clay sediments with some boulders, and 	had been reduced due to historic clearing. Vegetation consisted of trees, grasses, shrubs, ferns and weeds.		Temp (°C):		28.2	
 some trailing and overhanging bank 	Banks were low (3.5 m – 2 m high) and	 grazing by livestock 	EC (µS/cm):		447.7	
vegetation.	gently sloping with some erosion. There were some exotic terrestrial riparian	• feral animals, and	DO (% sat):	_	85.5	
The site was dry during the December survey.	species at the site.	vehicle track crossing.	pH (pH units):	_	8.03	
carvey.			Turbidity (NTU):	_	33.2	

Site: Ch2	Location: Upstream	Stream Order: 5	Waterway: Cherv	vell Creek	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Go flow.	od, during p	eriods of
In-stream condition: Fair	Riparian condition: Fair	External Impacts: High	Water Quality: Fa	air	
Key habitat features in April included:	The riparian zone was semi-continuous around the perimeter of the waterway,	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20
wide sandy ephemeral channel some woody debris & detritus	although the extent of the vegetation	use and included:	Condition:	Dry	Wet
 predominately sandy sediments with 	had been reduced due to historic clearing. Vegetation consisted of trees,	 reduced riparian vegetation as a result of land clearing 	Temp (°C):	_	23
some silt/clay, and	grasses and weeds. Banks were intermediate (3 m – 4 m high) and	grazing by livestock, and	EC (µS/cm):	_	367.9
some overnanging and trailing bank vegetation.	gently sloping with moderate erosion. There were some exotic terrestrial riparian species at the site.	feral animals.	DO (% sat):	_	11.3
The site was dry during the December survey.			pH (pH units):	_	7.63
ourroy.			Turbidity (NTU):	_	120.3

Site: GCO1	Location: Upstream	Stream Order: 5	Waterway: Grosv Creek	enor/
Upstream: November 2020	Downstream: November 2020			
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: Potential	Connectivity: N/A	4
In-stream condition: Poor	Riparian condition: Good	External Impacts: Moderate	Water Quality: N/	′A
Key habitat features in November 2020 included: • wetted channel • silty/clay/muddy sediments • some shading of reach • some snags, woody debris & branches, and • little detritus in stream. The site was wet during the November 2020 survey.	The riparian zone was narrow with surrounding agricultural land upstream. Some sedges were around the perimeter of the waterway. Evidence of deer, pig and horse disturbance was present in the surrounding riparian zone. Left and right bank height was low (approximately 2 m high) and steeply sloping on the left and gently sloping on some areas on the right near the bridge. Site was approximately 10 m wide. The wetted area was a still pool not connected downstream. The water appeared to be receding in subsequent survey days. It was unclear where water was fed from (e.g. upstream farm dam releases, groundwater etc.) and it was also unclear whether downstream earthworks were influencing water levels (e.g. damming water or restricting flow). While the waterway was a dry season refuge during the survey, it was unclear if water consistently endured the entire dry season or whether it was influenced by current land use and earthworks that occurred during the surveys.	External impacts at the site were mostly associated with the surrounding land-use and included: • reduced terrestrial vegetation as a result of land clearing • grazing by livestock, and • feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Nov-20 Wet 26.6 415.8 50.8 7.37 137

Site: GCO2	Location: Upstream	Stream Order: 5	Waterway: Gross	venor	
Upstream: November 2020	Downstream: November 2020				
Aquatic Ecosystem Value: Poor	MNES/MSES: None present or likely to occur	Dry season refuge: N/A	Connectivity: N//	4	
In-stream condition: Poor	Riparian condition: Good	External Impacts: Moderate	Water Quality: N	N/A	
Key habitat features in November 2020 included:	The riparian zone was a scattered semi-continuous/continuous mix of	External impacts at the site were mostly associated with the	Survey:	Nov-20	
 ephemeral channel consolidated dry sediments some shading of reach some snags, woody debris & branches, and little detritus. eroded bank The site was dry during the November 2020 survey. 	grasses, trees, and weeds. A dead eel was in the vicinity of the site. There was a road crossing downstream of the site, and there was water present approximately 200 m downstream of the site. Left and right banks were approximately 4 m high and steep. Channel was approximately 10 m wide.	mostly associated with the surrounding land-use and included: reduced terrestrial vegetation as a result of land clearing grazing by livestock, and feral animals.	Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Dry	

Site: IR01	Location: Upstream	Stream Order: 5	Waterway: Isaac Ri	ver
Upstream: November 2020	Downstream: November 2020			
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: N/A	Connectivity: N/A	
In-stream condition: Poor	Riparian condition: Good	External Impacts: Moderate	Water Quality: N/A	
Key habitat features in November 2020 included:	The riparian zone was a scattered semi- continuous/continuous mix around the	External impacts at the site were mostly associated with the surrounding land-use	Survey:	Nov-20
ephemeral channel	perimeter of the waterway, and the	and included:reduced terrestrial vegetation as a result of land clearing	Condition:	Dry
predominately sandy sediments with some pebbles, gavel and clay/silt	extent of the vegetation had been reduced. Vegetation consisted grasses,		Temp (°C):	_
little shading of reach	trees, and weeds. Left bank height was low (approximately 0.5 m high) and	grazing by livestock, and	EC (µS/cm):	_
 no trailing vegetation, and 	gently sloping; the right bank was higher (approximately 15 m high), steep banks with moderate erosion. There were some exotic terrestrial riparian species at the site. Site was wide (approximately 60 m wide).	feral animals.	DO (% sat):	_
some large snags, woody debris & branches.			pH (pH units):	_
The site was dry during the November survey.			Turbidity (NTU):	_

Site: HC01	Location: Downstream	Stream Order: 4	Waterway: Harro	w Creek
Upstream: November 2020	Downstream: November 2020			
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: N/A	Connectivity: N/A	
In-stream condition: Moderate	Riparian condition: Fair	External Impacts: Moderate	Water Quality: N	/A
Key habitat features in November 2020 included: • ephemeral channel • unconsolidated sand sediments • established terrestrial weeds in the channel • some shading of reach • little snags, woody debris & branches, and • little detritus. The site was dry during the November 2020 survey.	The riparian zone was a scattered semi- continuous/continuous mix of grasses, trees, and weeds. Left and right bank height was approximately 5 m high, with moderate sloping on the left bank, and steep slopes on the right. Channel was approximately 20 m wide.	External impacts at the site were mostly associated with the surrounding land-use and included: reduced terrestrial vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Nov-20 Dry - - - -

Site: LW2	Location: Upstream	Stream Order: 2	Waterway: Wetland		
Upstream: November 2020	Downstream: November 2020				
Aquatic Ecosystem Value: Poor	MNES/MSES: None present or likely to occur	Dry season refuge: Yes	Connectivity: Not connected		
In-stream condition: Fair	Riparian condition: Good	External Impacts: Moderate	Water Quality:		
Key habitat features in November 2020 included: • shallow & deep pools • aquatic plants • predominately fine sediments (sand & silt/clay) • little trailing & overhanging vegetation, and • some snags, woody debris & detritus. The site was wet during the November 2020 survey.	The riparian zone was a scattered continuous mix with isolated trees around the perimeter of the waterway, and the extent of the vegetation had been reduced. Vegetation consisted of grasses, shrubs, trees and weeds. Banks were generally low (approximately 1 m high) and gently sloping with moderate erosion. Damming side of the waterway had a more steeply sloping bank, approximately 5 m high. There were some exotic terrestrial riparian species at the site.	External impacts at the site were mostly associated with the surrounding land-use and included: • reduced terrestrial vegetation as a result of land clearing • grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Nov-20 Wet 26.8 382.9 94.2 8.63 43.1	

Site: HT1D	Location: Within Project Footprint	Stream Order: 1	Waterway: Unma	apped farm	dam	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020		
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: Yes	Connectivity: Poor, isolated from main watercourse by dam			
In-stream condition: Fair	Riparian condition: Poor	External Impacts: Extreme	Water Quality: Poor			
Key habitat features included:	The riparian zone was isolated around the perimeter of the waterway, and the	External impacts at the site were mostly associated with the surrounding landuse and included: reduced riparian vegetation as a result of land clearing	Survey:	Dec-19	Apr-20	
farm dam on ephemeral channel aquatic plants lining channel	extent of the vegetation had been		Condition:	Wet	Wet	
shallow & deep pools	reduced due to historical clearing for agriculture. Vegetation consisted		Temp (°C):	28.9	25.3	
predominately silt/clay sediments	grasses, ferns and weeds. Banks were low (approximately 2.5 m high) and	grazing by livestock	EC (µS/cm):	485.2	355.1	
 little trailing bank vegetation and woody debris, and 	gently sloping with moderate erosion. There were some exotic terrestrial	feral animals, and	DO (% sat):	100.4	84	
some detritus.	riparian species at the site.	the presence of an artificial dam.	pH (pH units):	8.5	8.3	
			Turbidity (NTU):	32.8	17.9	

Site: H1	Location: Downstream	Stream Order: 2	Waterway: Horse	Creek	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April		
Aquatic Ecosystem Value: Low In-stream condition: Fair Key potential habitat features included:	MNES/MSES: None present or likely to occur Riparian condition: Fair The riparian zone was semi-continuous	Dry season refuge: No External Impacts: High External impacts at the site were mostly	Connectivity: Limited Mater Quality: N/	Ά	
 ephemeral waterway predominately sandy sediments with some gravel and pebbles, and moderate snags and woody debris. The site was dry during both the December and April surveys. 	around the perimeter of the waterway, and the extent of the vegetation had been reduced. Vegetation consisted grasses, trees and weeds. Banks were low (approximately 1.8 m high) and gently sloping with moderate bank and extensive bed erosion. There were some exotic terrestrial riparian species at the site.	associated with the surrounding land- use and included: reduced riparian vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Dry — — — — — — — — —	Apr-20 Dry — — — — — — —

Site: ChT1	Location: Downstream	Stream Order: 2	Waterway: Unna Cherwell Creek	med Tributa	ary of
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
N/A	N/A				
Aquatic Ecosystem Value: Low	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Limited, during periods of flow		
In-stream condition: Poor	Riparian condition: Fair	External Impacts: High	Water Quality: N	/A	
Key potential habitat features in April included:	The riparian zone was semi-continuous around the perimeter of the waterway,	use and included:	Survey:	Dec-19	Apr-20
ephemeral waterway	and the extent of the vegetation had been reduced. Vegetation consisted		Condition:	N/A	Dry
rocky narrow channel	grasses, trees and weeds. Banks were		Temp (°C):	_	_
 predominately cobbled sediments with some sand 	low (approximately 1 m high) and gently sloping with moderate erosion. There	grazing by livestock, and	EC (µS/cm):		_
 little snags and woody debris, and 	were some exotic terrestrial riparian species at the site.	feral animals.	DO (% sat):		_
little trailing & overhanging vegetation.	openios at the eller		pH (pH units):		
he site was not sampled during the ecember survey and was dry during the pril survey.			Turbidity (NTU):	_	_

Site: LW1	Location: Downstream	Stream Order: 3	Waterway: Mapp on Horse Creek	ed lacustrii	ne wetland
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: Yes	Connectivity: Limited due to high dam walls		
In-stream condition: Fair	Riparian condition: Fair	External Impacts: High	Water Quality: P	oor	
Key habitat features included:	The riparian zone was a scattered continuous mix with isolated trees	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20
shallow & deep pools aquatic plants	around the perimeter of the waterway,	use and included:	Condition:	Wet	Wet
• predominately fine sediments (sand &	and the extent of the vegetation had been reduced. Vegetation consisted grasses, shrubs, trees and weeds.	 reduced riparian vegetation as a result of land clearing 	Temp (°C):	28.7	26
silt/clay)	Banks were low (approximately 3 m	grazing by livestock	EC (µS/cm):	561	320.
little trailing & overhanging vegetation, and	high) and gently sloping with moderate erosion. There were some exotic	feral animals, and	DO (% sat):	111.5	113.1
some snags, woody debris & detritus.	terrestrial riparian species at the site.	presence of an artificial dam.	pH (pH units):	9.4	8.47
			Turbidity (NTU):	12	54.9

Site: G1	Location: Downstream	Stream Order: 5	Waterway: Grosv	venor Creek	(
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Go	od, during p	eriods of
In-stream condition: Good	Riparian condition: Good	External Impacts: High	Water Quality: Fa	air	
Key habitat features in April included:	The riparian zone was a scattered semi-	External impacts at the site were mostly associated with the surrounding land-use and included:	Survey:	Dec-19	Apr-20
ephemeral channel	continuous/continuous mix around the perimeter of the waterway, and the		Condition:	Dry	Wet
predominately sandy sediments with some pebbles, gavel and clay/silt	extent of the vegetation had been reduced. Vegetation consisted grasses,	 reduced riparian vegetation as a result of land clearing 	Temp (°C):	_	28.9
moderate overhanging vegetation	shrubs, trees, ferns and weeds. Banks were low (approximately 4 m high) and	 grazing by livestock, and 	EC (µS/cm):		184.1
some shallow pools, andsome snags, woody debris &	gently sloping with moderate erosion. There were some exotic terrestrial riparian species at the site.	feral animals.	DO (% sat):	_	111.9
branches.			pH (pH units):		8.05
The site was dry during the December survey.			Turbidity (NTU):	_	66.9

Site: Ch3	Location: Downstream	Stream Order: 5	Waterway: Cherv	vell Creek	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Go	od, during p	eriods of
In-stream condition: Good	Riparian condition: Good	External Impacts: Moderate	Water Quality: G	ood	
Key habitat features in April included:	The riparian zone was a continuous width around the perimeter of the	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20
ephemeral channel shallow pools	waterway, and the extent of the	use and included: reduced riparian vegetation as a result of land clearing	Condition:	Dry	Wet
predominately sandy sediments with	vegetation had been reduced. Vegetation consisted grasses, shrubs, trees, ferns and weeds. Banks were low		Temp (°C):	_	27.2
some pebbles, gavel and clay/silt little overhanging & trailing vegetation,	(approximately 4 m high) and gently	 grazing by livestock, and 	EC (µS/cm):	_	476.2
and	sloping with moderate erosion. There were some exotic terrestrial riparian	feral animals.	DO (% sat):	_	91.3
little snags, woody debris & branches.	species at the site.		pH (pH units):	_	7.98
The site was dry during the December survey.			Turbidity (NTU):	_	6.1

Site: Ch4	Location: Downstream	Stream Order: 5	Waterway: Cherv	well Creek	
Upstream: December 2019	Downstream: December 2019	Upstream: April 2020	Downstream: April	2020	
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Go	ood, during p	eriods of
In-stream condition: Good	Riparian condition: Fair	External Impacts: Moderate	Water Quality: Fa	air	
Key habitat features in April included:	The riparian zone was a semi- continuous/ continuous mix around the	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20
ephemeral channel	perimeter of the waterway, and the	use and included: reduced riparian vegetation as a result of land clearing grazing by livestock, and	Condition:	Dry	Wet
predominately sandy sediments with some clay/silt	extent of the vegetation had been reduced. Vegetation consisted grasses,		Temp (°C):	_	24.8
some overhanging vegetation	shrubs, trees, ferns and weeds. Banks were low (2.5 m – 3.5 m high) and		EC (µS/cm):		456.6
little snags, woody debris & branchesshallow pool at eroded bend.	gently sloping with extensive erosion. There were some exotic terrestrial		DO (% sat):		63.8
The site was dry during the December	riparian species at the site.		pH (pH units):		8.12
survey.			Turbidity (NTU):		32.4

Site: PW1	Location: Downstream	Stream Order: N/A	Waterway: Mapp palustrine wetlar		ES
December 2019	December 2019	April 2020 N/A	April 2020 N/A		
Aquatic Ecosystem Value: Low	MNES/MSES: None present or likely to occur	Dry season refuge: No	Connectivity: Limited, would only hold water during periods of high flow		
In-stream condition: Poor	Riparian condition: Fair	External Impacts: Moderate	Water Quality: N	/A	
Key potential habitat features in December included: predominately clay/silt sediments little overhanging & trailing vegetation emergent aquatic plants, and little snags, woody debris & branches. The site was dry during the December survey and was not sampled during the April survey due to property access issues.	The riparian zone was reduced but continuous around the perimeter of the wetland, and the extent of the vegetation had been reduced. Vegetation consisted trees predominantly eucalyptus, grasses and shrubs. There was some erosion in the dry bed. There were some exotic terrestrial riparian species at the site.	External impacts at the site were mostly associated with the surrounding landuse and included: reduced riparian vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Dec-19 Dry — — — — — —	Apr-20 N/A — — — — — —

Site: PW2	Location: Downstream	Stream Order: N/A	Waterway: Mapp	ed palustrir	ne wetland
December 2019	December 2019	April 2020	April 2020		
Aquatic Ecosystem Value: N/A	MNES/MSES: N/A	Dry season refuge: N/A	Connectivity: N/A		
In-stream condition: N/A	Riparian condition: Fair	External Impacts: Moderate	Water Quality: N	/A	
No aquatic habitat features recorded at this site. Site is likely incorrectly mapped	This site did not feature a riparian zone as no aquatic ecological features were	External impacts at the site were mostly associated with the surrounding land-	Survey:	Dec-19	Apr-20
as a palustrine wetland, with terrestrial ecological values only.	evident, however, terrestrial vegetation in the broader region consisted grasses,	use and included:	Condition:	Dry	Dry
ecological values only.	shrubs, trees, and weeds. There some	 reduced terrestrial vegetation as a result of land clearing 	Temp (°C):	_	_
	exotic terrestrial species at the site.	grazing by livestock, and	EC (µS/cm):		_
		feral animals.	DO (% sat):		_
			pH (pH units):	_	_
			Turbidity (NTU):	_	_

Site: GC03	Location: Downstream	Stream Order: 5	Waterway: Grosv	enor Creek
Upstream: November 2020	Downstream: November 2020			
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: N/A	Connectivity: N/A	
In-stream condition: Fair	Riparian condition: Good	External Impacts: Moderate	Water Quality: N/	A
 Key habitat features in November 2020 included: substrate predominately sand, rocks and pebbles moderate shading of reach extensive snags, woody debris & branches, and some terrestrial detritus. The site was dry during the November 2020 survey. 	The riparian zone was a scattered semicontinuous/continuous mix of grasses, large trees, and weeds. Both banks were approximately 4 m high, with some eroded bank areas around tree roots, providing good habitat for fish and macroinvertebrates. Channel was approximately 10 m wide. Large trees in the riparian zone provided moderate-extensive shading throughout the reach.	External impacts at the site were mostly associated with the surrounding land-use and included: reduced terrestrial vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Nov-20 Dry - - - -

Site: GC04	Location: Downstream	Stream Order: 5	Waterway: Grosv	enor Creek
Upstream: November 2020	Downstream: November 2020			
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: N/A	Connectivity: N/A	
In-stream condition: Fair	Riparian condition: Good	External Impacts: Moderate	Water Quality: N/	Ά
Key habitat features in November 2020 included: • substrate predominately unconsolidated sand • moderate-extensive shading of reach • extensive snags, woody debris & branches • some large snags, and • extensive terrestrial detritus. The site was dry during the November 2020 survey.	The riparian zone was a scattered continuous mix of grasses, large trees, and weeds. Both banks were approximately 3 m high, with some eroded bank areas around tree roots, providing good habitat for fish and macroinvertebrates. Channel was approximately 10 m wide. Large trees in the riparian zone provided moderate-extensive shading throughout the reach.	External impacts at the site were mostly associated with the surrounding land-use and included: reduced terrestrial vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Nov-20 Dry - - - -

Site: IRO2	Location: Downstream	Stream Order: 6	Waterway: Isaac	River
Upstream: November 2020	Downstream: November 2020			
Aquatic Ecosystem Value: Moderate	MNES/MSES: None present or likely to occur	Dry season refuge: N/A	Connectivity: N/A	4
In-stream condition: Poor	Riparian condition: Good	External Impacts: Moderate	Water Quality: N	/A
Key habitat features in November 2020 included:	The riparian zone was a scattered semi- continuous/continuous mix of grasses, large trees, and weeds. Left bank downstream was gently sloping while right bank was a higher reaching steep bank. The confluence of Grosvenor Creek and Isaac River was approximately 100 m upstream of the bridge. Channel was approximately 40 m wide.	External impacts at the site were mostly associated with the surrounding land-use and included: reduced terrestrial vegetation as a result of land clearing grazing by livestock, and feral animals.	Survey: Condition: Temp (°C): EC (µS/cm): DO (% sat): pH (pH units): Turbidity (NTU):	Nov-20 Dry

Attachment D Photographs of Fish Species Caught During the Field Surveys

Table D2 Representative photographs of each fish species captured during field surveys in December 2019 and April 2020

Agassiz's glassfish

Carp gudgeon

Purple-spotted gudgeon

Eastern rainbowfish

Bony bream

Hyrtl's tandan

Spangled perch

Tilapia

Platy