

APPENDIX F2

Collation of hydrogeological related data and information post-Draft EIS

Olympic Dam expansion project – collation of hydrogeological-related data and information post-Draft EIS

- Final
- 9 March 2011

Olympic Dam expansion project – Collation of hydrogeological-related data and information not included in Draft EIS

- Final
- 9 March 2011

Sinclair Knight Merz ABN 37 001 024 095 Level 5, 33 King William Street Adelaide SA 5000 Australia PO Box 8291 Station Arcade SA 5000 Australia

Tel: +61 8 8424 3800 Fax: +61 8 8424 3810 Web: www.skmconsulting.com

COPYRIGHT: The concepts and information contained in this document are the property of Sinclair Knight Merz Pty Ltd. Use or copying of this document in whole or in part without the written permission of Sinclair Knight Merz constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Sinclair Knight Merz Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Sinclair Knight Merz and its Client. Sinclair Knight Merz accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Contents

1.	Intro	duction	1
2.	Work	c program summaries	3
	2.1.	General	3
	2.2.	Clearances	3
	2.3.	Equipment	3
	2.4.	Water well construction	4
	2.4.1.	Overview	4
	2.4.2.	Monitoring wells	4
	2.4.3.	Field supervision and data collection	4
	2.4.4.	Well development	5
	2.4.5.	Aquifer testing	5
	2.4.6.	Site rehabilitation	5
	2.5.	Baseline groundwater sampling	5
	2.5.1.	Overview	5
	2.5.2.	Groundwater levels	6
	2.5.3.	Groundwater sampling	6
	2.5.4.	Laboratory analyses	7
	2.6.	Laboratory analysis of groundwater quality	8
	2.7.	Establishing baseline water quality levels	9
3.	Refe	rences	10
4.	State	ement of limitations	11

List of tables, figures and attachments

Tables

Table 1.1 Hydrogeological information collected in additional investigations

Table 2.1 Field and laboratory analyses conducted

Figures

Figure 1.1 Locality plan for EIS-related groundwater studies

Attachments

Attachment A EIS-related investigations

Attachment B Mine pit dewatering and depressurisation trial drilling, construction

and testing completion report

Attachment C Baseline groundwater sampling and analytical program

Attachment D Hydrogeological investigations of the Andamooka Limestone aquifer

Attachment E Geological log for Margaret Creek Bore #1

Terms and abbreviations

ALA or ZAL or €a:

Andamooka Limestone aquifer

AHD:

Australian Height Datum

ANZECC:

Australian and New Zealand Environment Conservation Council

ARMCANZ:

Agriculture and Resource Management Council of Australia and New Zealand

artesian Eromanga Basin:

that part of the Eromanga Basin where groundwater pressures are artesian

artesian Eromanga (GAB) aquifers: the aquifers of the artesian Eromanga Basin

EIS:

Environmental Impact Statement

GAB:

Great Artesian Basin (in this document the term refers to the "artesian Eromanga Basin"

GDE:

groundwater dependent ecosystem

GFS:

groundwater flow system

NATA:

National Association of Testing Authorities

non-artesian Eromanga Basin:

that part of the Eromanga Basin where groundwater pressures are non-artesian, aquifers may be confined or unconfined

non-artesian Eromanga aquifers:

the aquifers of the non-artesian Eromanga Basin, i.e. groundwater pressures may be sub-artesian or the aquifers host the water table

OD:

Olympic Dam

SINCLAIR KNIGHT MERZ

Olympic Dam EIS Project – Hydrogeological data and information collation report Final

RSF: rock storage facility
SA EPA: South Australian Environment Protection Authority
SEIS: Supplementary Environmental Impact Statement
SML: Special Mining Lease
SWL: standing water level
TDS: salinity, expressed as total dissolved solids
THA or ZWC: Tent Hill aquifer (lower Arcoona Quartzite and Corraberra Sandstone)
THZ: Torrens Hinge Zone
TSF: tailings storage facility
TSS: total suspended solids
Victorian EPA: Victorian Environment Protection Authority

1. Introduction

This factual report has been prepared to present the results of additional hydrogeological data collection that has been undertaken by SKM since the preparation of the draft EIS and that are of relevance for the proposed expansion of Olympic Dam, and the Supplementary EIS.

Various hydrogeological investigations have been carried out in support of the draft EIS with several investigations continuing in parallel, and subsequent, to Draft EIS preparation. Although the later information and interpretations were not available for the Draft EIS, they are available to assist with responses to submissions made in regard to the Draft EIS.

Hydrogeological field investigations completed by SKM in parallel to preparation of the Draft EIS have included:

- 1) Drilling, well construction and aquifer testing for EIS-related hydrogeological investigations (Attachment A).
- 2) Drilling, well construction and aquifer testing for mine pit dewatering and depressurisation trial (Attachment B).
- 3) A groundwater baseline sampling and analytical program (Attachment C).
- 4) Drilling, well construction and aquifer testing for saline groundwater supply investigations of the Andamooka Limestone aquifer (Attachment D).

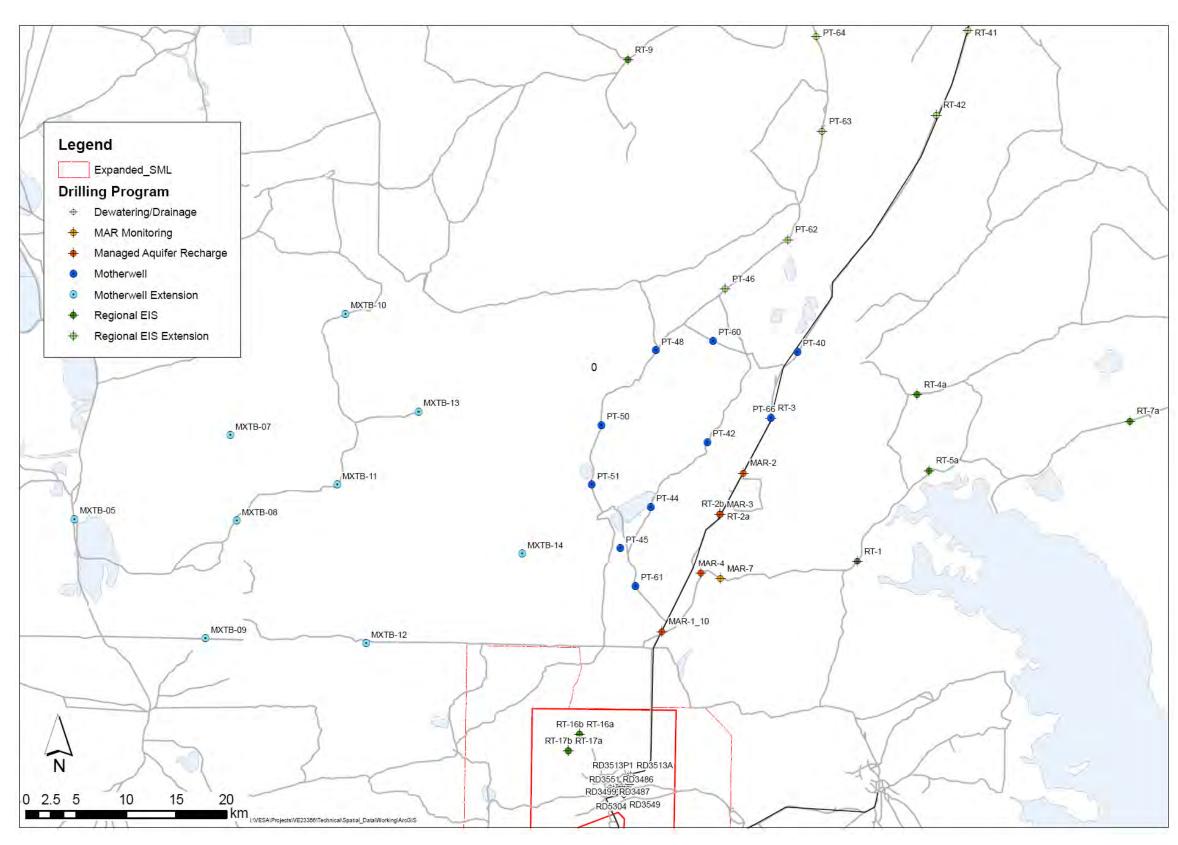

In addition to this additional information, a log for the Margaret Creek Bore #1, which is located near Billa Kalina Spring northwest of Olympic Dam, is provided as Appendix E. The log has been recently prepared and is based on drill cuttings that are around 100 years old. It is likely that the existing operational Margaret Creek Bore #2 draws water from Eromanga Basin sediments.

Table 1.1 summarises the types of hydrogeological information collected for the investigations documented in this report.

Section 2 presents a summary of the methodologies employed in the gathering of data and information presented in the Appendices.

Figure 1.1 presents a locality plan for all of the drilling and testing locations referred to in this report.

■ Figure 1.2

Locality plan for EIS-related groundwater studies

Table 1.1 Hydrogeological information collected in additional investigations

	EIS investigations (Stuart Shelf)	Motherwell investigations	Baseline WQ sampling	EIS investigations (THZ)	Dewatering investigations	Motherwell Extension investigations [1]
DATA	December 2007	May 2008	July-Sept 2008	August 2008	October 2008	Sept-Oct 2008
Well logs	16 new wells (9 locations)	24 new wells (20 locations)		5 new wells	14 new wells	16 new wells (9 locations)
Water levels	16 new wells	23 new wells	53 existing wells	5 new wells	14 new wells	16 new wells
Water chemistry	16 new wells	23 new wells	54 existing wells	5 new wells	14 new wells	16 new wells
Yield estimates	16 new wells	23 new wells		5 new wells	14 new wells	16 new wells
Aquifer testing data	2 new wells	4 new wells			2 new wells	
ANALYSIS						
Cross-sections						√
Major ion (Piper plots)	✓		✓		✓	✓
Other WQ analyses	✓	✓	✓			
Water level contours	✓		✓	✓		✓
Mapping well yields					✓	✓
Mapping salinity			✓			✓
Mapping WQ parameters			✓			

Notes:

1. 9 locations completed from a planned 15

2. Work program summaries

2.1. General

Drilling and testing of wells occurred under the supervision of SKM during 2008. Drilling targets were selected by BHP Billiton.

2.2. Clearances

All wells were sited on previously disturbed land or land clear of vegetation and all were given environmental and heritage clearance. Water produced during drilling and subsequent aquifer tests was contained in sumps.

Environmental and heritage assessments were undertaken by authorised BHP Billiton environmental personnel in consultation with local Native Title Claimant groups. The purpose of the permit system is to 'clear' areas prior to any disturbance arising from activities such as drilling. Environmental and heritage clearance permits contain information on the area to be disturbed by a drilling activity. These permits also identify site-specific conditions relating to the protection of any significant environmental or heritage features identified near the site.

Within previously cleared areas, sumps were constructed to contain drill cuttings, and water produced during drilling and subsequent aquifer tests. Water that could not be contained in the sumps was allowed to run over the ground provided no vegetation, access routes or infrastructure would be adversely affected. In situations where uncontained water or airlifting spray threatened areas of environmental concern, drilling was temporarily terminated for protection to be established in the form of earth wall bunds or more favourable weather conditions.

2.3. Equipment

Drilling works were undertaken by Gorey and Cole Drillers (G&C) using a Schramm T685WS drilling rig equipped for conventional down-the-hole (air) hammer drilling with auxiliary boosted air compressors. The Schramm rig has air capacity (with auxiliary booster and compressor) of 350 psi (2200cfm) to depths greater than 600 m.

Different types and sizes of drill bits were used during the drilling of each hole to reach target depths at desired hole diameters:

- The drilling of each well was commenced with a 17½" or 14¾" tri-cone roller to accommodate steel surface casings.
- Following the installation of surface casing, hammer bits ranging in size from $14\frac{3}{4}$ ", $9^{7}/_{8}$ ", $12\frac{1}{4}$ ", $7^{7}/_{8}$ " and $5^{5}/_{8}$ " were utilised.

Airlift yields were estimated using a 90° v-notch weir (or through a bucket test when flow could not be channelled through a v-notch weir), and field measurements of water quality parameters (EC, pH, temperature) were undertaken using calibrated electronic meters.

2.4. Water well construction

2.4.1. Overview

All wells were constructed to the standards specified in the Minimum Construction Requirements for Water Bores in Australia (Land and Water Biodiversity Commission, 2003).

2.4.2. Monitoring wells

All monitoring wells were drilled using conventional air hammer techniques.

Surface casing (16", 12" or 10" DN steel) was installed within shallow unconsolidated sediments and pre-collars installed before the first water cut (12" DN with sometimes telescoped 10" DN steel). All casings were cemented in place and tails drilled out at $9^{7}/_{8}$ ", and $7^{7}/_{8}$ " diameter.

2.4.3. Field supervision and data collection

SKM hydrogeologists supervised the drilling and completion of all wells. Information collected during drilling included:

- Lithology, based on drill cuttings collected at 2 m intervals.
- Penetration rate, based on time for drilling each rod length.
- Airlift water yield, measured whilst drilling and between rod changes.
- Groundwater temperature, electrical conductivity (EC as mS/cm) and pH, measured during airlift at each rod change and water cut encountered.
- Unload pressure, i.e. measurement of the pressure (PSI) required to lift groundwater from the borehole at each rod change (normally recorded by the driller).
- Depth to groundwater, when possible during and after drilling.
- Airlift recovery depth to groundwater post drilling.
- Daily activity, such as time drilling, tripping in and out of the borehole, the time of bit changes, well construction, and rig breakdown.

Composite well logs are presented in Attachment A. Data concerning drilling penetration rates, airlift yield and EC profile logs are presented in Attachment B. Laboratory analytical reports are presented as Attachment C. Field purge sheets completed during sampling are presented as Attachment D.

2.4.4. Well development

Each well was developed via airlifting following completion of construction using the rig's on-board compressor. Development was undertaken in order to remove drilling fluids and cuttings/fines and to induce hydraulic connection between the bore and the aquifer.

Airlift development of observation wells was achieved using a 2" poly airline, submerged to just above the screened interval. Each well was developed for a minimum of one hour or until groundwater parameters of EC, pH and temperature had stabilised to within 10% of previous readings.

2.4.5. Aquifer testing

Airlift recovery tests were also performed on the majority of the observations wells. The wells were airlifted for an average of two hours and then depth to water was recorded for 1 hour or until water levels had recovered back, or near, to static.

2.4.6. Site rehabilitation

To comply with environmental permit conditions, site rehabilitation was undertaken after drilling, construction and testing works.

Rehabilitation involved fencing off drill sites, including sumps and bunds with removable plastic bunting and star pickets for a period of three weeks after cessation of work; after which all introduced material (drill cuttings and imported soil for the construction of turkey nets) was removed for appropriate disposal on the SML.

2.5. Baseline groundwater sampling

2.5.1. Overview

A total of 57 groundwater monitoring wells were sampled over the winter months from July to September 2008.

The monitoring wells were selected to provide information about the main hydrostratigraphic units of each of the three main geological provinces that feature in the broader Olympic Dam region, namely:

Stuart Shelf

- Andamooka Limestone Aquifer (ALA)
- Yarloo Shale Aquitard
- (Upper) Arcoona Quartzite Aquitard

• Tent Hill Aquifer (THA)

Adelaide Geosyncline

- ABC Quartzite (equivalent to Arcoona Quartzite)
- Brachina Formation (equivalent to the THA)
- Amberoona Formation

Eromanga Basin

• Cadna-owie Formation / Algebuckina Sandstone

Groundwater was also sampled from wells installed in the tailings materials of the existing ODO TSF.

2.5.2. Groundwater levels

Groundwater levels at each operational monitoring well were measured prior to sampling using an electronic water level probe. Because of the high salinity of groundwater, water level data were density corrected prior to conversion to m AHD.

2.5.3. Groundwater sampling

Monitoring wells were purged and sampled using the low flow, minimal drawdown (micropurge) sample technique with the following exceptions:

- Monitoring wells H1-1, H1-2, H3-1, H3-2, H4-2 and LR4 were sampled by disposable polyethylene bailer because of low well yield and/or shallow depth precluding the use of micro-purge sampling;
- Monitoring wells QT2, LR4, PT17, RT16b, RT17b, PT31, MAR3-20, RT02b, PT66, MAR4-20a, MAR4-20b, PT40, PT60 and MAR7 were all sampled by disposable polyethylene bailer because of deep static water levels (SWLs) precluding the use of micro-purge sampling;
- Production bore LP2 was sampled from the dedicated sampling spigot (1" ball valve) installed on the discharge line because this is an active pumping bore with permanent pipe work installed, which precludes access to the borehole for micropurge sampling equipment.

For low flow sampling a micro purge bladder pump (QED MP10) was utilised comprising a submersible stainless steel tube with an internal bladder controlled by compressed air. The pump intake was placed in the centre of the screened interval. New rolls of Low Density Polyethylene (LDPE) tubing were used and dedicated for each monitoring well. Sample tubing was recovered, labelled and stored in a central location onsite for future use. The bladder pump was decontaminated with a 10% Decon-90 solution and triple rinsed with clean potable water prior to use at the next location.

SINCLAIR KNIGHT MERZ

Field physical and chemical parameters were recorded regularly during sampling. Once stable geochemical conditions were achieved, as indicated by the last two consecutive readings, a groundwater sample was collected. The stability of field parameters indicates that the groundwater sample collected is representative of groundwater in the aquifer at the depth setting of the intake.

A summary of the stabilised field parameters at the time a groundwater sample was collected is presented in Section 6.

Groundwater samples were placed in new laboratory-supplied sample bottles containing appropriate preservatives, and then placed into an esky containing ice, for transport to Labmark Environmental Laboratories. Labmark is certified by the National Association of Testing Authorities (NATA) for the analyses undertaken for this sampling program. Blind coded intralaboratory duplicates and inter-laboratory duplicate groundwater samples were also collected and sent to Labmark and Australian Laboratory Services (ALS) (also NATA certified for the analyses undertaken), respectively. Four rinsate blank samples were collected to test the effectiveness of field decontamination procedures.

Groundwater samples collected for dissolved metals analysis were filtered in the field using a dedicated 0.45 micron filter for each sample and were placed into pre-acidified containers. Samples for total metals (Fe only) were not filtered and were placed directly into pre-acidified laboratory bottles.

A separate groundwater sample (1 L, un-filtered, acidified with nitric acid) was collected from wells LT02/LP2, LR1, LR2, LR8, LR9, LT19, LT41, PT24a, RT16a and RT17a, then placed into a 20 L steel drum containing ice and vermiculite for transport to Australian Radiation Services (ARS) for radionuclide analyses (²²⁶Ra).

2.5.4. Laboratory analyses

Based on historical results in the vicinity of the current TSF, and consistent with analyses undertaken for previous monitoring events, the analytical program undertaken for all monitoring wells is outlined in Table 2.1. Monitoring wells QR2, PT64 and LR4 were the only wells for which a complete analysis was not undertaken, due to well complications, dryness and low yield respectively.

Table 2.1 Field and laboratory analyses conducted

Field Parameter	Laboratory Analyses
SWL	рН
pН	TDS
EC	EC
Eh	Silica (Si)
Temperature	Major Cations (Ca, Mg, Na, K)
Total CO ₂ (TSF only)	Major Anions (Cl, SO ₄ , HCO ₃ , CO ₃)
	Nutrients – (NO ₂ , NO ₃ , Total Nitrogen, TOC, TKN)
	Acidity (as CaCO ₃)
	Alkalinity (OH, HCO ₃ , CO ₃ – each reported as CaCO ₃)
	Dissolved Metals - Aluminium - Al, Antimony - Sb, Arsenic - As, Beryllium - Be,
	Barium – Ba, Bismuth – Bi, Boron – B, Cadmium – Cd, Chromium – Cr, Cobalt –
	Co, Copper – Cu, Gold – Ag, Iron – Fe, Lead – Pb, Lithium – Li, Manganese – Mn,
	Molybdenum – Mo, Nickel – Ni, Selenium – Se, Strontium – Sr, Thallium – Tl,
	Thorium – Th, Tin – Ti, Titanium – Ti, Uranium – U, Vanadium – V, and Zinc – Zn)
	Radionuclide's (²²⁶ Ra) (analysis undertaken by ARS for wells below and around
	the existing ODO TSF only)

Notes:

SWL: Static Water Level
EC: Electrical Conductivity
Eh: Redox Potential
TDS: Total Dissolved Solids
ARS: Australian Radiation Services
TSF: Tailings Storage Facility

2.6. Laboratory analysis of groundwater quality

Water samples were collected from each well during development after consecutive readings stabilised to within 10% of previous readings. Additional samples were collected using disposable bailers at least 3 days post drilling completion to obtain a representative sample of native groundwater. The bailed samples were submitted to the analytical laboratory for testing along with several drilling and development samples. The samples were collected into laboratory prepared containers, stored on ice and submitted to ALS Environmental Pty Ltd (ALS) for analysis of the following analytes (ALS is a NATA accredited laboratory for the analyses undertaken):

General:

pH, EC, salinity as total dissolved solids (TDS), suspended solids (SS), turbidity and alkalinity.

■ Major ions:

Sulfate, chloride, calcium, magnesium, sodium, potassium, fluoride, and carbonate (as CaCO₃).

Dissolved metals:

Iron, aluminium, arsenic, barium, cobalt, copper, lead, manganese, molybdenum, strontium, uranium, zinc and boron.

■ Total Metals:

Iron.

Nutrients:

Nitrite (as N), nitrate (as N) and nitrite + nitrate (as N).

2.7. Establishing baseline water quality levels

In order to determine pre-development groundwater chemistry conditions around OD, wells in the sampling program have been placed into groupings based on hydrostratigraphic units (see previous section) and location. The geographical classifications used are:

- 1) in the vicinity of existing ODO TSF;
- 2) in the vicinity of the proposed ODX TSF and RSF (sub-regional);
- 3) within the broader regional groundwater flow systems (regional).

To attempt to characterise each grouping, the water quality analyte measurements have been presented as a range and as geometric means.

As a means of further evaluating groundwater quality, analytical data have been compared to published guideline values that are set by government regulators to protect specific environmental values. It should be noted, however, that the natural salinities of the groundwaters in the study area often far exceed the salinities of the environments for which these criteria have been set (ie. potable water, freshwater or marine systems). As a consequence, an exceedance of a particular guideline value for one or other analytes may be quite irrelevant where (as is common) the high salinity of the groundwater means that beneficial use for the waters is generally limited to industrial purposes only (refer SKM, 2010; Section 3). The results of this approach are presented in Attachment C.

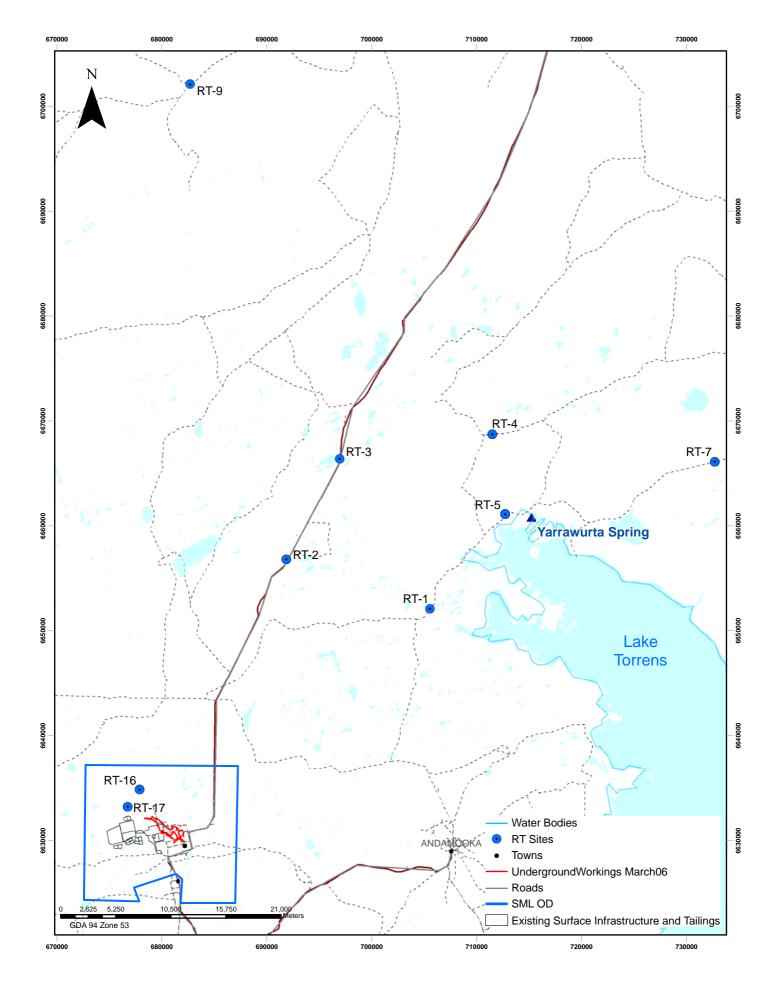
3. References

Land and Water Biodiversity Commission. 2003. Minimum construction requirements for water bores in Australia. Queensland Department of Natural Resources Mines and Energy.

SKM. 2010. Olympic Dam expansion project – Supplementary Environmental Impact Assessment groundwater studies. Prepared for BHP Billiton Olympic Dam Corporation P/L by Sinclair Knight Merz Pty Limited. Appendix F1 of the Supplementary EIS.

4. Statement of limitations

The services provided by Sinclair Knight Merz Pty Limited in preparing this report and undertaking the various studies contributing to the findings of the report have been conducted in a manner consistent with the level of quality and skill generally exercised by members of its profession and consulting practice.


This report has been prepared solely for use by BHP Billiton and may not contain sufficient information for the purposes of other parties or for other uses. Any reliance on this report by third parties shall be at such party's sole risk.

The information in this report is considered to be accurate with respect to conditions encountered at the time field investigations were undertaken, and conclusions are based on the data available at the time of report preparation. Interpretations of data and information presented in the appendices were valid at the time reporting of the studies took place. A different interpretation may now be appropriate given the time that has expired since the reports were prepared and the fact that new information may now be available.

Olympic Dam EIS Project – Hydrogeological data and information collation report FINAL

Attachment A EIS-related investigations

EIS drilling program INVESTIGATION WELLS

EIS drilling program

Target	Screened Unit	Depth (m)	Intention	Outcome
RT-1	Pwc	474	Full penetration and screening of the Corraberra Sandstone.	The hole was terminated in the Tregolana Shale after full penetration of the target formation. Paired with the Andamooka Limestone LR-10 well, this is now a nested site.
RT-2a	€a	295	Full penetration and screening of the Corraberra Sandstone.	A collapsed hole after 295m forced an Andamooka Limestone completion.
RT-2b	Pws	342	Full penetration and screening of the Corraberra Sandstone.	Completed within in the upper Tent Hill sequences of Red Arcoona Quartzite and provides a nested site.
RT-3	€a	149	Completion below watertable.	Completed and screened within the unconfined Andamooka Limestone after penetration of the first major water cut
RT-4a	€a	58	Provide a nested site to compare deep lithological	Hole terminated after first water cut and screened in the upper Andamooka Limestone.
RT-4b	Pwx	522	sequences beneath the unconfined Andamooka Limestone to the north of Yarrawurta Springs.	A production zone of 320m was screened entirely within the Yarloo Shale after no major water cuts were encountered in this unit.
RT-5a €a 6		66		Hole terminated after first major water cut in the upper Andamooka Limestone. The hole was left open for production.
RT-5b/c	€a/ Pwa-Pwr	634	Provide a nested site to compare deep lithological sequences beneath the unconfined Andamooka Limestone to the west of Yarrawurta Springs.	Drilling was terminated in the Brachina Formation after no major water cuts were encountered after the base of the Andamooka Limestone. Completion screened and gravel packed 200m of ABC Range Quartzite and Brachina Formation (RT-5c). This completion was isolated with a 240m seal form a second PVC installation within the lower dolomitic Andamooka Limestone (RT-5b). The second installation, owing to groundwater salinity measurements taken while drilling that showed distinctly different salinities encountered within the upper Andamooka Limestone and deeper (>140m) dolomitic stratum.
RT-7a/b	Pws	198	Provide a nested site to compare deep lithological sequences beneath the unconfined Andamooka Limestone east of Yarrawurta Springs.	Two PVC completions were made in this well; the deepest, RT-7b, within the lower part of the formation and is isolated from the shallower completion of RT-7a within a more weathered zone.
RT-9	Pwr	71	Target a sandstone unit reportedly 15-20m below ground level underlying Bulldog Shale, supposedly harboring a perched groundwater table or mound.	The sandstone unit was not intersected; drilling continued and was terminated after the first water cut, which was screened.
RT-16a	€a	68	Final depths were based on lithological logging of RT-16b and targeted karst within the Andamooka Limestone.	The final depth and screened interval was entirely within the Andamooka Limestone.
RT-16b	Pwm	252	Full penetration and screening of the Corraberra Sandstone.	Final depth was reached in the Tregolana Shale after full penetrating of the Corraberra Sandstone. RT-16 is now a nested site.
RT-17a €a 84		84	Final depths were based on lithological logging of RT-17b and targeted karst within the Andamooka Limestone.	The final depth and screened interval was entirely within the Andamooka Limestone.
RT-17b	Pwc	264	Full penetration and screening of the Corraberra Sandstone.	Final depth was reached in the Tregolana Shale after full penetrating of the Corraberra Sandstone. RT-17 is now a nested site.

Investigation well completion summary

Well		rveyed Locati IGA94_Zone5		DWLBC	ВНР	Dates	Drilled	Drill	ЕОН	Fina	l Pre-collar	Casing		Monitoring casing					Aquifer
Number	Easting	Northing	TOC (mAHD)	Permit Number	Number	Start	Completed	Method	Depth (m)	Depth Setting (m)	Diameter (mm)	Material	Blank Interval (m)	Slotted/Production Interval (m)	Diameter (mm)	Material	Gravel pack	Seal	monitored
RT-1	705545.1	6652082.7	50.082	122678	RD2789	13-Jul-07	23-Jul-07	Air Hammer	474	192	200	STL	0-438, 444-450, 456-462, 468-474	438-444, 450-456, 462-468	50	PVC	420-474	388-420	Pwc
RT-2a	691869.1	6656801.7	95.578	122684	RD2790	17-Nov-06	28-Jun-07	Air Hammer	295	25	250	STL	0-113.5	113.5-119.5	50	PVC	-	80-102	€a
RT-2b	691848.8	6656794.5	95.556		RD2883	29-Jun-07	12-Jul-07	Air Hammer	342	166	200	STL	0-330	330-342	50	PVC	318-342	270-316	Pws
RT-3	696948.5	6666399.4	100.822	122656	RD2791	12-Dec-06	17-Dec-06	Air Hammer	149	34	200	STL	-	34-149 (Open hole)	-	-	-	-	€a
RT-4a	711500.1	6668734.5	72.164	122677	RD2792	21-Aug-07	23-Aug-07	Air Hammer	58	6	200	STL	0-42	42-58 (Isolated Open Hole)	50	PVC	-	22-42	€a
RT-4b	711497.0	6668745.9	72.224	122681	RD2793	10-Aug-07	22-Aug-07	Air Hammer	552	172	200	STL	0-486	486-522	50	PVC	472-522	402-472	Pwx
RT-5a	712725.5	6661144.8	48.820	122679	RD2794	06-Aug-07	07-Aug-07	Air Hammer	66	36	200	STL	-	36-66 (Open hole)	50	PVC	-	-	€a
RT-5b	712713.8	6661127.0	48.475	122676	RD2795	24-Jul-07	07-Aug-07	Air	634	142	200	STL	0-164, 178-200	155-167	50	PVC	146-178	134-146, 178-420	€a
RT-5c	712713.0	0001127.0	40.475	122070	KD2795	24-Jul-07	07-Aug-07	Hammer	034	142	200	SIL	0-500	500-634 (blank-slot- blank)	50	PVC	420-634	134-146, 178-420	Pwa/Pwr
RT-7a	732710.4	6666104.8	65.011	122680	RD2937	24-Aug-07	29-Aug-07	Air	198	10	200	STL	0-24	24-36	50	PVC	30-70 (Open hole)	3-13, 141-166	Pfa
RT-7b	732710.4	0000104.6	65.011	122000	KD2937	24-Aug-07	29-Aug-07	Hammer	190	10	200	SIL	0-190	190-196	50	PVC	166-196	3-13, 141-166	Pfa
RT-9	682696.7	6702115.4	59.292	122667	RD2800	10-Jan-06	12-Jan-06	Air Hammer	71	5	150	STL	0-47, 59-71	47-59	50	PVC	n/a	n/a	Pwa
RT-16a	677878.8	6634871.5	102.423	127994	RD2880	09-Jun-07	10-Jun-07	Air Hammer	68	12	200	STL	0-62	62-68	50	PVC	Open hole	55-60	€a
RT-16b	677884.1	6634858.8	102.453	122665	RD2879	03-Jun-07	09-Jun-07	Air Hammer	252	72	150	STL	0-198, 210-216	198-210	50	PVC	185-216	168-178	Pwc
RT-17a	676745.6	6633219.6	101.557	127945	RD2882	17-Jun-07	19-Jun-07	Air Hammer	84	6	150	STL	0-66, 78-84	66-78	100	PVC	60-84 (Open hole)	50-60	€a
RT-17b	676758.7	6633223.9	101.938	127943	RD2881	11-Jun-07	18-Jun-07	Air Hammer	264	90	200	STL	0-236, 248-264	236-248	50	PVC	224-264	214-224	Pwc

Summary of airlift yields (L/s) of RT wells

Stuart Shelf

Regional Target	Andamooka Limestone	Yarloo Shale	Arcoona Quartzite (red)	Arcoona Quartzite (white)	Corraberra Sandstone	Tregolana Shale
RT-1	10	0.1	0.1	0.5-1	1	-
RT-2a	12		>1			
RT-2b	20	-	16.5-38 ¹			
RT-3	<0.1					
RT-4a	5					
RT-4b	20-30	0.5-1				
RT-16a	<0.1					
RT-16b	-		<0.5	3-5	>7	-
RT-17a	-					
RT-17b	3		-	-	5	-

Adelaide Geosyncline

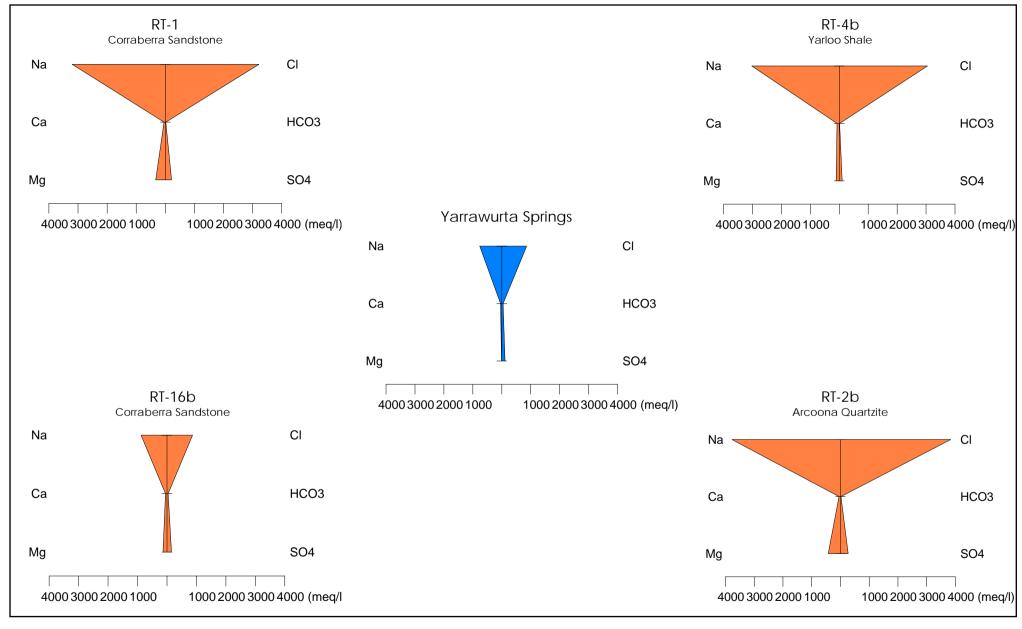
Regional Target	Andamooka Limestone	Amberoona Formation	Bunyeroo Formation	ABC Range Quartzite	Brachina Formation	
RT-7	x	~1				
RT-5a	~10					
RT-5b	~50, 5		<0.1	<0.1	<0.1	
RT-9					0.1	

Notes: ¹measured as combination yield form €a and Pws (red)

Summary of groundwater salinity as electrical conductivity (mS/cm) of RT wells

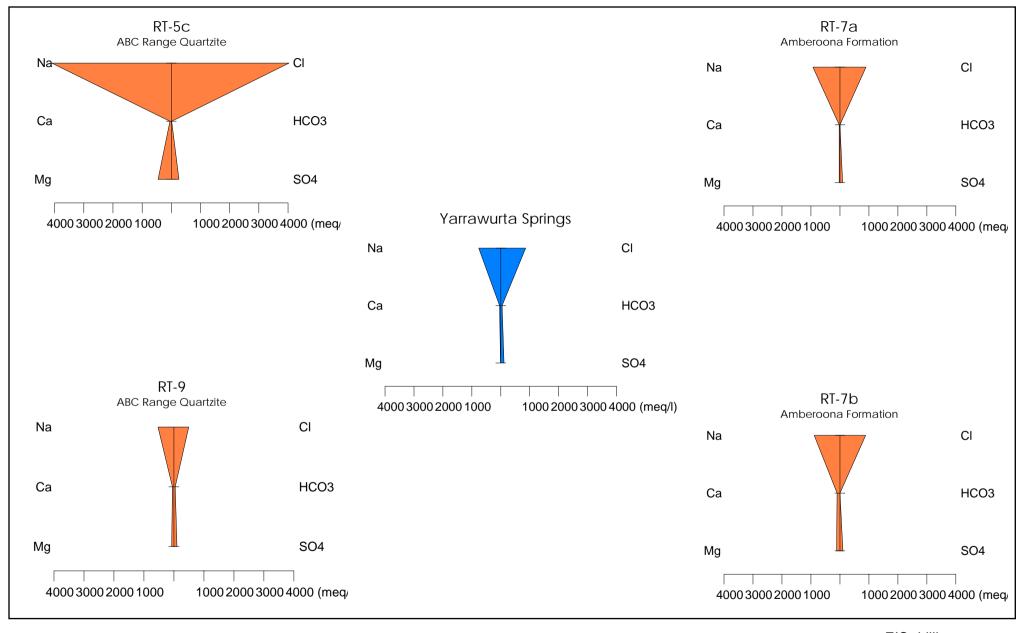
Stuart Shelf

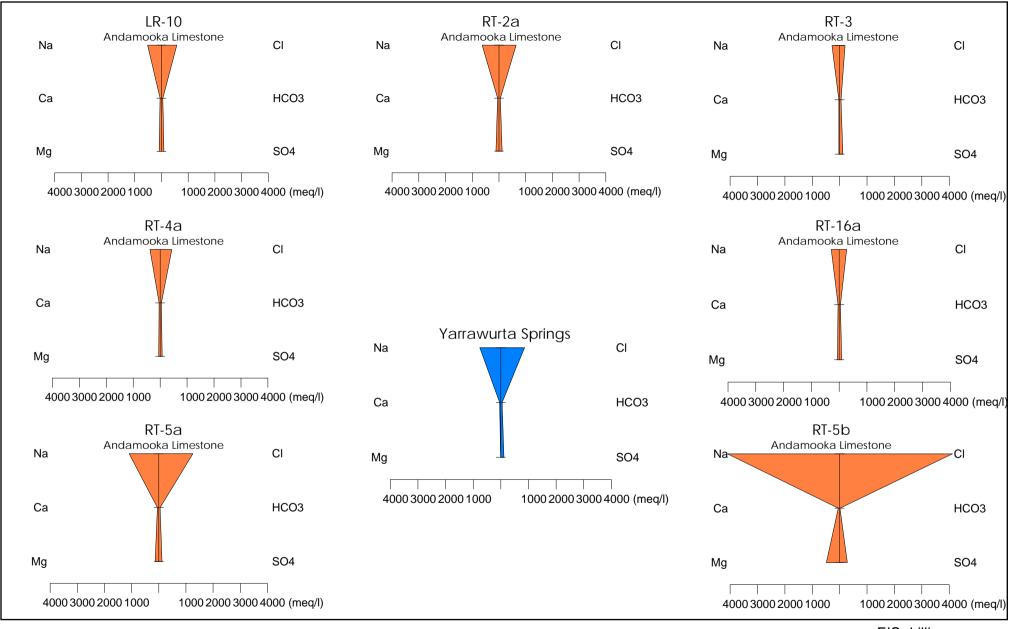
Well Number	Andamooka Limestone	Yarloo Shale	Arcoona Quartzite (red)	Arcoona Quartzite (white)	Corraberra Sandstone	Tregolana Shale
RT-1	47.8-62.1, 107.	68-171.4	46	65-143	94-110	-
	5-167.4					
RT-2a	34.5-44.7		44.3-68			
RT-2b	35.6-53.7, 104.4-222.3	-	206-223.9			
RT-3						
RT-4a	44.3					
RT-4b	41.5-44, 70.5-76.2	72.9-153				
RT-16a	-					
RT-16b	-		29-40	45-73	67-72	-
RT-17a	-					
RT-17b	28.7-33.7		-	-	75-79.3	-


Adelaide Geosyncline

Well Number	Andamooka Limestone	Amberoona Formation	Bunyeroo Formation	ABC Range Quartzite	Brachina Formation	
RT-7		76				
RT-5a	89.5					
RT-5b	63.3-74.7, 124.4-217.3		189.6-216.3	210.8-216.7	198.2-216	
RT-9					52.3	

Notes:


EC measurements are and accumulation of water within the well column while drilling, there fore when an upper aquifer has not been sealed off this may will the EC measured while drilling through lower formations.



EIS drilling program STUART SHELF STIFF PATTERNS

EIS drilling program ADELAIDE GEOSYNCLINE STIFF PATTERNS

EIS drilling program ANDAMOOKA LIMESTONE STIFF PATTERNS

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-1/RD2789

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB EIS Drilling Program** LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

WELL PERMIT NUMBER: 122678 TOTAL DEPTH (m bgl): 474m REFERENCE POINT (m AHD):50.08

STATIC WATER LEVEL

Date: 20/7/07 Depth (m bgl): 23.996

PROJECTION:GDA94 Zone53

D	ATE	STA	RT	ED: 13/7	/07	DATE COMPLETED: 23/7/07	EAS	STI	NG	: 705	5542	N	OR	ГНІР	IG: 6	6652084
DR	DRILLING INFO.					MATERIAL PROPERTIES			ı	FIELD	REC	ORDS/0	CON	STRI	JCTI	ON INFO.
METHOD	BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)		GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL		WELL		
\uparrow	17.5"			0.0 -	•	QUATERNARY SEDIMENTS: Red clay with calcarious sandy	silt	个						٦ [PVC Stickup
	1	0.40 0.55		10.0 -		QUATERNARY SEDIMENTS: Interbedded layers of brown, ye and grey-green silty clay, with minor gypsum inclusions	ellow	 ප්				V_2				12" STL surface casing 0-6m, grouted 0-6m
		0.60		20.0 -		QUATERNARY SEDIMENTS: Grey-green/brown calcarious sandy-clay	/									
		0.60 0.43		30.0 -		QUATERNARY SEDIMENTS: Brown silty-clay, with grey-gree clay	n									
		0.38		-	薑	ANDAMOOKA LMST: White limestone with minor brown silt	/		wc	3.0	55					
		0.40		40.0 -		ANDAMOOKA LMST: Plasticy grey-green clay with brown silt, highly calcarious and limestone				4.0	55					
		0.46 0.40		50.0 -	甚	ANDAMOOKA LMST: White-light grey consolidated limestone grey dolomite	and			4.0 5.0	49 62					
		0.33		60.0 -	臣	ANDAMOOKA LMST: White consolidated limestone with 50% shale and minor green shale	red			5.0	50					
		0.33 0.35		70.0 -	Ħ	ANDAMOOKA LMST: White consolidated limestone with pink green marbalised dolomite	and			5.0 5.0	48 49					
		0.33		80.0 -	豆	ANDAMOOKA LMST: Grey dolomite with green-pink and white	/ e			5.0	50					
		0.35		-	茔	dolomitic limestone				5.0	52					
		0.33		90.0 -	芉			ea –	wc	6.0	108					
	12" -	0.35		100.0 -	弄					6.0	108					
		0.25		-	茔					7.0	118					
		0.32		110.0 -	荳					7.0	110					
		0.27		- 120.0 –	Ŧ					7.0	125					
		0.26		120.0 -	Ŧ					7.0	132					
		0.25		130.0 -	丰	AND AMOOKA LMOT, Commission				8.0	135					
		0.30		-	豆	ANDAMOOKA LMST: Grey dolomite				8.0	113					
		0.26		140.0 -	荳	ANDAMOOKA LMST: Grey dolomite with visible macropores a minor pink and dary grey sandstone	and		wc	8.0 10.0	124 156					
		0.22		150.0 -	茸	ANDAMOOKA LMST: Dark grey and pink dolomite				10.0	168					
		0.19		- 160.0 -		ANDAMOOKA LMST: Dark grey dolomite with red and grey sh	nale	$\downarrow \downarrow$		10.0	167					
		0.21		- 100.0		YARLOO SHALE: Dark grey/red shale and grey shale		$ \uparrow \rangle$		10.0	116					
		0.46		170.0 -						10.0	171					
		0.40		-						10.0						
		0.32		180.0 -						10.0	152			П		

DATE: 23/7/07 LOGGED: K Furness CHECKED: DATE:

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-1/RD2789

PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 13/7/07 DATE COMPLETED: 23/7/07

WELL PERMIT NUMBER: 122678

TOTAL DEPTH (m bgl): 474m
REFERENCE POINT (m AHD):50.08

STATIC WATER LEVEL

Date: 20/7/07 Depth (m bgl): 23.996

PROJECTION:GDA94 Zone53

EASTING: **705542** NORTHING: **6652084**

											5542		ION	HING. U	652084
DR	ILLIN	IG INF	О.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS /	CONS	TRUCTION	ON INFO.
МЕТНОВ	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY				AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION	WELL DESCRIPTION
Hammer air	→ ← − − − − − − − − − − − − − − − − − −	0.17 0.75 0.86 1.00 0.86 0.75 0.75 0.67 0.67 0.60		200.0 - 210.0 - 210.0 - 220.0 - 230.0 - 240.0 - 250.0 - 260.0 - 270.0 - 300.0 - 310.0 - 330.0 - 330.0 - 330.0 - 330.0 - 330.0 - 330.0 - 330.0 - 330.0 -		YARLOO SHALE: Mainly red quartzite and white quartzite, mir red shale and grey/green shale YARLOO SHALE: Red shale with grey/green quartzite and shale YARLOO SHALE: Red shale with minor grey/green shale YARLOO SHALE: Grey shale with mica and red shale, minor rand white quartzite at 240m YARLOO SHALE: Grey/green shale, red shale, more quartzite ligher at 302m ARCOONA QTZT (RD): Red shale, red quartzite, grey shale with mica, minor white quartzite ARCOONA QTZT (RD): White quartzite with red shale and red quartzite ARCOONA QTZT (RD): Red shale, grey shale, some red and	ed ,			0.1 0.1	162 164 68				8° STL pre-collar 0- 192m, grouted 186- 192m

Dogo 2 of

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-1/RD2789

PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

inches

WELL PERMIT NUMBER: 122678

TOTAL DEPTH (m bgl): 474m
REFERENCE POINT (m AHD):50.08

STATIC WATER LEVEL

Date: 20/7/07 Depth (m bgl): 23.996

PROJECTION:GDA94 Zone53

DATE STARTED: 13/7/07 DATE COMPLETED: 23/7/07					EASTING: 705542 NORTHING: 6652084						
DRILLING INFO.	MATERIAL PROPERTIES			FIELD	REC	ORDS / 0	CONSTRUCTION	ON INFO.			
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m) GRAPHIC LOG	LITHOLOGY	L H L C	INTERPRETIVE COG	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION			
0.60 0.60 0.60 0.60 0.60 0.60 0.50 0.410.0 0.55 0.46 0.55 0.46 420.0 0.55 0.46 440.0 0.32 0.29 450.0 0.24 0.32 470.0 0.29 480.0 0.29 480.0 0.29 480.0 0.29 490.0 0.29	white quartzite ARCOONA QTZT (RD): Grey quiartzite, fractured ARCOONA QTZT (RD): Mainly red quartzite and red shale, min white quartzite, with % white sandstone increasing from 380m ARCOONA QTZT (RD): Red and white quartzite, red shale, red and 10% white sandstone ARCOONA QTZT (RD): Green/grey, white and red quairtzite wi white sandstone ARCOONA QTZT (WHT): Hard fractured red quiartzite with gregreen quartzite ARCOONA QTZT (WHT): Green/grey, white and red quairtzite white and pink sandstone ARCOONA QTZT (WHT): White-grey quartzite, fractured ARCOONA QTZT (WHT): White and pink fine grained, hard sandstone, with green quartzite and minor shale ARCOONA QTZT (WHT): Grey/green shale CORRABERRA SDST: White and green quartzite fused sandst (fine grained, hard), with pyrite at 458-460. TREGOLANA SHALE: Dark grey shale and minor dark red sandstone EOH at 474m	h \	Pwm Pwc C - Pws (white) - 	0.1 0.1 0.5 0.5 0.5 1.0 1.0 1.0 1.0	65 143			Cement seal 418-338m above 0.7-1.5mm agregate gravel pack, 420-474m 50mm PVC monitoring casing: blank 0-438, 444-450, 456-462, 468-474m, slotted 438-444, 450-456, 462-468m			

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-2a/RD2790

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB EIS Drilling**

LOCATION: Olympic Dam, South Australia

DRILLING CO: JND

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 17/11/06 DATE COMPLETED: 28/6/07 WELL PERMIT NUMBER: 122684

TOTAL DEPTH (m bgl): REFERENCE POINT (m AHD):95.58

STATIC WATER LEVEL

Date: 5/7/07 Depth (m bgl): 55.19

PROJECTION:GDA94 Zone53

	ATE	STA	RT	ED: 17/ 1	1/06	DATE COMPLETED: 28/6/07	EAS	STI	NG	: 691	418		IORT	HINC	3: 6	656145
DF	RILLIN	IG IN	FO.			MATERIAL PROPERTIES	FIELD RECO				CORDS / CONSTRUCTION INFO.					
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL DESCRIPTION
\uparrow	12"	0.20		0.0 -		QUATERNARY SEDIMENTS: Fine to coarse, red/brown, some coarse gravel	;	o ↑								Well cover 10" STL surface casing 0-7m, grouted 5-7m
				10.0 -	$\stackrel{\cdot}{=}$	BULLDOG SHALE: Light brwn/gry clay w brwn/yllw shale	/						Ш		Ш	
	- 10"	0.40		20.0 -	<u>:</u> -	BULLDOG SHALE: Light grey to blue/green shales & clays										
	\downarrow			20.0 -		BULLDOG SHALE: Light brown to red & grey, minor brown clar	y									8" STL pre-collar 0-
				30.0 -		BULLDOG SHALE: Light grey										25m, grouted 23-25m
		0.53		40.0 -		BULLDOG SHALE: Sudden change of colour of cuttings at 32n Fragments vary from brown/red to grey (siltstone)	n.	Kmb —								
		0.53		50.0 -					wc							
		0.53		60.0 -	<u>: -</u>	BULLDOG SHALE: Light brown										
		0.53		70.0 -		BULLDOG SHALE: Grey & dark brwn/rd layers of shale/siltstor Light grey shale band at 71-72m	ie.									
				80.0 -	· -											Bentonite/grout seal (80-102m) held suspended via basket
		0.27		90.0 -		ANDAMOOKA LMST: Dolomitic crystalline. Grey/blue to white, light pink sdst layer at 103m to 104m				0.5	35					
		0.27	150	100.0 -						3.8	36					50mm Diam class 18 PVC casing from 0-
		0.27	155	110.0 -		ANDAMOOKA LMST: Light pink & wht, interlayered with bands shale, dark brown/red & light grey. Heavy shale at 110m-112m				3.8	36					113.5. Slotted 50mm Diam PVC from 113.5- 119.5
Hammer air				120.0 –		ANDAMOOKA LMST: As above, reduced amount of red/brown shale				6	40					
- Ham				_		ANDAMOOKA LMST: White broken ground from 116-118, light pink sdst at 118m	: /		wc			cavity		_ * ;		Cement seal at 122m in cavity (below casing)
		0.53	280	130.0 -		ANDAMOOKA LMST: Large Imst rocks, grey, up to 4cm, dolon veins	nitic	— еа —		6	36	poor returns		* * ;		
		0.27		140.0 -		ANDAMOOKA LMST: White, large fragments up to 2cm & som pink, light green stained, some gypsum, light green clay preser			wc	6	36	cavity	ш	*		
		0.32	300	150.0 -		ANDAMOOKA LMST: As above w dark brown/red shale 132 - 138m, limestone has a green stain. Possibly marks the top of the transitional zone	ne				38		ш	* * * * * * * * * * * * * * * * * * *		

DATE: 17/05/07 LOGGED: J van den Akker CHECKED: DATE:

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-2a/RD2790

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB EIS Drilling**

LOCATION: Olympic Dam, South Australia

DRILLING CO:

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

WELL PERMIT NUMBER: 122684

TOTAL DEPTH (m bgl): 295 REFERENCE POINT (m AHD):95.58

STATIC WATER LEVEL

Date: 5/7/07 Depth (m bgl): 55.19

PROJECTION:GDA94 Zone53

DATE STARTED: 17/11/06 DATE COMPLETED: 28/6/07				EASTING: 691418 NORTHING: 6656145								
DRILL	ING IN	FO.			MATERIAL PROPERTIES			FIE	D REC	ORDS / (CONSTRUCTION	ON INFO.
METHOD BIT I OG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS AIRLIFT YIFLD (1 (sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION
\	0.15 0.11 0.13 0.13 0.06 0.08 0.27 0.27 0.18 0.20 0.18 0.15	250 210 370 360 360 360 450 450	170.0 - 180.0 - 190.0 - 200.0 - 210.0 - 220.0 - 230.0 - 240.0 - 250.0 - 270.0 - 280.0 -		ANDAMOOKA LMST: White, minor gypsum, contains moderate brittle light green limestone, minor green clays and calcite, contains some pink quartzite fragments ANDAMOOKA LMST: None to minor returns. As above ARCOONA QTZT (RD): As above- mixture of cuttings.: white 8 pink Qtz + green & white Imst ARCOONA QTZT (RD): Increase in dark gry qtzt 195 to 201m. Pink qtzt at ~190m. Still a moderate amount of Imst (Large fragments) ARCOONA QTZT (RD): Qtzt, dark grey and white, some pink. Moderate Imst- contamination? Broken ground 218-220m, producing large fragments of gry & wht Imst, & calcite at 218-222m. ARCOONA QTZT (RD): Wht & gry/brwn qtzt, some pink, with shale, rd/brwn, micaceous, distinct shale layer at 232m ARCOONA QTZT (RD): Dark grey/brown and white. Shale % increases with depth, micaceous, some Imst still present at 256 270m (contamination?) but mostly shale. ARCOONA QTZT (RD): Mostly shale, dark red/brown and grey micaceous, interbeded within quartzite, dark grey/brown, white and red/pink	3-	>> \	10- 10- wc 10- 1.	2 43 2 42 2 45 112 44 112 45 112 50 57 112 58 2 66 2 63 2 65 2 68 2 68	no cuttings no cuttings 246-254m	* * * * * * * * * * * * * * * * * * * *	Hole backfilled with cuttings from 122-295m
Ш			300.0 -	Ш	EOH at 295m							

LOGGED:	J van den Akker	DATE: 17/05/07
CHECKED:		DATE:

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-2b/RD2883

PROJECT NUMBER: EV-02

PROJECT NAME: BHPB EIS Drilling

LOCATION: Olympic Dam, South Australia

DRILLING CO: JNE

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 29/6/07 DATE COMPLETED: 12/07/07

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl): 295
REFERENCE POINT (m AHD):95.56

STATIC WATER LEVEL

Date: 5/7/07 Depth (m bgl): 55.19

PROJECTION:GDA94 Zone 54

EASTING: 691848 NORTHING: 6656794

DR	ILLIN	IG IN	FO.			MATERIAL PROPERTIES	_,			FIELD	REC	ORDS / 0				ON INFO.
Ä		I				WATERIALTROLERIES			H	T	1	1				
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL DESCRIPTION
小	.es			0.0 -		QUATERNARY SEDIMENTS: Red silty loam		~	ł				ΙГ	TE	1	Well cover
		0.75		10.0 -		BULLDOG SHALE: Yellow/grey clay with weathered grey & red/brown shales	/									16" STL surface casing 0-7m, grouted 5-7m
		0.50		20.0 -	<u>:-</u>	BULLDOG SHALE: Calcareous weathered red/brown siltstone/shale w weathered grey shale										
		0.50		30.0 -	<u>:-</u> -	0										
		0.67		40.0 -	: :-	BULLDOG SHALE: Calcareous red/brown and grey shales		Kmb								
		0.75		50.0 -	:- :-			Ì								
		0.67		-	<u>:-</u> -											
	ream)	0.75		60.0 -		BULLDOG SHALE: Mainly calcareous grey shale										
	12" (15"ream)	0.86		70.0 -	<u>:</u> -	BULLDOG SHALE: Red/brown shale										
		0.67		80.0 -		ANDAMOOKA LMST: LMST (white)		\uparrow								
		0.43		90.0 -		ANDAMOOKA LMST: LMST (white, grey and pink), 5-10mm subrounded fragments, more angular from 89m with shale interbeds			wc	~2.5 2.5	40					
		0.46		100.0 -		ANDAMOOKA LMST: LMST (pink) dolomitic				2.5	40					
		0.43		110.0 -		ANDAMOOKA LMST: Red shale layer				2.5	40					
ammer air -		0.32 0.15		- 120.0 –		ANDAMOOKA LMST: LMST (white and pink) dolomitic, some green shale, minor quartz				2.5	41					
Hami		0.38		130.0 -		ANDAMOOKA LMST: LMST: large fist-sized chunks of lmst (white/grey), green shale, pyrite, chlorite, quartz and iron staini	ng		wc		41	Large fracture				
		0.20		- 140.0 -	Ħ	ANDAMOOKA LMST: LMST (grey + green/whtie)				~20	48	/cavity				12" STL pre-collar 0- 131m, grouted 129- 131m
	12" —	0.11		-	Ħ	ANDAMOOKA LMST: LMST w gypsum minerilisation, with plawhite/pink quartzite	ty				50					
		0.08		150.0 -	H	ANDAMOOKA LMST: Dolomite (pink and white) with quartzite (white)					52					
	\downarrow	0.06		160.0 -	H	ANDAMOOKA LMST: Dolomite (white) with sandstone (white) quartzite	+	ea —			54		Ц			8" STL pre-collar 0-
	$\left \uparrow \right $	0.27		170.0 –				(~3	54					166m, resting in hole
		0.40		180.0 -		ANDAMOOKA LMST: Dolomite (dark-med grey)				~3	105					
		0.27		- 190.0 –		ANDAMOOKA LMST: Quarzite with nuca and pyrite, visible voids/macro-pores + precipitate, with grey dolomite				~3.8	104					
						LOGG	гο.	_	٠ <i>-</i>	urrio				D.4	\ T E	- 17/05/07

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-2b/RD2883

PROJECT NUMBER: EV-02

PROJECT NAME: BHPB EIS Drilling

LOCATION: Olympic Dam, South Australia

DRILLING CO: JNE

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 29/6/07 DATE COMPLETED: 12/07/07

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl): 295
REFERENCE POINT (m AHD):95.56

STATIC WATER LEVEL

Date: 5/7/07 Depth (m bgl): 55.19

PROJECTION:GDA94 Zone 54

D	DATE STARTED: 29/6/07 DATE COMPLETED: 12/07/07				EAS	EASTING: 691848 NORTHING: 6656794									
DF	DRILLING INFO. MATERIAL PROPERTIES						F	FIELD	REC	ORDS/0	CONSTRUCTION	ON INFO.			
METHOD	BIT LOG	PENETRATION RATE (m/min)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION		
	.8"	0.35 0.50 0.32 0.27 0.32 0.32 0.32 0.27 0.33 0.32 0.32 0.30 0.32 0.30 0.30 0.30 0.30 0.29 0.25 0.26 0.26 0.26	200.0 - 210.0 - 220.0 - 230.0 - 240.0 - 250.0 - 260.0 - 270.0 - 280.0 - 300.0 - 310.0 - 320.0 -		ANDAMOOKA LMST: Dolomite + Quartzite with pyrite and precipitate, visivle macro-pores ANDAMOOKA LMST: Dolomite (grey/tan) with minor quartzite mica ARCOONA QTZT (RD): Dolomite (grey, shale (red), quartzite gred) and minor sandstone ARCOONA QTZT (RD): Quartzite (red) with sandstone (red) + shale (red) ARCOONA QTZT (RD): Dolomite (grey0 ~50%, sandstone grequartzite (white and red) ARCOONA QTZT (RD): Mainly Shale (red) with sandstone (requartzite (white) and little dolomite ARCOONA QTZT (RD): Calcarious shale (grey) with mica inclusions, shale (red) and quartzite (white) ARCOONA QTZT (RD): Shale (red) with white quartzite and santstone ARCOONA QTZT (RD): Dolomite (grey), shale (grey-green) with quartzite and sandstone (red) ARCOONA QTZT (RD): Shale (red), quartzite (red) with minor sandstone (red) ARCOONA QTZT (RD): Shale (grey-green, minor red), and quartzite (white) ARCOONA QTZT (RD): Shale (grey-green, minor red), with with quartzite (white) ARCOONA QTZT (RD): Shale (grey-green, minor red), with with quartzite (white) ARCOONA QTZT (RD): Shale (grey-green, minor red), with with quartzite (white) ARCOONA QTZT (RD): Shale (grey-green, minor red), with with quartzite (white) ARCOONA QTZT (RD): Shale (grey-green, minor red), with with quartzite (white)	ed), vith r te)	Pws	we we	>15	206 215 216 217 222 208 220 217 219 220 224 215 219 220 209 211 211 212 208 206 207 206			Bentonite/grout seal 270-316m above gravel pack 318-242m		
		0.30 0.25	330.0 -		·				28 32	210 207			50mm Diam class 18 PVC casing blank 0- 330m, slotted 330- 342m		
		0.23	350.0 -		EOH at 342m				38	206					

LOGGED:	D Currie	DATE: 17/05/07
CHECKED:		DATE:

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RT-3/RD2791

PROJECT NUMBER: **EV-02**

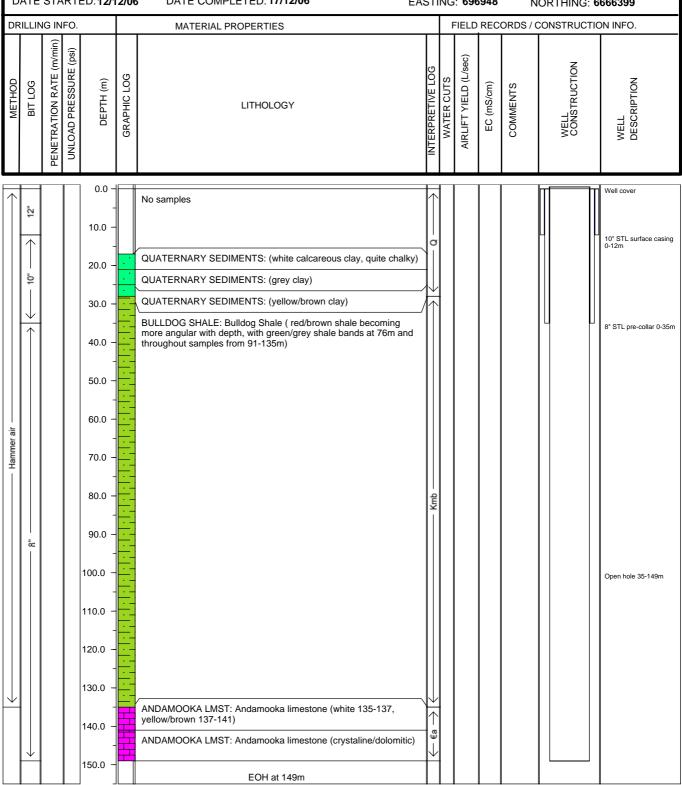
BHPB EIS Drilling PROJECT NAME:

Olympic Dam, South Australia LOCATION:

DRILLING CO:

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 12/12/06 DATE COMPLETED: 17/12/06 WELL PERMIT NUMBER: 122656


TOTAL DEPTH (m bgl): 149 REFERENCE POINT (m AHD):100.82

STATIC WATER LEVEL

Date: 18/9/07 Depth (m bgl): 59.92

PROJECTION:GDA94 Zone53

EASTING: 696948 NORTHING: 6666399

LOGGED:	J van den Akker	DATE: 17/12/06
CHECKED.		DATE:

BOREHOLE / WELL NUMBER

RT-4a/RD2792

PROJECT NUMBER: **EV-02**

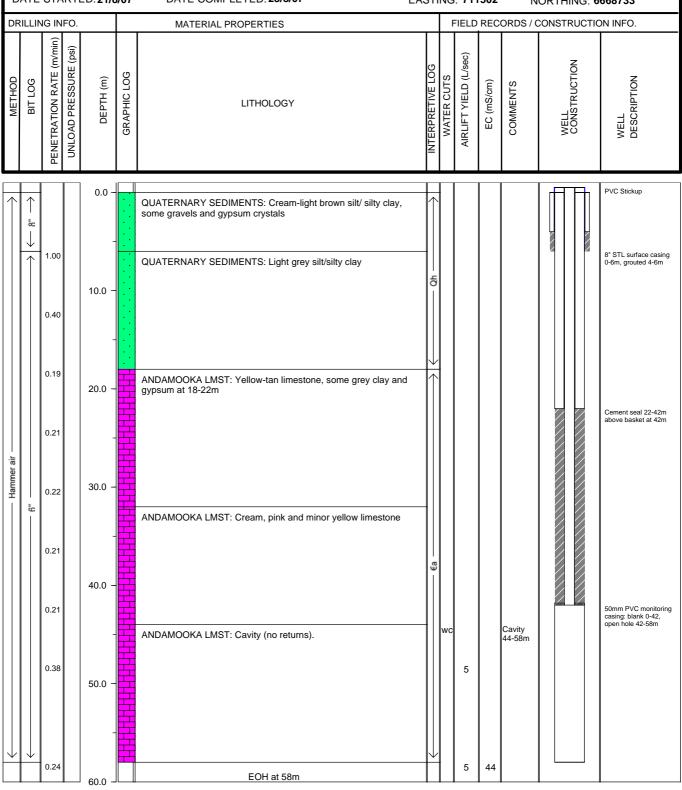
PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 6 inches

DATE STARTED: 21/8/07 DATE COMPLETED: 23/8/07

WELL PERMIT NUMBER: 122677


TOTAL DEPTH (m bgl): 58
REFERENCE POINT (m AHD):72.16

STATIC WATER LEVEL

Date: 24/8/07 Depth (m bgl): 32.2

PROJECTION:GDA94 Zone53

EASTING: **711502** NORTHING: **6668733**

LOGGED:	T McCarthy	DATE: 23/8/07
CHECKED.		DATE:

BOREHOLE / WELL NUMBER

RT-4b/RD2793

PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 10/8/07 DATE COMPLETED: 22/8/7

WELL PERMIT NUMBER: 122681

TOTAL DEPTH (m bgl): 522 REFERENCE POINT (m AHD):72.22

STATIC WATER LEVEL

Date: 11/8/07 Depth (m bgl): 31.64

PROJECTION:GDA94 Zone53

EASTING: **711502** NORTHING: **6668733**

DATE STARTED:10/8/07 DATE COMPLETED: 22/8/7				EASTING: 711502 NORTHING: 6668733												
DI	RILLII	NG INF	FO.			MATERIAL PROPERTIES			F	FIELD	REC	ORDS / 0	DS / CONSTRUCTION INFO.			
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WEI	CONSTRUCTION	WELL DESCRIPTION	
	> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.36 0.33 0.50 0.30 0.27 0.46 0.86 0.24 0.23 0.30 0.25 0.24 0.27 0.23 0.24 0.21 0.21 0.18 0.14 0.67 0.60 0.67 0.60 0.67 0.60 0.67		0.0 - 10.0 - 20.		QUATERNARY SEDIMENTS: Light gery clay, non-calcarious, a red silt with mica and gypsum 0-2m QUATERNARY SEDIMENTS: Grey clay/silt, non-calcarious, w gypsum ANDAMOOKA LMST: Tan limestone with red siltstone, grey cla and gypsum ANDAMOOKA LMST: Tan limestone ANDAMOOKA LMST: Pink, some white and tan limestone ANDAMOOKA LMST: white, pink and tan limestone. Highly mineralised-gypsum, pyrite, petrified wood ANDAMOOKA LMST: Dark grey/red limestone with green shale gypsum, pyrite and chlorite ANDAMOOKA LMST: White limestone and pink dolomite ANDAMOOKA LMST: White limestone and grey dolomite ANDAMOOKA LMST: Grey dolomite, some white, with green sl at 140-142m, grey/brown sandstone at 144-146m and 152-154 YARLOO SHALE: Red-brown to purple shale (~60%) and grey shale (~40%), hard to very hard, medium plasticity. Minor crear pink quartzite at 194-200m and 288-290m. Grading to brown wiminor grey shale from 344m.	yy)) nale m	40 \(\sigma\)	wc	20-30 20-30 20-30 20-30 0.5 3 3 3 3 5 5 5-7 5-7 5-7 5-7 5-7 0.5 0.5 0.5 0.5 0.5 0.5	43 43	Cavitey 44-50m Fracture 64-65m			12" STL pre-collar 0-72m, resting in hole 8" STL pre-collar 0-172m, resting in hole Cement plug at base of 8" STL casing	
nmer air –		0.55 0.60 0.60		250.0 - - 260.0 -						0.5 <0.5 <0.5						

LOGGED: T McCarthy DATE: 22/8/07 CHECKED: _____ DATE:

BOREHOLE / WELL NUMBER

122681

522

RT-4b/RD2793

PROJECT NUMBER: **EV-02**

BHPB EIS Drilling Program PROJECT NAME: Olympic Dam, South Australia LOCATION:

DRILLING CO: G+C

Air Hammer DRILLING METHOD: BOREHOLE DIAMETER: 8 inches

530.0

STATIC WATER LEVEL Date: 11/8/07

Depth (m bgl): 31.64 PROJECTION:GDA94 Zone53

REFERENCE POINT (m AHD):72.22

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl):

DATE STARTED: 10/8/07 DATE COMPLETED: 22/8/7 EASTING: **711502** NORTHING: 6668733 FIELD RECORDS / CONSTRUCTION INFO. DRILLING INFO MATERIAL PROPERTIES PENETRATION RATE (m/min) (isd) AIRLIFT YIELD (L/sec) WELL CONSTRUCTION UNLOAD PRESSURE INTERPRETIVE LOG GRAPHIC LOG WELL DESCRIPTION 90 DEPTH (m) METHOD COMMENTS EC (mS/cm) BIT 1 LITHOLOGY Нa 0.60 <0.5 270.0 0.60 <0.5 0.75 <0.5 280.0 0.50 < 0.5 0.50 290.0 < 0.5 0.75 <0.5 300.0 0.55 <0.5 0.55 < 0.5 310.0 0.55 < 0.5 0.60 320.0 <0.5 137 0.55 <0.5 330.0 <0.5 < 0.5 340.0 <0.5 ā 350.0 <0.5 <0.5 360.0 <0.5 0.67 <0.5 370.0 0.67 <0.5 0.55 380.0 <0.5 0.75 <0.5 390.0 0.60 <0.5 0.67 <0.5 400.0 0.50 <0.5 0.60 410.0 <0.5 0.55 <0.5 YARLOO SHALE: Grey-green shale with white to light grey quartzite (~10-30%) and sandstone. Some brown shale. 420.0 0.60 < 0.5 0.50 < 0.5 430.0 0.60 <0.5 0.67 440.0 <0.5 0.55 <0.5 450.0 0.50 < 0.5 0.67 < 0.5 460.0 0.60 <0.5 0.50 470.0 <0.5 0.60 < 0.5 480.0 0.55 < 0.5 50mm PVC monitoring casing: blank 0-486, 468-474m, slotted 486-0.50 <0.5 490.0 0.67 <0.5 0.75 500.0 <0.5 0.5-1 153 510.0 0.46 0.5-1 0.60 0.5-1 520.0 0.60 0.5-EOH at 522m

> DATE: 22/8/07 LOGGED: T McCarthy CHECKED: DATE:

BOREHOLE / WELL NUMBER

122679

66

RT-5a/RD2795

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB Saline Water Supply** LOCATION: Olympic Dam, South Australia

DRILLING CO: **Gorey and Cole**

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

REFERENCE POINT (m AHD):48.82 STATIC WATER LEVEL

Date: 10/08/07 Depth (m bgl): 10m (approx)

PROJECTION:GDA94 Zone 53

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl):

D	ATE	STA	RTE	ED: 7/07	/07	DATE COMPLETED: 10/08/07	EASTING: 712714 NORTHING: 6661128							6661128
DR	ILLIN	IG IN	FO.			MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.							ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL
				0.0 -				I.	-				hr	Well cover
	15" →				\equiv	YARRAWURTA SHALE: Alluvial wash	/	\prod						12" STL casing 0-6m, grouted to surface
	\downarrow			-		YARRAWURTA SHALE: Red shale, calcarious, with minor gre shale interbeds (also calc)	y							grouted to surrace
	$ \uparrow $	1												
		0.7		10.0 -	Ξ									
					Ξ									
		0.8		-	Ξ									
					\equiv	YARRAWURTA SHALE: Mainly grey shale (calc) with some re	ed	÷						
	12"			20.0 -		shale (calc)								8" STL pre-collar 0-36m
		0.8												
					\equiv									
		0.6		30.0 -	\equiv			\parallel						
Hammer air						YARRAWURTA SHALE: Red/Brown Shales and siltstones witl green/grey siltstones (calc, hard) and grey shale. Mnr LMST fr								
Hamı	\downarrow	0.6		-	=	34m		$\downarrow \downarrow$						
	$ \uparrow $	0.7			\pm	ANDAMOOKA LMST: LMST. Tan from 36-38m, gey/white 36-3	58	$ \uparrow$						
				40.0 -	렆				wc			fractures at 56-60		Open hole 36-66m
					Ħ				wc	2		at 50-00		
				-	Ħ									
				50.0	Ħ									
	-8			50.0 -				ea —						
				_										
										15	90			
				60.0 -		ANDAMOOKA LMST: LMST. White and pink/grey with large vechips of pink/grey and pyrite.	uggy							
				-		ANDAMOOKA LMST: As above with red shale and minor gree shale.	n	\bigvee						
				70.0		EOH at 66m								
_				70.0 -				-	-				•	•

LOGGED:	K Furness	DATE: 17/08/07
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

RT-5b/c/RD2794

PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB Saline Water Supply
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey and Cole

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 24/07/07 DATE COMPLETED: 7/08/07

WELL PERMIT NUMBER: 122680

TOTAL DEPTH (m bgl): 634
REFERENCE POINT (m AHD):48.4757

STATIC WATER LEVEL

Date: 10/08/07 Depth (m bgl): b = 22.67m, c = 21.88m

PROJECTION:GDA94 Zone 53

EASTING: 712713.816 NORTHING: 6661127.009

L^{D}	DATE STARTED: 24/07/07 DATE COMPLETED: 7/08/07				EAS	ASTING: 712713.816 NORTHING: 6661127.009										
DF	ILLIN	IG IN	FO.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS / 0	CONSTRUCTION INFO.			
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		CONSTRUCTION	WELL DESCRIPTION	
\uparrow	7.5"			0.0 -		YARRAWURTA SHALE: Alluvial wash		\downarrow					7		Well cover 16" STL casing 0-6m,	
	1	1.5		10.0 -		YARRAWURTA SHALE: Red shale, calcarious, with minor gre shale interbeds (also calc)	/ ∋y								grouted to surface	
		0.86		20.0 -		YARRAWURTA SHALE: Mainly grey shale (calc) with some re shale (calc)	ed	- €v								
		0.6		30.0 - 40.0 -		YARRAWURTA SHALE: Red/brown shales and siltstones with green/grey siltstones (calcarious, hard) and grey shale. Mnr Liftform 34m.			wc	3	73					
				50.0 -		ANDAMOOKA LMST: LMST grey/white. Large fist-sized chunl 44-46m (vuggy, with solution/dissolution features and large ch of pyrite (1cm)). Iron-staining at 54-56m. Gypsum at 56-58m.			WC	70						
		0.25		60.0 -		ANDAMOOKA LMST: pink LMST with pyite and green shale				70						
				70.0 -		ANDAMOOKA LMST: red shale band	/									
	1			80.0 -		ANDAMOOKA LMST: white and tan LMST, pyrite, green shale staining (diff to iron staining), with red/brown dolomite	e, red			70					8" STL pre-collar 0- 142m	
		0.11		90.0 -	喜	ANDAMOOKA LMST: white, pink and red/brown dolomite with white Imst, green shale and pyrite	n /									
		0.11		100.0 -		ANDAMOOKA LMST: orange dolomite with macropores, gree shale and white/pink dolomite	n			70						
Hammer air				110.0 - 120.0 -	喜	ANDAMOOKA LMST: white/grey and orange LMST with band increased pyrite minerals	s of									
Ham				130.0 -	HH	ANDAMOOKA LMST: Mainly limestone with white sandstone a green + grey shale	and	€a	wc		73					
				140.0 -		ANDAMOOKA LMST: White, pink and grey limestone with cop and pyrite inclusions with minor red and green shale at depth	oper		wc	70						
	\uparrow	0.46		150.0 -		ANDAMOOKA LMST: Mainly pink dolomitic/marbalistic limesto with minor pyrite inclusions and minor sandstone	one				160	SWL = 9.33			RT5b completed at 178m, 50mm CL18	
				160.0 -	Ħ	ANDAMOOKA LMST: Green white and pink limestone with wh sandstone	nite			5	217				PVC screens 155-167, gravel pack 146-178m, 14m seal above	
				170.0 -	莒	ANDAMOOKA LMST: White consolidated limestone				5						
				180.0 –		ANDAMOOKA LMST: Grey dolomite, visible mackropores and gypsum 162-164m	i									
				190.0 -		ANDAMOOKA LMST: Grey dolomite and white limestone with sandstone and minor green-grey shale	10%									
		0.55		200.0 -		ANDAMOOKA LMST: Mainly pink dolomite with grey dolomite some white limestone and minor red shale with gypsum minet from 169m				5	205					
				210.0 -		BUNYEROO: Green-grey shale	/									
				220.0 -		BUNYEROO: Red shale with minor gren-grey shale	<i>/</i> /	1								

BOREHOLE / WELL NUMBER

RT-5b/c/RD2794

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB Saline Water Supply** LOCATION: Olympic Dam, South Australia

DRILLING CO: **Gorey and Cole**

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches DATE STARTED: 24/07/07 DATE COMPLETED: 7/08/07

WELL PERMIT NUMBER: 122680

TOTAL DEPTH (m bgl): 634 REFERENCE POINT (m AHD):48.4757

STATIC WATER LEVEL

Date: 10/08/07 Depth (m bgl): b = 22.67m, c = 21.88m

PROJECTION:GDA94 Zone 53

EASTING: 712713.816 NORTHING: 6661127.009

DATE STARTED: 24/07/0	EASTING: 712713.816 NORTHING: 6661127.009		
DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.	
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m) GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION	
230.0 - 240.0 - 250.0 - 260.0 - 270.0 - 280.0 - 290.0	BUNYEROO: Red shale with increasing dark grey shaleup to 30 BUNYEROO: Equal parts of well sorted red shale grey shale red quartzite with minor red sandstone BUNYEROO: Red shale with minor grey shale and red/ light gre quartzite BUNYEROO: Mainly red shale and quartzite with minor grey sha with intermixed purple shale BUNYEROO: Mainly red shale and quartzite with minor grey sha with intermixed purple shale and bands of light green shale or quartzite BUNYEROO: Red quartzite/shale with minor <2% dark sandstor and white quartzite BUNYEROO: Red quartzite and shale with green shale BUNYEROO: Mainly red shale/quartzite with green shale and -10% dark sandstone BUNYEROO: Mainly red quartzitic sandstone with some red sha white quartzite and minor red shale ABC RANGE QTZT: Green fine-sand/silt stone with brown shale/siltstone and white quartzite with minor red shale ABC RANGE QTZT: Green grey quartzite-siltstone with white quartzite and minor red shale	5 215 y Al 5 215 195 ale 6 215	

DATE: 17/08/07 LOGGED: K Furness DATE: CHECKED:

BOREHOLE / WELL NUMBER

RT-5b/c/RD2794

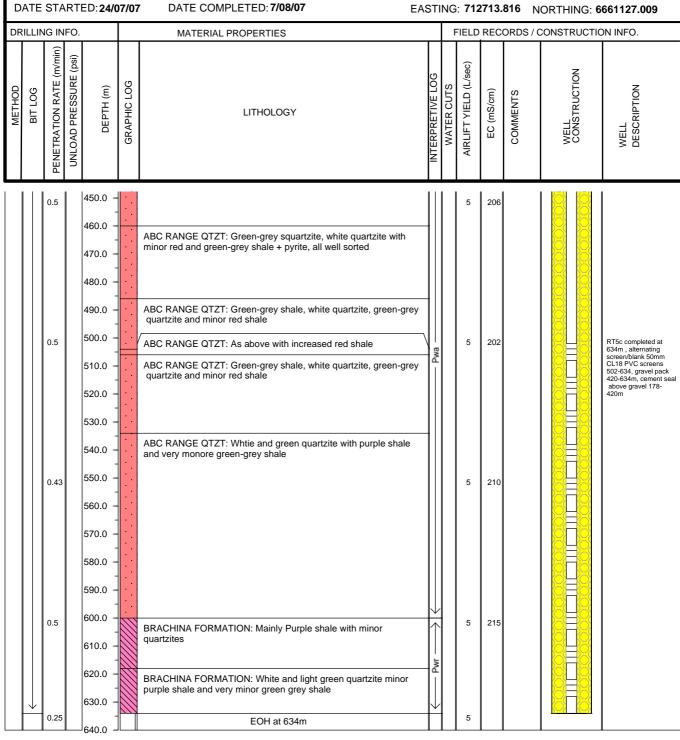
PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB Saline Water Supply LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey and Cole

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

BATE OTABLED A MOTOR


WELL PERMIT NUMBER: 122680

TOTAL DEPTH (m bgl): 634
REFERENCE POINT (m AHD):48.4757

STATIC WATER LEVEL

Date: 10/08/07 Depth (m bgl): b = 22.67m, c = 21.88m

PROJECTION:GDA94 Zone 53

LOGGED: K Furness DATE: 17/08/07
CHECKED: DATE:

BOREHOLE / WELL NUMBER

RT-7a/b/RD2937

PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 6 inches

DATE STARTED: 24/8/07 DATE COMPLETED: 29/8/07

WELL PERMIT NUMBER: 122680

TOTAL DEPTH (m bgl): 198
REFERENCE POINT (m AHD):65.01

STATIC WATER LEVEL

Date: 24/8/07 Depth (m bgl): 14 PROJECTION:GDA94 Zone53

EASTING: **732711** NORTHING: **6666160**

DATE S	START	ED: 24/8	07	DATE COMPLETED: 29/8/07	AS	ΓIN	G: 73 2	2711	N	ORTHING: 6	666160
DRILLING	G INFO.			MATERIAL PROPERTIES			FIELD RECOR			CONSTRUCTIO	ON INFO.
МЕТНОD ВІТ LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	NTERPRETIVE		AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL
Hammer air Hamme	0.83 0.67 1.00 3.00 1.00 1.67 2.50 3.17 2.17 2.17 3.00 3.67 1.67 2.33 1.50 2.50 2.67 2.83 2.83 2.83 2.83 1.67 1.50 1.33 3.67 7.83 2.83	0.0 - -		QUATERNARY SEDIMENTS: Silty/silty clay - light brown/cream, some sands and gravels throughout, calcareous QUATERNARY SEDIMENTS: Silty/silty clay - cream/light brown, gravels throughout, some sandstone and gypsum, calcareous QUATERNARY SEDIMENTS: Silty clay - brown, low plasticity, not calcareous QUATERNARY SEDIMENTS: Clayey silt- light brown/cream AMBEROONA FORMATION: Shale - light brown/grey, heavily weathered AMBEROONA FORMATION: Shale - grey, heavily weathered AMBEROONA FORMATION: Shale - grey AMBEROONA FORMATION: Shale - grey/black, non carbonatious AMBEROONA FORMATION: Grey/black, some clay fines, sansdtone and limestone fines throughout, iron oxide staining on some sandstone/limestone fines, carbonatious fines, shale non carbonatious		my \	~1	74 73 67 74 76 72 74 74 52 74 77 76 75 82 77 74 74 76 78 74 74 75 75 74 74 78 71 87			Temporary Community Structure Struct
Ш		200.0	Ш	EOH at 198m				83			198m

LOGGED:	T McCarthy	DATE: 29/8/07	7
CHECKED:		DATE:	

BOREHOLE / WELL NUMBER

RT-9/RD 2800

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB EIS Drilling Program** LOCATION: Olympic Dam, South Australia

DRILLING CO:

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 6 inches

WELL PERMIT NUMBER: 122667 TOTAL DEPTH (m bgl): 71

REFERENCE POINT (m AHD):59.292 STATIC WATER LEVEL

Date: 12/01/07 Depth (m bgl): 51.97 mTOC

PROJECTION:GDA94 Zone 54

				ED: 10/ 0		6 inches 7 DATE COMPLETED: 12/01/07	EASTING: 682097 NORTHING: 6701878					701878			
DR	ILLIN	IG IN	FO.			MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.				N INFO.		
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION		WELL DESCRIPTION
\uparrow				0.0 -		QUATERNARY SEDIMENTS: Fine-coarse grained, sub-rounde clean sand, + clay, rock	d	g							Well cover
	\uparrow			-		BRACHINA FORMATION: Light gry, grn shale, firm-hd at base, mnr silt throughout		\uparrow							6" STL surface casing 0-5m, grouted 3.5-5m
				10.0 -		BRACHINA FORMATION: Light gry, red and grn interbedded siltstone, firm-hd, + fine grained sdst with mnr mica inclusions, reblik carbonacious specs	are								
				20.0 -		BRACHINA FORMATION: Light gry, wht qtzite, hd with mnr mic + blk flecks through									
Hammer air ————				30.0 -		BRACHINA FORMATION: Interbedded light gry, grn, red and bl shale and siltstone, hd with well defined platy cleavage	ζ	Kmb —							
На	"y			40.0 -		BRACHINA FORMATION: Fine, light gry, hd siltstone with qtz grains through BRACHINA FORMATION: Hd light gry/wht qtzite, mnr mica through, +rare red/brn staining - possible fracture 47-52m			wc						
				50.0 -				\\							50mm PVC monitoring casing: blank0-47, 59- 71m, slotted 47-59m
				60.0 -		BRACHINA FORMATION: Hd light gry, red/brn shale		— Pwr —							Casing in open hole (no filter pack/seal)
				70.0 -											ішег раск/ѕеаі)
		0.6				EOH at 71m				0.1	52				

LOGGED:	R Martin	DATE: 07/06/07
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

127994

68m

RT-16a/RD3309

PROJECT NUMBER: **EV-02**

PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

Olympic Dam, South Australia

STATIC WATER LEVEL
Date: Depth (m bgl): **59.25 (mTOC)**

REFERENCE POINT (m AHD):102.42

PROJECTION:GDA94 Zone53

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl):

				IAME II ED: 9/6/		6 inches DATE COMPLETED: 10/6/07	PROJECTION.GDA94 Zone53 EASTING: 677889 NORTHING: 663458				63458					
DF	ILLIN	IG IN	FO.			MATERIAL PROPERTIES		FIELD RECORDS / CONSTRUCTION INFO.			ON INFO.					
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL
	_			0.0 -		QUATERNARY OFFINITAR R. M.		ų.					/ /	/ /	1	PVC Stickup
					· 	QUATERNARY SEDIMENTS: Red/brown sand ANDAMOOKA LMST: Light brown limestone and clay		გ \								
	8			-												
				10.0 -												
	\uparrow					ANDAMOOKA LMST: Grey limestone, becoming dolomitic from 46m	n								ן נ	8" STL surface casing 0-12m, grouted 10-12m
				=		4011										
				20.0 -												
					Ħ											
				-												
				30.0 -												
Hammer air																
ᄪ				_				€a								
	- 6"			40.0 -												
				_												
					#											
				50.0 -		ANDAMOOKA LMST: Grey/light brown limestone, crystaline										
				_	Ħ	ANDAMOOKA LMST: Grey dolomite, crystalline										Cement seal 55-60m
																above basket at 60m
				60.0 -												50mm PVC monitoring
				-												casing hung in hole: blank 0-62m, slotted 62-68m
\downarrow	\downarrow					EOH at 68m		$ \downarrow $		<0.1						
	\vdash		ш	70.0 -	للسال			ш								

LOGGED:	K Furness	DATE: 23/6/07
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

RT-16b/RD2694

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB EIS Drilling Program** LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer WELL PERMIT NUMBER: 122665

TOTAL DEPTH (m bgl): 252m REFERENCE POINT (m AHD): 102.453

STATIC WATER LEVEL

Date: 11/9/07 Depth (m bgl): 59.08
PROJECTION GDA94 Zone53

						PROJECTION.GDA94 Zone53 EASTING: 677889 NORTHING: 663458									
DF	RILLIN	NG INF	О.			MATERIAL PROPERTIES			F	IELD	REC	ORDS / C	CONS	TRUCTI	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION	WELL DESCRIPTION
\uparrow	10			0.0		ANDAMOOKA LMST: Yellow/brown limestone		\uparrow					П	ПП	Well cover
				10.0 -		ANDAMOOKA LMST: Grey limestone							Z		10" STL surface casing
				20.0 -		ANDAMOOKA LMST: Dark brown clay									0-12m, grouted 10-12m
				30.0 -		ANDAMOOKA LMST: Grey/light brown limestone	/	a							
				40.0 -		ANDAMOOKA LMST: Grey dolomite, crystalline, and white		9							
				50.0 - 60.0 -		quartzite with sandstone at 76m									
				70.0 -											
				80.0 -	•	AD000M 0777 (DD) D 1 1 1 1 1 1 1 1		\downarrow							8" STL pre-collar 0- 72m, grouted 70-72m
		0.43		90.0 -		ARCOONA QTZT (RD): Red shale and sandstone									
		0.35		100.0 -					wc						
		0.40		110.0 -	:										
er air -				120.0				(pa	wc	<0.5					
Hammer air	 			130.0				Pws (re							
				140.0 -											
				150.0 -	•					<0.5	36				
		0.55 0.55		160.0 -		ARCOONA QTZT (RD): Red shale with white quartzite and sandstone				<0.5 <0.5	l				
		0.60 0.60		170.0 -	\vdots			\downarrow		<0.5 <0.5	30 29				Cement seal 168-178m above gravel pack 178-216m
		0.46		180.0 - 190.0 -		ARCOONA QTZT (WHT): White quartzite and sandstone with some red sandstone/quartzite and minor shale		· .		0.5 3-5 4-5	45	yield inc. on contact			
		0.38		200.0				Pws (white)		4-5	71	with red and white arecoona			
		0.35		210.0 -				- Pws		4-5 4-5	71	arecound			20mm PVC monitoring
		0.43		220.0 –				$ \downarrow$		6	66			<u> </u>	casing hung in hole: blank 0-98, 210-216m, slotted 198-210m
		0.46 0.46		230.0 -		CORRABERRA SDST: Red and white quartzite, red sandstor with increasing % sandstone at 226m	ne	Pwc		6 6	67 71				
		0.55		240.0 –		CORRABERRA SDST: Red sandstone and dark grey shale				6 6	72 64		>	<u> </u>	Collapsed hole
$\downarrow \downarrow$	\downarrow			250.0		TREGOLANA SHALE: Dark grey shale EOH at 252m		Pwm		6			70	$\sum_{\Delta} V$	

LOGGED:	J van den Akker	DATE: 8/6/07
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

RT-17a/RD3311

PROJECT NUMBER: EV-02

PROJECT NAME: BHPB EIS Drilling Program
LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 6 inches

DATE STARTED: 17/6/07 DATE COMPLETED: 19/6/07

WELL PERMIT NUMBER: 127945

TOTAL DEPTH (m bgl): 84m
REFERENCE POINT (m AHD):101.557

STATIC WATER LEVEL

Date: 6/9/07 Depth (m bgl): 52.73

PROJECTION:GDA94 Zone53

EASTING: **676761** NORTHING: **6633226**

L	AIE	SIA	KIE	ED: 17/6	/07	DATE COMPLETED: 19/6/07	EAS	STI	NG	: 670	5761	N	ORTI	HING	}: 6	633226
DF	RILLIN	IG IN	- 0.			MATERIAL PROPERTIES			F	FIELD	REC	ORDS/0	CONS	TRUC	CTIC	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL
\wedge				0.0		QUATERNARY SEDIMENTS: White-red sandy-clay with white		小						П	П	PVC Stickup
	ēc				• •	calcarious nodules										
	\uparrow			-		QUATERNARY SEDIMENTS: Yellow/white silty-clay, calcariou with quartz fragments	ıs	ا م							/	6" STL surface casing 0-6m, grouted 4-6m
				10.0 -		QUATERNARY SEDIMENTS: Calcarious red-yellow silty sand white nodules	with	*								
		0.75		-		QUATERNARY SEDIMENTS: Hard yellow dolomite	\parallel					Cavities at 12m, no				
		0.55			÷	QUATERNARY SEDIMENTS: Yellow silt	\exists					returns				
				20.0 -		ANDAMOOKA LMST: White silty-clay with quartzite inclusions sand	and									
		0.55		-	井											
		2.00		30.0 -		ANDAMOOKA LMST: Tan/grey dolomite and calcarious silty-ci quartzite inclusions, with increasing layers of grey and white sandstone with grey shale with depth	lay,									
		0.50		-												
er air				40.0 -	#											
Hammer air		0.55			茾											
		0.50			Ħ	ANDAMOOKA LMST: White quartzite with pink and grey dolon	nite	- €a -								
		0.50		50.0 -												Cement seal 50-60m above above bucket at
		0.46		-		ANDAMOOKA LMST: Grey and tan dolomite, with preciitate ar	nd									60m
				60.0 -		quartz minerals from 72-75m followed by increasing coarse white/pink sandstone and red shale with depth										
		0.67		00.0												
		0.55		-												50mm PVC monitoring
				70.0 -												casing: blank 0-66, 78- 82m, slotted 66-78m
		0.60			Ŧ				,,,,			Fracture 74m				
				1					wc							
		0.50		80.0 -												
\downarrow	$ \downarrow $	0.43		-		EOH at 84m		ert		est. 2-3	29		Z			Collapsed hole from 82- 84m
				'												

LOGGED:	K Furness	DATE: 23/6/07
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

RT-17b/RD3310

PROJECT NUMBER: EV-02

PROJECT NAME: **BHPB EIS Drilling Program** LOCATION: Olympic Dam, South Australia

DRILLING CO: G+C

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

WELL PERMIT NUMBER: 127943

TOTAL DEPTH (m bgl): 264m REFERENCE POINT (m AHD):101.93

STATIC WATER LEVEL

Date: 6/9/07 Depth (m bgl): 72.24

PROJECTION:GDA94 Zone53

D	ATE	STAF	RTE	ED: 11/6	/07	DATE COMPLETED: 18/6/07	EAS	ITE	NG	: 677	7342	N	OR ⁻	THING:	6633048
DR	ILLIN	NG INF	О.			MATERIAL PROPERTIES			F	IELD	REC	ORDS / (CON	STRUCT	ION INFO.
МЕТНОВ	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION	WELL
	5"	1 1		0.0		OHATEDNADY CEDIMENTS: Light ten limestone and fine also		ء	i				П		PVC Stickup
	\uparrow			10.0 -		QUATERNARY SEDIMENTS: Light tan limestone and fine clawith white nodules	y /i	ج م					11		12" STL surface casing 0-6m, grouted 4-6m
				20.0 -	喜	QUATERNARY SEDIMENTS: Yellow sandy-clay, calcarious									
				30.0 -	荳	QUATERNARY SEDIMENTS: White sandy-clay, non-calcariou	ıs								
	ream -	0.50		40.0 -		ANDAMOOKA LMST: White silty-clay with quartzite inclusions sand	and								
	8" ->12"	0.55 0.55 0.60		50.0 - 60.0 -		ANDAMOOKA LMST: Tan/grey dolomite and calcarious silty-or quartzite inclusions, with increasing layers of grey and white sandstone with grey shale with depth	lay,	<u>е</u> а							
		0.55 0.75		70.0 -	葺	ANDAMOOKA LMST: White quartzite with pink and grey dolor	nite		wc	2	29	Fracture			
	\downarrow	0.75 0.50 0.60		80.0 - 90.0 -		ANDAMOOKA LMST: Grey and tan dolomite, with preciitate are quartz minerals from 72-75m followed by increasing coarse white/pink sandstone and red shale with depth	nd	\downarrow		3 3	31 34	72-75m, cased off	<i>-</i>		8" STL pre-collar 0-
		0.00		100.0		ARCOONA QTZT (RD): Red and white quartzite and shale wit	/ h	\bigcap		3	29				90m, grouted 88-90m
				110.0 -		ARCOONA QTZT (RD): Red sandstone, red shale and red	/								
i i				120.0		quartzite.									
Hammer air				130.0 -											
- Han				140.0 -				Pws (red)							
				150.0 -				– Pw							
				160.0 -	•:	ARCOONA QTZT (RD): White and red sandstone, with white a	and								
		0.46		170.0 -		red quartzite and minor red and green shale									
		0.46 0.60		180.0 -											
		0.55		190.0 -	:			$\downarrow \downarrow$							
		0.29 0.43		200.0 -		ARCOONA QTZT (WHT): Red, white and green sandstone an white quartzite	d	hite)							
		0.43 0.50		210.0 – 220.0 –		ARCOONA QTZT (WHT): White quartzite, red/white sandstone with green shale	9	Pws (white)							Cement seal 214-224m above 0.7-1.5mm
		0.50 0.55		230.0 -		CORRABERRA SDST: Fine white and pink sandstone		\uparrow	wc	1.5	76		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		agregate gravel pack, 224-264m
		0.43		240.0 -		CORRABERRA SDST: Fine red sandstone with some white		Pwc —		3	79		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		50mm PVC monitoring casing: blank 0-236,
		0.55 0.55		250.0 –		sandstone in upper layers and dark grey shale from 250m		<u>Б</u>		4 4.5	78 78		3		248-264m, slotted 236- 248m
	$ \downarrow $	0.43 0.50		260.0 - 260.0 -	////	TREGOLANA SHALE: Dark grey shale		Pwm-		5 5	79 77				
		0.55		270.0		EOH at 264m				5	75		<u> </u>	<u> </u>	

DATE: 23/6/07 LOGGED: K Furness CHECKED: DATE:

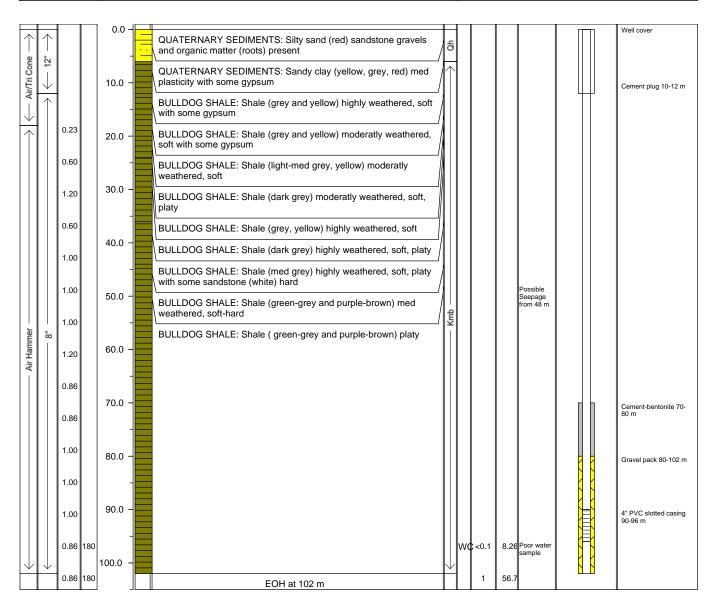
BOREHOLE / WELL NUMBER

RT-41

PROJECT NUMBER: VE23064 **REM Project** PROJECT NAME: Olympic Dam LOCATION: DRILLING CO: DRILLING METHOD:

Gorey and Cole AIR HAMMER

BOREHOLE DIAMETER: 8"


DATE STARTED: 11/08/2008 DATE COMPLETED: 13/08/08 WELL PERMIT NUMBER: n/a 102 TOTAL DEPTH (m bgl): REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 16/08/2008 Depth (m bgl): 19.64 PROJECTION:GDA 1994, Zone 54

EASTING: **716560** NORTHING: 6705063

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ASOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: Kate Furness DATE: 13/08/08 CHECKED: DATE:

Page 1 of 1

BOREHOLE / WELL NUMBER

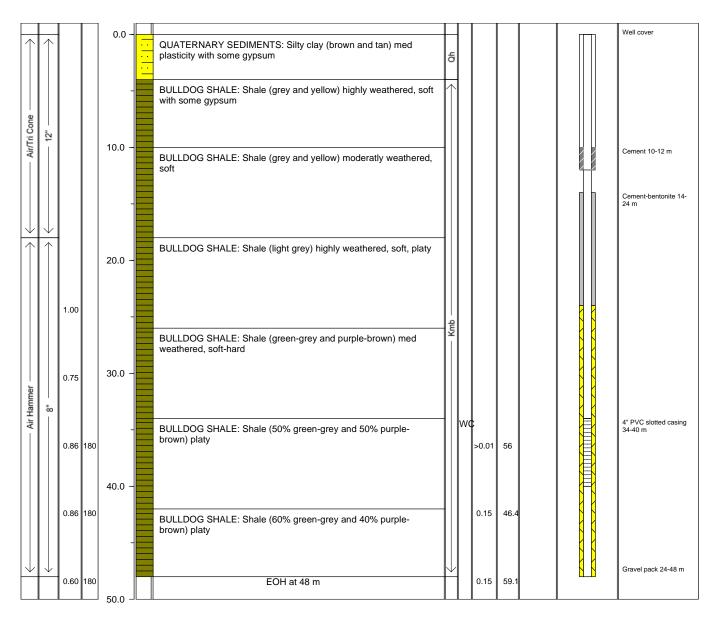
PT-63

PROJECT NUMBER: VE23064
PROJECT NAME: REM Project
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey and Cole
DRILLING METHOD: AIR HAMMER

BOREHOLE DIAMETER: 8"

DATE STARTED: 18/08/2008 DATE COMPLETED: 18/08/2008


WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 78
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: **23/08/2008** Depth (m bgl): **23.7** PROJECTION:**GDA 1994, Zone 54**

EASTING: **702071** NORTHING: **6695060**

DI	DRILLING INFO.				MATERIAL PROPERTIES			ı	FIELD RECORDS / CONSTRUCTION INFO.					
METHOD	1 - 1	SATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

LOGGED:	Kate Hyland	DATE: 18/08/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

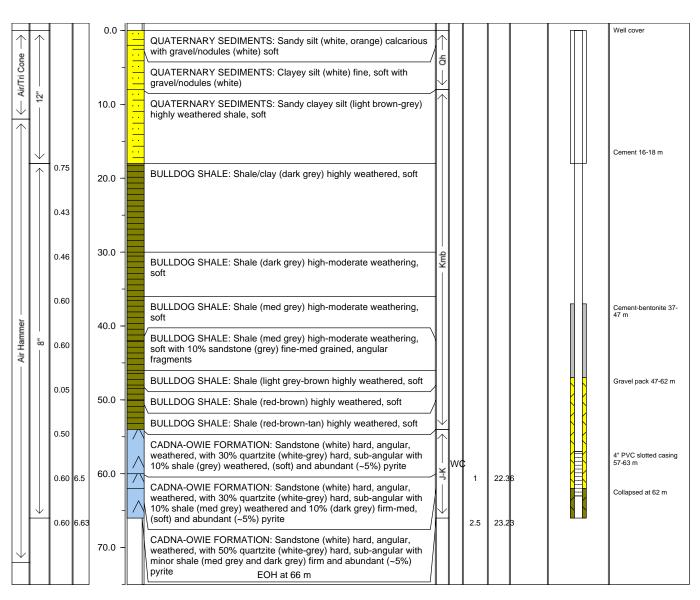
PT-62

PROJECT NUMBER: VE23064
PROJECT NAME: REM Project
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey and Cole
DRILLING METHOD: AIR HAMMER

BOREHOLE DIAMETER: 8"

DATE STARTED: 13/08/2008 DATE COMPLETED: 15/08/2008


WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 66

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 19/08/2008 Depth (m bgl): 49.23 PROJECTION:GDA 1994, Zone 54

EASTING: **698652** NORTHING: **6684173**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ASOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL WELL WELL DESCRIPTION

LOGGED:	Kate Furness	DATE: 15/08/2008
CHECKED:		DATE:

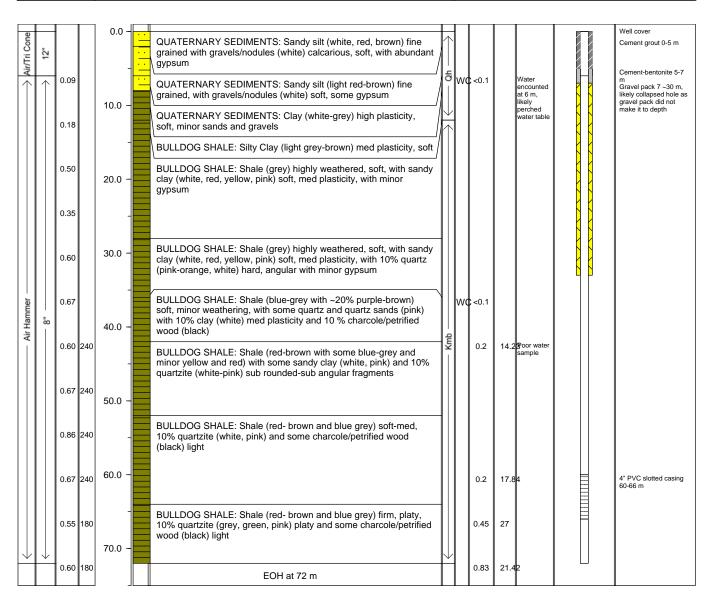
BOREHOLE / WELL NUMBER

RT-42

PROJECT NUMBER: VE23064 PROJECT NAME: **REM Project** Olympic Dam LOCATION: DRILLING CO: **Gorey and Cole** DRILLING METHOD:

AIR HAMMER

BOREHOLE DIAMETER: 8"


DATE STARTED: 09/08/2008 DATE COMPLETED: 18/09/2008 WELL PERMIT NUMBER: n/a TOTAL DEPTH (m bgl): 72 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 13/08/2008 Depth (m bgl): 21.76 m PROJECTION:GDA 1994, Zone 54

EASTING: **713445** NORTHING: 6696563

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED:	Kate Furness	DATE: 18/08/2008
CHECKED:		DATE:

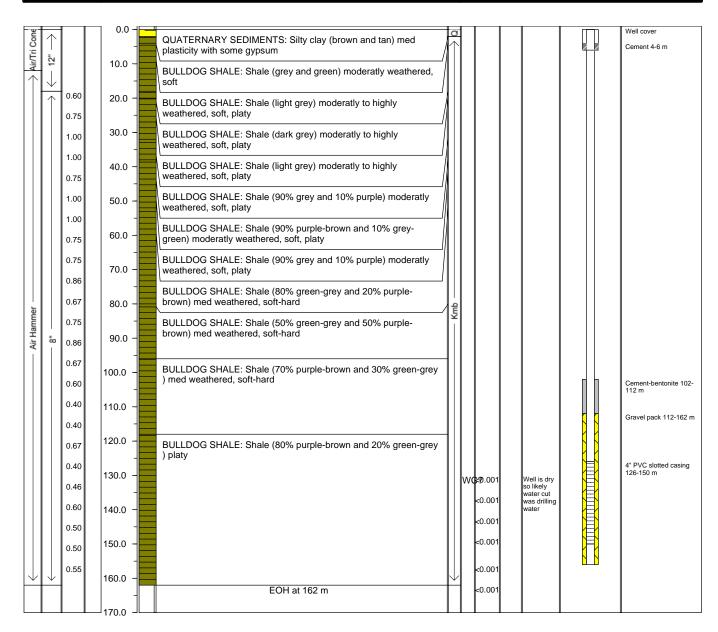
BOREHOLE / WELL NUMBER

PT-64

PROJECT NUMBER: VE23064
PROJECT NAME: REM Project
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey and Cole
DRILLING METHOD: AIR HAMMER

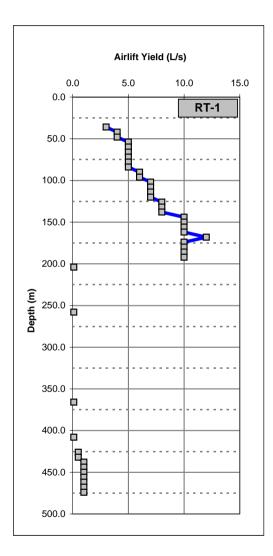
BOREHOLE DIAMETER: 8"

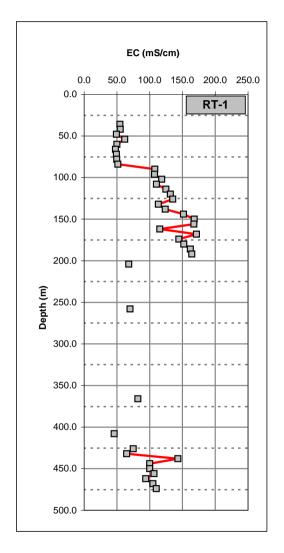

DATE STARTED: 21/08/2008 DATE COMPLETED: 21/08/2008

WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 162
REFERENCE POINT (m AHD):
STATIC WATER LEVEL

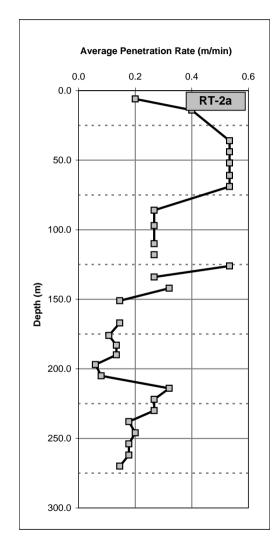
Date: Depth (m bgl): PROJECTION:**GDA 1994, Zone 54**

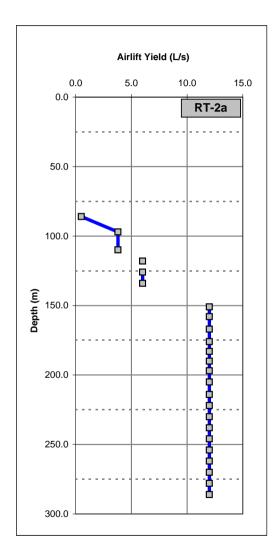

EASTING: **701463** NORTHING: **6704421**

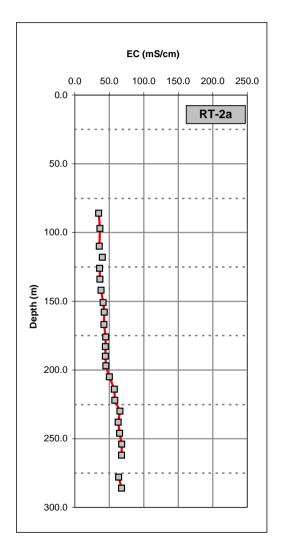

L												. •
	DRILLIN	IG INFO).		MATERIAL PROPERTIES			FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
	METHOD BIT LOG	PENETRATION RATE (m/min)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE I OG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

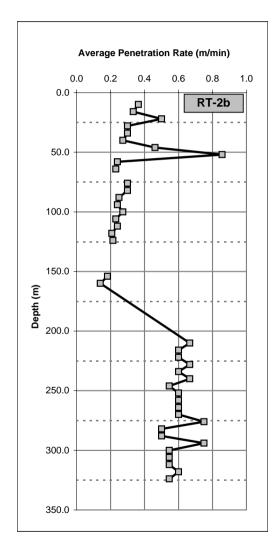


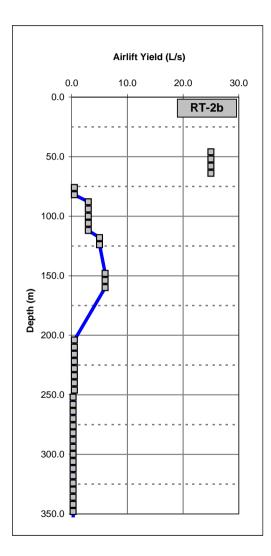
LOGGED:	Kate Hyland	DATE: 21/08/2008
CHECKED:		DATE:

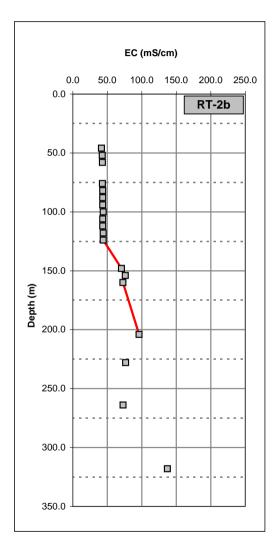

RT-1 Drillhole Summary: Graphical Log



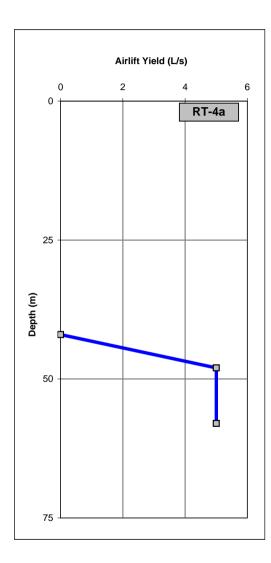


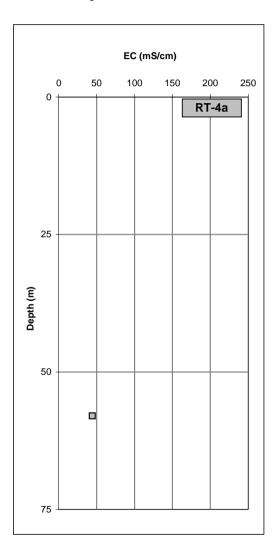

RT-2a Drillhole Summary: Graphical Log



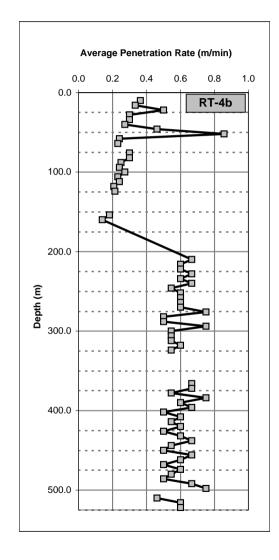


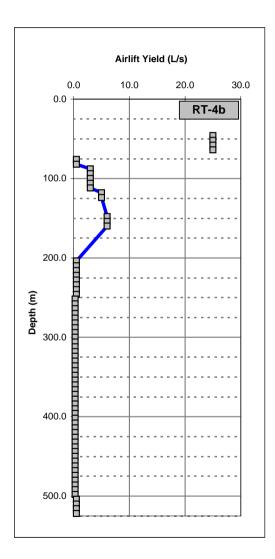
RT-2b Drillhole Summary: Graphical Log

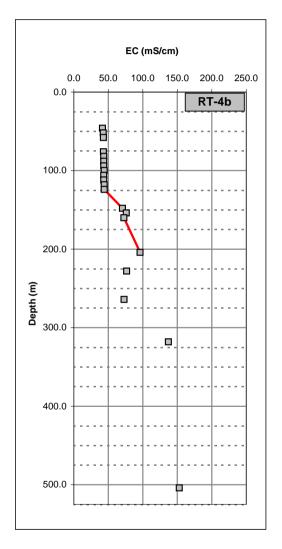


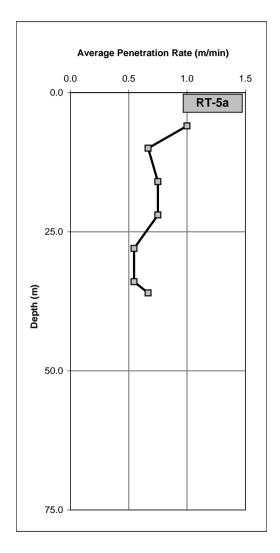


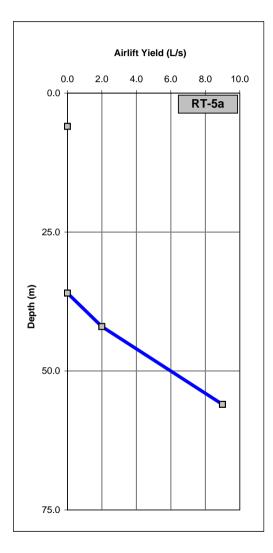
RT-4a Drillhole Summary: Graphical Log

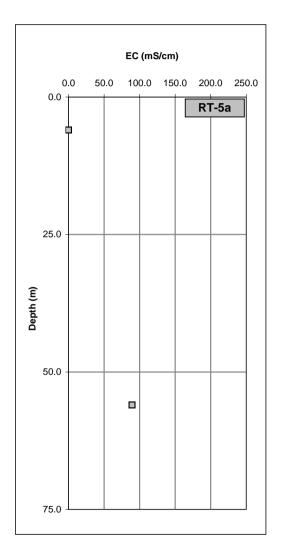

Average Penetration Rate (m/min) 0.00 0.50 1.50 1.00 RT-4a 25 Depth (m) 50 75

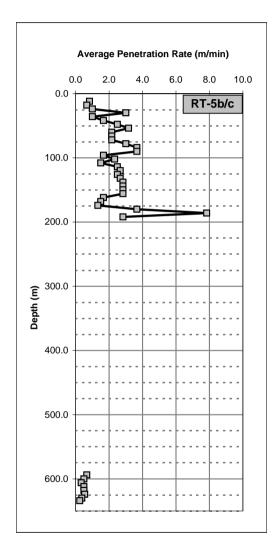


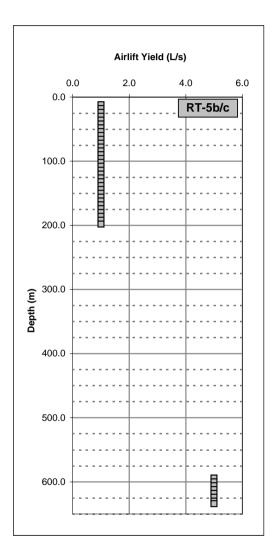

Note: RT-3 log not available

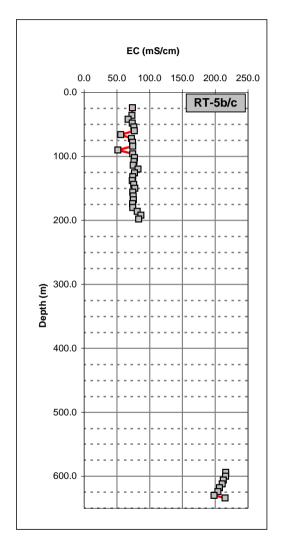

RT-4b Drillhole Summary: Graphical Log

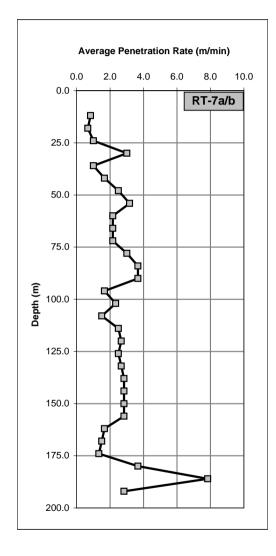


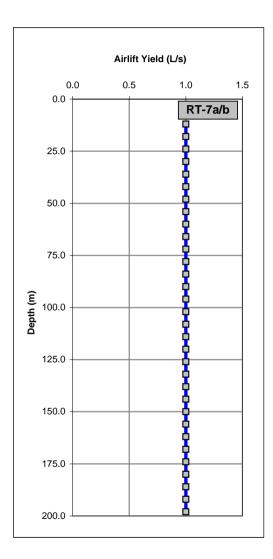


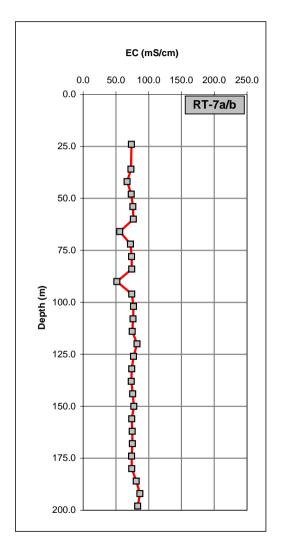

RT-5a Drillhole Summary: Graphical Log

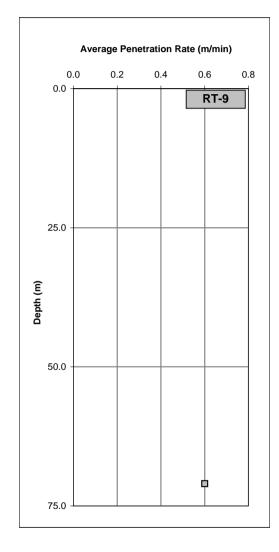


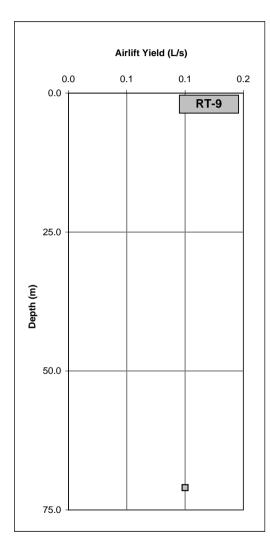


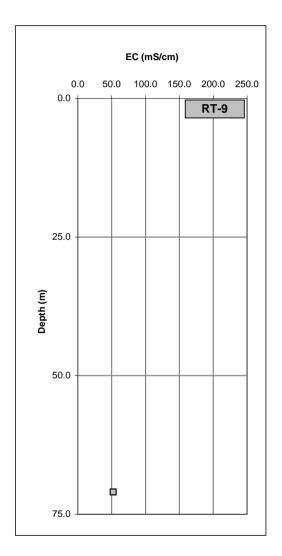

RT-5b/c Drillhole Summary: Graphical Log



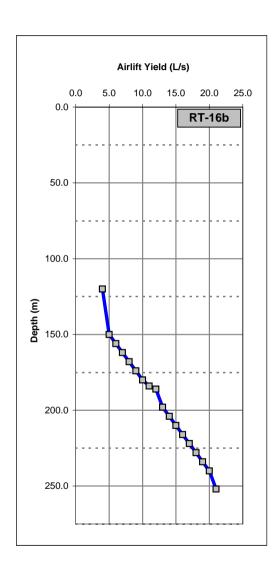


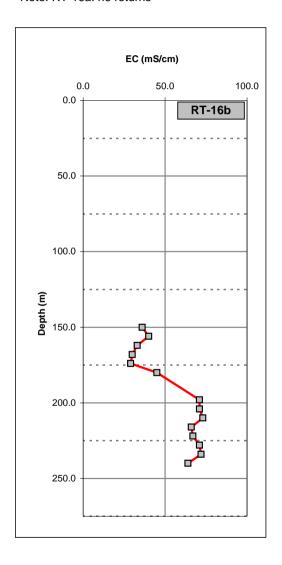

RT-7a/b Drillhole Summary: Graphical Log



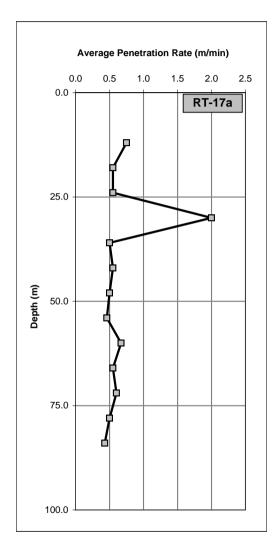


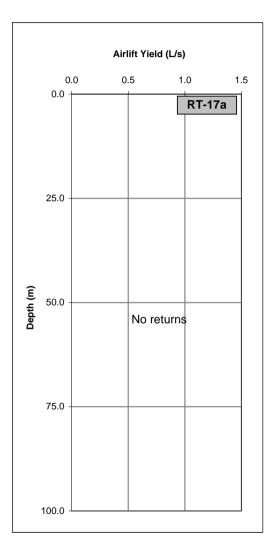
RT-9 Drillhole Summary: Graphical Log

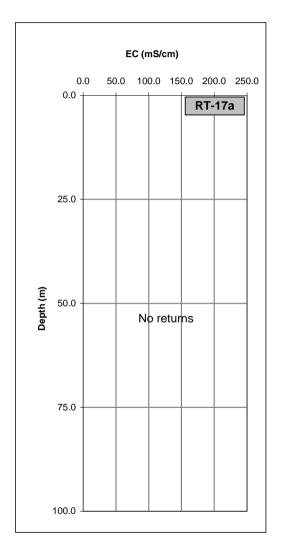


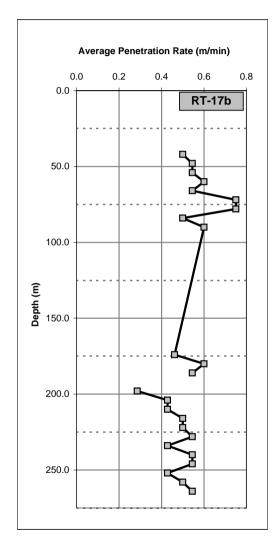


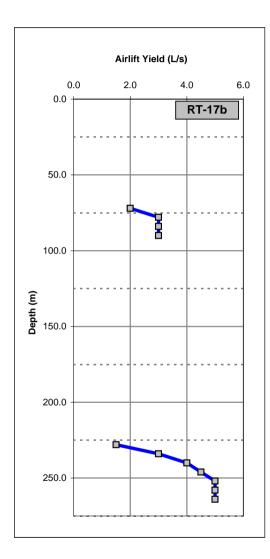
RT-16b Drillhole Summary: Graphical Log

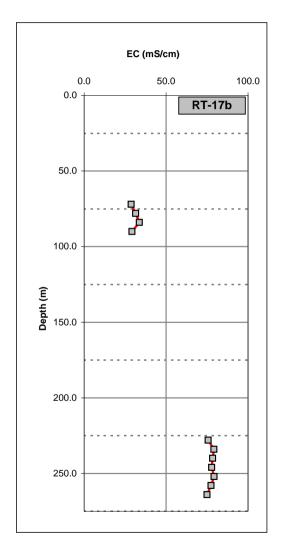

Average Penetration Rate (m/min) 0.0 0.2 0.4 0.6 0.8 RT-16b 100.0 Depth (m) 150.0 200.0 250.0




Note: RT-16a: no returns

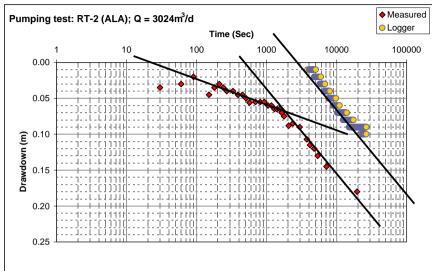

RT-17a Drillhole Summary: Graphical Log

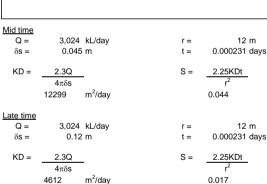




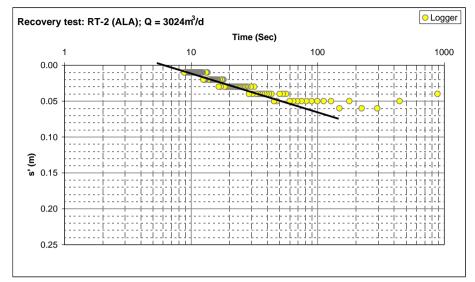
RT-17b Drillhole Summary: Graphical Log

OLYMPIC DAM RT-2


CONSTANT RATE TEST Pumped Well


Well Number: RT-2b (Pumped Well)
Pumping Commenced on 7/7/07 at 09:39am
Pumping Ceased on 7/7/07 at 5:pm
Measurement Point = 0.10m above ground level
Standing Water Level = 55.21m below measurement point
Distance from Pumped Well = 12m

Pumping Rate: 3024 m³/day


	STANT RATE	DATA				DT 26	, /Dun	RECO	VERY TES	ST DATA	
R 1-2a (Mon	Logger			Measured		t (m		t' (min)	t/t'	Waterlevel	
	Water level	Drawdown		Water level	Drawdown					(mTOC)	(m)
time (min)	(mTOC)	(m)	time (min)	(mTOC)	(m)	265	50.00	0.00		55.31	0.19
0.00	55.21	0.09	0.00	55.21	0.00		00.08	30.00	886.00	55.25	0.13
30.00	55.16	0.04	30.00	55.25	0.03		10.00	60.00	443.50	55.26	0.14
60.00	55.14	0.02	60.00	55.24	0.03		40.00	90.00	296.00	55.27	0.15
90.00 600.00	55.13 55.12	0.01 0.00	90.00	55.23 55.26	0.02		70.00	120.00	222.25 178.00	55.27 55.26	0.15 0.14
630.00	55.12	-0.01	150.00 180.00	55.25	0.05 0.03		30.00	150.00 180.00	148.50	55.26 55.27	0.14
660.00	55.12	0.00	210.00	55.24	0.03		60.00	210.00	127.43	55.26	0.13
690.00	55.11	-0.01	240.00	55.25	0.03		90.00	240.00	111.63	55.26	0.14
720.00	55.12	0.00	270.00	55.25	0.04	268	20.00	270.00	99.33	55.26	0.14
750.00	55.12	0.00	330.00	55.25	0.04		50.00	300.00	89.50	55.26	0.14
780.00	55.13	0.01	390.00	55.26	0.05		80.00	330.00	81.45	55.26	0.14
810.00	55.19	0.07	450.00	55.26	0.05		10.00	360.00	74.75	55.26	0.14
840.00 870.00	55.13 55.14	0.01	510.00 570.00	55.26	0.05		40.00 70.00	390.00 420.00	69.08	55.26 55.26	0.14 0.14
900.00	55.14 55.15	0.02 0.03	690.00	55.27 55.27	0.06 0.05		00.00	450.00	64.21 60.00	55.26 55.26	0.14
930.00	55.15	0.03	810.00	55.27	0.05		30.00	480.00	56.31	55.25	0.14
960.00	55.12	0.00	930.00	55.27	0.05		60.00	510.00	53.06	55.25	0.13
990.00	55.14	0.02	1050.00	55.27	0.06		90.00	540.00	50.17	55.25	0.13
1020.00	55.15	0.03	1170.00	55.27	0.06	271	20.00	570.00	47.58	55.26	0.14
1050.00	55.15	0.03	1290.00	55.28	0.06		50.00	600.00	45.25	55.26	0.14
1080.00	55.13	0.01	1410.00	55.28	0.06		80.00	630.00	43.14	55.25	0.13
1110.00	55.17	0.05	1530.00	55.28	0.06		10.00	660.00	41.23	55.25	0.13
1140.00 1170.00	55.17	0.05	1650.00	55.28 55.29	0.07 0.07		240.00 390.00	690.00	39.48	55.25	0.13 0.13
1200.00	55.16 55.16	0.04 0.04	1770.00 2070.00	55.29	0.07		20.00	840.00 870.00	32.61 31.52	55.25 55.24	0.13
1230.00	55.16	0.04	2370.00	55.30	0.09		50.00	900.00	30.50	55.25	0.12
1260.00	55.16	0.04	2970.00	55.30	0.09		80.00	930.00	29.55	55.24	0.12
1290.00	55.17	0.05	3750.00	55.32	0.11		10.00	960.00	28.66	55.25	0.13
1320.00	55.17	0.05	4170.00	55.33	0.12	275	40.00	990.00	27.82	55.24	0.12
1350.00	55.17	0.05	4770.00	55.33	0.12		00.08	1530.00	18.35	55.24	0.12
1380.00	55.17	0.05	5370.00	55.34	0.13		10.00	1560.00	18.02	55.23	0.11
1410.00	55.17	0.05	7170.00	55.36	0.14		40.00	1590.00	17.70	55.23	0.11
1440.00 1890.00	55.17 55.17	0.05 0.05	19590.00	55.39	0.18		70.00	1620.00 1650.00	17.39 17.09	55.23 55.24	0.11 0.12
1920.00	55.18	0.03					230.00	1680.00	16.80	55.23	0.12
2220.00	55.18	0.06					260.00	1710.00	16.53	55.24	0.12
2340.00	55.18	0.06					290.00	1740.00	16.26	55.23	0.11
2370.00	55.19	0.07				286	50.00	2100.00	13.64	55.23	0.11
2400.00	55.19	0.07				286	00.08	2130.00	13.46	55.22	0.10
2910.00	55.19	0.07					10.00	2160.00	13.29	55.22	0.10
2940.00	55.19	0.07					40.00	2190.00	13.12	55.22	0.10
2970.00	55.20	0.08					70.00	2220.00	12.96	55.23	0.11
3000.00 3360.00	55.20 55.20	0.08 0.08					30.00	2250.00 2280.00	12.80 12.64	55.23 55.23	0.11 0.11
3390.00	55.20	0.08					860.00	2310.00	12.04	55.23	0.11
3420.00	55.20	0.08					90.00	2340.00	12.35	55.22	0.10
3540.00	55.21	0.09					10.00	3360.00	8.90	55.22	0.10
4020.00	55.21	0.09				299	40.00	3390.00	8.83	55.22	0.10
4050.00	55.21	0.09					70.00	3420.00	8.76	55.21	0.09
4080.00	55.22	0.10					00.00	3450.00	8.70	55.21	0.09
4110.00	55.21	0.09					30.00	3480.00	8.63	55.22	0.10
4140.00	55.22	0.10					00.00	3510.00	8.56	55.22 55.21	0.10
4170.00 4200.00	55.22 55.22	0.10 0.10					90.00	3540.00 3570.00	8.50	55.21 55.21	0.09 0.09
4200.00	55.22 55.21	0.10					20.00	4500.00	8.44 6.90	55.21	0.09
4260.00	55.21	0.09					80.00	4530.00	6.86	55.21	0.09
4290.00	55.21	0.09					10.00	4560.00	6.82	55.20	0.08
4320.00	55.22	0.10					40.00	4590.00	6.78	55.20	0.08
4740.00	55.22	0.10				311	70.00	4620.00	6.75	55.21	0.09

4770.00	55.22	0.10	31200.0	4650.00	6.71	55.20	0.08
4800.00	55.23	0.11	31230.0	0 4680.00	6.67	55.20	0.08
4830.00	55.23	0.11	31260.0	4710.00	6.64	55.20	0.08
4860.00	55.22	0.10	31290.0		6.60	55.20	0.08
4890.00	55.23	0.11	31320.0	0 4770.00	6.57	55.20	0.08
5700.00	55.23	0.11	31350.0	4800.00	6.53	55.21	0.09
5730.00	55.24	0.12	31380.0	0 4830.00	6.50	55.21	0.09
5760.00	55.24	0.12	31410.0	4860.00	6.46	55.20	0.08
5790.00	55.23	0.11	31440.0		6.43	55.20	0.08
5820.00	55.24	0.12	31470.0	0 4920.00	6.40	55.21	0.09
5850.00	55.24	0.12	31500.0	950.00	6.36	55.20	0.08
5880.00	55.24	0.12	31620.0		6.24	55.21	0.09
5910.00	55.24	0.12	31650.0	5100.00	6.21	55.20	0.08
5940.00	55.23	0.11	32700.0	0 6150.00	5.32	55.20	0.08
5970.00	55.24	0.12	32730.0	0 6180.00	5.30	55.20	0.08
6750.00	55.25	0.13	32760.0	6210.00	5.28	55.20	0.08
	55.24	0.12	32790.0		5.25		0.08
6780.00						55.20	
6810.00	55.25	0.13	32820.0	0 6270.00	5.23	55.19	0.07
7620.00	55.25	0.13	32850.0	6300.00	5.21	55.19	0.07
7650.00	55.26	0.14	32880.0	0 6330.00	5.19	55.19	0.07
7680.00	55.26	0.14	32910.0	0 6360.00	5.17	55.19	0.07
7710.00	55.25	0.13	32940.0	6390.00	5.15	55.20	0.08
7740.00	55.26	0.14	32970.0	0 6420.00	5.14	55.19	0.07
7770.00	55.26	0.14	34050.0	7500.00	4.54	55.18	0.06
9000.00	55.26	0.14	34080.0		4.53	55.18	0.06
9030.00	55.27	0.15	34110.0	7560.00	4.51	55.19	0.07
9060.00	55.26	0.14	34140.0	7590.00	4.50	55.18	0.06
9240.00	55.26	0.14	34170.0	7620.00	4.48	55.18	0.06
9270.00	55.27	0.15	34200.0	7650.00	4.47	55.19	0.07
9390.00	55.26	0.14	34230.0		4.46	55.19	0.07
9420.00	55.27	0.15	34260.0	7710.00	4.44	55.18	0.06
9450.00	55.26	0.14	34290.0	7740.00	4.43	55.18	0.06
9480.00	55.27	0.15	36900.0	0 10350.00	3.57	55.18	0.06
9510.00	55.27	0.15	36930.0	0 10380.00	3.56	55.18	0.06
10830.00	55.28	0.16	36960.0		3.55	55.18	0.06
10920.00	55.28	0.16	36990.0	0 10440.00	3.54	55.18	0.06
10950.00	55.27	0.15	37020.0	0 10470.00	3.54	55.17	0.05
10980.00	55.28	0.16	37050.0		3.53	55.18	0.06
11010.00	55.27	0.15	37080.0	0 10530.00	3.52	55.18	0.06
11040.00	55.28	0.16	37110.0	0 10560.00	3.51	55.18	0.06
12360.00	55.28	0.16	37140.0	0 10590.00	3.51	55.18	0.06
12390.00	55.29	0.17	37170.0	0 10620.00	3.50	55.18	0.06
12420.00	55.28	0.16	37200.0	10650.00	3.49	55.18	0.06
12450.00	55.28	0.16	37230.0	0 10680.00	3.49	55.17	0.05
12480.00	55.28	0.16	37260.0	0 10710.00	3.48	55.18	0.06
12510.00	55.28	0.16	37290.0		3.47	55.18	0.06
12540.00	55.29	0.17	37320.0	0 10770.00	3.47	55.17	0.05
12570.00	55.29	0.17	37350.0	10800.00	3.46	55.17	0.05
12600.00	55.29	0.17	37380.0	0 10830.00	3.45	55.17	0.05
12630.00	55.28	0.16	37410.0	10860.00	3.44	55.18	0.06
12840.00	55.28	0.16	37440.0		3.44	55.17	0.05
12870.00	55.29	0.17	37470.0	0 10920.00	3.43	55.18	0.06
12990.00	55.29	0.17	37500.0	0 10950.00	3.42	55.18	0.06
13020.00	55.28	0.16	37530.0		3.42	55.17	0.05
13050.00	55.29	0.17	37560.0	11010.00	3.41	55.18	0.06
15390.00	55.29	0.17	38010.0	11460.00	3.32	55.17	0.05
15420.00	55.30	0.18	38040.0		3.31	55.17	0.05
15570.00	55.30	0.18	38070.0	0 11520.00	3.30	55.18	0.06
15600.00	55.29	0.17	38100.0	11550.00	3.30	55.17	0.05
15630.00	55.29		38130.0				0.05
		0.17			3.29	55.17	
15660.00	55.29	0.17	38160.0	0 11610.00	3.29	55.18	0.06
16020.00	55.30	0.18	38190.0	11640.00	3.28	55.18	0.06
16050.00	55.29	0.17	38220.0	11670.00	3.28	55.17	0.05
16080.00	55.30	0.18	38250.0	11700.00	3.27	55.17	0.05
16110.00	55.30	0.18	38280.0		3.26	55.17	0.05
16140.00	55.29	0.17	40200.0	0 13650.00	2.95	55.17	0.05
16170.00	55.29	0.17	40230.0	13680.00	2.94	55.17	0.05
16200.00	55.30	0.18	40260.0		2.94	55.16	0.04
16230.00	55.30	0.18	40290.0	13740.00	2.93	55.16	0.04
16260.00	55.29	0.17	40320.0		2.93	55.16	0.04
16290.00	55.30	0.18	40350.0		2.92	55.17	0.05
17280.00	55.30	0.18	40380.0	13830.00	2.92	55.16	0.04
17310.00	55.29	0.17	53130.0		2.00	55.16	0.04
17340.00	55.30	0.18	67770	41220.00	1.64	55.16	0.04
17370.00	55.30	0.18	67800		1.64	55.15	0.03
17400.00	55.29	0.17	73950		1.56	55.15	0.03
23310.00	55.30	0.18	73980	47430.00	1.56	55.14	0.02
23340.00	55.31	0.19	78330			55.14	0.02
					1.51		
23370.00	55.30	0.18	78360		1.51	55.13	0.01
26520.00	55.30	0.18	78390	51840.00	1.51	55.11	-0.01

Notes: Logger data and measured data do not agree at early-time, possibly because of slight inconsistencies in pumping start time. Either data set is suitable though for calculating KD, but use of logger data will result in an estimate of S (or Sy) one order of magnitude higher than will arise from use of measured data

OLYMPIC DAM RT-5

CONSTANT RATE TEST Pumped Well

Well Number: RT-5a (Pumped Well) Pumping Commenced on 10/8/07 at 03:08pm Pumping Ceased on 11/8/07 at 10:49am Measurement Point = 0.30m above ground level

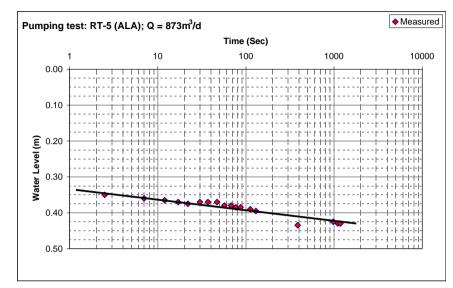
Standing Water Level = 10.95(RT-5a), 21.37(RT-5b), 21.61(RT-5c)m below measurement point Distance from Pumped Well = 0(RT-5a), 22(RT-7b/c)m

Pumping Rate: 873 m³/day

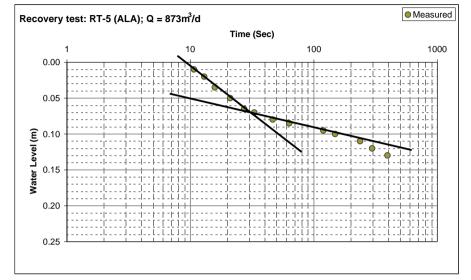
CON RT-5a (Pun	STANT RATE	DATA
time	Water level	Drawdown
(min)	(mTOC)	(m)
0.00	10.95	0.00
2.50	11.30	0.35
7.00	11.31	0.36
12.00	11.32	0.37
17.00	11.32	0.37
22.00	11.33	0.38
30.00	11.32	0.37
37.00	11.32	0.37
47.00	11.32	0.37
57.00	11.33	0.38
68.00	11.33	0.38
77.00	11.34	0.39
87.00	11.34	0.39
112.00	11.34	0.39
130.00	11.35	0.40
387.00	11.39	0.44
977.00	11.38	0.43
1103.00	11.38	0.43
1181.00	11.38	0.43

RECOVERY TEST DATA RT-5a (Pumped well)						
t (min)	t' (min)	t/t'	Waterlevel (mTOC)	Drawdown (m)		
1184.00	0.00		11.09	0.14		
1185.00	1.00	1185.00	11.08	0.13		
1186.00	2.00	593.00	11.07	0.12		
1187.00	3.00	395.67	11.06	0.11		
1190.00	6.00	198.33	11.05	0.10		
1192.00	8.00	149.00	11.05	0.10		
1201.00	17.00	70.65	11.04	0.09		
1208.00	24.00	50.33	11.03	0.08		
1219.00	35.00	34.83	11.02	0.07		
1227.00	43.00	28.53	11.02	0.07		
1241.00	57.00	21.77	11.00	0.05		
1262.00	78.00	16.18	10.99	0.04		
1281.00	97.00	13.21	10.97	0.02		
1304.00	120.00	10.87	10.96	0.01		
1608.00	424.00	3.79	10.88	-0.07		
2424.00	1240.00	1.95	10.78	-0.17		
2611.00	1427.00	1.83	10.78	-0.17		

RT-5b (monitored well)


time	Water level	Drawdown
(min)	(mTOC)	(m)
0.00	21.37	0.00
10.00	21.37	0.00
27.00	21.31	-0.06
42.00	21.30	-0.07
50.00	21.27	-0.10
54.00	21.26	-0.12
63.00	21.25	-0.13
73.00	21.24	-0.14
79.00	21.23	-0.15
84.00	21.23	-0.15
89.00	21.21	-0.16
108.00	21.19	-0.18
127.00	21.17	-0.20
391.00	20.93	-0.44
1112.00	20.37	-1.00
1175.00	20.35	-1.02

RT-5b (monitored well)


טווו) מכייו א	ilitoreu welij			
t (min)	t' (min)	t/t'	Waterlevel (mTOC)	Drawdown (m)
1182.00	-2.00		20.35	-1.02
1189.00	5.00	237.80	20.34	-1.03
1194.00	10.00	119.40	20.34	-1.03
1200.00	16.00	75.00	20.34	-1.03
1203.00	19.00	63.32	20.34	-1.04
1212.00	28.00	43.29	20.33	-1.04
1217.00	33.00	36.88	20.33	-1.04
1225.00	41.00	29.88	20.33	-1.04
1233.00	49.00	25.16	20.32	-1.05
1244.00	60.00	20.73	20.31	-1.06
1250.00	66.00	18.94	20.31	-1.06
1264.00	80.00	15.80	20.30	-1.07
1286.00	102.00	12.61	20.28	-1.09
1309.00	125.00	10.47	20.27	-1.10
1610.00	426.00	3.78	20.10	-1.27
2431.00	1247.00	1.95	19.87	-1.50

R 1-5C (monitored well)							
Water level	Drawdown						
(mTOC)	(m)						
21.61	0.00						
21.64	0.03						
21.64	0.03						
21.64	0.03						
21.65	0.04						
21.65	0.04						
21.65	0.04						
21.66	0.05						
21.66	0.05						
21.73	0.12						
21.72	0.11						
21.73	0.12						
21.74	0.13						
	Water level (mTOC) 21.61 21.64 21.64 21.65 21.65 21.65 21.66 21.66 21.73 21.72						

K 1-5C (MOI	nitorea weii)			
t (min)	t' (min)	t/t'	Waterlevel (mTOC)	Drawdown (m)
1182.00	-2.00		21.74	0.13
1197.00	13.00	92.08	21.72	0.11
1215.00	31.00	39.19	21.73	0.12
1230.00	46.00	26.74	21.72	0.11
1247.00	63.00	19.79	21.70	0.09
1266.00	82.00	15.44	21.69	0.08
1289.00	105.00	12.28	21.67	0.06
1306.00	122.00	10.70	21.67	0.06
1612.00	428.00	3.77	21.63	0.02
2427.00	1243.00	1.95	21.64	0.03

Mid-time					
Q =	873	kL/day	r =	0 m	
δs' =	0.0	4 m	t =	0.000231 da	ys
KD =	2.3Q	_	S =	2.25KDt	
	4πδs'			r ²	
	3995	m²/day		n/a	

Groundwater Monitoring Well Survey Data Summary WITH SALINITY CORRECTION

Client: BHP Billiton Date: 1-Oct-07 Density of FRESH Water (Pf): 1

Job Name: EIS Report Waterlevels Levels by: REM from 6/9/7-19/9/7 Conversion factor (EC to TDS): 0.65

Job No: EV-02

		Survey			auging from d standpipe					Relative	Levels	Water Column Thickness	Sal	linity	Density Calcs.	Salinity	Correction (m)	Interpreted log	Conversion (EC to TDS)
Bore Location	RP (AUD)	Type of Standpipe	Ground Level	SWL	Bore Depth	Screen Length	Top of Screen	Base of Screen	Measured rSWL (Hs)	Bore Depth	Slotted Interval Midpoint (Hp)		EC*	TDS	Ps	Corrected rSWL			
DT4	(mAHD)	(P or S)	(mAHD)	(m bRP)	(m)	(m)	(mAHD)	(mAHD)	(mAHD)	(mAHD)	(mAHD)	(m)	(mS/cm)	(mg/L)	4.445	(mAHD)		-	0.57
RT1	50.08	S	49.78	11.48	474.0	30	-387.92	-417.92	38.60	-423.92	-402.92	462.52	341.0	193000	1.145	102.51	63.91	Pwc	0.57
RT2a	95.58	S	95.28	55.15	119.5	6	-17.92	-23.92	40.43	-23.92	-20.92	64.35	55.0	43400	1.033	42.43	2.00	€a	0.79
RT2b RT3	95.56	S	95.26 100.52	69.30 59.92	342.0 142.0	12	62.56	-246.44	26.26 40.90	-246.44	-110.09 -3.64	272.70 82.08	328.0 30.0	203000 19500	1.152	47.02	20.76	Pws	0.62
RT4a	100.82 72.16	S S	71.86		58.0	115	66.82	-48.18		-41.18	-3.64 22.16	25.85	49.0		1.015 1.024	41.55	0.65	€a	0.65
RT4b	72.16	S	71.86	32.15 55.08	522.0	16 36	30.16 -413.78	14.16 -449.78	40.01 17.14	14.16 -449.78	-431.78	466.92	327.0	31700 191000	1.024	40.44 81.45	0.42	€a	0.65
RT5a	48.82	S	48.52	9.45		30			39.37	-17.18		56.55	99.6	62200	1.143	41.31	64.31	Pwx	0.58
RT5b		S			66.0		12.82	-17.18			-2.18		404.0			54.19	1.94	€a €a	0.62
RT5c	48.48 48.48	S	48.18 48.18	21.58 16.59	200.0 634.0	12 134	-106.52 -451.52	-118.52 -585.52	26.90 31.89	-151.52 -585.52	-112.52 -518.52	178.42 617.41	430.0	261000 257000	1.196 1.193	137.98	27.29 106.09	€a Pwr/Pwa	0.65 0.60
RT7a	65.01	S	64.71	12.96	36.0	12	41.01	29.01	52.05	29.01	35.01	23.04	88.3	60200	1.045	52.82	0.77	Pfa Pfa	0.60
RT7b	65.01	S	64.71	18.39	96.0	6	-24.99	-30.99	46.62	-30.99	-27.99	77.61	90.7	62400	1.045	50.11	3.49	Pfa	0.69
RT9	59.29	S	58.99	16.39	71.0	12	12.29	0.29	42.99	-30.99	6.29	54.70	54.3	31000	1.047	43.85	0.85	Pwr	0.69
RT16a	102.42	S	102.12	59.07	68.0	6	40.42	34.42	42.99	34.42	37.42	8.93	34.5	22100	1.023	43.45	0.05	Fwi €a	0.64
RT16b	102.42	S	102.12	71.51	216.0	12	-95.55	-107.55	30.94	-113.55	-101.55	144.49	84.5	56700	1.043	36.58	5.63	Pwc	0.67
RT17a	101.56	S	101.26	52.73	84.0	12	35.56	23.56	48.83	17.56	29.56	31.27	29.0	18850	1.014	49.10	0.27	€a	0.65
RT17b	101.94	S	101.64	72.24	264.0	12	-134.06	-146.06	29.70	-162.06	-140.06	191.76	75.0	48750	1.037	35.90	6.21	Pwc	0.65
PT-24a	105.87	S	105.17	-154.17	86.0	12	31.87	19.87	48.29	19.87	25.87	240.17	50.0	32500	1.024	48.84	0.55	€a	0.65
LR1	102.91	S	102.41	55.96	68.0	18	52.91	34.91	46.95	34.91	40.93	12.04	50.0	32500	1.024	47.10	0.15	€a	0.65
LR2	101.19	S	100.69	56.28	70.0	24	55.19	31.19	44.91	31.19	38.05	13.72	50.0	32500	1.024	45.08	0.17	€a	0.65
LR3	101.50	S	101.00	32.23	58.0	14	57.50	43.50	69.27	43.50	50.50	25.77	50.0	32500	1.024	69.73	0.46	€a	0.65
LR4	103.40	S	102.90	62.41	78.8	12	36.60	24.60	40.99	24.60	30.60	16.39	50.0	32500	1.024	41.24	0.25	€a	0.65
LR5	104.80	S	104.30	52.77	66.8	6	44.00	38.00	52.03	38.00	41.00	14.03	50.0	32500	1.024	52.30	0.27	€a	0.65
LR6	102.09	S	101.59	50.16	72.8	6	35.29	29.29	51.93	29.29	32.29	22.64	50.0	32500	1.024	52.41	0.48	€a	0.65
LR7	105.59	S	105.09	53.12	66.8	6	44.79	38.79	52.47	38.79	41.79	13.68	50.0	32500	1.024	52.73	0.26	€a	0.65
LR8	97.09	S	96.59	54.63	66.8	6	36.29	30.29	42.46	30.29	33.29	12.17	50.0	32500	1.024	42.68	0.22	€a	0.65
LR9	87.40	S	86.90	39.19	49.8	6	43.60	37.60	48.21	37.60	40.60	10.61	50.0	32500	1.024	48.40	0.19	€a	0.65
LR10	49.82	S	49.38	12.58	40.0	15	24.82	9.82	38.00	9.82	17.32	27.42	50.0	32500	1.024	38.50	0.50	€a	0.65
LR11	55.24	S	54.82	15.48	40.0	15	30.24	15.24	40.00	15.24	22.74	24.52	50.0	32500	1.024	40.42	0.42	€a	0.65
LR12	99.96	S	99.58	54.57	92.0	15	22.96	7.96		7.96	3.98	37.43	50.0	32500	1.024	-0.10	-0.10	€a	0.65
LT41	98.19	S	97.69	49.19	66.0	6	38.19	32.19	49.00	32.19	35.19	16.81	50.0	32500	1.024	49.34	0.34	€a	0.65
LT19	102.40	S	101.90	51.87	67.0	17	52.40	35.40	50.53	35.40	42.97	15.13	50.0	32500	1.024	50.71	0.18	€a	0.65

Hf = Hs + ((Ps-Pf)/ Pf)(Hs-Hp) where	Hf	Equivalent freshwater head (mAHD)	RT Correction R	ange (m)		
ni = ns + ((Ps-Pi)/ Pi)(ns-np)	Hs	Level of saline groundwater measured in peizometer (mAHD)		Max	Min	GeoMean Conv
	Нр	if RSWL > Top of Screen (mAHD, Screen is fully Saturated): Relative Level of the Midpoint of the Screen (mAHD)	€a	27.29	0.10	0.66
mAHD = metres relative to Australian Height Datur	n	if RSWL < Top of Screen (mAHD, screen intersects SWL): mid-point between the SWL and the base of the screen (m AHD)	Pwc	63.91	5.634	0.63
SWL = Standing Water Level	Pf	Density of fresh water (=1, kg/L)	Pws	106.09	20.759	0.61
P = Standpipe PVC	Ps	density of saline groundwater (as a rule of thumb: TDS (mg/L) * 7.5x10 ⁻⁷ + 1)	Shales	64.31	26.372	0.63
S = Standpipe Steel						

BHP Bore Locations: Andamooka Limestone

Target ID	Easting	Northing	Depth (m)	Waterlevel (mAHD)	Date of WL Measurement
LR1	675630.8	6636423	68.5	46.94	1/03/2007
LR2	685786.8	6637306	70	45.59	1/03/2007
LR4	691262.7	6628950	79	41.05	1/03/2007
LR8	678842.9	6641779	67	42.43	1/03/2007
LR9	668483.9	6624888	50	48.23	26/02/2007
LM25	681879.2	6628459		53.54	1/03/2007
LT19	672990.8	6630471	67	49.21	26/02/2007
LT41	674401.5	6631671	66	50.63	19/03/2007
PT24a	676815.5	6627754		48.294	20/06/2007
LR10	705533	6652117		38	
LR11	701711.7	6651124		40	

BHP Billiton

Table E.1 Groundwater chemistry

	Table E.1 Groundwater chemistry																			
	Well Number		RT-1	LR-10	RT-2a	RT-2a	RT-2b	RT-3	RT-4a	RT-4b	RT-5a	RT-5b	RT-5c	RT-7a	RT-7b	RT-9	RT-16a	RT-16b	RT-17a	RT-17b
	Target Aquifer		Pwc	€a	€a (after completion)	€a/Pws (red) (before completion)	Pws (red)	€а	€a	Pwx	€a	€a (lower)	Pwa	Pfa (upper)	Pfa (lower)	Pwm	€a	Pwc	€a	Pwc
Date Sampled	raiget Aquilei		24/07/2007	23/07/2007	29/06/2007	11/12/2006	12/07/2007	1/12/2006	22/08/2007	22/08/2007	7/08/2007	9/08/2007	9/08/2007	24/08/2007	24/08/2007	11/01/2007	18/06/2007	18/06/2007	18/06/2007	18/06/2007
General Laboratory Analysis	nH		7.55	7.58	7.69	7.54	7.46	7.48	7.61	7.52	7.61	7.66	7.6	7.51	7.71	7.1	7.21	7.51		
Solicial Easteratory / maryole	Electrical Conductivity	μS/cm	341000	56700	55000	66700	328000	30000	49000	327000	99600	404000	43000	88300	90700	54300	34500	84500		
	Total Dissolved Solids @180°C		193000	38000	36100	43400	203000		31700	191000	62200	261000	257000	60200	62400	31000	22100	56700		
	Suspended Solids (SS)	mg/L	200	98	52	77	596		200	536	160	458	1150	608	296	3160	3420	84		
	Turbidity	NTU	218	100	4.3	19.1	1540	22.1	190	282	42.2	185	492	349	165	6570	2620	48.5		
	Total Alkalinity as CaCO3	mg/L	85	252	213	254	84	243	233	55	248	63	56	<1	<10	216	236	203		
Dissolved Anions	Sulphate as SO4 2-	mg/L	10300	4430	4540	5630	12900	5700	3610	4880	5810	13500	12500	4420	5000	4880	4310	7440		
	Chloride	mg/L	114000	20400	17300	22800	136000	6960	15400	108000	44600	146000	143000	31900	31500	17500	9510	30800		
Dissolved Cations	Calcium	mg/L	835	1030	945	1000	983	554	753	1560	959	983	952	520	1930	1010	832	1040		
	Magnesium	mg/L	3990	1030	965	1370	5170	358	615	1280	1630	5880	5510	330	1390	913	754	1620		
	Sodium	mg/L	73500	11900	10900	14400	86800	6460	8720	69400	25100	94200	94200	21400	20400	12200	6610	20200		
	Potassium	mg/L	501	61	92	208	368	63	115	83	135	347	379	136	98	225	42	104		
	Iron	mg/L						<0.01								0.1				
Discoulant Martala	Iron	mg/L	0.40	0.04	0.04	3.58	0.40	1.05	0.04	0.40	0.04	0.40	0.40	0.04	0.40	241	0.04	0.04	0.07	0.04
Dissolved Metals	Aluminium Arsenic	mg/L	<0.10 0.028	<0.01 0.006	<0.01 0.004		<0.10 0.034		0.04 0.002	<0.10 1.06	<0.01 0.011	<0.10 0.017	<0.10 0.021	<0.01 0.004	0.12 0.004		<0.01 0.004	<0.01 0.006	0.37 0.002	0.04 0.003
	Barium	mg/L	0.028	0.006	0.004		0.034	0.085	0.002	1.06	0.011	0.017	0.021	0.004	0.004	0.037	0.004	0.006	0.002	0.003
	Cobalt	mg/L mg/L	0.055	0.003	0.011		0.014	0.065	0.008	<0.010	0.006	<0.010	0.032	0.007	0.007	0.037	0.004	0.01	0.002	0.003
	Copper	mg/L	0.033	0.003	0.008		0.014		0.008	<0.010	0.000	0.036	0.032	0.007	0.007		0.004	0.015	0.002	0.003
	Lead	mg/L	<0.010	<0.001	<0.001		<0.010		<0.001	<0.010	<0.001	<0.010	<0.010	<0.001	0.002		<0.001	<0.001	<0.001	<0.001
	Manganese	mg/L	3.86	0.61	0.235	0.412	0.982	0.366	0.444	<0.010	0.256	0.708	1.64	3.13	3.28	5.44	0.171	1.39	0.036	0.858
	Molybdenum	mg/L					0.00=		• • • • • • • • • • • • • • • • • • • •		0.20			5115	0.20					
	Strontium	mg/L	13.9	18.1	14.4		15.6	5.3	14.2	0.851	14.8	12.9	15.3	36.3	37.1	13.8	12.9	19.1	13.3	18.2
	Uranium	mg/L	<0.010	0.026	0.051		<0.010		0.003	< 0.010	0.009	<0.010	<0.010	0.01	0.001		0.076	0.017	0.024	0.029
	Zinc	mg/L	0.172	0.011	0.009		0.119		0.173	< 0.050	0.064	0.053	1.21	0.175	1.4		0.049	0.023	0.009	0.005
	Boron (Dissolved)	mg/L	4.11	5.34	5.2		2.66	5.78	4.99	114	4.31	1.22	2.06	4.47	4.36	5.61	5.29	6.47	3.47	5.94
	Boron (Total)	mg/L				6.3		7.54								6.86				
	Silica	mg/L	105	81	114	11.9	151	14.3	48.2	120	126	214	0.4	100	93.4	10.4	104	140		
	Fluoride	mg/L	0.4	1.4	1.1	1.5	0.4	<0.1	1	0.3	1	0.1	0.3	0.9	1.1	0.3	1.6	0.8		
	Nitrite as N	mg/L	0.029	<0.010	<0.010	<0.010	<0.010	0.011	<0.010	<0.010	<0.010	0.015	0.573	0.349	<0.010	<0.010	<0.010	0.011		
	Nitrate as N Nitrite + Nitrate as N	mg/L	0.665 0.694	0.837 0.837	0.031 0.031	<0.010 <0.010	0.08 0.08	<0.010 0.015	0.152 0.152	0.188 0.188	0.139	0.101 0.116	3.11 3.68	2.11 2.46	0.096 0.096	<0.010 <0.010	0.222 0.222	9.8 9.81		
Ionic Balance	Total Anions	mg/L	3440			766	4100				0.139 1380	4410	4290	992			362	1030		
Tomic Balance	Total Anions Total Cations	meq/L meq/L	3440 3580	673 656	587 603	766 795	4100 4260	320 340	515 470	3160 3200	1380	4410 4640	4290 4610	992 988	1000 1100	601 660	362 392	1030		
	Ionic Balance	meq/L %	1.88	1.26	1.32	1.9	1.83	2.98	470 4.54	0.7	4.12	2.55	3.56	0.19	4.83	4.74	3.93	1.84		
	Tome Balance	70	1.00	1.20	1.02	1.0	1.00	2.30	7.07	0.7	7.12	2.00	5.50	0.10	7.00	7.77	0.00	1.07		

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

: EM0706659 **Work Order** Page : 1 of 12

Client RESOURCE & ENVIRON MANGMNT P/L Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

: UNIT 9, 15 FULLARTON RD KENT TOWN SA AUSTRALIA 5067 Address Address : 4 Westall Rd Springvale VIC Australia 3171

E-mail : paulhowe@rem.net.au E-mail : paul.loewy@alsenviro.com

Telephone : +61 08 8363 1777 Telephone : +61-3-8549 9600 Facsimile : +61 08 8363 1477 Facsimile : +61-3-8549 9601

Project : EV02&EV03 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number C-O-C number

Date Samples Received : 05-SEP-2007 Sampler Issue Date : 12-SEP-2007

Site

: 22 Quote number : ME/122/06 No. of samples analysed : 22

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Instrument Chemist	Inorganics
Herman Lin	Senior Inorganic Chemist	Inorganics
Terrance Hettipathirana	Senior ICP/MS Chemist	Inorganics

Environmental Division Melbourne Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 12 Work Order : EM0706659

Client RESOURCE & ENVIRON MANGMNT P/L

Project : EV02&EV03

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

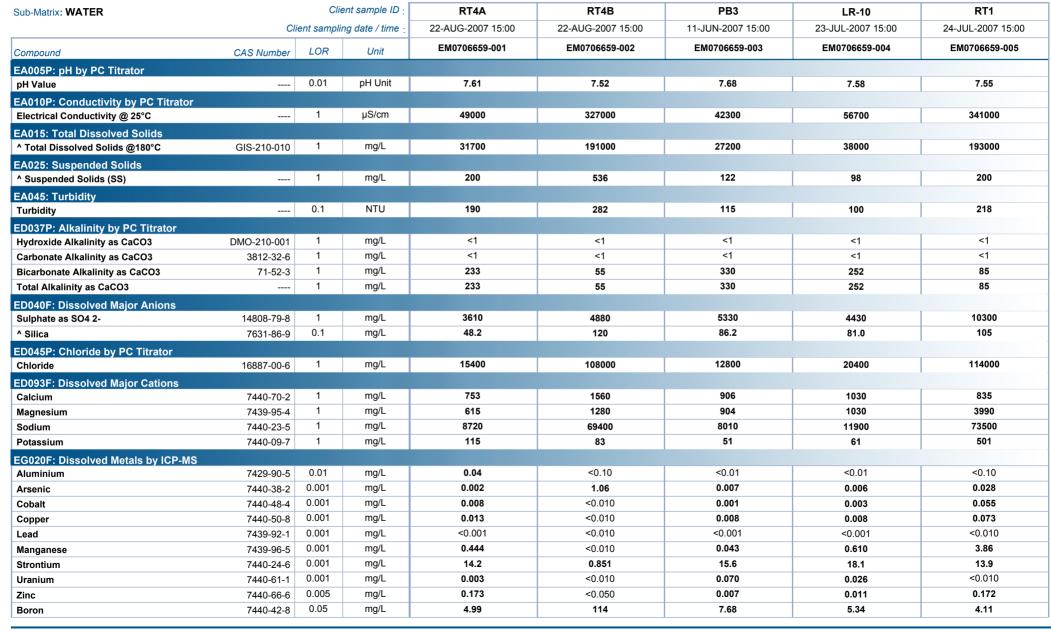
Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

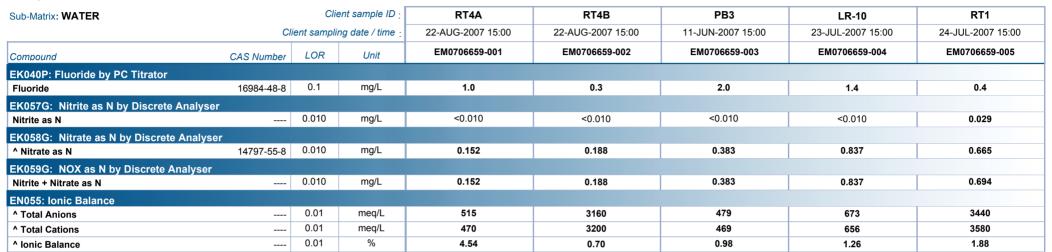

^ = Result(s) reported is calculated using analyte detections at or above the LOR. (eg. <5 + 5 + 7 = 12).

- ED037-P: EM0706659 #017, #018, #020, #021, #022. Insufficient sample has been provided for Alkalinity. Where applicable LOR values have been adjusted accordingly.
- EGO20: EMO706659 #002, 005, 009, 011, 016, 017, 018, 019 and 020 have been diluted for ICP-MS analysis due to internal standard failier and LORs have been raised accordingly.

Page : 3 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

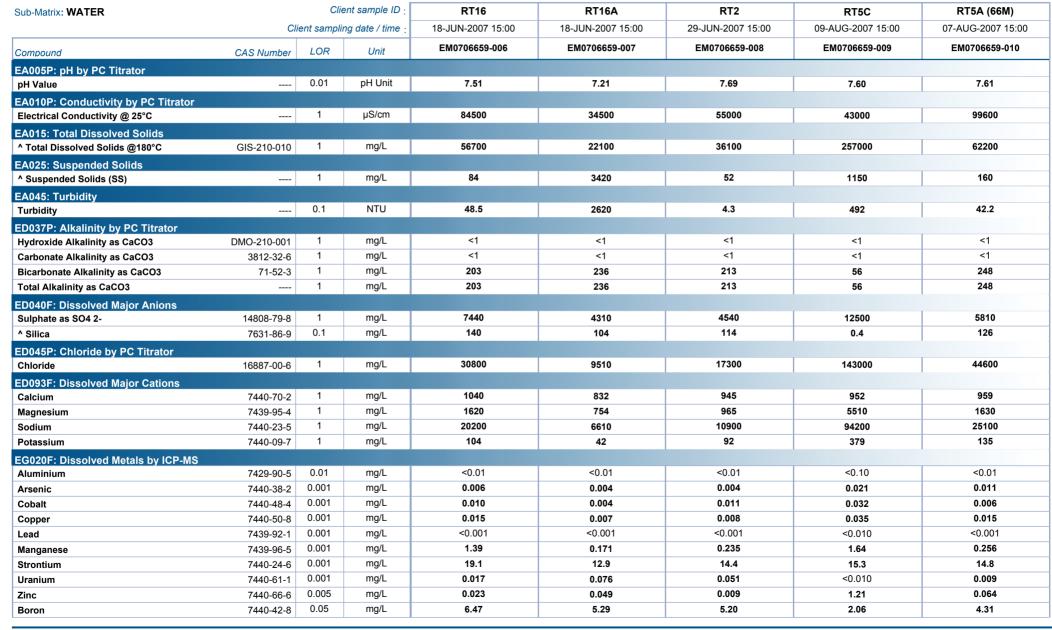
Project : EV02&EV03



Page : 4 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV02&EV03



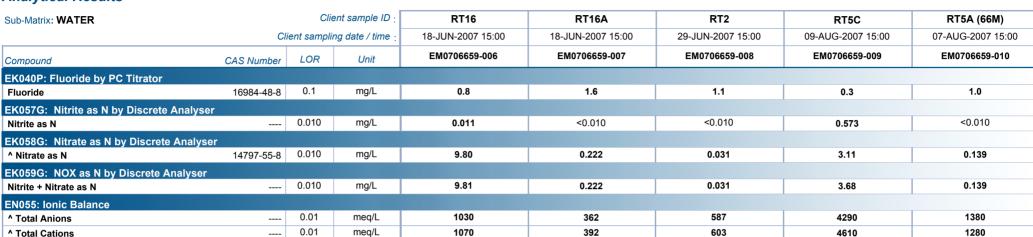
Page : 5 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV02&EV03

Page : 6 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L


0.01

%

Project : EV02&EV03

Analytical Results

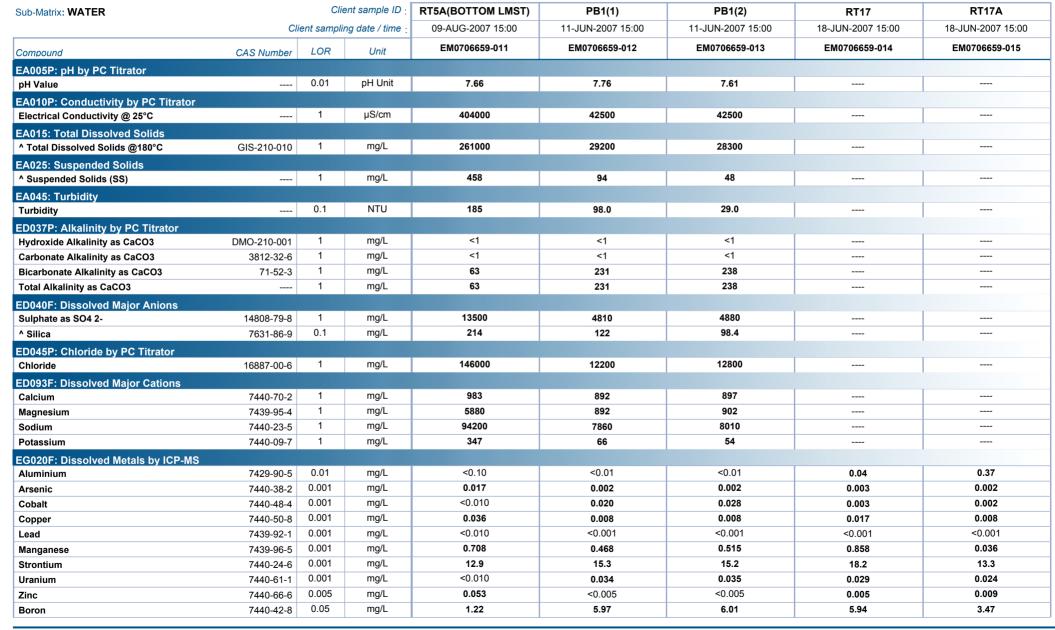
^ Total Cations
^ Ionic Balance

3.93

1.32

3.56

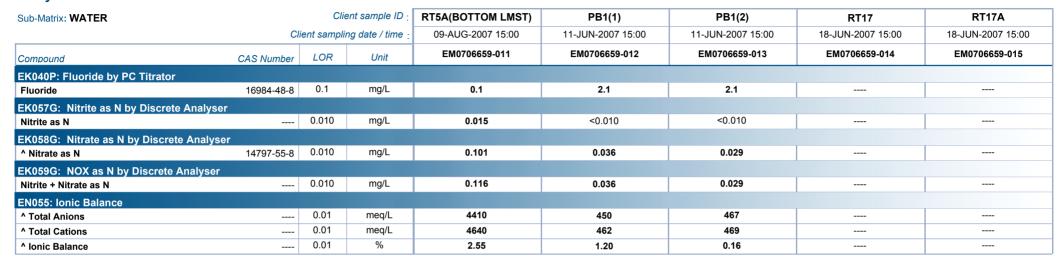
1.84



4.12

Page : 7 of 12 Work Order : EM0706659

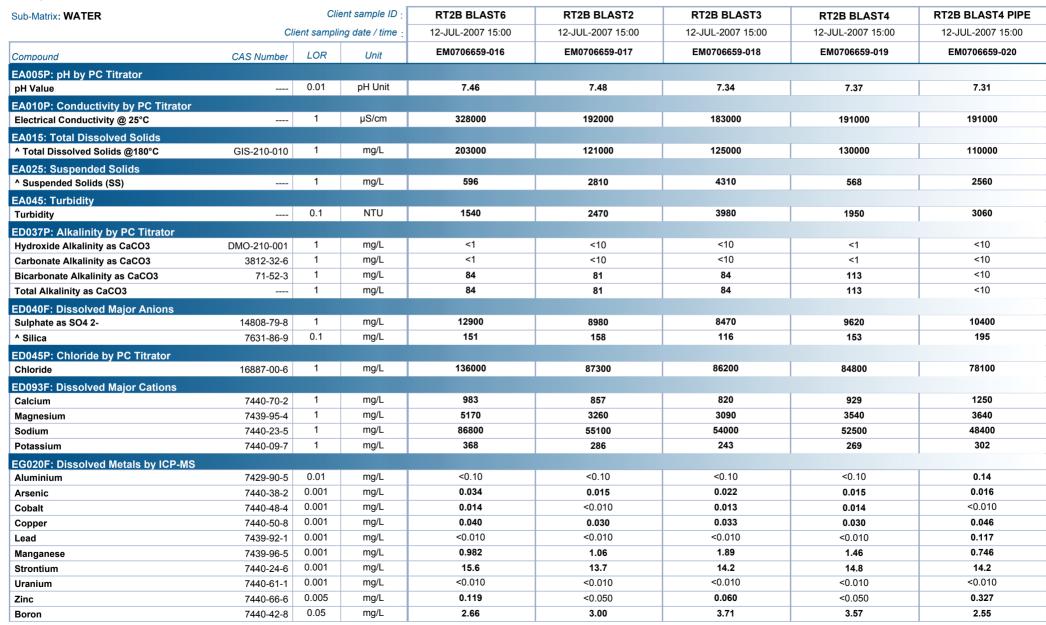
Client : RESOURCE & ENVIRON MANGMNT P/L


Project : EV02&EV03

Page : 8 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

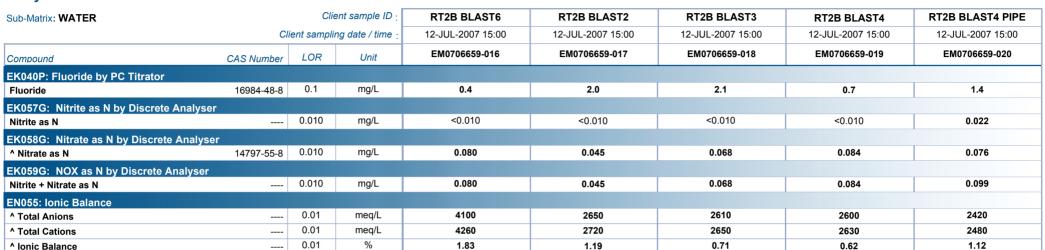
Project : EV02&EV03



Page : 9 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV02&EV03



Page : 10 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV02&EV03

Page : 11 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV02&EV03

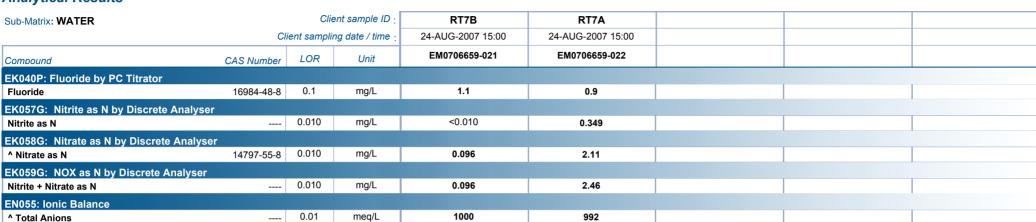
Page : 12 of 12 Work Order : EM0706659

Client : RESOURCE & ENVIRON MANGMNT P/L

0.01

0.01

meq/L


%

Project : EV02&EV03

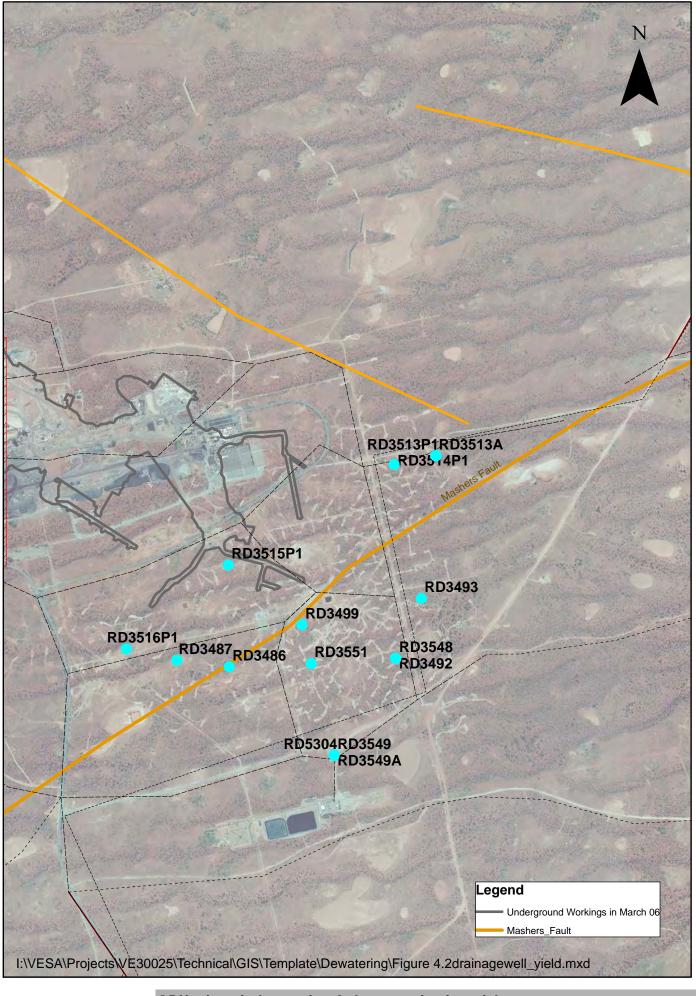
Analytical Results

^ Total Cations

^ Ionic Balance

988

0.19


1100

4.83

Attachment B
Mine pit dewatering and depressurisation trial
drilling, construction and testing completion report

Dewatering drilling investigation program

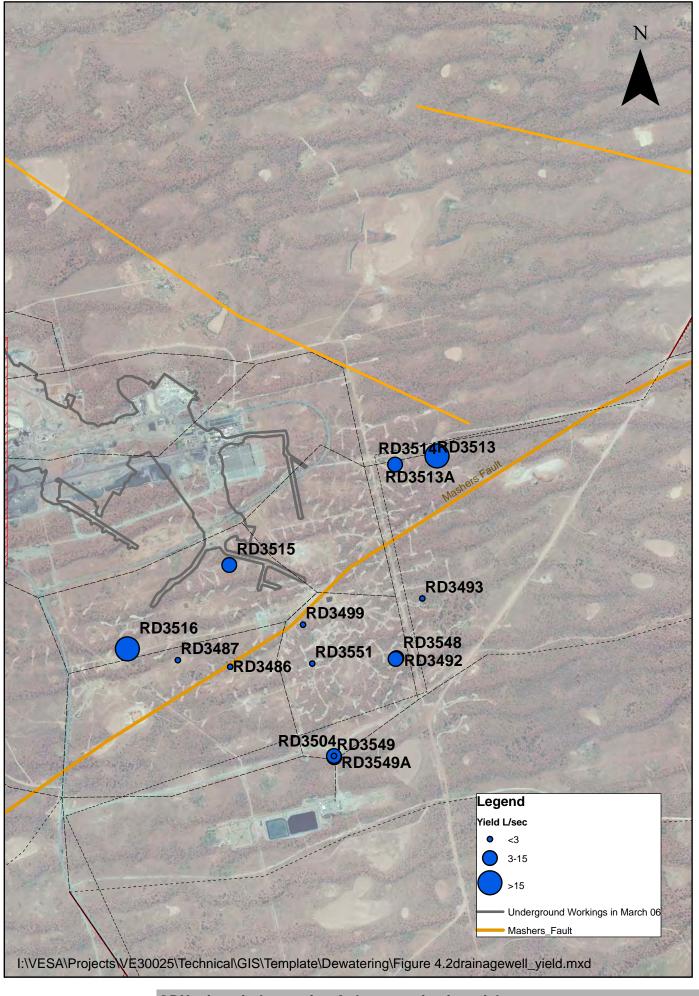
Well no.	Completion [3]	Depth (m bgl)	Objective	Outcome
RD3486 ^[1]	Pwt / BC	546	Drill into the basement rock to 600 m to determine the effect of dewatering on the basement rocks and to perform constant head tests on the isolated lower basement rock	The hole was terminated in Volcanic basement rock. The aquifer was pressure cemented to isolate the basement rocks.
RD3487 ^[1]	Pwt / BC	600	Drill into the basement rock to 600 m to determine the effect of dewatering on the basement rocks and to perform constant head tests on the isolated lower basement rock	The hole was terminated in Volcanic basement rock. The aquifer was pressure cemented to isolate the basement rocks.
RD3492 ^[2]	Pws/Pwc	234	Dewatering production well to be will be used as a pumping well for the dewatering trial	Due to the low yield the well was completed as an observation well with 50 mm PVC with a 6 m screen at the base
RD3493 ^[2]	Pws/Pwc	228	Dewatering production well to be will be used as a pumping well for the dewatering trial	Due to the low yield the well was left open
RD3499 ^[2]	Pwc	240	Dewatering production well to be will be used as a pumping well for the dewatering trial	Due to the low yield the well was left open
RD3504 ^[2]	Pwc	228	Dewatering production well to be will be used as a pumping well for the dewatering trial	Due to the low yield the well was completed as an observation well with 50 mm PVC and a 6 m screen at the base
RD3513A-P1 ^[2]	Pws/Pwc/Pwt	270	Dewatering production well to be will be used as a pumping well for the dewatering trial	The hole was terminated in the Tregolana Shale, 8" slotted production steel casing form the first water cut to EOH with 2 blanks within screened zone for placement of pump
RD3514-P1 ^[2]	Pws/Pwc	256	Dewatering production well to be will be used as a pumping well for the dewatering trial	The hole was terminated in the Tregolana Shale, 8" slotted production steel casing form the first water cut to EOH with 2 blanks within screened zone for placement of pump
RD3515-P1 ^[2]	Pws	192	Dewatering production well to be will be used as a pumping well for the dewatering trial	The hole was terminated in the Arcoona Quarzite White, 8" slotted production steel casing form the first water cut to EOH with 2 blanks within screened zone for placement of pump. Hole collapsed from 172-192 m

Dewatering drilling investigation program (cont.)

Well no.	Completion [3]	Depth (m bgl)	Objective	Outcome
RD3516-P1 ^[2]	Pws/Pwc	216	Dewatering production well to be used as a pumping well for the dewatering trial	The hole was terminated in the Tregolana Shale, 8" slotted production steel casing form the first water cut to EOH with 2 blanks within screened zone for placement of pump. Hole collapsed from 204-222 m
RD3548 ^[2]	Pws/Pwc	234	Dewatering production well to be used as a pumping well for the dewatering trial	The hole was terminated in the Tregolana Shale, 8" slotted production steel casing form the first water cut to EOH with 2 blanks within screened zone for placement of pump
RD3549 ^[2]	Pws/Pwc	194	Dewatering production well to be used as a pumping well for the dewatering trial	Hole was terminated due to shanked bit at 194 m. Completed as a 50 mm DN observation well with 6 m screen at base.
RD3549A ^[2]	Pws/Pwc	228	Dewatering production well to be used as a pumping well for the dewatering trial	The hole was terminated in the Tregolana Shale, 8" slotted production steel casing form the first water cut to EOH with 2 blanks within screened zone for placement of pump
RD3551 [2]	€a/Pws/Pwc	250	Dewatering production well to be used as a pumping well for the dewatering trial	Due to the low yield the well was left open

Notes:

- 1. Depressurisation / drainage well
- 2. Dewatering well
- 3. €a; Andamooka Limestone Pws; Arcoona Quartzite Pwc; Corraberra Sandstone Pwt; Tregolana Shale BC; Breccia Complex


Well details

Well no.	Purpose.	Location (MG	A94 Zone 53) ^[1]	DWLBC	Da	te	Method	
(BHP no.)		Easting	Northing	permit no.	Commenced	Completed		
RD3486	Drainage	682975	6630860	129168	20/7/08	4/8/08	air hammer	
RD3487	Drainage	681255	6629495	129167	12/6/08	1/7/08	air hammer	
RD3492	Monitoring	682705	6629510	145091	17/5/08	20/5/08	air hammer	
RD3493	Dewatering	682875	6629905	145089	5/5/08	10/5/08	air hammer	
RD3499	Dewatering	684085	6629730	145090	11/5/08	16/5/08	air hammer	
RD3504	Monitoring	682290	6628850	145093	27/5/08	30/5/08	air hammer	
RD3513A-P1	Dewatering	682975	6630850	127949	2/7/08	11/7/08	air hammer	
RD3514-P1	Dewatering	682695	6630795	127951	24/4/08	4/4/08	air hammer	
RD3515-P1	Dewatering	681595	6630125	127952	14/4/08	22/4/08	air hammer	
RD3516-P1	Dewatering	680920	6629570	145086	22/4/08	4/5/08	air hammer	
RD3548	Dewatering	682300	6629505	145092	31/5/08	26/5/08	air hammer	
RD3549	Monitoring	682290	6628865	145088	31/5/08	5/6/08	air hammer	
RD3549A	Dewatering	682290	6628860	129163	5/6/08	10/6/08	air hammer	
RD3551	Dewatering	681245	6629475	145087	11/7/08	19/7/08	air hammer	

Notes: 1. Rounded to nearest 5 m

Well construction data

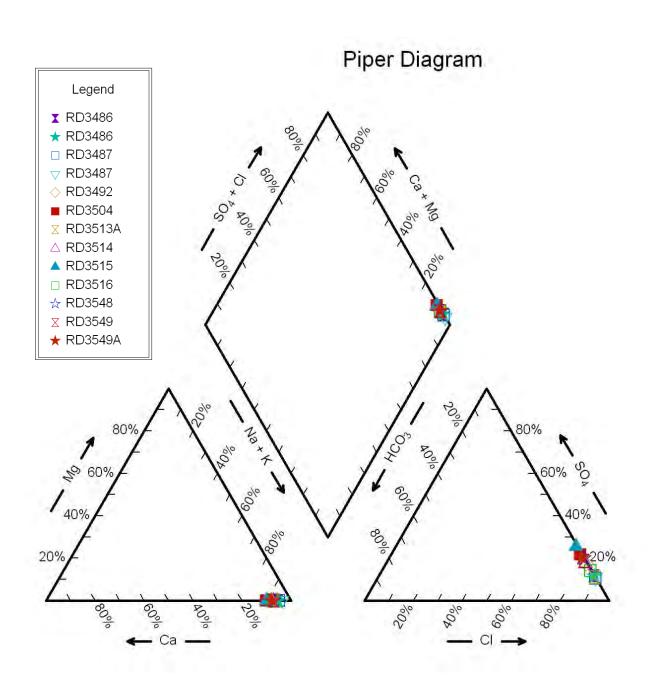
Well no. (BHP no.)	Production ca	sing / pre-collar / s	surface casing materials	setting [1]	Screened interval	material
RD3486	0-240	cemented	ERW steel	240-546	150	open hole
RD3487	0-252	cemented	ERW steel	252-600	150	open hole
RD3492	0-216	cemented	ERW steel	216-234	50	PVC
RD3493	0-186	cemented	ERW steel	186-228	200	open hole
RD3499	0-204	cemented	ERW steel	204-240	200	open hole
RD3504	0-210	cemented	ERW steel	210-228	50	PVC
RD3513A-P1	0-174	cemented	ERW steel	174-270	200	ERW steel
RD3514-P1	0-118	cemented	ERW steel	118-256	200	ERW steel
RD3515-P1	0-130	cemented	ERW steel	130-168	200	ERW steel
RD3516-P1	0-90	cemented	ERW steel	90-216	200	ERW steel
RD3548	0-132	cemented	ERW steel	132-234	200	ERW steel
RD3549	0-174	cemented	ERW steel	174-194	50	PVC
RD3549A	0-168	cemented	ERW steel	168-228	200	ERW steel
RD3551	0-70	cemented	ERW steel	70-250	300	open hole
			000000			

Field measured groundwater parameters

Well no.	pH	EC	Temperature	Airlift yield	Standir	ng water
		(mS/cm)	(°C)	(L/s)	Depth (m bTOC)	Date gauged
RD3486	10.68	101	31.6	3.0	106.08	4/9/08
RD3487	-	162	32.3	2.0	100.23	29/6/08
RD3492	-	56		3.5	104.92	23/6/08
RD3493	-	57	-	2.6	105.83	23/6/08
RD3499	-	58	-	0.7	144.9	23/6/08
RD3504	-	38		3.7	93.23	23/6/08
RD3513A	-	80	29.7	38.0	117.65	12/7/08
RD3514	-	41	30.2	7.0	99.96	6/4/08
RD3515	-	49		15.0	106.63	23/6/08
RD3516	-	70	-	42.0	96.94	23/6/08
RD3528	-	55		4.0	102.32	23/6/08
RD3549A	-	29	28.4	3.2	93.14	20/6/08
RD3549	-	28.6	22.2	3.0	93.14	20/6/08
RD3551	-	75.6	-	3.0	-	-

Notes:

EC;


electrical conductivity

m bTOC;

metres below top of casing

-;

not available

 $I: \VESA \Projects \VE30025 \Technical \GIS \Template \Dewatering \Piperplot.mxd$

ODX mine pit dewatering & depressurisation trials

Water chemistry (Piper plot)

Laboratory analytical water quality data

		Sample Date	RD3486 5/08/2008	RD3486 5/08/2008	RD3487 29/06/2008	RD3487 30/06/2008	RD3492 20/05/2008	RD3504 26/05/2008	RD3513A 12/07/2008	RD3514 4/04/2008	RD3515 7/05/2008	RD3516 16/07/2008	RD3548 26/05/2008	RD3549 11/06/2008	RD3549A 10/06/2008
		Lab Report	EM0806545	EM0806545	EM0805232	EM0805232	EM0804153	EM0804444	EM0805832	EM0802617	EM0803494	EM0805832	EM0804153	EM0804594	EM0804594
Analyte	Units	ALS LOR													
pH Value and Total Diss	solved S	olids													
pH	pH Unit	0.1	7.82	7.93	8.02	7.9	7.79	7.78	7.56	7.73	7.61	7.39	8.17	7.93	7.82
EC	μS/cm		120000	106000	136000	138000	54200	42600	90400	45100	50600	64100	56300	40400	42000
TDS	mg/L	1	93300	91000	94800	99100	35600	30300	63400	27800	30200	44700	38100	28800	29700
Alkalinity															
Hydroxide as CaCO3	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbonate as CACO3	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate as CACO3	mg/L	1	155	168	118	122	265	249	268	276	254	268	177	256	252
Total Alkalinity as CACC	mg/L	1	155	168	118	122	265	249	268	276	254	268	177	256	252
Dissolved Major Cation	s								•		•		•	•	
Calcium	mg/L	1	1510	1540	1530	1230	979	707	1280	894	1270	913	940	670	749
Magnesium	mg/L	1	2230	2290	2660	2450	1090	874	1410	812	1280	1080	1080	844	914
Sodium	mg/L	1	32100	32700	35000	38100	13200	7280	21200	9480	13500	13600	14500	9860	10500
Potassium	mg/L	1	283	276	340	505	131	116	166	80	102	95	121	80	89
Dissolved Metals									•	•	•		•	•	
Aluminium	mg/L	0.01	0.04	0.02	<0.10	<0.10	-	<0.01	<0.01	0.02	0.01	<0.01	-	<0.01	0.01
Arsenic	mg/L	0.001	0.009	0.011	<0.010	0.017	0.003	<0.01	0.009	0.003	0.006	0.006	0.004	0.014	0.014
Beryllium	mg/L	0.001	-	-	-	-	-	-		-	-	-	-	-	-
Barium	mg/L	0.001	0.056	0.05	0.04	0.042	-	0.031	0.037	-	0.035	0.039	-	0.03	0.027
Boron	mg/L	0.05	5.03	4.94	7.8	7.96	-	6.24	5.99	6.56	7.3	6.27	-	5.72	5.71
Cadmium	mg/L	0.0001	-	-	-	-	0.0001	-	-	-	-	-	0.0001	-	-
Chromium	mg/L	0.001	-	-	-	-	<0.001	-	-	-	-	-	<0.001	-	-
Cobalt	mg/L	0.001	0.004	0.003	<0.010	<0.010	-	0.001	0.003	0.002	0.006	0.001	-	<0.001	0.001
Copper	mg/L	0.001	0.02	0.023	0.022	0.024	0.01	0.016	0.026	0.009	0.013	0.02	0.013	0.012	0.013
Iron	mg/L	0.01	<0.5	<0.5	1.15	0.7	<0.5	<0.1	2.14	-	<0.5	<0.50	<0.5	0.83	0.96
Lead	mg/L	0.001	<0.001	<0.001	<0.010	<0.010	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	mg/L	0.001	1.28	1.21	2.49	2.54	-	0.75	1.37	1.04	1.69	0.975	-	0.716	-
Mercury	mg/L	0.0001	-	-	-	-	<0.0001	-	-	-	-	-	<0.0001	-	-
Nickel	mg/L	0.001	-	-	-	-	<0.007	-	-	-	-	-	<0.008	-	-
Nitrite as N	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	-	<0.01	<0.010	<0.01	-	<0.010	-	0.012	0.013
Nitrate as N	mg/L	0.01	<0.01	0.22	0.012	0.012	-	0.013	<0.010	<0.01	-	<0.010	-	<0.01	<0.01
Nitrite + Nitrate as N	mg/L	0.01	<0.01	0.22	0.012	0.066	-	0.013	<0.010	<0.01	-	<0.010	-	0.019	0.014
Strontium	mg/L	0.001	26.4	26.2	26.4	26.7	-	-	20.4	14	<0.01	14.2	-	0.005	0.005
Uranium	mg/L	0.001	0.005	0.004	<0.01	<0.01	-	-	0.002	0.002	0.008	<0.001	-	0.001	<0.001
Vanadium	mg/L	0.01	-	-	-	-	-	0.03	-	-	-	-	-	-	-
Zinc	mg/L	0.005	0.094	0.043	<0.050	<0.050	0.144	0.027	0.024	0.02	0.037	46.3	0.011	0.13	0.016

SINCLAIR KNIGHT MERZ

Laboratory analytical water quality data (cont.)

		Sample Date	RD3486 5/08/2008	RD3486 5/08/2008	RD3487 29/06/2008	RD3487 30/06/2008	RD3492 20/05/2008	RD3504 26/05/2008	RD3513A 12/07/2008	RD3514 4/04/2008	RD3515 7/05/2008	RD3516 16/07/2008	RD3548 26/05/2008	RD3549 11/06/2008	RD3549A 10/06/2008
		Lab Report	EM0806545	EM0806545	EM0805232	EM0805232	EM0804153	EM0804444	EM0805832	EM0802617	EM0803494	EM0805832	EM0804153	EM0804594	EM0804594
Analyte	Units	ALS LOR													
Sulphate															
Sulphate	mg/L	1	8600	8820	9050	10800	5460	4950	6430	4010	7270	5310	6210	4290	4670
Chloride															
Chloride	mg/L	1	47700	50600	56700	66000	19100	13000	38000	14000	15500	24000	18400	13700	13500
Fluoride															
Fluoride	mg/L	0.1	0.6	0.6	0.9	0.9		0.9	0.7	0.8	-	0.9		1.2	1.3
Ionic Balance															
Total Anions	meq/L	0.1	1530	1610	1790	2090	659	475	1210	484	-	794	652	-	-
Total Cations	meq/L	0.1	1660	1690	1830	1930	718	427	1110	526	-	728	768	-	-
Ionic Balance	%	0.1	4.21	2.4	1.01	3.96	4.27	5.35	4.53	4.14	-	4.31	8.16	-	-

Notes: LOR laboratory limit of reporting

- not analysed

Pumping tests were not conducted as part of the program of works associated with the installation of the dewatering and drainage wells. However, constant head discharge tests conducted on the Tregolana Shale and basement drainage wells (Appendix D) indicate that low long-term drainage rates can be expected from the overburden beneath the THA. The highest drainage rates (averaging around 3.5 L/s) were observed in well RD3486.

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3486

PROJECT NUMBER: EV- 10

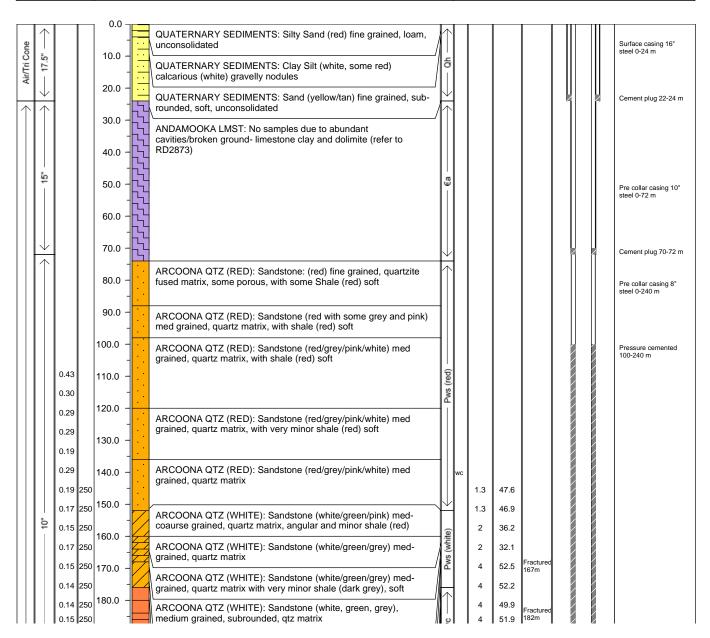
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 20/07/2008 DATE COMPLETED: 09/08/08

WELL PERMIT NUMBER: 129168
TOTAL DEPTH (m bgl): 546


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 4/09/08 Depth (m TOC)106.08

PROJECTION:GDA94 Zone 53

EASTING: **681601** NORTHING: **6629452**

DI	RILLIN	IG INF	O.			MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.						ON INFO.
METHOD	:1 -	SATION	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL

LOGGED: K Hyland DATE: 09/08/2008
CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3549A

PROJECT NUMBER: EV- 10

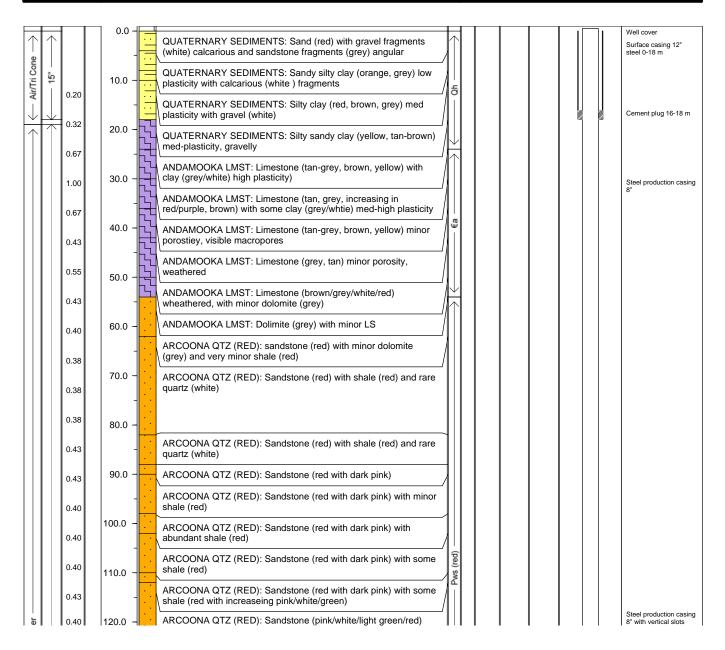
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 5/06/2008 DATE COMPLETED: 10/06/2008

WELL PERMIT NUMBER: 129163


TOTAL DEPTH (m bgl): 228
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 20/06/2008 Depth (m TOC)93.14 PROJECTION:GDA94 Zone 53

EASTING: **682289** NORTHING: **6628861**

L												011111110.0	
	ORILLIN	IG INFO	Ο.			MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.						
	METHOD BIT LOG	SATION RATE (r	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

 LOGGED:
 K Furness
 DATE: 10/06/2008

 CHECKED:
 D Pierce
 DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3549A

PROJECT NUMBER: EV- 10

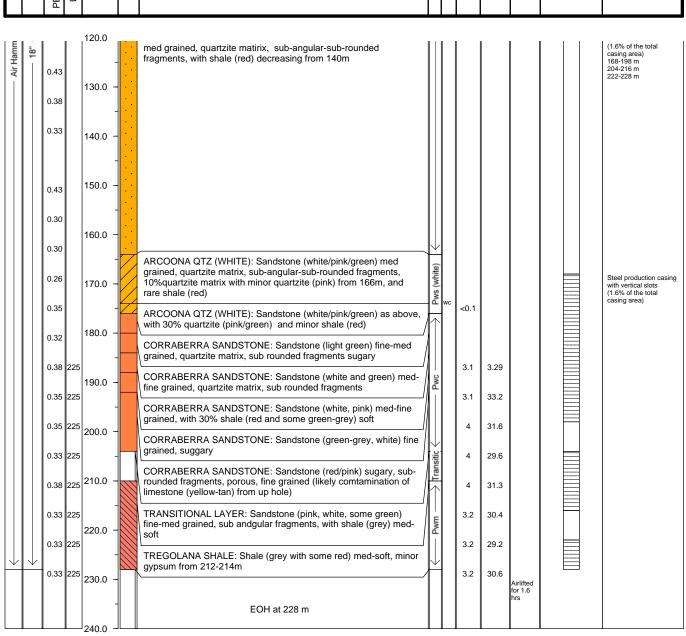
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 5/06/2008 DATE COMPLETED: 10/06/2008

WELL PERMIT NUMBER: 129163


TOTAL DEPTH (m bgl): 228
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 20/06/2008 Depth (m TOC)93.14 PROJECTION:GDA94 Zone 53

EASTING: **682289** NORTHING: **6628861**

DRILLING INFO.					MATERIAL PROPERTIES				FIELD RECORDS / CONSTRUCTION INFO.							
METHOD	1 – 1	TRATION RATE (1	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION			

LOGGED: K Furness DATE: 10/06/2008
CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3549

PROJECT NUMBER: EV- 10

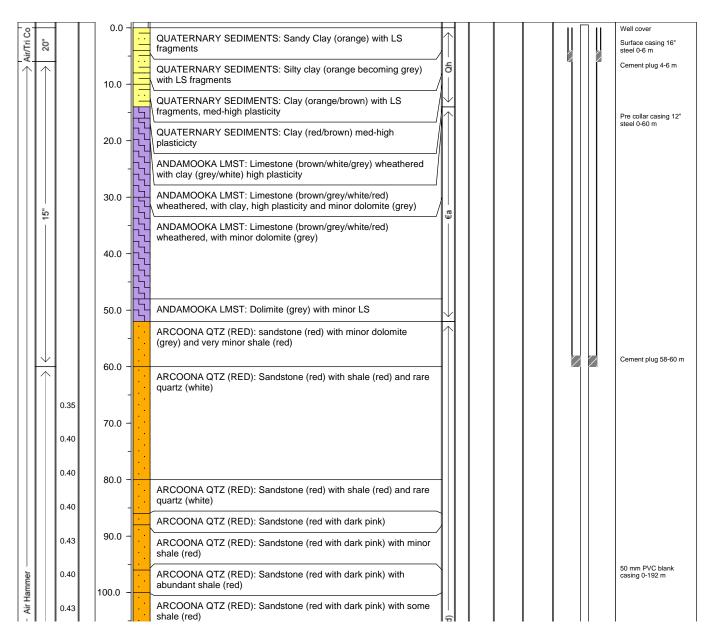
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 31/05/2008 DATE COMPLETED: 05/06/2008

WELL PERMIT NUMBER: TOTAL DEPTH (m bgl):


145088 194

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 20/6/2008 Depth (m TOC)93.14 PROJECTION:GDA94 Zone 53

EASTING: **682289** NORTHING: **6628861**

L									11011111111011111111							
DRILLING INFO.					MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.								
ODETHO	:	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION			

LOGGED: K Furness and K Hyland DATE: 5/06/2008
CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3549

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

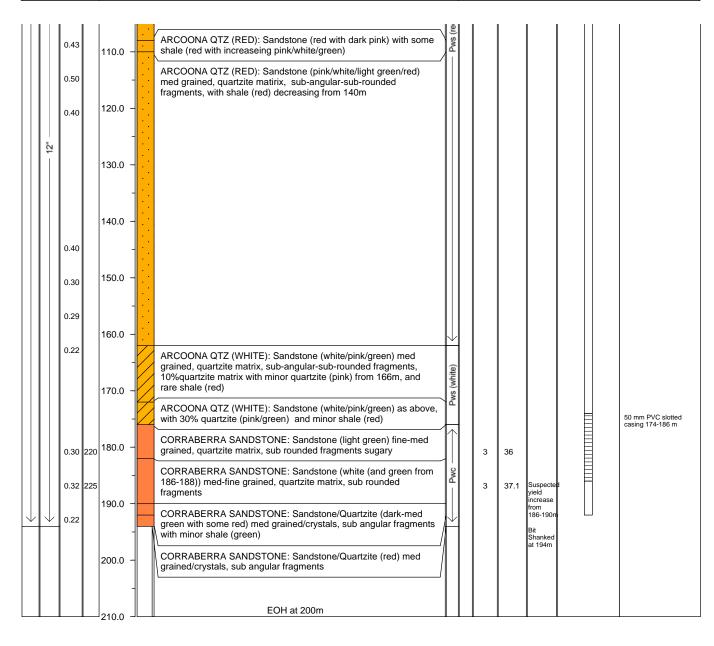
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 31/05/2008 DATE COMPLETED: 05/06/2008

WELL PERMIT NUMBER:

145088


TOTAL DEPTH (m bgl): 194
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 20/6/2008 Depth (m TOC)93.14 PROJECTION:GDA94 Zone 53

EASTING: **682289** NORTHING: **6628861**

DRILLING INFO.					MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.							
METHOD	1 .	TRATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION		

LOGGED: K Furness and K Hyland DATE: 5/06/2008
CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3548

PROJECT NUMBER: EV- 10

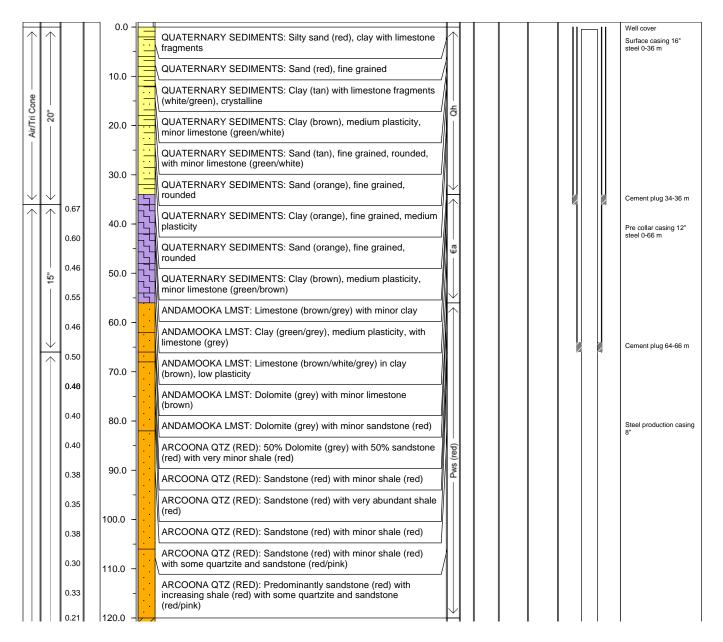
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 20/05/08 DATE COMPLETED: 26/05/08

WELL PERMIT NUMBER: 145092
TOTAL DEPTH (m bgl): 234


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)102.32

PROJECTION:GDA94 Zone 53

EASTING: **682698** NORTHING: **6629504**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	GRAPHIC LOG APPHIC LOG	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS CONSTRUCTION WELL WELL DESCRIPTION

LOGGED: K. Hyland DATE: 26/05/08
CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3548

PROJECT NUMBER: EV- 10

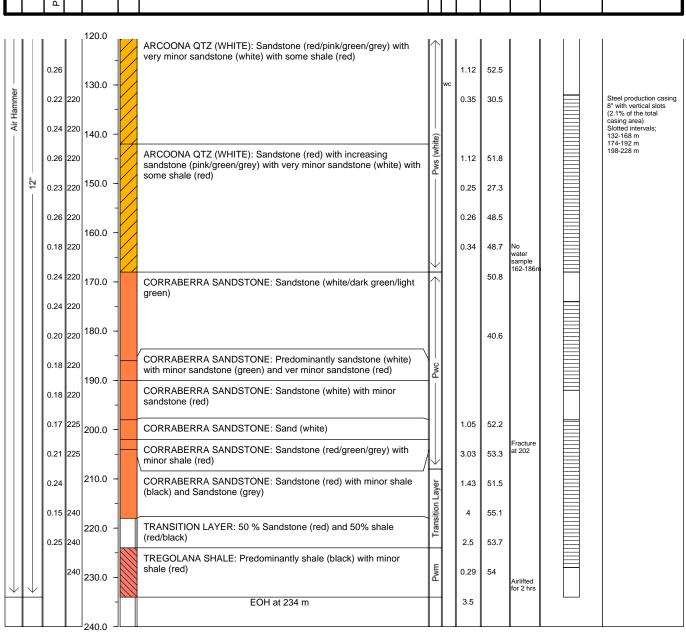
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 20/05/08 DATE COMPLETED: 26/05/08

WELL PERMIT NUMBER: 145092


TOTAL DEPTH (m bgl): 234
REFERENCE POINT (m AHD):
STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)102.32

PROJECTION:GDA94 Zone 53

EASTING: **682698** NORTHING: **6629504**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
BIT LOG BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	GRAPHIC LOG ABOTOHLITI	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL WELL WELL DESCRIPTION

LOGGED: K. Hyland DATE: 26/05/08
CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3516-P1

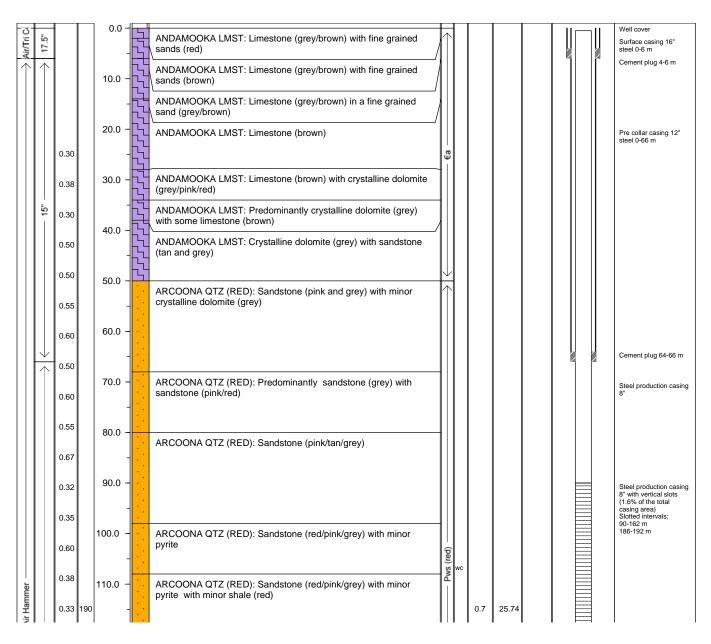
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches
DATE STARTED: 22/04/2008 DATE COMPLETED: 04/05/2008

WELL PERMIT NUMBER: TOTAL DEPTH (m bgl):


145086 216

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/6/2008 Depth (m TOC)96.94 PROJECTION:GDA94 Zone 53

EASTING: **680919** NORTHING: **6629571**

D	DRILLING INFO.				MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.						
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)		DEPTH (m)	GRAPHIC LOG	LITHOLOGY	RETIVE L	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

LOGGED: K Hyland DATE: 04/05/2008 CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

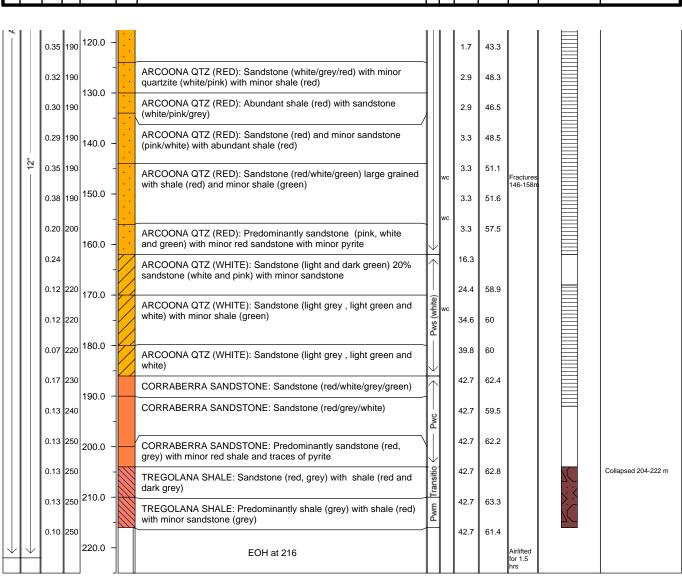
RD3516-P1

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 22/04/2008 DATE COMPLETED: 04/05/2008


WELL PERMIT NUMBER: 145086
TOTAL DEPTH (m bgl): 216
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 23/6/2008 Depth (m TOC)96.94 PROJECTION:GDA94 Zone 53

EASTING: **680919** NORTHING: **6629571**

DRILLING INFO.					MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.						
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)		DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

LOGGED: K Hyland DATE: 04/05/2008 CHECKED: D Pierce DATE: 05/09/2008

FIELD BOREHOLE / WELL LOG

BOREHOLE / WELL NUMBER

RD3515-P1

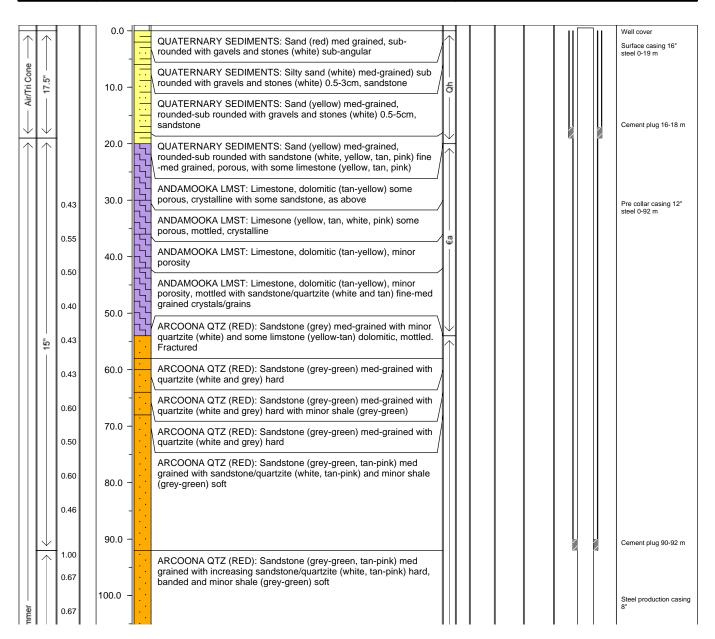
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 14/04/2008 DATE COMPLETED: 22/04/2008


WELL PERMIT NUMBER: 127952
TOTAL DEPTH (m bgl): 192

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/2008 Depth (m TOC)106.63 PROJECTION:GDA94 Zone 53

EASTING: **681595** NORTHING: **6630127**

L							_,		• • • •			1101(111110: 000012)		
DRILLING INFO.					MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO						
	METHOD BIT LOG	SATION RATE (I	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	001-7/11/11/00/01/11/11	WATED C	IFT YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

LOGGED: K Furness DATE: 14/04/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3515-P1

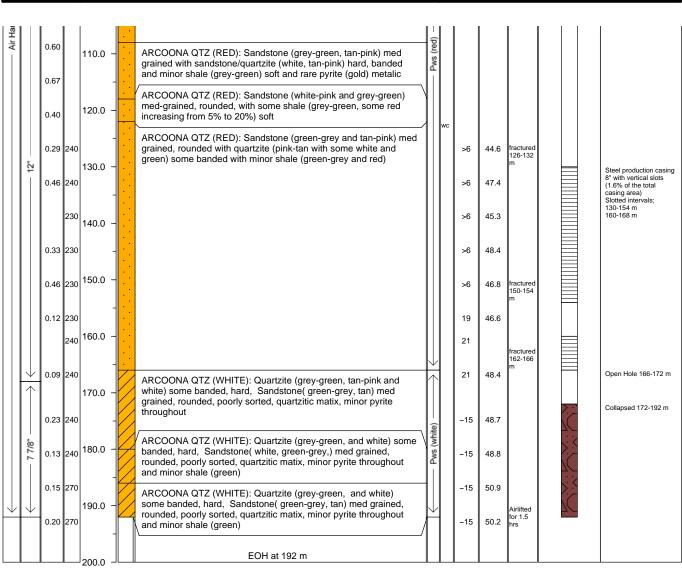
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 14/04/2008 DATE COMPLETED: 22/04/2008

WELL PERMIT NUMBER: 127952
TOTAL DEPTH (m bgl): 192


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/2008 Depth (m TOC)106.63

PROJECTION:GDA94 Zone 53

EASTING: **681595** NORTHING: **6630127**

DI	RILLIN	IG INF	O.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 .	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness DATE: 14/04/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

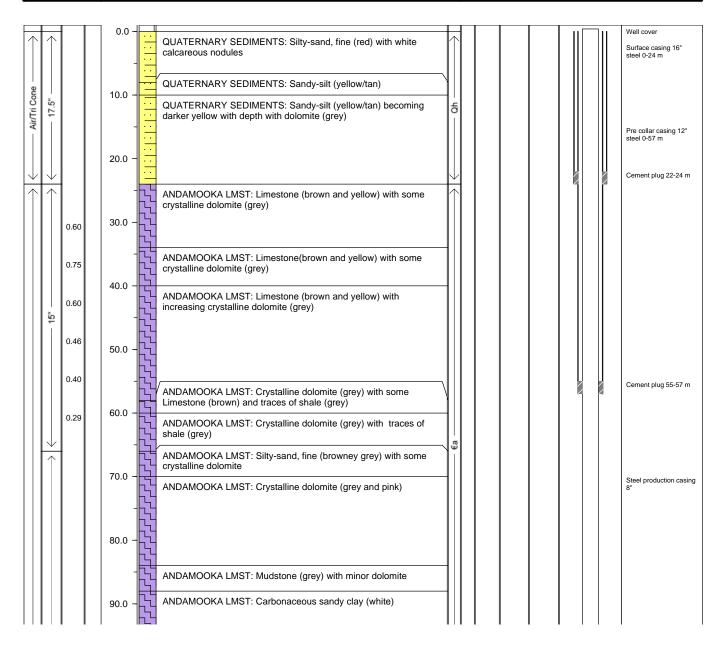
RD3514-P1

PROJECT NUMBER: **EV-10**

BHPB Dewatering Trial PROJECT NAME: LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 24/03/2008 DATE COMPLETED: 04/04/2008 WELL PERMIT NUMBER:


127951 TOTAL DEPTH (m bgl): 256

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 6/04/2008 Depth (m TOC)99.96 PROJECTION:GDA94 Zone 53

EASTING: 682695 NORTHING: 6630793

L							_, .0					01(1111110. 0	000100
	RILLIN	RILLING INFO.				MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
	METHOD BIT LOG	SATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	OOLUMETER	WATER	YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

DATE: 04/04/2008 LOGGED: K Hyland CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

127951

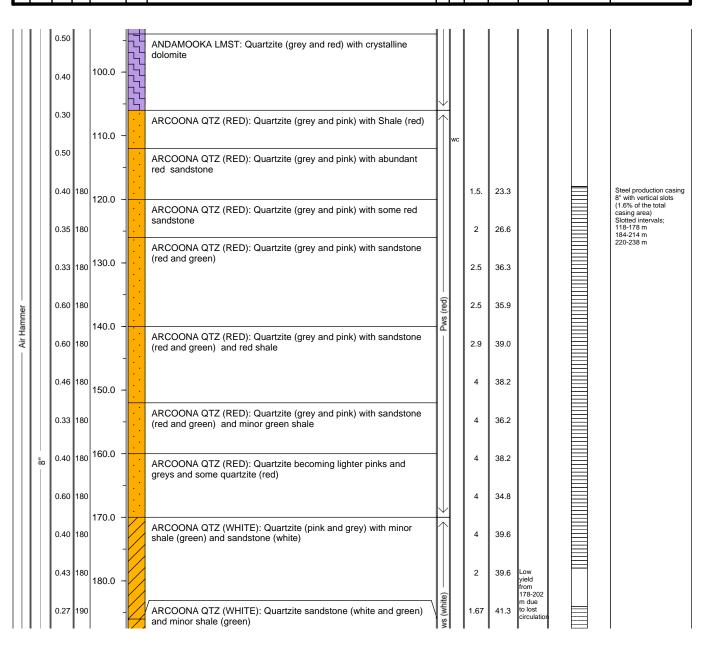
256

RD3514-P1

PROJECT NUMBER: **EV-10**

BHPB Dewatering Trial PROJECT NAME: LOCATION: Olympic Dam, South Australia

Gorey & Cole DRILLING CO: DRILLING METHOD: Air Hammer


BOREHOLE DIAMETER: 8 inches DATE STARTED: 24/03/2008 DATE COMPLETED: 04/04/2008 TOTAL DEPTH (m bgl): REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 6/04/2008 Depth (m TOC)99.96

WELL PERMIT NUMBER:

PROJECTION: GDA94 Zone 53 EASTING: 682695 NORTHING: 6630793

L											011111110.		
	RILLIN	IG INFO.			MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.							
ı,	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL	

LOGGED: K Hyland DATE: 04/04/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3514-P1

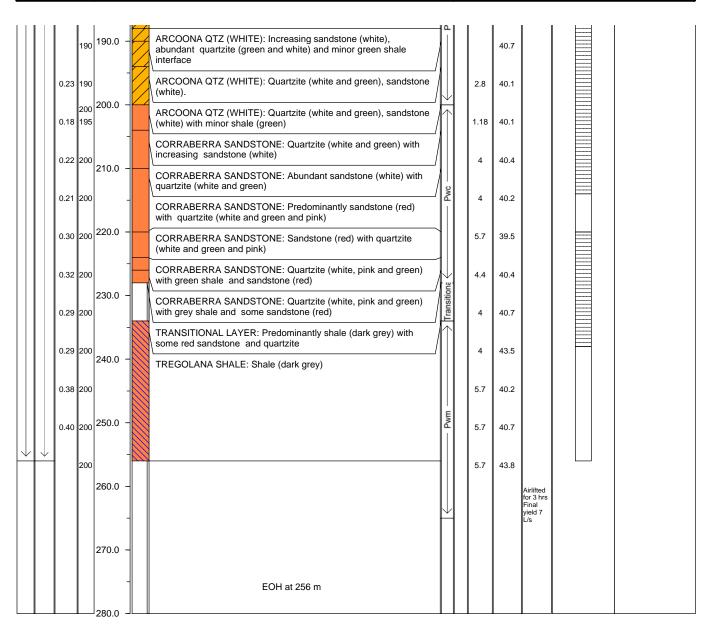
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 24/03/2008 DATE COMPLETED: 04/04/2008

WELL PERMIT NUMBER: 127951


TOTAL DEPTH (m bgl): 256
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: **6/04/2008** Depth (m TOC)**99.96** PROJECTION:**GDA94 Zone 53**

EASTING: **682695** NORTHING: **6630793**

L							_, .0					01(1111110. 0	000100
	RILLIN	RILLING INFO.				MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
	METHOD BIT LOG	SATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	OOLUMETER	WATER	YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Hyland DATE: 04/04/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3513A-P1

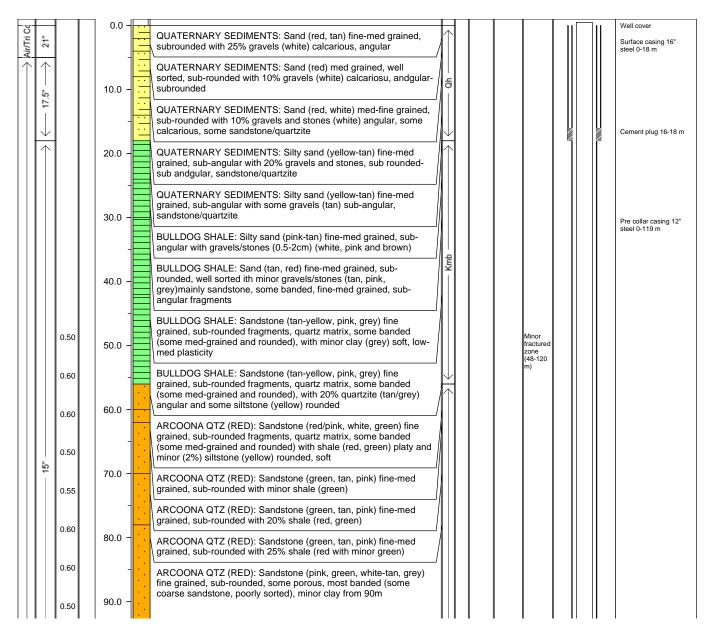
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: **8 inch**DATE STARTED:**2/07/2008** DATE COMPLETED:**11/07/2008**

WELL PERMIT NUMBER: 127949
TOTAL DEPTH (m bgl): 270


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 12/07/08 Depth (m TOC)117.65

PROJECTION:GDA94 Zone 53

EASTING: **682970** NORTHING: **6630860**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K Furness DATE: 11/07/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3513A-P1

PROJECT NUMBER: EV- 10

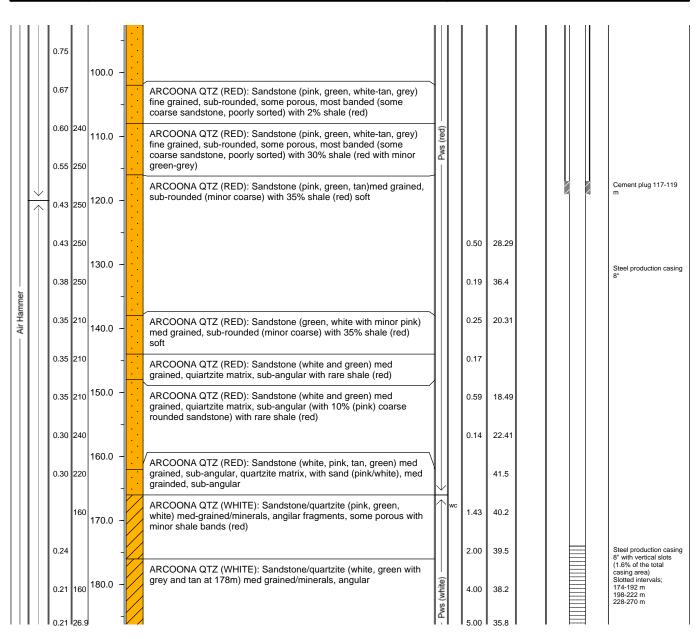
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inch

DATE STARTED: 2/07/2008 DATE COMPLETED: 11/07/2008

WELL PERMIT NUMBER: 127949


TOTAL DEPTH (m bgl): 270
REFERENCE POINT (m AHD):
STATIC WATER LEVEL

Date: 12/07/08 Depth (m TOC)117.65

PROJECTION:GDA94 Zone 53

EASTING: **682970** NORTHING: **6630860**

DF	RILLING INFO. MATERIAL PROPERTIES						FIELD RECORDS / CONSTRUCTION INFO.							
METHOD	BIT LOG	RATION	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG		AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

LOGGED: K Furness DATE: 11/07/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3513A-P1

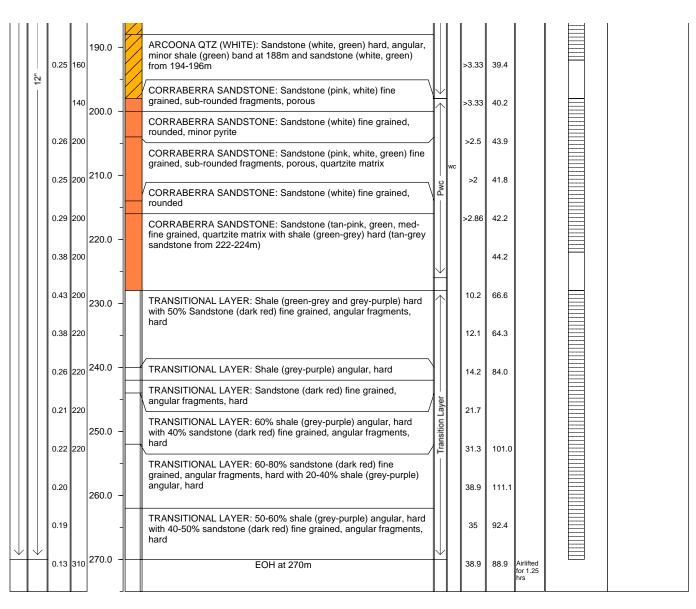
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inch
DATE STARTED: 2/07/2008 DATE COMPLETED: 11/07/2008

WELL PERMIT NUMBER: 127949
TOTAL DEPTH (m bal): 270


TOTAL DEPTH (m bgl): 2
REFERENCE POINT (m AHD):
STATIC WATER LEVEL

Date: 12/07/08 Depth (m TOC)117.65

PROJECTION:GDA94 Zone 53

EASTING: **682970** NORTHING: **6630860**

DI	RILLIN	IG INF	O.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 .	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness DATE: 11/07/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3504

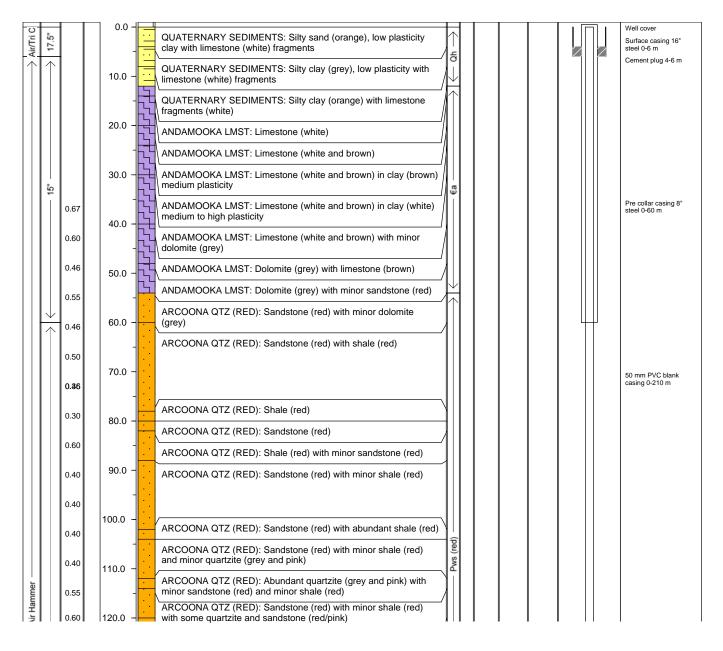
PROJECT NUMBER: **EV-10**

PROJECT NAME: **BHPB Dewatering Trial** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 27/05/08 DATE COMPLETED: 30/05/08 WELL PERMIT NUMBER:


145093 TOTAL DEPTH (m bgl): 222

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)93.23 PROJECTION:GDA94 Zone 53

EASTING: **682291** NORTHING: 6628852

					_,					01(1111110. 0	020002		
С	ORILLING INFO.					MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
COLFERN		RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER C	YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

DATE: 30/05/08 LOGGED: K. Hyland CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3504

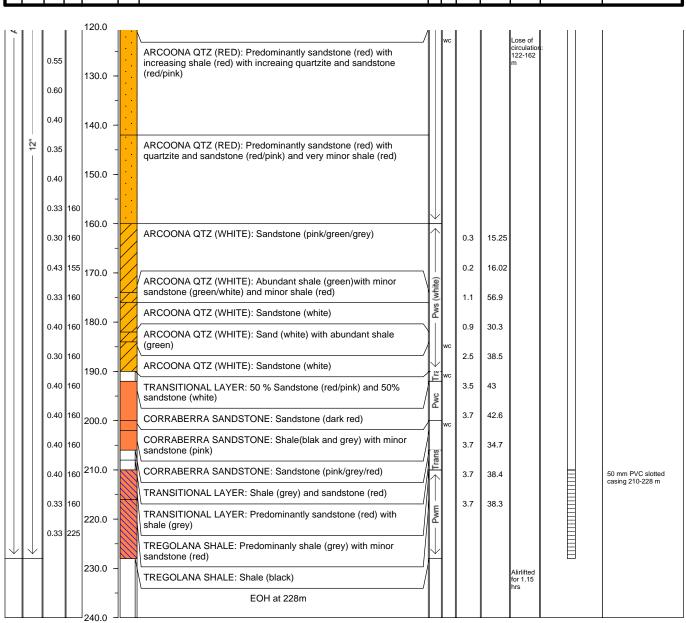
PROJECT NUMBER: **EV-10**

PROJECT NAME: **BHPB Dewatering Trial** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 27/05/08 DATE COMPLETED: 30/05/08 WELL PERMIT NUMBER:


145093 TOTAL DEPTH (m bgl): 222

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)93.23 PROJECTION:GDA94 Zone 53

EASTING: 682291 NORTHING: 6628852

5, 11 5 1, 11 1 1 2 1 2 1, 10	9,00	E/1811116: 332231 NOI(1111110: 302332
DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ABOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K. Hyland DATE: 30/05/08 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

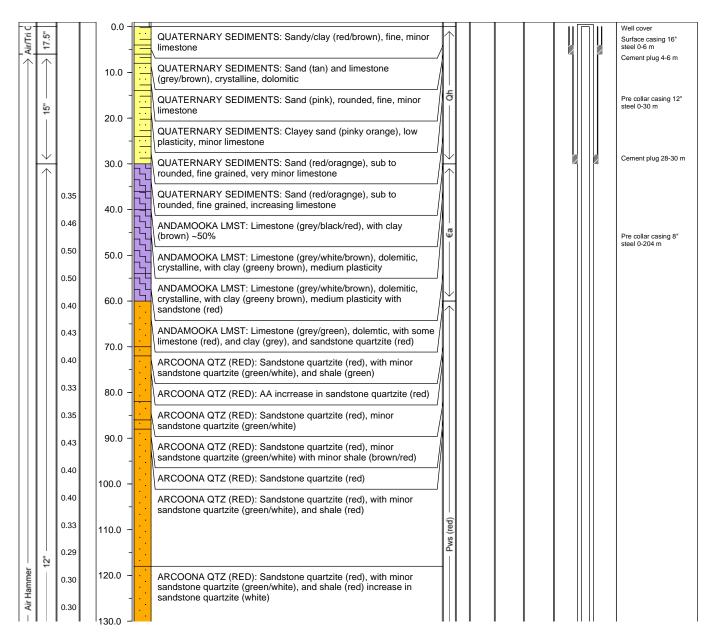
RD3499

PROJECT NUMBER: **EV-10**

PROJECT NAME: **BHPB Dewatering Trial** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8" DATE STARTED: 11/05/08 DATE COMPLETED: 16/05/08 WELL PERMIT NUMBER:


145090 TOTAL DEPTH (m bgl): 240 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)114.9 PROJECTION:GDA94 Zone 53

EASTING: 682084 NORTHING: 6629731

H		LING INFO. MATERIAL PROPERTIES						FIELD RECORDS / CONSTRUCTION INFO.							
DI	RILLIN	IG INF	·O.			MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTION	ON INFO.		
METHOD	1 .	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION		

DATE: 16/05/08 LOGGED: J. Richards CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3499

PROJECT NUMBER: EV- 10

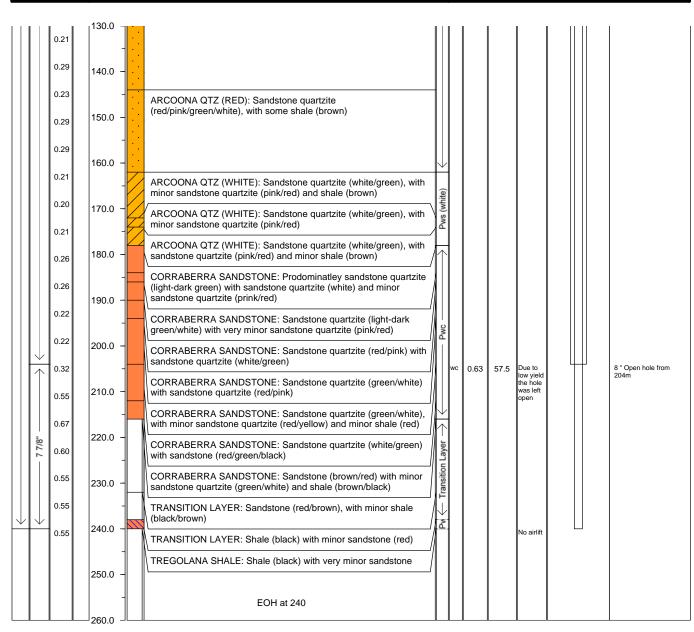
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 11/05/08 DATE COMPLETED: 16/05/08

WELL PERMIT NUMBER:


145090

TOTAL DEPTH (m bgl): 240
REFERENCE POINT (m AHD):
STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)114.9 PROJECTION:GDA94 Zone 53

EASTING: **682084** NORTHING: **6629731**

L											011111110.0		
	DRILLIN	IG INFO).			MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
	METHOD BIT LOG	PENETRATION RATE (m/min)	DEDTH (B)	일		LITHOLOGY	NTERPRETIVELOG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: J. Richards DATE: 16/05/08
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3493

PROJECT NUMBER: **EV-10**

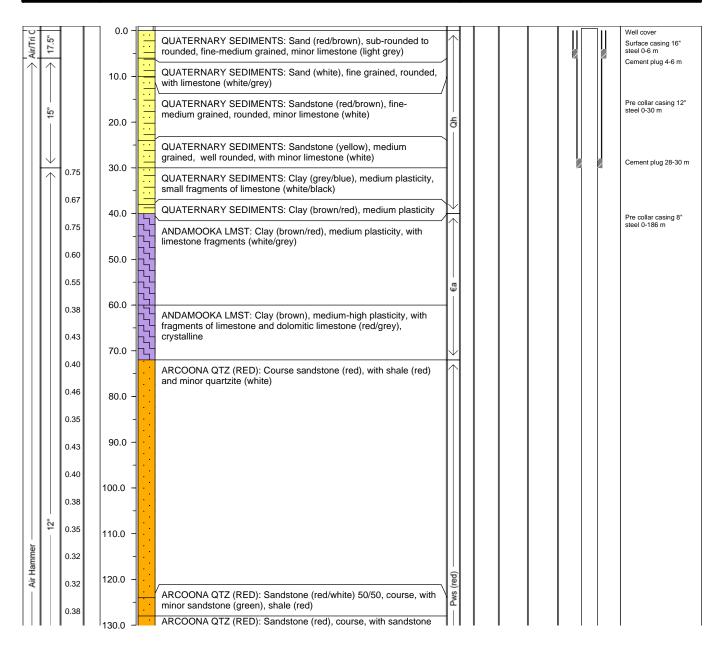
BHPB Dewatering Trial PROJECT NAME: LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8"

DATE STARTED: 05/05/2008 DATE COMPLETED: 10/05/2008 WELL PERMIT NUMBER:

145089 TOTAL DEPTH (m bgl): 228


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)105.83

PROJECTION:GDA94 Zone 53

EASTING: **682875** NORTHING: 6629905

L														
	DRILLIN	RILLING INFO.				MATERIAL PROPERTIES		F	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.	
	METHOD BIT LOG	PENETRATION RATE (m/min)	E E E E E E E E E E E E E E E E E E E	= =		LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

DATE: 10/05/2008 LOGGED: J Richards CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3493

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial LOCATION: Olympic Dam, South Australia

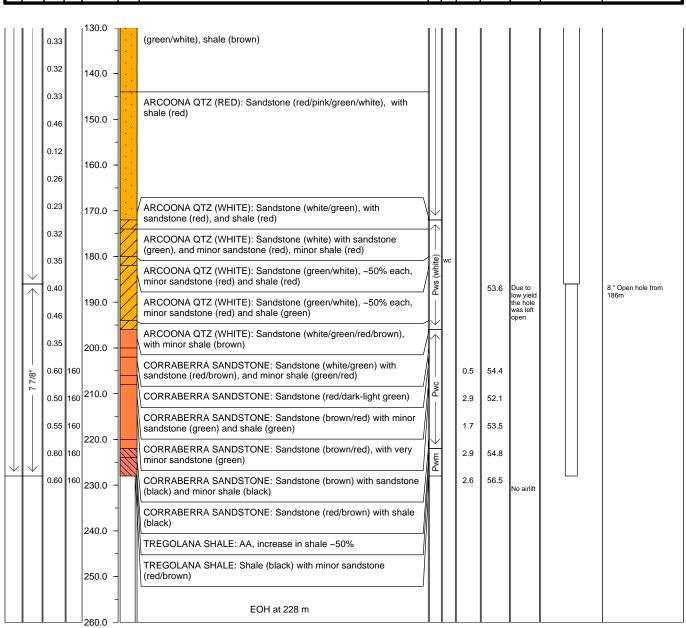
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8"

DATE STARTED: 05/05/2008 DATE COMPLETED: 10/05/2008

WELL PERMIT NUMBER:

145089 228


TOTAL DEPTH (m bgl): REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)105.83

PROJECTION:GDA94 Zone 53

EASTING: **682875** NORTHING: **6629905**

DI	RILLIN	IG INF	Ο.			MATERIAL PROPERTIES	_	ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 - 1	SATION RATE (r	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: J Richards DATE: 10/05/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3492

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

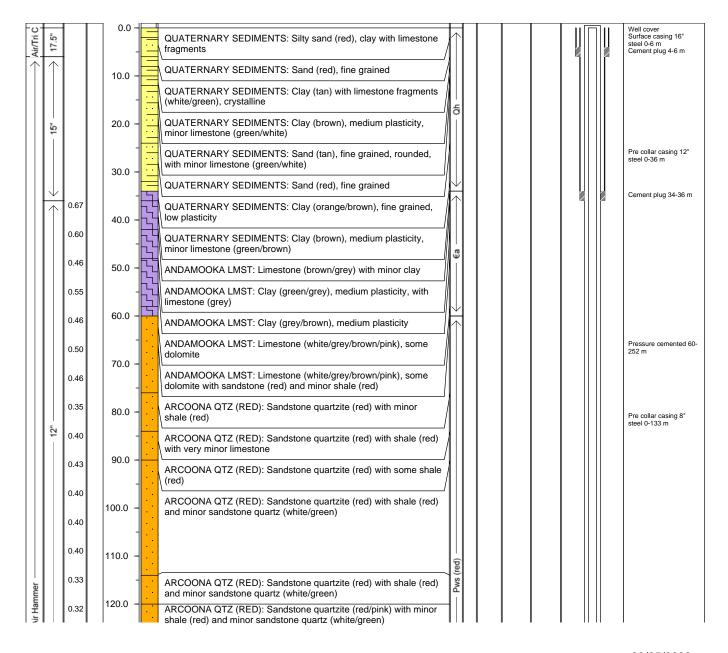
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 17/05/2008 DATE COMPLETED: 20/05/2008

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 232
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)104.92

PROJECTION:GDA94 Zone 53

EASTING: **682704** NORTHING: **6629510**

DI	RILLIN	IG INFO	0.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
METHOD	1 - 1	SATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION

LOGGED: K. Hyland DATE: 20/05/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3492

PROJECT NUMBER: EV- 10

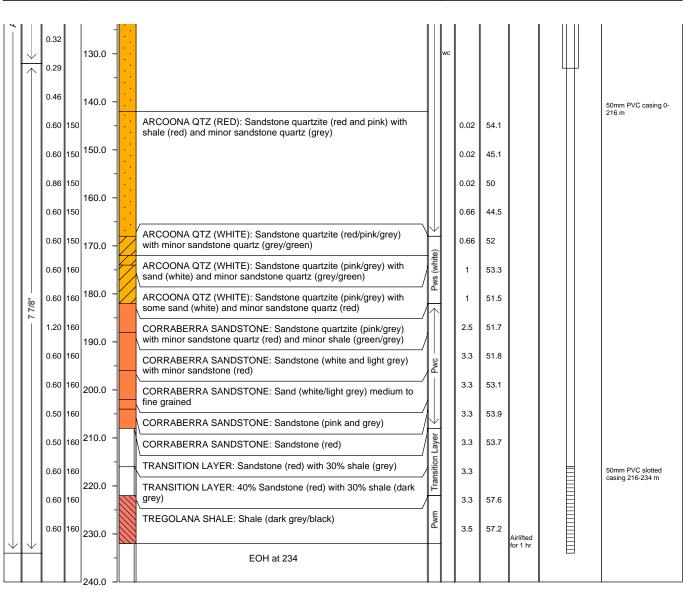
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 7 7/8"

DATE STARTED: 17/05/2008 DATE COMPLETED: 20/05/2008

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 232
REFERENCE POINT (m AHD):
STATIC WATER LEVEL

Date: 23/06/08 Depth (m TOC)104.92

PROJECTION:GDA94 Zone 53

EASTING: **682704** NORTHING: **6629510**

DI	RILLIN	IG INF	O.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	:1 -	SATION	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL

LOGGED: K. Hyland DATE: 20/05/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3487

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

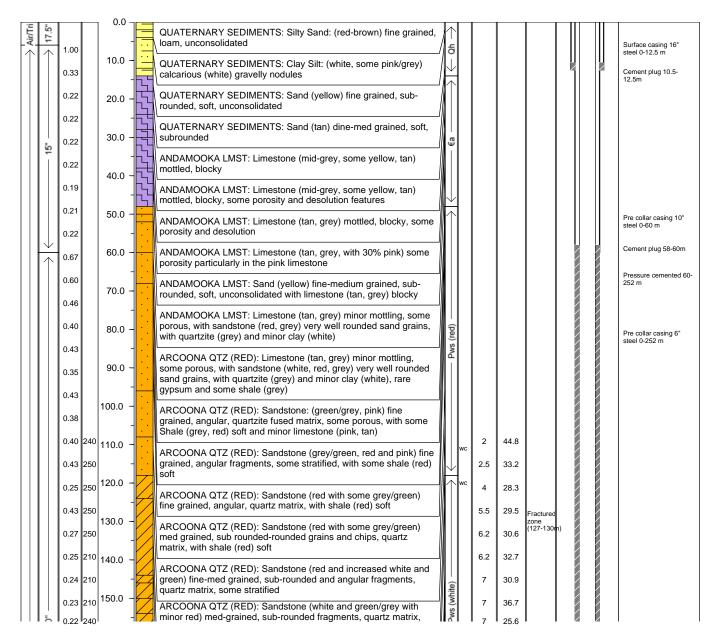
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 12/06/2008 DATE COMPLETED: 1/07/2008

WELL PERMIT NUMBER: 129167

TOTAL DEPTH (m bgl): 600
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 29/6/2008 Depth (m TOC)100.23

PROJECTION:GDA94 Zone 53

EASTING: **681254** NORTHING: **6629496**

DI	RILLIN	IG INF	О.			MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTION	ON INFO.
METHOD	1 . 1	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness & J Richards DATE: 1/07/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3487

PROJECT NUMBER: EV- 10

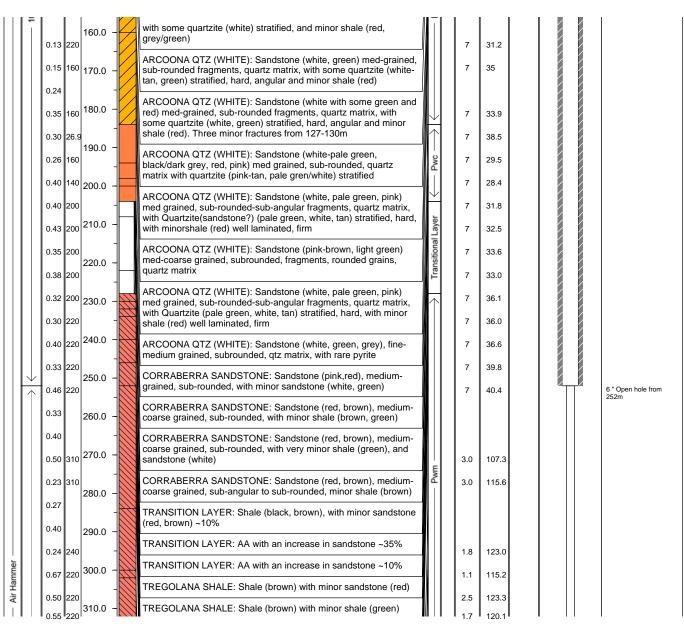
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 12/06/2008 DATE COMPLETED: 1/07/2008

WELL PERMIT NUMBER: 129167
TOTAL DEPTH (m bal): 600


TOTAL DEPTH (m bgl): **60**REFERENCE POINT (m AHD):
STATIC WATER LEVEL

Date: 29/6/2008 Depth (m TOC)100.23

PROJECTION:GDA94 Zone 53

EASTING: 681254 NORTHING: 6629496

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ABOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K Furness & J Richards DATE: 1/07/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3487

PROJECT NUMBER: **EV-10**

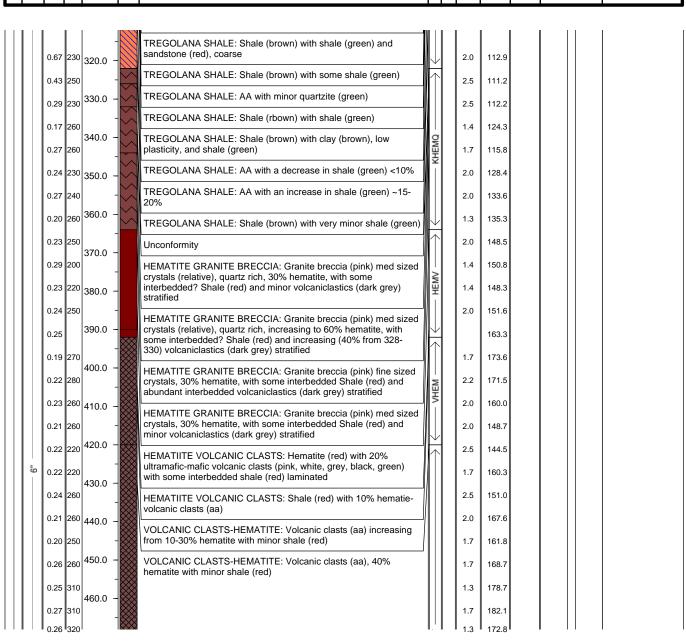
PROJECT NAME: **BHPB Dewatering Trial** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 12/06/2008 DATE COMPLETED: 1/07/2008

WELL PERMIT NUMBER: 129167 TOTAL DEPTH (m bgl): 600


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 29/6/2008 Depth (m TOC)100.23

PROJECTION:GDA94 Zone 53

EASTING: **681254** NORTHING: 6629496

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ABOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K Furness & J Richards DATE: 1/07/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3487

PROJECT NUMBER: EV- 10

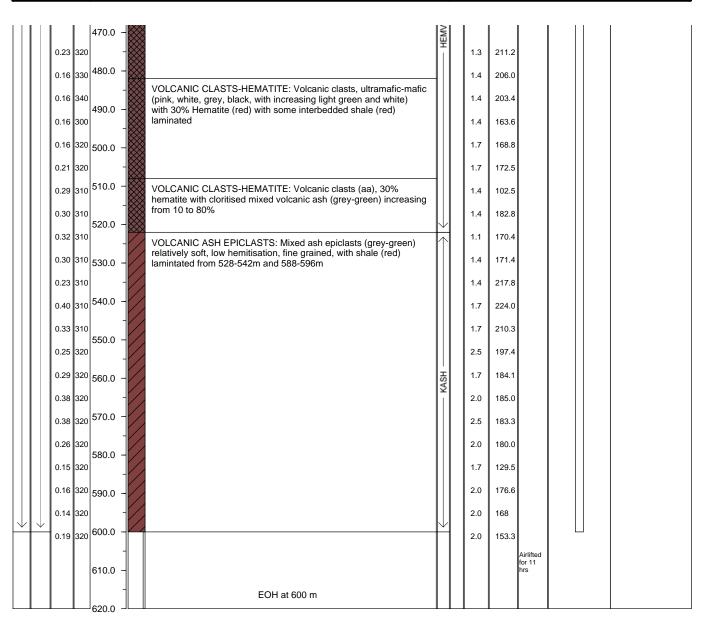
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED:12/06/2008 DATE COMPLETED:1/07/2008

WELL PERMIT NUMBER: 129167
TOTAL DEPTH (m bgl): 600


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 29/6/2008 Depth (m TOC)100.23

PROJECTION:GDA94 Zone 53

EASTING: **681254** NORTHING: **6629496**

DF	RILLIN	IG INF	FO.			MATERIAL PROPERTIES		FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	BIT LOG	RATION	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	 AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness & J Richards DATE: 1/07/2008 CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3551

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

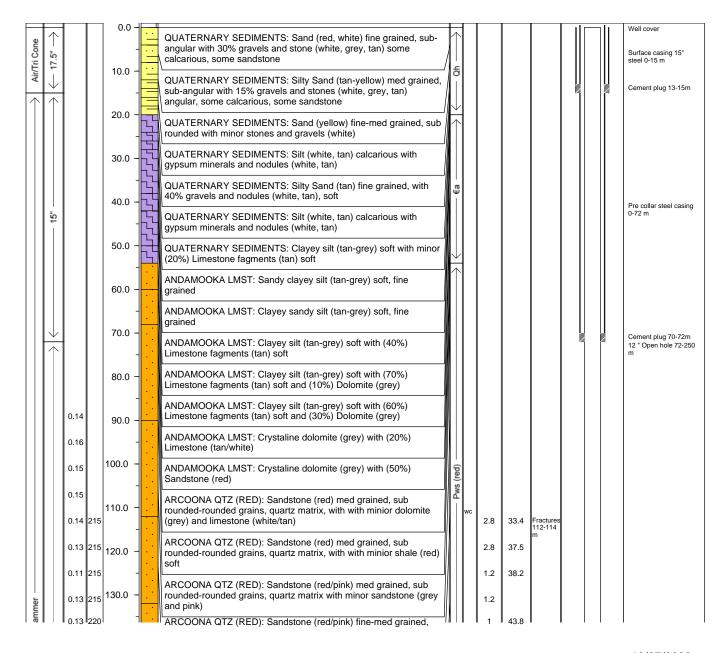
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 11/07/2008 DATE COMPLETED: 19/07/2008

WELL PERMIT NUMBER: 145087

TOTAL DEPTH (m bgl): 250
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 12/09/2008 Depth (m TOC)118.96

PROJECTION:GDA94 Zone 53

EASTING: **682145** NORTHING: **6629473**

DI	RILLIN	IG INFO	0.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
METHOD	1 - 1	SATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION

LOGGED: K Hyland DATE: 19/07/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3551

PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 11/07/2008 DATE COMPLETED: 19/07/2008

WELL PERMIT NUMBER: 145087

TOTAL DEPTH (m bgl): 250
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 12/09/2008 Depth (m TOC)118.96

PROJECTION:GDA94 Zone 53

EASTING: 682145 NORTHING: 6629473

DR	ILLIN	IG IN	FO.			MATERIAL PROPERTIES		١	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION
Air H		0.11	220	140.0 -		sub-rounded and angular fragments, quartz matrix, some stratified, with some shale (red)			0.2	53.8			
		0.10	220	150.0 -		ARCOONA QTZ (RED): Sandstone (red) fine-med grained, sub-rounded and angular fragments, quartz matrix, some stratified			0.2	54.6			
		0.08		=		ARCOONA QTZ (RED): Sandstone (red/pink/grey) fine-med grained, sub-rounded and angular fragments, quartz matrix			0.2	52.3	Fracture		
	12"	0.33		160.0 -		ARCOONA QTZ (WHITE): Sandstone (white and green/grey with minor pink) med-grained, sub-rounded fragments, quartz matrix, with some quartzite (white) stratified with very minot shale (red)			0.2	55.6	157 m		
		0.40		170.0 -		ARCOONA QTZ (WHITE): Sandstone (white, light green/grey), fine-medium grained, subrounded, qtz matrix, with shale (green)	Pws (white)		3	43.6	Fracture 168 m		
		0.30	220	180.0 -		ARCOONA QTZ (WHITE): Sandstone (white, light green/grey), fine-medium grained, subrounded, qtz matrix	4		3	45.5	Fractures 176-178 m		
		0.29		100.0		ARCOONA QTZ (WHITE): Sandstone (white, pink, light and dark grey), fine-medium grained, subrounded, qtz matrix with minor			3	49.5			
				190.0 -		Sandstone (red) CORPAREDRA SANDSTONE: Sandstone (red, brown), medium.			3	52.5			
		0.32		200.0 -		CORRABERRA SANDSTONE: Sandstone (red, brown), medium-coarse grained, sub-rounded, with minor shale (brown)	Pwc		3	53.1			
		0.26		-		CORRABERRA SANDSTONE: Sandstone (white, green/grey), fine-medium grained, subrounded, qtz matrix	ا		3	56.3			
				210.0 —		CORRABERRA SANDSTONE: Sandstone (red, brown), medium-coarse grained, sub-rounded, with shale (brown/grey)	isiti:		3	57.1			
		0.22		220.0 -		CORRABERRA SANDSTONE: Sandstone (pink, grey ans red) fine-medium grained, subrounded, qtz matrix with (20%) shale (dark grey)	→ Transiti		3	64.2	Not airlifted		
		0.30		230.0 -		CORRABERRA SANDSTONE: Sandstone (red, brown), medium-coarse grained, sub-angular to sub-rounded, minor shale (red, dark grey)	٦		3	70 77.1			
				- 240.0 -		TRANSITIONAL LAYER: Shale (brown/dark grey) with minor sandstone (red)	Pwm		3	68.1			

TREGOLANA SHALE: Shale (brown/dark grey)

EOH at 250

220

250.0

260.0

LOGGED: K Hyland DATE: 19/07/2008
CHECKED: D Pierce DATE: 05/09/2008

75.6

BOREHOLE / WELL NUMBER

RD3486

PROJECT NUMBER: EV- 10

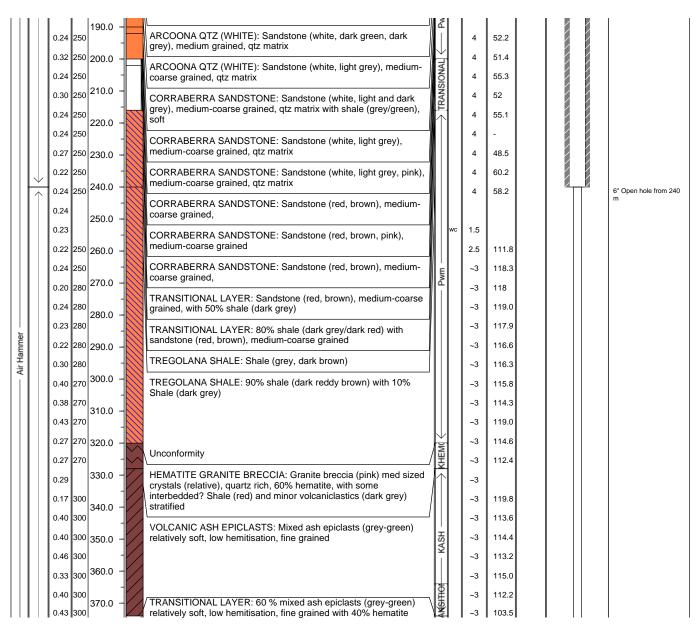
PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 20/07/2008 DATE COMPLETED: 09/08/08

WELL PERMIT NUMBER: 129168
TOTAL DEPTH (m bgl): 546


REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 4/09/08 Depth (m TOC)106.08

PROJECTION:GDA94 Zone 53

EASTING: **681601** NORTHING: **6629452**

DRILLING INFO.			MATERIAL PROPERTIES		F	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Hyland DATE: 09/08/2008
CHECKED: D Pierce DATE: 05/09/2008

BOREHOLE / WELL NUMBER

RD3486

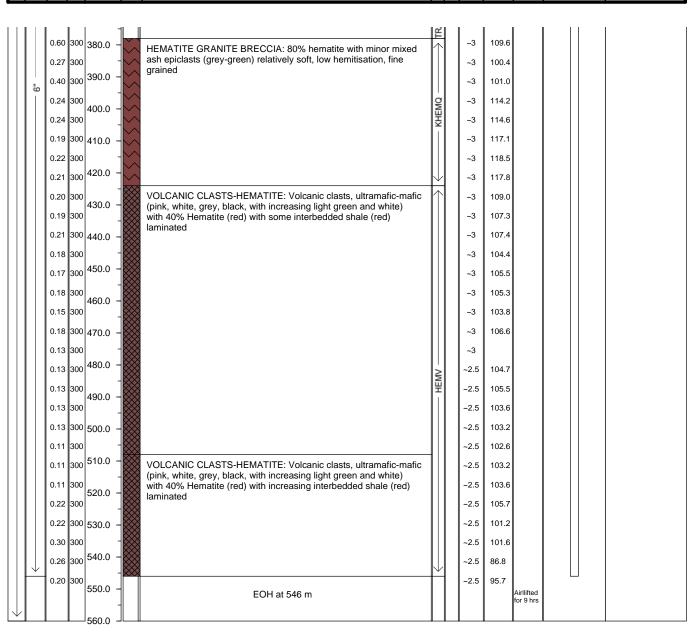
PROJECT NUMBER: EV- 10

PROJECT NAME: BHPB Dewatering Trial
LOCATION: Olympic Dam, South Australia

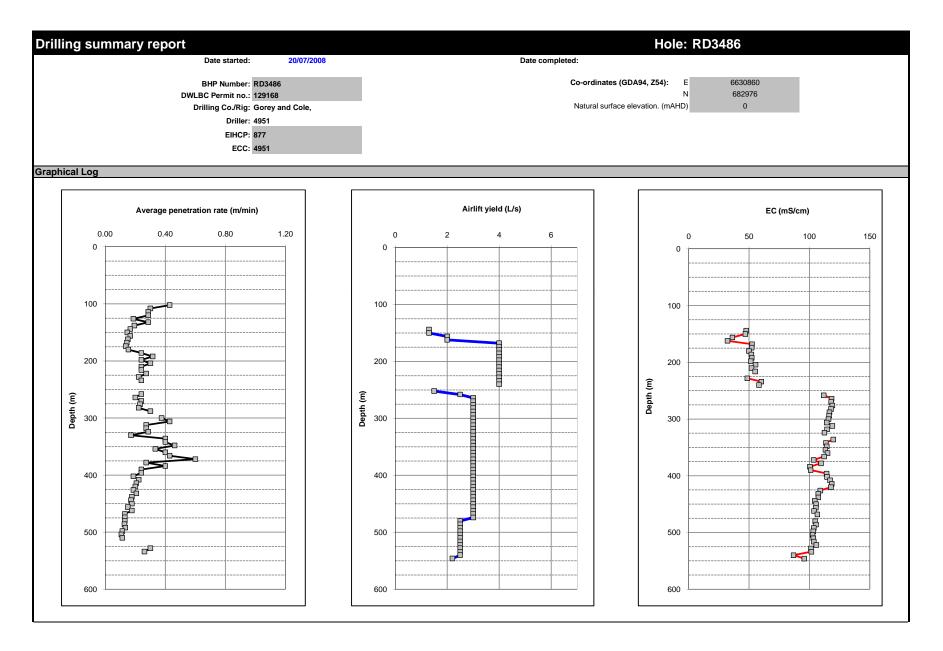
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

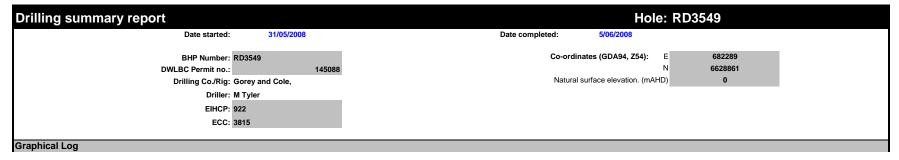
BOREHOLE DIAMETER: 6 inches

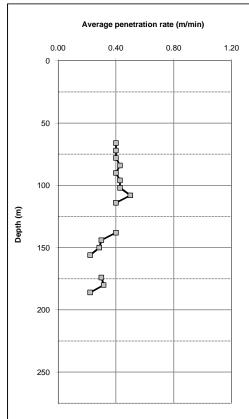
DATE STARTED: 20/07/2008 DATE COMPLETED: 09/08/08

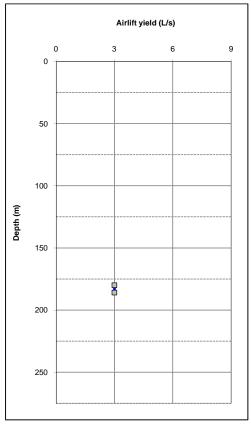

WELL PERMIT NUMBER: 129168
TOTAL DEPTH (m bgl): 546

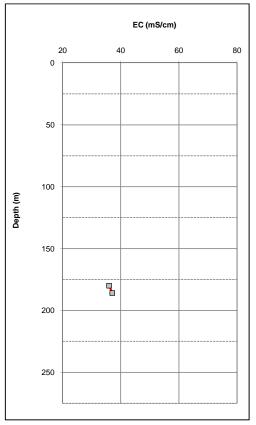
REFERENCE POINT (m AHD): STATIC WATER LEVEL

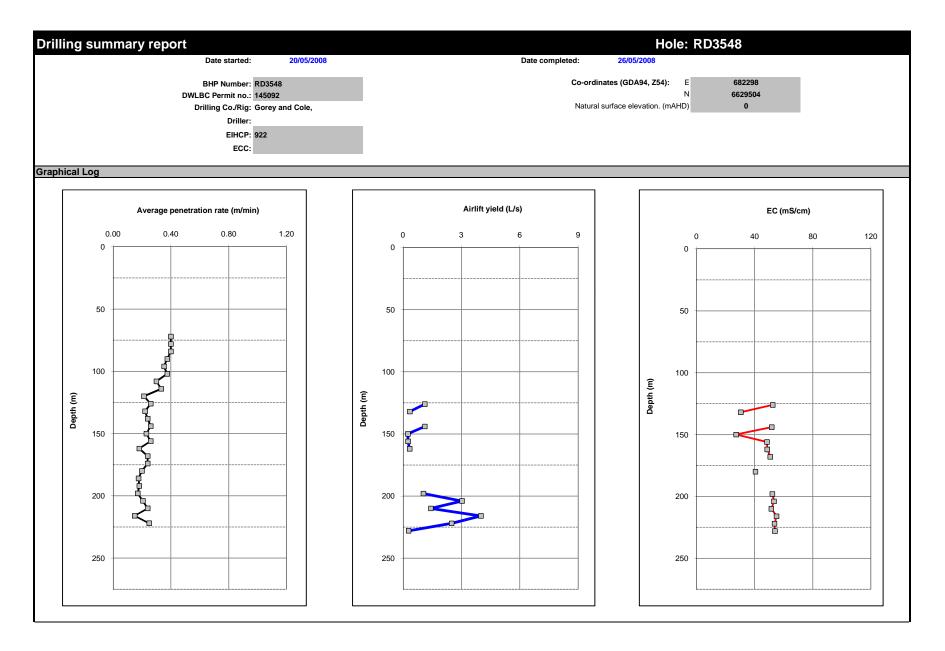

Date: 4/09/08 Depth (m TOC)106.08 PROJECTION:GDA94 Zone 53

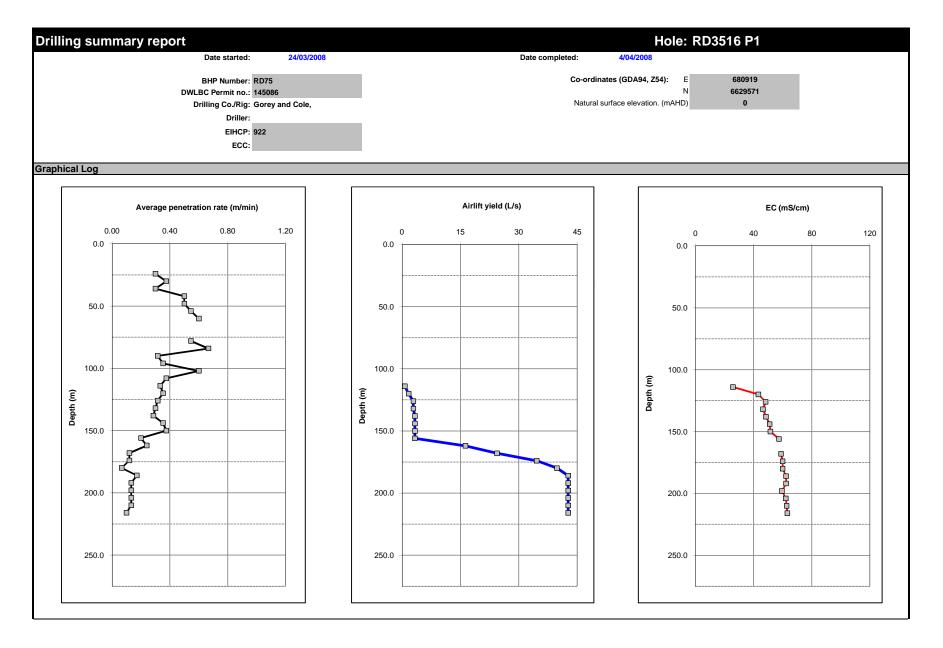

EASTING: **681601** NORTHING: **6629452**

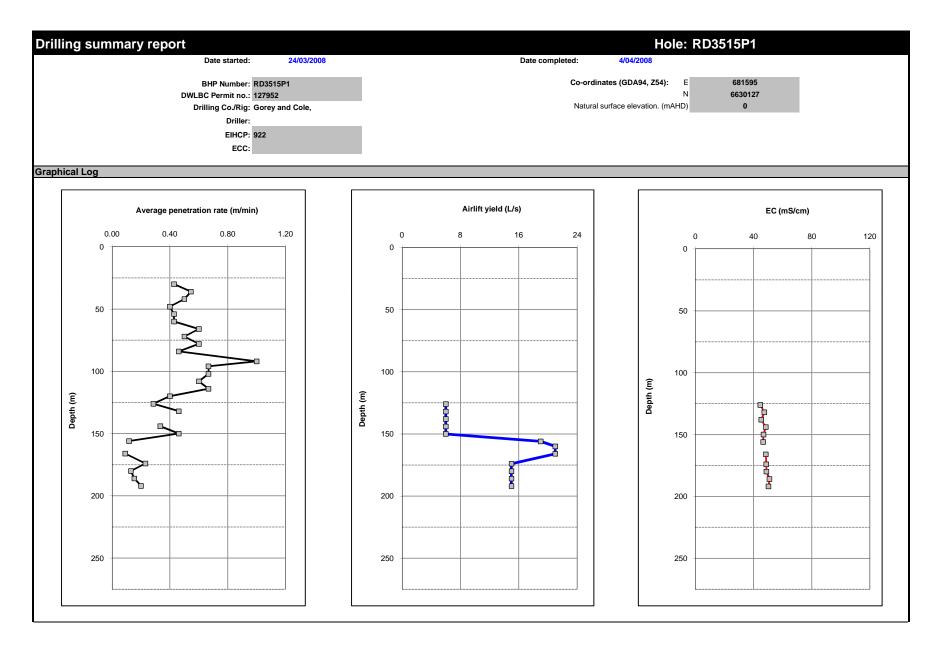

D	RILLIN	G INFO	Ο.			MATERIAL PROPERTIES			FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
METHOD	1 – 1	TRATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

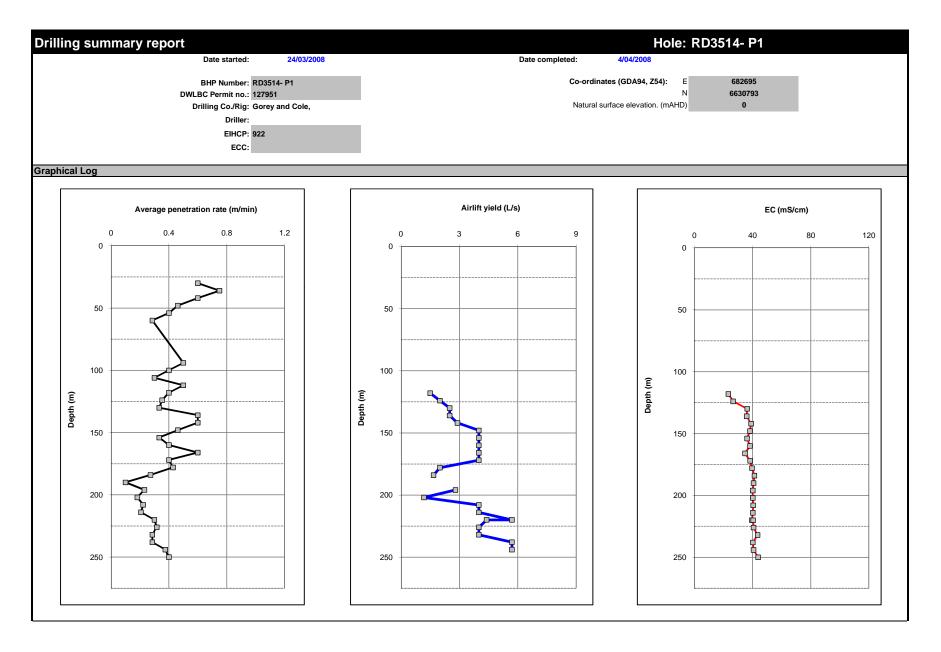


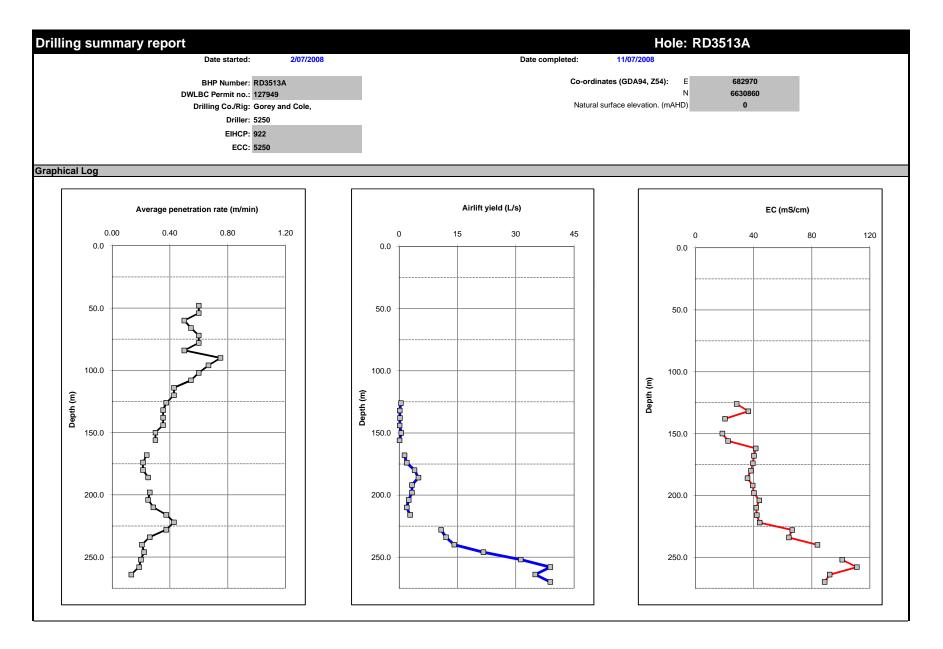

LOGGED: K Hyland DATE: 09/08/2008
CHECKED: D Pierce DATE: 05/09/2008

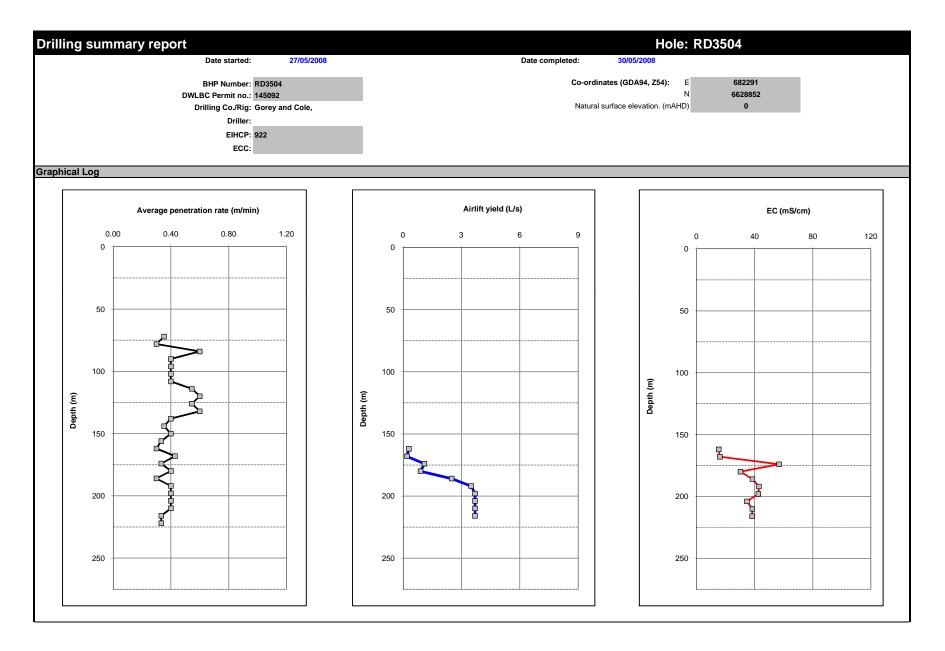


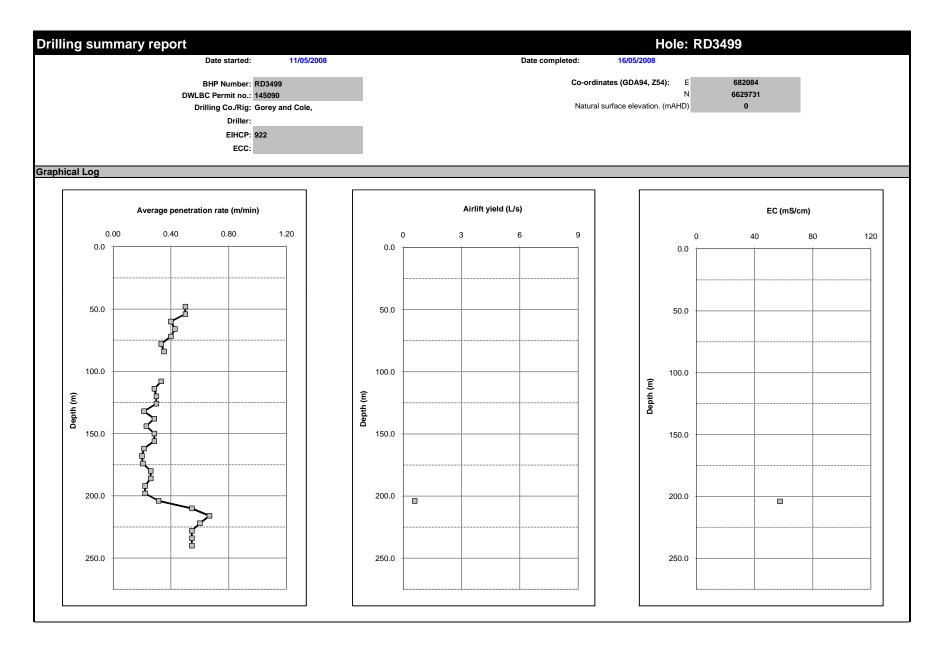


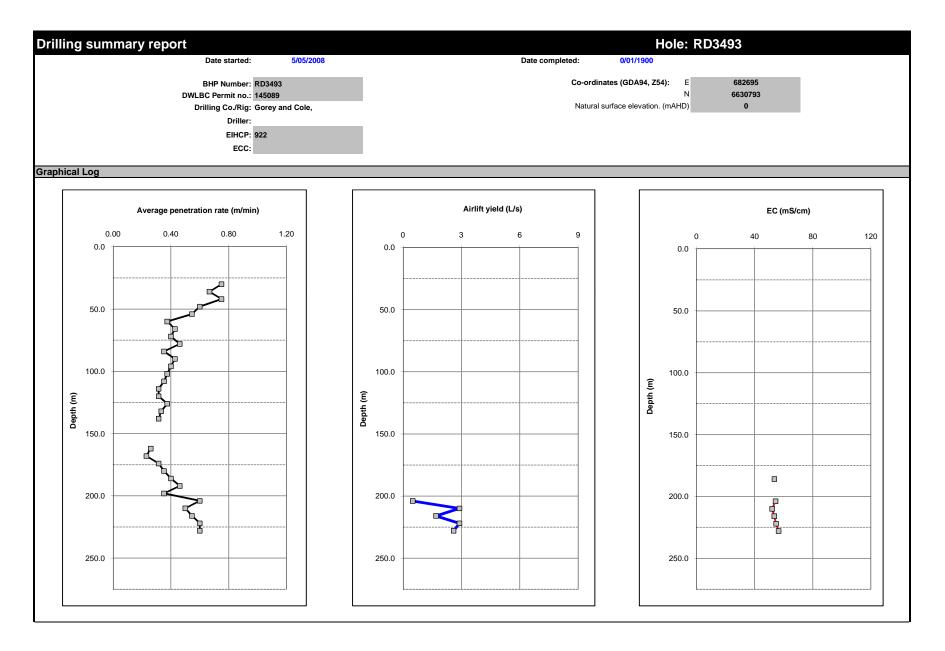


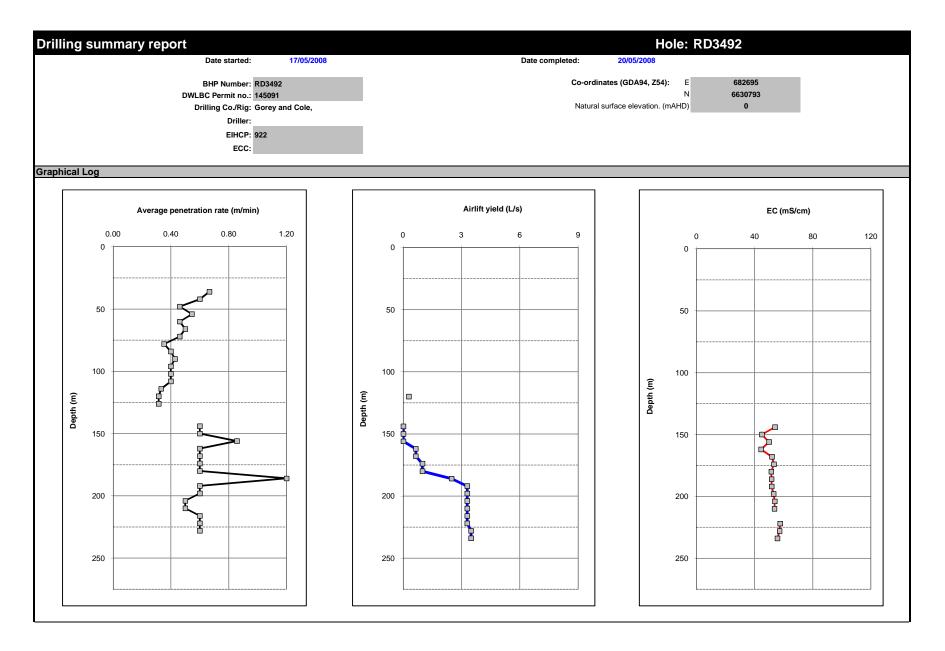


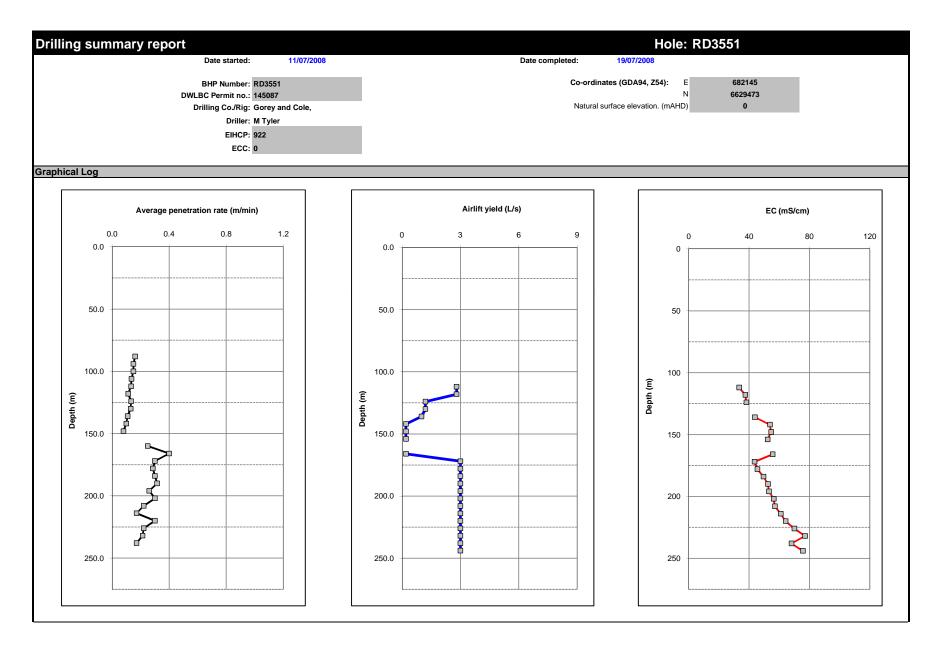









BHP Billiton



ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

: EM0802617 **Work Order** Page : 1 of 4

Client RESOURCE & ENVIRON MANGMNT P/L Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address Address : 4 Westall Rd Springvale VIC Australia 3171 : UNIT 9, 15 FULLARTON RD

KENT TOWN SA. AUSTRALIA 5067

E-mail : paulhowe@rem.net.au E-mail : paul.loewy@alsenviro.com

Telephone : +61 08 8363 1777 Telephone : +61-3-8549 9600 Facsimile : +61 08 8363 1477 Facsimile : +61-3-8549 9601

Project QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number C-O-C number

Date Samples Received : 10-APR-2008 Sampler : KH Issue Date : 16-APR-2008

: OLYMPIC DAM DE-WATERING TRIAL No. of samples received

Quote number : ME/122/06 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Instrument Chemist	Inorganics
Herman Lin	Senior Inorganic Chemist	Inorganics
Terrance Hettipathirana	Senior ICP/MS Chemist	Inorganics

Environmental Division Melbourne Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 4

Work Order : EM0802617

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : ---

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : --

ALS

Sub-Matrix: WATER		Cli	ent sample ID	RD3514		
Sub-Matrix. WATER	C			04-APR-2008 15:00	 	
	Ci	•	ng date / time			
Compound	CAS Number	LOR	Unit	EM0802617-001	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.73	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	45100	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	27800	 	
EA025: Suspended Solids						
^ Suspended Solids (SS)		1	mg/L	286	 	
EA045: Turbidity						
Turbidity		0.1	NTU	163	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	276	 	
Total Alkalinity as CaCO3		1	mg/L	276	 	
ED040F: Dissolved Major Anions						
Sulphate as SO4 2-	14808-79-8	1	mg/L	4010	 	
Silicon	7440-21-3	0.05	mg/L	14.3	 	
ED045P: Chloride by PC Titrator						
Chloride	16887-00-6	1	mg/L	14000	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	894	 	
Magnesium	7439-95-4	1	mg/L	812	 	
Sodium	7440-23-5	1	mg/L	9480	 	
Potassium	7440-09-7	1	mg/L	80	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.02	 	
Arsenic	7440-38-2	0.001	mg/L	0.003	 	
Cobalt	7440-48-4	0.001	mg/L	0.002	 	
Copper	7440-50-8	0.001	mg/L	0.009	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Manganese Strontium	7439-96-5	0.001	mg/L mg/L	1.04 14.0	 	
Uranium	7440-24-6 7440-61-1	0.001	mg/L	0.002	 	
Zinc	7440-61-1	0.001	mg/L	0.002	 	
Boron	7440-66-6	0.05	mg/L	6.56	 	
	1 740-42-0	0.00	g, L	5.50		I
EG052F: Silica by ICPAES						

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : ---

ALS

Sub-Matrix: WATER		Clie	ent sample ID	RD3514	 	
	Cl	ient sampli	ng date / time	04-APR-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0802617-001	 	
EG052F: Silica by ICPAES - Continued						
^ Silica	7631-86-9	0.1	mg/L	0.6	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.8	 	
EK057G: Nitrite as N by Discrete Analyse	•					
Nitrite as N		0.010	mg/L	<0.010	 	
EK058G: Nitrate as N by Discrete Analyse	r					
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	 	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N		0.010	mg/L	<0.010	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	484	 	
^ Total Cations		0.01	meq/L	526	 	
^ Ionic Balance		0.01	%	4.14	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0806545** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ---C-O-C number : ---Date Samples Received

Sampler : KF, KH Issue Date : 19-AUG-2008 Site :---

Quote number : EN/003/08 No. of samples received : 2

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 12-AUG-2008

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Instrument Chemist	Inorganics
Herman Lin	Senior Inorganic Chemist	Inorganics
Terrance Hettipathirana	Senior ICP/MS Chemist	Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Page : 2 of 4

Work Order : EM0806545

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005T: Iron LOR has been raised.

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

			ent sample ID	RD3486	RD3486	 	
	Cli	ient samplii	ng date / time	05-AUG-2008 09:45	05-AUG-2008 16:43	 	
Compound	CAS Number	LOR	Unit	EM0806545-001	EM0806545-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.82	7.93	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	120000	106000	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	93300	91000	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	56	48	 	
EA045: Turbidity							
Turbidity		0.1	NTU	20.6	7.8	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	155	168	 	
Total Alkalinity as CaCO3		1	mg/L	155	168	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	8600	8820	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	47700	50600	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	1510	1540	 	
Magnesium	7439-95-4	1	mg/L	2230	2290	 	
Sodium	7440-23-5	1	mg/L	32100	32700	 	
Potassium	7440-09-7	1	mg/L	283	276	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	<0.50	<0.50	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	3.20	5.73	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.04	0.02	 	
Arsenic	7440-38-2	0.001	mg/L	0.009	0.011	 	
Barium	7440-39-3	0.001	mg/L	0.056	0.050	 	
Cobalt	7440-48-4	0.001	mg/L	0.004	0.003	 	
Copper	7440-50-8	0.001	mg/L	0.020	0.023	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	1.28	1.21	 	
Strontium	7440-24-6	0.001	mg/L	26.4	26.2	 	

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

Sub-Matrix: WATER	Client sample ID		RD3486	RD3486	 		
	Client sampling date / time			05-AUG-2008 09:45	05-AUG-2008 16:43	 	
Compound	CAS Number	LOR	Unit	EM0806545-001	EM0806545-002	 	
EG020F: Dissolved Metals by ICP-MS - Cor	ntinued						
Uranium	7440-61-1	0.001	mg/L	0.005	0.004	 	
Zinc	7440-66-6	0.005	mg/L	0.094	0.043	 	
Boron	7440-42-8	0.05	mg/L	5.03	4.94	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.6	0.6	 	
EK057G: Nitrite as N by Discrete Analyse	r						
Nitrite as N		0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	er						
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.22	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.22	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	1530	1610	 	
^ Total Cations		0.01	meq/L	1660	1690	 	
^ Ionic Balance		0.01	%	4.21	2.40	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0805832** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600
Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 21-JUL-2008

 Sampler
 : KF, KH
 Issue Date
 : 24-JUL-2008

Site : ----

No. of samples received : 2

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics
Terrance Hettipathirana Senior ICP/MS Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Page : 2 of 4

Work Order : EM0805832

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

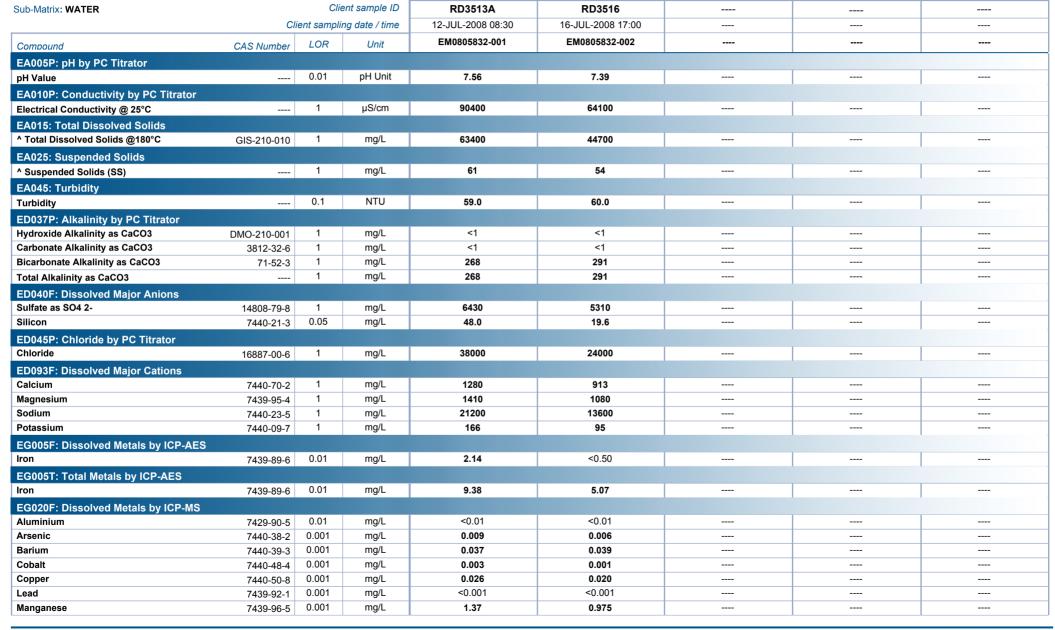
Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number


LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005T: Iron LOR has been raised.

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

Sub-Matrix: WATER	Client sample ID			RD3513A	RD3516	 	
	Cli	ent sampli	ng date / time	12-JUL-2008 08:30	16-JUL-2008 17:00	 	
Compound	CAS Number	LOR	Unit	EM0805832-001	EM0805832-002	 	
EG020F: Dissolved Metals by ICP-MS - Con	tinued						
Strontium	7440-24-6	0.001	mg/L	20.4	14.2	 	
Uranium	7440-61-1	0.001	mg/L	0.002	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.024	46.3	 	
Boron	7440-42-8	0.05	mg/L	5.99	6.27	 	
Iron	7439-89-6	0.05	mg/L	3.96	0.53	 	
EG052F: Silica by ICPAES							
^ Silica	7631-86-9	0.1	mg/L	103	42.0	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	0.7	0.9	 	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N		0.010	mg/L	<0.010	<0.010	 	
EK058G: Nitrate as N by Discrete Analyse	r						
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	<0.010	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.010	mg/L	<0.010	<0.010	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	1210	794	 	
^ Total Cations		0.01	meq/L	1110	728	 	
^ Ionic Balance		0.01	%	4.53	4.31	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0805425** Page : 1 of 3

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-3-8549 9601

Project : R003001.74 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 08-JUL-2008

 Sampler
 : TW
 Issue Date
 : 11-JUL-2008

No. of samples received : 2

Quote number : ME/122/06 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

release.

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Page : 2 of 3

Work Order : EM0805425

Client : SINCLAIR KNIGHT MERZ

Project : R003001.74

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Client : SINCLAIR KNIGHT MERZ

Project : R003001.74

ALS

Sub-Matrix: SOIL	Client sample ID			DUP01	DUP02	 	
	Cli	ent sampli	ng date / time	02-JUL-2008 15:00	02-JUL-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0805425-001	EM0805425-002	 	
EA055: Moisture Content							
^ Moisture Content (dried @ 103°C)		1.0	%	21.8	12.8	 	
EG005T: Total Metals by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	<1	 	
Chromium	7440-47-3	2	mg/kg	88	44	 	
Copper	7440-50-8	5	mg/kg	<5	12	 	
Lead	7439-92-1	5	mg/kg	11	73	 	
Nickel	7440-02-0	2	mg/kg	<2	6	 	
Zinc	7440-66-6	5	mg/kg	<5	90	 	
EG035T: Total Recoverable Mercury by	FIMS						
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0805232** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600
Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 02-JUL-2008

 Sampler
 : JR, KF
 Issue Date
 : 09-JUL-2008

Site : ----

Quote number : EN/003/08 No. of samples analysed : 4

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 4

Signatories Position Accreditation Category

No. of samples received

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics
Terrance Hettipathirana Senior ICP/MS Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG020-F: EM0805232-001-005 have been diluted prior to analysis for ICP-MS and LORs have been raised accordingly.

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

Sub-Matrix: WATER		Cli	ent sample ID	29/06/2008, 1420PM	29/06/2008, 1720PM	RD3487_0915AM	RD3487_1705PM	
	CI	lient sampli	ing date / time	29-JUN-2008 14:20	29-JUN-2008 17:20	30-JUN-2008 15:00	30-JUN-2008 15:00	
Compound	CAS Number	LOR	Unit	EM0805232-001	EM0805232-002	EM0805232-003	EM0805232-004	
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.00	8.02	7.90	8.03	
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	137000	136000	138000	137000	
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	96200	94800	99100	94600	
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	586	294	322	292	
EA045: Turbidity								
Turbidity		0.1	NTU	102	69.0	60.0	31.7	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	2	<1	<1	<1	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	120	118	122	122	
Total Alkalinity as CaCO3		1	mg/L	120	118	122	122	
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	1	mg/L	9120	9050	10800	11100	
ED045P: Chloride by PC Titrator								
Chloride	16887-00-6	1	mg/L	60200	56700	66000	56800	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	1560	1530	1230	1220	
Magnesium	7439-95-4	1	mg/L	2710	2660	2450	2360	
Sodium	7440-23-5	1	mg/L	40600	35000	38100	37700	
Potassium	7440-09-7	1	mg/L	349	340	505	467	
EG005F: Dissolved Metals by ICP-AES								
Iron	7439-89-6	0.01	mg/L	<0.50	1.15	0.70	0.48	
EG005T: Total Metals by ICP-AES								
Iron	7439-89-6	0.01	mg/L	17.3	11.9	8.59	5.49	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.10	<0.10	<0.10	<0.10	
Arsenic	7440-38-2	0.001	mg/L	0.017	<0.010	0.017	<0.010	
Barium	7440-39-3	0.001	mg/L	0.044	0.040	0.042	0.039	
Cobalt	7440-48-4	0.001	mg/L	0.011	<0.010	<0.010	<0.010	
Copper	7440-50-8	0.001	mg/L	0.024	0.022	0.024	0.023	
Lead	7439-92-1	0.001	mg/L	<0.010	<0.010	<0.010	<0.010	
Manganese	7439-96-5	0.001	mg/L	2.78	2.49	2.54	2.42	
Strontium	7440-24-6	0.001	mg/L	28.7	26.4	26.7	26.5	

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

Sub-Matrix: WATER	Client sample ID			29/06/2008, 1420PM	29/06/2008, 1720PM	RD3487_0915AM	RD3487_1705PM	
	Cl	ient sampli	ng date / time	29-JUN-2008 14:20	29-JUN-2008 17:20	30-JUN-2008 15:00	30-JUN-2008 15:00	
Compound	CAS Number	LOR	Unit	EM0805232-001	EM0805232-002	EM0805232-003	EM0805232-004	
EG020F: Dissolved Metals by ICP-MS - Con	tinued							
Uranium	7440-61-1	0.001	mg/L	<0.010	<0.010	<0.010	<0.010	
Zinc	7440-66-6	0.005	mg/L	<0.050	<0.050	<0.050	<0.050	
Boron	7440-42-8	0.05	mg/L	8.24	7.80	7.96	8.06	
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.1	0.9	0.9	0.8	
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N		0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
EK058G: Nitrate as N by Discrete Analyse	r							
^ Nitrate as N	14797-55-8	0.010	mg/L	0.018	0.012	0.012	<0.010	
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.010	mg/L	0.018	0.012	0.066	0.067	
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	1890	1790	2090	1840	
^ Total Cations		0.01	meq/L	2080	1830	1930	1900	
^ Ionic Balance		0.01	%	4.71	1.01	3.96	1.84	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

: EM0804594 **Work Order** Page : 1 of 4

Client SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address Address : 4 Westall Rd Springvale VIC Australia 3171 : UNIT 9. 15 FULLARTON RD

KENT TOWN SA. AUSTRALIA 5067

E-mail : paulhowe@rem.com.au E-mail : paul.loewy@alsenviro.com

Telephone : +61 08 83631777 Telephone : +61-3-8549 9600 Facsimile : +61 08 83631477 Facsimile : +61-3-8549 9601

Project : EV-07 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number C-O-C number

Date Samples Received : 12-JUN-2008 Sampler Issue Date : 18-JUN-2008 Site

No. of samples received : 2 Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Herman Lin Senior Inorganic Chemist Inorganics Senior ICP/MS Chemist Terrance Hettipathirana Inorganics

> **Environmental Division Melbourne** Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Page : 2 of 4

Work Order : EM0804594

Client : SINCLAIR KNIGHT MERZ

Project : EV-07

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• ED045-P: LOR has been raised for Chloride.

Client : SINCLAIR KNIGHT MERZ

Project : EV-07

Sub-Matrix: WATER		Clie	ent sample ID	RD3549	RD3549A	 	
Odd Matha Wellar	Cl		ng date / time	11-JUN-2008 15:00	10-JUN-2008 15:00	 	
			_	EM0804594-001	EM0804594-002	 	
Compound	CAS Number	LOR	Unit	LW0004334-001	LINI0004334-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.93	7.82	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	40400	42000	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	28800	29700	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	84	92	 	
EA045: Turbidity							
Turbidity		0.1	NTU	40.0	44.3	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	256	252	 	
Total Alkalinity as CaCO3		1	mg/L	256	252	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	4290	4670	 	
Silicon	7440-21-3	0.05	mg/L	11.2	13.9	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	13700	13500	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	670	749	 	
Magnesium	7439-95-4	1	mg/L	844	914	 	
Sodium	7440-23-5	1	mg/L	9860	10500	 	
Potassium	7440-09-7	1	mg/L	80	89	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.83	0.96	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	3.12	3.15	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	 	
Arsenic	7440-38-2	0.001	mg/L	0.014	0.014	 	
Barium	7440-39-3	0.001	mg/L	0.030	0.027	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	0.001	 	
Copper	7440-50-8	0.001	mg/L	0.012	0.013	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.716	0.769	 	

Client : SINCLAIR KNIGHT MERZ

Project : EV-07

ALS

Sub-Matrix: WATER		Clie	ent sample ID	RD3549	RD3549A	 	
	Client sampling date / time			11-JUN-2008 15:00	10-JUN-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0804594-001	EM0804594-002	 	
EG020F: Dissolved Metals by ICP-MS -	Continued						
Strontium	7440-24-6	0.001	mg/L	0.005	0.005	 	
Uranium	7440-61-1	0.001	mg/L	0.001	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	0.130	0.016	 	
Boron	7440-42-8	0.05	mg/L	5.72	5.71	 	
EG052F: Silica by ICPAES							
^ Silica	7631-86-9	0.1	mg/L	24.0	29.8	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.2	1.3	 	
EK057G: Nitrite as N by Discrete Analy	/ser						
Nitrite as N		0.010	mg/L	0.012	0.013	 	
EK058G: Nitrate as N by Discrete Anal	yser						
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	<0.010	 	
EK059G: NOX as N by Discrete Analys	er						
Nitrite + Nitrate as N		0.010	mg/L	0.019	0.014	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0804444** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : UNIT 9, 15 FULLARTON RD Address : 4 Westall Rd Springvale VIC Australia 3171

KENT TOWN SA, AUSTRALIA 5067

Telephone : +61 08 83631777 Telephone : +61-3-8549 9600 Facsimile : +61 08 83631477 Facsimile : +61-3-8549 9601

Project : EV-07 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ---C-O-C number : ----

 C-O-C number
 : --- Date Samples Received
 : 06-JUN-2008

 Sampler
 : KF/KH
 Issue Date
 : 16-JUN-2008

 Site
 : ---

No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Instrument Chemist	Inorganics
Herman Lin	Senior Inorganic Chemist	Inorganics
Terrance Hettipathirana	Senior ICP/MS Chemist	Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Client SINCLAIR KNIGHT MERZ

Project : EV-07

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ED045-P: LOR has been raised for chloride analysis.
- Ionic Balance out of acceptable limits due to analytes not quantified in this report.

Client : SINCLAIR KNIGHT MERZ

Project : EV-07

Sub-Matrix: WATER		Cli	ent sample ID	RD3504	 	
	Cli	ient sampli	ng date / time	26-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0804444-001	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.78	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	42600	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	30300	 	
EA025: Suspended Solids						
^ Suspended Solids (SS)		1	mg/L	103	 	
EA045: Turbidity						
Turbidity		0.1	NTU	51.0	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	 <1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	249	 	
Total Alkalinity as CaCO3		1	mg/L	249	 	
ED040F: Dissolved Major Anions						
Sulfate as SO4 2-	14808-79-8	1	mg/L	4950	 	
Silicon	7440-21-3	0.10	mg/L	6.00	 	
ED045P: Chloride by PC Titrator						
Chloride	16887-00-6	1	mg/L	13000	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	707	 	
Magnesium	7439-95-4	1	mg/L	874	 	
Sodium	7440-23-5	1	mg/L	7280	 	
Potassium	7440-09-7	1	mg/L	116	 	
EG005F: Dissolved Metals by ICP-AES						
Iron	7439-89-6	0.01	mg/L	<0.10	 	
EG005T: Total Metals by ICP-AES	1.00 00 0					1
Iron	7439-89-6	0.01	mg/L	5.06	 	
EG020F: Dissolved Metals by ICP-MS	55 36 6					1
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.031	 	
Cobalt	7440-48-4	0.001	mg/L	0.001	 	
Copper	7440-50-8	0.001	mg/L	0.016	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.750	 	

Client : SINCLAIR KNIGHT MERZ

Project : EV-07

ALS

Sub-Matrix: WATER	Client sample ID			RD3504	 	
	Client sampling date / time			26-MAY-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0804444-001	 	
EG020F: Dissolved Metals by ICP-MS - Con	tinued					
Tin	7440-31-5	0.001	mg/L	0.002	 	
Vanadium	7440-62-2	0.01	mg/L	0.03	 	
Zinc	7440-66-6	0.005	mg/L	0.027	 	
Boron	7440-42-8	0.05	mg/L	6.24	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.9	 	
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N		0.010	mg/L	<0.010	 	
EK058G: Nitrate as N by Discrete Analyse	r					
^ Nitrate as N	14797-55-8	0.010	mg/L	0.013	 	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N		0.010	mg/L	0.013	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	475	 	
^ Total Cations		0.01	meq/L	427	 	
^ Ionic Balance		0.01	%	5.35	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0803494** Page : 1 of 4

Client : RESOURCE & ENVIRON MANGMNT P/L Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : UNIT 9, 15 FULLARTON RD Address : 4 Westall Rd Springvale VIC Australia 3171

KENT TOWN SA, AUSTRALIA 5067

Telephone : +61 08 8363 1777 Telephone : +61-3-8549 9600
Facsimile : +61 08 8363 1477 Facsimile : +61-3-8549 9601

Project : EV-10 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ---

 C-O-C number
 : -- Date Samples Received
 : 07-MAY-2008

 Sampler
 : KH
 Issue Date
 : 14-MAY-2008

No. of samples received : 1

Quote number : ME/122/06 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Herman LinSenior Inorganic ChemistInorganicsTerrance HettipathiranaSenior ICP/MS ChemistInorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV-10

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG020-F: LCS recovery for Zinc fall outside ALS dynamic control limits, However they are within the acceptance criteria based on ALS DQO.

Page : 3 of 4 Work Order · EM0803494

EG005T: Total Metals by ICP-AES

EG020F: Dissolved Metals by ICP-MS

Iron

Aluminium

Arsenic

Barium

Cobalt

Copper

Manganese

Selenium

Lead

Client · RESOURCE & ENVIRON MANGMNT P/L

0.01

0.05

0.01

0.001

0.001

0.001

0.001

0.001

0.001

0.010

mg/L

7439-89-6

7439-89-6

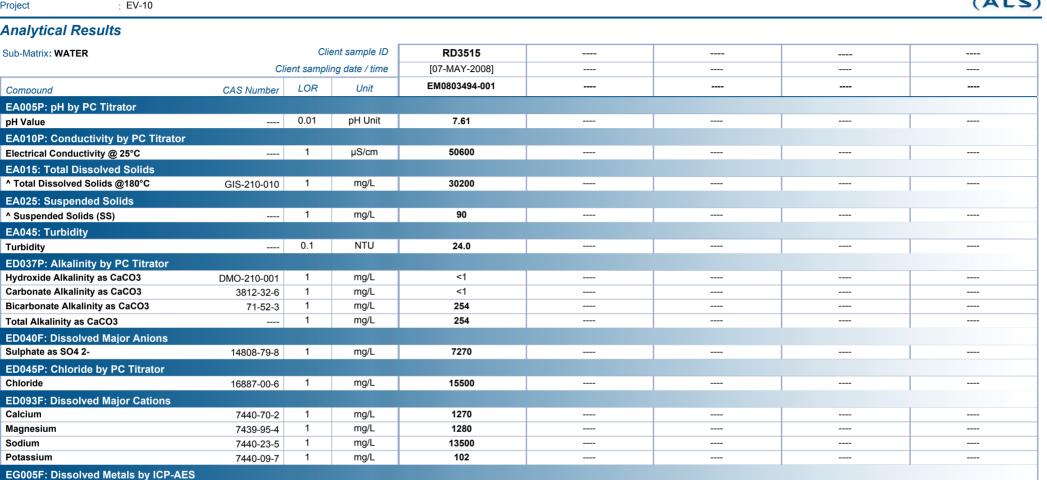
7429-90-5

7440-38-2

7440-39-3

7440-48-4

7440-50-8


7439-92-1

7439-96-5

7782-49-2

Project

Analytical Results

< 0.50

2.64

0.01

0.006 0.035

0.006

0.013

<0.001

1.69

<0.010

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV-1

ALS

Sub-Matrix: WATER		Client sample ID			 	
	Cli	ient sampli	ng date / time	[07-MAY-2008]	 	
Compound	CAS Number	LOR	Unit	EM0803494-001	 	
EG020F: Dissolved Metals by ICP-M	IS - Continued					
Strontium	7440-24-6	0.001	mg/L	14.5	 	
Uranium	7440-61-1	0.001	mg/L	0.008	 	
Zinc	7440-66-6	0.005	mg/L	0.037	 	
Boron	7440-42-8	0.05	mg/L	7.30	 	
EG020T: Total Metals by ICP-MS						
Barium	7440-39-3	0.001	mg/L	0.039	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0807100** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600
Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ---C-O-C number : ----

 C-O-C number
 : --- Date Samples Received
 : 28-AUG-2008

 Sampler
 : KF, KH
 Issue Date
 : 03-SEP-2008

Site : ----

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories Position Accreditation Category

No. of samples received

Herman LinSenior Inorganic ChemistInorganicsTerrance HettipathiranaSenior ICP/MS ChemistInorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Page : 2 of 4

Work Order : EM0807100

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EDO93F: Sodium LOR has been raised.

EG005T: Iron LOR has been raised.

EG020-F: EM0807100-001 have been diluted prior to analysis and LORs have been raised accordingly.

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

Sub-Matrix: WATER	Client sample ID			PT63				
	Cli	ent sampli	ng date / time	23-AUG-2008 09:30				
Compound	CAS Number	LOR	Unit	EM0807100-001				
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.31				
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	100000				
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	72300				
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	62				
EA045: Turbidity								
Turbidity		0.1	NTU	23.9				
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1				
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1				
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	236				
Total Alkalinity as CaCO3		1	mg/L	236				
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	1	mg/L	14400				
Sulfur as S		1	mg/L	4790				
^ Silica	7631-86-9	0.1	mg/L	104				
Silicon	7440-21-3	0.10	mg/L	48.7				
ED045P: Chloride by PC Titrator								
Chloride	16887-00-6	1	mg/L	48100				
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	1260				
Magnesium	7439-95-4	1	mg/L	2580				
Sodium	7440-23-5	1	mg/L	33800				
Potassium	7440-09-7	1	mg/L	208				
EG005F: Dissolved Metals by ICP-AES		2.24	,,	0.50				
Iron	7439-89-6	0.01	mg/L	<0.50				
EG005T: Total Metals by ICP-AES								
Iron	7439-89-6	0.01	mg/L	<0.10				
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.10				
Arsenic	7440-38-2	0.001	mg/L	<0.010				
Barium	7440-39-3	0.001	mg/L	0.036				
Copper Copper	7440-48-4	0.001	mg/L mg/L	<0.010 0.020				
Соррег	7440-50-8	0.001	IIIg/L	0.020	<u></u>	<u></u>	<u></u>	

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

Sub-Matrix: WATER	Client sample ID			PT63	 	
	Client sampling date / time			23-AUG-2008 09:30	 	
Compound	CAS Number	LOR	Unit	EM0807100-001	 	
EG020F: Dissolved Metals by ICP-MS - Con	ntinued					
Lead	7439-92-1	0.001	mg/L	0.054	 	
Manganese	7439-96-5	0.001	mg/L	2.66	 	
Strontium	7440-24-6	0.001	mg/L	15.4	 	
Uranium	7440-61-1	0.001	mg/L	<0.010	 	
Zinc	7440-66-6	0.005	mg/L	<0.050	 	
Boron	7440-42-8	0.05	mg/L	8.85	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	<0.1	 	
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N		0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r					
^ Nitrate as N	14797-55-8	0.01	mg/L	0.45	 	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N		0.01	mg/L	0.46	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	1660	 	
^ Total Cations		0.01	meq/L	1750	 	
^ Ionic Balance		0.01	%	2.65	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0806986** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600
Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 25-AUG-2008

 Sampler
 : KF, KH
 Issue Date
 : 01-SEP-2008

Site : ---

No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics
Terrance Hettipathirana Senior ICP/MS Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Page : 2 of 4

Work Order : EM0806986

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ED040F: Sulfate LOR has been raised.
- EG005T: Aluminium. Fe. Mo. Se and Sn LORs have been raised.
- EK040P: EM0806990 #1 spike failed due to sample matrix. This was confirmed by further analysis.
- Ionic Balance out of acceptable limits for EM0806986 #1 due to analytes not quantified in this report.

Page : 3 of 4
Work Order : EM0806986

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	PT-62	 	
	Cli	ient sampli	ng date / time	19-AUG-2008 10:00	 	
Compound	CAS Number	LOR	Unit	EM0806986-001	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.16	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	37100	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	23800	 	
EA025: Suspended Solids	0.0 2.0 0.0					
^ Suspended Solids (SS)		1	mg/L	38	 	
EA045: Turbidity						
Turbidity		0.1	NTU	22.6	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	273	 	
Total Alkalinity as CaCO3		1	mg/L	273	 	
ED040F: Dissolved Major Anions						
Sulfate as SO4 2-	14808-79-8	1	mg/L	4880	 	
Sulfur as S		1	mg/L	1620	 	
Silica	7631-86-9	0.1	mg/L	29.8	 	
Silicon	7440-21-3	0.10	mg/L	13.9	 	
ED045P: Chloride by PC Titrator						
Chloride	16887-00-6	1	mg/L	11100	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	1000	 	
Magnesium	7439-95-4	1	mg/L	760	 	
Sodium	7440-23-5	1	mg/L	9260	 	
Potassium	7440-09-7	1	mg/L	130	 	
EG005F: Dissolved Metals by ICP-AES						
Iron	7439-89-6	0.01	mg/L	0.29	 	
EG005T: Total Metals by ICP-AES						
Iron	7439-89-6	0.01	mg/L	1.42	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.14	 	
Arsenic	7440-38-2	0.001	mg/L	0.008	 	
Barium	7440-39-3	0.001	mg/L	0.044	 	
Cobalt	7440-48-4	0.001	mg/L	0.038	 	
Copper	7440-50-8	0.001	mg/L	0.033	 	

Page : 4 of 4 Work Order : EM0806986

Client : SINCLAIR KNIGHT MERZ

Project : VE30063.2

ALS

Analytical Results

Sub-Matrix: WATER	Client sample ID		PT-62	 	 	
	CI	ient samplii	ng date / time	19-AUG-2008 10:00	 	
Compound	CAS Number	LOR	Unit	EM0806986-001	 	
EG020F: Dissolved Metals by ICP-MS - Cor	ntinued					
Lead	7439-92-1	0.001	mg/L	0.002	 	
Manganese	7439-96-5	0.001	mg/L	0.790	 	
Strontium	7440-24-6	0.001	mg/L	13.0	 	
Uranium	7440-61-1	0.001	mg/L	0.057	 	
Zinc	7440-66-6	0.005	mg/L	0.059	 	
Boron	7440-42-8	0.05	mg/L	5.36	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	1.3	 	
EK057G: Nitrite as N by Discrete Analysei	r					
Nitrite as N		0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r					
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N		0.01	mg/L	0.02	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	421	 	
^ Total Cations		0.01	meq/L	519	 	
^ Ionic Balance		0.01	%	10.4	 	

DATA QUALITY SUMMARY REPORT - GROUNDWATER

VE30063 BHP Billiton GROUNDWATER Project No: Site: Matrix:

ALS (Batch No EM0805232, EM0804153, EM0804444, EM0805832, EM0802617, EM0803494, EM0804594, EM0804594)

Primary Laboratory:

17 for pH and TDS, 17 for Major Cations and Major Anions, 17 for TKN, 17 Acidity and Alkalinity, 17 for Metals

No. of Tests Requested/ Reported: Frequency of QA/QC undertaken: Frequency of QA/QC Required:

13 and Uranium

Approximately 1 in 8 samples duplicated (intra laboratory 1 in 10 samples are required to be duplicated

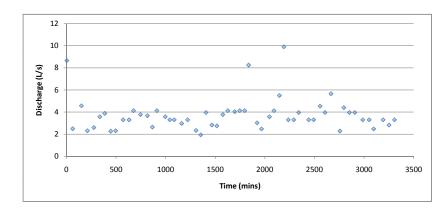
Data Quality Issue Assessed	Issue Reviewed	Results Acceptable	Comments
Sample Holding Times			See Note 1
Analytical Procedures	✓	✓	
Laboratory Limits of Reporting (below relevant guideline value)	✓	✓	See Note 2
Field Duplicate Agreement (RPD%)	N/A	N/A	
Blank Sample Analysis			
Method Blank	✓	✓	
Rinsate Blank Equipment Blank	√ NA	√ NA	
Laboratory Duplicate Agreement (RPD%)	✓	✓	
Matrix Spikes/Matrix Spike Duplicates			
Recovery Percentages	✓	✓	
Duplicate Agreement (RPD%)	√	✓	
Surrogate Recoveries	✓	✓	
Other Issues (i.e Trip Blank)	NA	NA	

Other Observations:

Note 1: Sample holding times were exceeded, hence the results unreliable for ph, TDS and nutrients for the following batch numbers

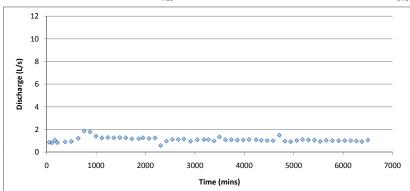
Note 2:

Summary Comments:


Groundwater analytical data can be used as a basis of interpretation, subject to the limitations outlined above

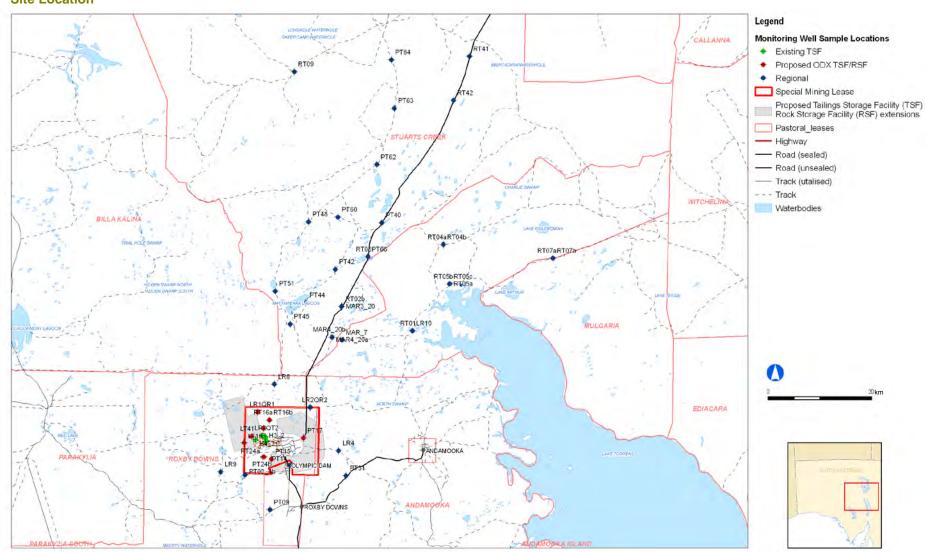
Recommended Corrective Action:

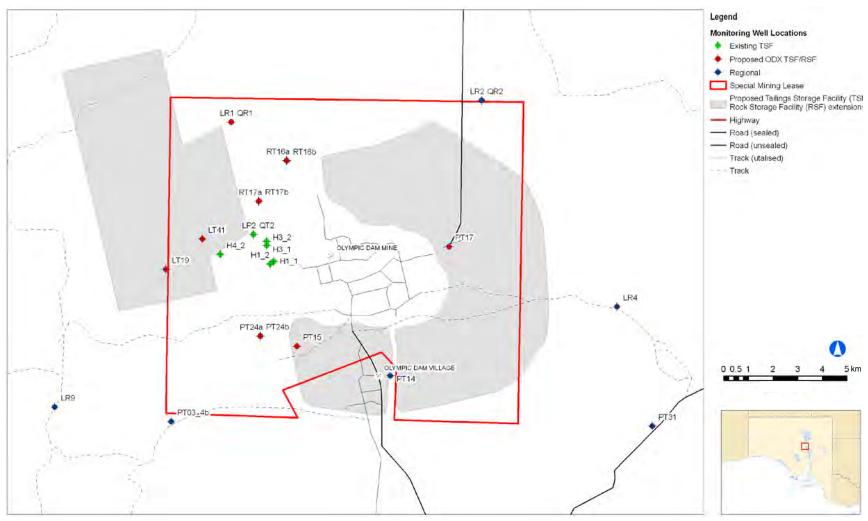
Checked By: JF


DRAINAGE WELL RD3486

Time (mins)	Flow (L/s)	Cum flow (kL)	Time (mins)	Flow (L/s)	Cum flow (kL)
0	0		1796.00	4.124	12.37
4.00	8.661	0.00	1836.00	8.248	19.80
63.00	2.492	8.82	1921.00	3.024	15.42
151.00	4.564	24.10	1966.00	2.474	6.68
211.00	2.310	8.31	2046.00	3.574	17.16
276.00	2.599	10.14	2091.00	4.124	11.14
336.00	3.574	12.87	2146.00	5.499	18.15
386.00	3.882	11.64	2191.00	9.898	26.72
446.00	2.268	8.17	2236.00	3.299	8.91
496.00	2.310	6.93	2291.00	3.299	10.89
571.00	3.299	14.85	2341.00	3.959	11.88
631.00	3.299	11.88	2441.00	3.299	19.80
676.00	4.124	11.14	2491.00	3.299	9.90
746.00	3.771	15.84	2556.00	4.537	17.69
816.00	3.666	15.40	2606.00	3.959	11.88
866.00	2.639	7.92	2666.00	5.656	20.36
911.00	4.124	11.14	2756.00	2.284	12.33
996.00	3.574	18.23	2796.00	4.399	10.56
1041.00	3.299	8.91	2851.00	3.959	13.07
1086.00	3.299	8.91	2906.00	3.959	13.07
1161.00	2.969	13.36	2986.00	3.299	15.84
1221.00	3.299	11.88	3051.00	3.299	12.87
1306.00	2.337	11.92	3096.00	2.474	6.68
1353.00	1.941	5.47	3191.00	3.299	18.81
1406.00	3.959	12.59	3251.00	2.828	10.18
1466.00	2.828	10.18	3306.00	3.299	10.89
1516.00	2.749	8.25	Total (kL)		707.10
1576.00	3.771	13.57	Average (kL/min)		0.21
1626.00	4.124	12.37	Average (L/s)		3.56
1696.00	4.033	16.94	·		
1746.00	4.124	12.37			

DRAINAGE WELL RD3487


Time (mins)	Flow (L/s)	Cum flow (kL)	Time (mins)	Flow (L/s)	Cum flow (kL)	Time (mins)	Flow (L/s)	Cum flow (kL)
0	0		6608.00	1.031	6.74	13582.00	0.900	6.75
53.00	0.872	0.00	6732.00	1.022	7.60	13732.00	0.855	7.70
107.00	0.840	2.72	6842.00	1.031	6.80	13897.00	0.825	8.17
170.00	1.065	4.03	6957.00	0.952	6.57	14027.00	0.717	5.59
217.00	0.842	2.38	7107.00	0.963	8.67	14132.00	0.695	4.38
372.00	0.910	8.46	7222.00	1.020	7.04	14237.00	1.042	6.56
497.00	0.945	7.09	7342.00 7462.00	0.943	6.79	14387.00	0.012 0.745	0.10
639.00 759.00	1.217 1.859	10.37 13.38	7462.00 7577.00	1.042 1.010	7.50 6.97	14557.00 14762.00	0.745	7.60 8.54
877.00	1.793	13.38	7697.00	0.943	6.79	14882.00	0.893	8.54 5.77
997.00	1.793	10.18	7807.00	0.943	5.73	14997.00	0.641	4.42
1117.00	1.414	9.05	7902.00	0.000	5.73	15147.00	0.641	6.93
1237.00	1.294	9.32	8007.00	0.970	6.11	15302.00	0.770	5.75
1357.00	1.269	9.14	8147.00	0.888	7.46	15457.00	0.825	7.67
1479.00	1.294	9.47	8282.00	0.962	7.79	15602.00	0.733	6.38
1602.00	1.264	9.33	8417.00	1.100	8.91	15737.00	0.825	6.68
1722.00	1.178	8.48	8537.00	1.100	7.92	15902.00	0.770	7.62
1862.00	1.188	9.98	8657.00	0.961	6.92	16037.00	0.699	5.66
1947.00	1.269	6.47	8777.00	0.943	6.79	16167.00	0.979	7.63
2072.00	1.219	9.14	8897.00	0.943	6.79	16322.00	0.602	5.60
2192.00	1.257	9.05	9017.00	0.943	6.79	16462.00	0.773	6.50
2305.00	0.583	3.95	9137.00	0.943	6.79	16577.00	0.786	5.42
2422.00	0.970	6.81	9257.00	0.786	5.66	16697.00	0.750	5.40
2542.00	1.121	8.07	9367.00	0.990	6.53	16792.00	0.776	4.42
2662.00	1.121	8.07	9557.00	1.237	14.10	16922.00	0.687	5.36
2777.00	1.155	7.97	9707.00	0.978	8.80	17037.00	0.786	5.42
2912.00	0.962	7.79	9842.00	0.687	5.57	17147.00	0.825	5.44
3047.00	1.100	8.91	9977.00	0.924	7.48	17267.00	0.628	4.52
3182.00	1.109	8.98	10117.00	0.924	7.76	17387.00	0.786	5.66
3272.00	1.115	6.02	10217.00	0.994	5.96	17597.00	0.761	9.59
3387.00	0.993	6.85	10337.00	0.916	6.60	17777.00	0.700	7.56
3497.00	1.347	8.89	10457.00	0.943	6.79	17897.00	0.786	5.66
3617.00	1.100	7.92	10577.00	0.943	6.79	17987.00	0.634	3.43
3737.00	1.100	7.92	10707.00	0.861 0.825	6.71	18077.00	0.805	4.35
3857.00 3977.00	1.069 1.079	7.70 7.77	10817.00 10937.00	0.825	5.44 6.48	18207.00	0.541 0.770	4.22 7.39
4095.00	1.079	7.77	11057.00	0.900	6.79	18367.00 18497.00	1.004	7.83
4240.00	1.121	9.57	11187.00	0.943	7.02	18602.00	0.733	4.62
4342.00	1.043	6.38	11297.00	0.825	5.44	18745.00	0.733	6.08
4462.00	1.020	7.34	11417.00	0.900	6.48	18865.00	0.757	5.45
4582.00	1.021	7.35	11537.00	0.943	6.79	18995.00	0.671	5.23
4709.00	1.500	11.43	11657.00	0.943	6.79	19117.00	0.669	4.90
4822.00	0.974	6.60	11777.00	0.943	6.79	19219.00	0.717	4.39
4937.00	0.929	6.41	11942.00	0.770	7.62	19337.00	0.786	5.56
5061.00	1.031	7.67	12017.00	0.825	3.71	19467.00	0.717	5.59
5177.00	1.121	7.80	12147.00	0.825	6.43	19617.00	0.733	6.60
5297.00	1.079	7.77	12267.00	0.750	5.40	19712.00	0.825	4.70
5418.00	1.059	7.69	12377.00	0.825	5.44	19832.00	0.786	5.66
5535.00	0.952	6.68	12512.00	0.924	7.48	19917.00	0.943	4.81
5657.00	1.050	7.68	12632.00	0.786	5.66	20077.00	0.740	7.10
5782.00	1.020	7.65	12732.00	0.873	5.24	20245.00	0.687	6.93
5907.00	1.013	7.60	12907.00	0.850	8.92	20399.00	0.750	6.93
6032.00	1.020	7.65	13012.00	0.733	4.62	20602.00	0.391	4.76
6152.00	1.021	7.35	13117.00	0.877	5.53	20912.00	0.503	9.36
6267.00	0.987	6.81	13237.00	0.764	5.50	21032.00	0.628	4.52
6379.00	0.933	6.27	13352.00	0.943	6.50	21272.00	0.587	8.45
6499.00	1.059	7.63	13457.00	1.100	6.93	21352.00	0.761	3.65
12						Total:		1,159.362
"						Average (kL/min)		0.05
10						Average (L/s)		0.90



Attachment C Baseline groundwater sampling and analytical program

Site Location

Site Location (SML)

List of Monitoring Wells

Program (1)	Well ID	mE	mN	Geological Unit	Hydrostrati- graphic unit ⁽²⁾	Sample Collected	Date sampled	Sample method	Comments ⁽³⁾
1	H1-1	677 352	6 630 789	TAILS	TAILS	Yes	21/07/2008	Disposable Bailer	Complete analysis
1	H1-2	677 215	6 630 678	TAILS	TAILS	Yes	21/07/2008	Disposable Bailer	Complete analysis
1	H3-1	677 067	6 631 427	QT SANDS & top ZAL	QT SANDS / ALA	Yes	21/07/2008	Disposable Bailer	Complete analysis
1	H3-2	677 066	6 631 608	TAILS	TAILS	Yes	21/07/2008	Disposable Bailer	Complete analysis
1	H4-2	675 197	6 631 063	TAILS	TAILS	Yes	21/07/2008	Disposable Bailer	Complete analysis
1	LP2	676 529	6 631 873	Andamooka Lst	ALA	Yes	4/09/2008	Headworks tap	Complete analysis
1	QT2	676 529	6 631 873	Arcoona Qtz	Arcoona Aquitard	Yes	4/09/2008	Disposable Bailer	Complete analysis
2	LT19	672 990	6 630 470	Andamooka Lst	ALA	Yes	28/07/2008	Micro-purge	Complete analysis
2	LT41	674 459	6 631 692	Andamooka Lst	ALA	Yes	28/07/2008	Micro-purge	Complete analysis
2	LR1	675 631	6 636 423	Andamooka Lst	ALA	Yes	27/07/2008	Micro-purge	Complete analysis
2	LR2	685 787	6 637 306	Andamooka Lst	ALA	Yes	30/07/2008	Micro-purge	Complete analysis
2	PT17	684 464	6 631 390	Corraberra Sst	THA	Yes	17/08/2008	Disposable Bailer	Complete analysis
2	PT24a	676 816	6 627 754	Andamooka Lst	ALA	Yes	28/07/2008	Micro-purge	Complete analysis
2	PT24b	676 805	6 627 765	Corraberra Sst	THA	Yes	12/08/2008	Micro-purge	Complete analysis
2	QR1	675 631	6 636 423	Arcoona Qtz	Arcoona Aquitard	Yes	13/08/2008	Micro-purge	Complete analysis
2	QR2	685 765	6 637 300	Arcoona Qtz	Arcoona Aquitard	No	-	Well complications	No analysis conducted
2	RT16a	677 879	6 634 872	Andamooka Lst	ALA	Yes	27/07/2008	Micro-purge	Complete analysis
2	RT16b	677 884	6 634 860	Corraberra Sst	THA	Yes	17/08/2008	Disposable Bailer	Complete analysis
2	RT17a	676 746	6 633 220	Andamooka Lst	ALA	Yes	27/07/2008	Micro-purge	Complete analysis
2	RT17b	676 759	6 633 225	Corraberra Sst	THA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	LR4	691 263	6 628 950	Arcoona Qtz	Arcoona Aquitard	Yes	-	Disposable Bailer - DRY	Partial analysis conducted
3	LR8	678 843	6 641 779	Andamooka Lst	ALA	Yes	30/07/2008	Micro-purge	Complete analysis
3	LR9	668 484	6 624 888	Andamooka Lst	ALA	Yes	31/07/2008	Micro-purge	Complete analysis
3	LR10	705 533	6 652 117	Andamooka Lst	ALA	Yes	20/08/2008	Micro-purge	Complete analysis

Program (1)	Well ID	mE	mN	Geological Unit	Hydrostrati- graphic unit ⁽²⁾	Sample Collected	Date sampled	Sample method	Comments ⁽³⁾
3	MAR3-20	691 910	6 656 810	Andamooka Lst	ALA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	MAR4-20a	689 985	6 650 885	Andamooka Lst	ALA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	MAR4-20b	689 985	6 650 885	Andamooka Lst	ALA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	MAR7	691 930	6 650 334	Andamooka Lst	ALA	Yes	8/09/2008	Disposable Bailer	Complete analysis
3	PT03-4b	673 204	6 624 297	Arcoona Qtz	Arcoona Aquitard	Yes	10/08/2008	Micro-purge	Complete analysis
3	PT09	677 991	6 617 546	Corraberra Sst	THA	Yes	14/08/2008	Micro-purge	Complete analysis
3	PT14	682 089	6 626 155	Corraberra Sst	THA	Yes	11/08/2008	Micro-purge	Complete analysis
3	PT15	678 297	6 627 345	Corraberra Sst	THA	Yes	12/08/2008	Micro-purge	Complete analysis
3	PT31	692 701	6 624 120	Corraberra Sst	THA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	PT40	699 616	6 672 964	Andamooka Lst	ALA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	PT42	690 623	6 663 940	Andamooka Lst	ALA	Yes	19/08/2008	Micro-purge	Complete analysis
3	PT44	684 970	6 657 514	Andamooka Lst	ALA	Yes	19/08/2008	Micro-purge	Complete analysis
3	PT45	681 923	6 653 391	Andamooka Lst	ALA	Yes	18/08/2008	Micro-purge	Complete analysis
3	PT48	685 489	6 673 125	Andamooka Lst	ALA	Yes	18/08/2008	Micro-purge	Complete analysis
3	PT51	679 062	6 659 765	Andamooka Lst	ALA	Yes	18/08/2008	Micro-purge	Complete analysis
3	PT60	691 117	6 674 056	Andamooka Lst	ALA	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	PT62	698 652	6 684 173	Cadna-owie	Eromanga	Yes	9/09/2008	Micro-purge	Complete analysis
3	PT63	702 071	6 695 060	BRACHINA Fmt	Adelaide	Yes	9/09/2008	Micro-purge	Complete analysis
3	PT64	701 463	6 704 421	BRACHINA Fmt	Adelaide	No	-	Dry	No analysis conducted
3	PT66	696 949	6 666 399	Andamooka Lst	ALA	Yes	19/08/2008	Disposable Bailer	Complete analysis
3	RT01	705 545	6 652 083	Corraberra Sst	THA	Yes	1/09/2008	Micro-purge	Complete analysis
3	RT02b	691 849	6 656 795	Arcoona Qtz	Arcoona Aquitard	Yes	17/08/2008	Disposable Bailer	Complete analysis
3	RT03	696 949	6 666 399	Andamooka Lst	ALA	Yes	19/08/2008	Micro-purge	Complete analysis
3	RT04a	711 500	6 668 735	Andamooka Lst	ALA	Yes	2/09/2008	Micro-purge	Complete analysis
3	RT04b	711 497	6 668 746	Yarloo Sh.	Yarloo Aquitard	Yes	3/09/2008	Micro-purge	Complete analysis

Program (1)	Well ID	mE	mN	Geological Unit	Hydrostrati- graphic unit ⁽²⁾	Sample Collected	Date sampled	Sample method	Comments ⁽³⁾
3	RT05a	712 726	6 661 145	Andamooka Lst	ALA	Yes	20/08/2008	Micro-purge	Complete analysis
3	RT05b	712 714	6 661 127	Andamooka Lst	ALA	Yes	20/08/2008	Micro-purge	Complete analysis
3	RT05c	712 714	6 661 127	ABCQTZ+BRACHINA	Adelaide	Yes	1/09/2008	Micro-purge	Complete analysis
3	RT07a	732 710	6 666 105	AMBEROONA Fmt	Adelaide	Yes	21/08/2008	Micro-purge	Complete analysis
3	RT07b	732 710	6 666 105	AMBEROONA Fmt	Adelaide	Yes	2/09/2008	Micro-purge	Complete analysis
3	RT09	682 697	6 702 115	BRACHINA Fmt	Adelaide	Yes	3/09/2008	Micro-purge	Complete analysis
3	RT41	716 560	6 705 063	BRACHINA Fmt	Adelaide	Yes	10/09/2008	Micro-purge	Complete analysis
3	RT42	713 445	6 696 563	BRACHINA Fmt	Adelaide	Yes	10/09/2008	Micro-purge	Complete analysis

Notes:

[1] Baseline sampling program:

- 1 Existing ODO TSF
- 2 Proposed ODX TSF/RSF (sub-regional)
- 3 Regional hydrogeology

[3] Refer to Table 2

[2] Screened hydrogeology:

ALA = Andamooka Limestone Aquifer

Yarloo Aquitard = Yarloo Shale

Arcoona Aquitard = Upper Arcoona Quartzite Aquitard

THA = Tent Hill Aquifer

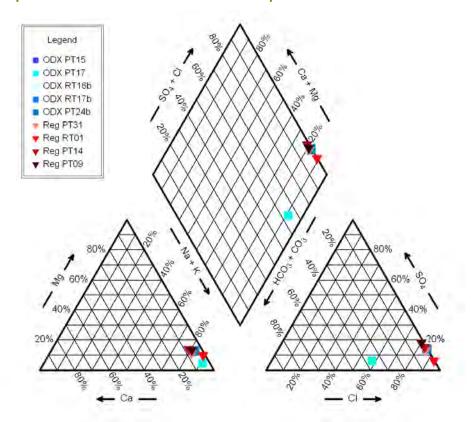
Adelaide = Adelaide Geosyncline aquifers

Eromanga = Cadna-owie Fm & Algebuckna Sst

Summary of entrained tails water chemistry

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean
pH Value and Total Dissolved Solids	3				
pH	pH Unit	0.1	3.16	4.23	3.50
TDS	mg/L	1	73100	99300	85118
Electrical conductivity	uS/cm	1	22700	34900	35962
Alkalinity			•		
Hydroxide as CaCO3	mg/L	5	<5	<5	<5
Carbonate as CACO3	mg/L	5	<5	<5	<5
Bicarbonate as CACO3	mg/L	5	<5	<5	<5
Total Alkalinity as CACO3	mg/L	5	<5	<5	<5
Dissolved Major Cations					
Calcium	mg/L	0.1	627	894	714
Iron	mg/L	0.1	-	-	-
Magnesium	mg/L	0.1	492	1590	834
Sodium	mg/L	0.1	3100	3810	4084
Potassium	mg/L	0.1	200	800	558
Total Metals					
Iron	mg/L	0.1	327	8020	4375
Dissolved Metals					
Arsenic	mg/L	0.001	<0.005	0.05	0.021
Barium	mg/L	0.001	0.023	0.07	0.042
Boron	mg/L	0.001	1.4	6.1	2.40
Cobalt	mg/L	0.001	27	75	50
Copper	mg/L	0.001	4.3	500	49.8
Lead	mg/L	0.001	0.029	0.99	0.087
Manganese	mg/L	0.001	94	240	159
Nickel	mg/L	0.001	3.5	9.7	6.5
Selenium	mg/L	0.001	3.5	6.7	5.0
Strontium	mg/L	0.001	3.9	8.7	5.0
Thallium	mg/L	0.001	0.0039	4.5	0.017
Thorium	mg/L	0.001	-	-	-
Uranium	mg/L	0.001	200	400	297
Zinc	mg/L	0.001	0.047	50	10.4
Dissolved Anions					
Sulphate	mg/L	2	26100	49300	38097
Chloride	mg/L	1	2690	4370	3745
Fluoride	mg/L	0.1	5010	13400	9414
NO2-N	mg/L	0.5	<0.01	0.04	0.02
NO3-N	mg/L	0.5	<0.01	0.02	0.02
Other parameters					
TKN as N	mg/L	1	2.1	182	61.4
Total Nitrogen (as N)	mg/L	2	2.2	182	61.9
Silica	mg/L	1	7.5	87	25.5
Total Organic Carbon	mg/L	1	24	30	26.3

Note: where values were less than the Limit of Reporting (LOR), the geomean has been calculated setting values at the LOR (ie. the geomean is possibly slightly overestimated).


Summary of ALA aquifer groundwater chemistry for the proposed TSF

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean
pH Value and Total Dissolved Solids	3				
рН	pH Unit	0.1	7.12	11.1	7.7
TDS	mg/L	1	18000	28800	24064
Electrical conductivity	uS/cm	1	22600	39000	32430
Alkalinity					
Hydroxide as CaCO3	mg/L	5	<1	<1	<1
Carbonate as CACO3	mg/L	5	<1	31	1.7
Bicarbonate as CACO3	mg/L	5	4	359	137
Total Alkalinity as CACO3	mg/L	5	35	359	197
Dissolved Major Cations					
Calcium	mg/L	0.1	777	1360	965
Iron	mg/L	0.1	0.114	0.114	0.114
Magnesium	mg/L	0.1	93	1050	569
Sodium	mg/L	0.1	7120	9360	7981
Potassium	mg/L	0.1	56	217	90
Total Metals					
Iron	mg/L	0.1	0.34	1.76	0.71
Dissolved Metals					
Arsenic	mg/L	0.001	<0.001	<0.005	< 0.005
Barium	mg/L	0.001	0.011	0.15	0.022
Boron	mg/L	0.001	0.57	10.8	5.68
Cobalt	mg/L	0.001	0.001	0.004	0.002
Copper	mg/L	0.001	0.008	0.363	0.030
Lead	mg/L	0.001	<0.005	0.029	0.008
Manganese	mg/L	0.001	< 0.001	0.91	0.159
Nickel	mg/L	0.001	<0.001	0.38	0.015
Selenium	mg/L	0.001	<0.010	0.028	0.012
Strontium	mg/L	0.001	12	19.6	16.3
Thallium	mg/L	0.001	<0.001	<0.005	0.001
Thorium	mg/L	0.001	<0.001	<0.005	0.001
Uranium	mg/L	0.001	<0.001	0.064	0.034
Zinc	mg/L	0.001	0.033	0.231	0.071
Dissolved Anions					
Sulphate	mg/L	2	2300	5680	3869
Chloride	mg/L	1	8200	11000	9860
Fluoride	mg/L	0.1	0.2	3.2	1.25
NO2-N	mg/L	0.5	<0.010	0.298	0.034
NO3-N	mg/L	0.5	<0.010	<0.5	0.044
Other parameters			•	•	
TKN as N	mg/L	1	-	-	-
Total Nitrogen (as N)	mg/L	2	0.013	1.3	0.179
Silica	mg/L	1	9.41	17.8	14.5
Total Organic Carbon	mg/L	1	<1	12	2.6

Note: where values were less than the Limit Of Reporting (LOR), the geomean has been calculated setting values at the LOR (ie. the geomean is slightly overestimated).

Piper plot for wells installed in the Tent Hill Aquifer

Summary of THA aquifer groundwater chemistry for the proposed TSF/RSF

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean				
pH Value and Total Dissolved Solids									
рН	pH Unit	0.1	7.1	7.9	7.41				
TDS	mg/L	1	2800	65000	30367				
Electrical conductivity	uS/cm	1	3470	67900	35630				
Alkalinity									
Hydroxide as CaCO3	mg/L	5	-	-	-				
Carbonate as CACO3	mg/L	5	1	1	1				
Bicarbonate as CACO3	mg/L	5	219.9	720	319				
Total Alkalinity as CACO3	mg/L	5	219.95	719.97	319				
Dissolved Major Cations									
Calcium	mg/L	0.1	34.5	1520	578				
Iron	mg/L	0.1	0.1	15	1.8				
Magnesium	mg/L	0.1	22.1	2610	766				
Sodium	mg/L	0.1	875	30200	11697				
Potassium	mg/L	0.1	6.1	320	93.2				
Total Metals									
Iron	mg/L	0.1	-	-	-				

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean
Dissolved Metals					
Arsenic	mg/L	0.001	0.005	0.007	0.005
Barium	mg/L	0.001	0.047	0.37	0.123
Boron	mg/L	0.001	1.7	11	6.1
Cobalt	mg/L	0.001	0.005	0.009	0.006
Copper	mg/L	0.001	0.005	0.026	0.014
Lead	mg/L	0.001	0.005	0.005	0.005
Manganese	mg/L	0.001	0.13	2.1	0.70
Nickel	mg/L	0.001	0.005	0.029	0.013
Selenium	mg/L	0.001	0.009	0.013	0.066
Strontium	mg/L	0.001	0.81	26	9.93
Thallium	mg/L	0.001	0.005	0.005	0.005
Thorium	mg/L	0.001	0.005	0.005	0.005
Uranium	mg/L	0.001	0.005	0.029	0.009
Zinc	mg/L	0.001	0.051	0.15	0.085
Dissolved Anions					
Sulphate	mg/L	2	96	6100	2378
Chloride	mg/L	1	680	28000	11164
Fluoride	mg/L	0.1	0.5	5.6	1.175
NO2-N	mg/L	0.5	0.5	0.5	0.500
NO3-N	mg/L	0.5	0.5	0.5	0.500
Other parameters					
TKN as N	mg/L	1	1	3	1.9
Total Nitrogen (as N)	mg/L	2	2	3	2.1
Silica	mg/L	1	13.3	34	18.0
Total Organic Carbon	mg/L	1	1	4.5	1.8

Note: where values were less than the Limit Of Reporting (LOR), the geomean has been calculated setting values at the LOR (ie. the geomean is slightly overestimated).

t

Summary of regional ALA aquifer groundwater chemistry

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean	
pH Value and Total Dissolved Solid		Lab Lon			mean	
pH value and rotal bissolved solids	pH Unit	0.1	6.56	8.1	7.04	
TDS	mg/L	1	19000	59000	43628	
Electrical conductivity	uS/cm	1	20100	135000	39118	
Alkalinity	uo/ciii		20100	133000	33110	
Hydroxide as CaCO3	mg/L	5	_	_		
Carbonate as CACO3	mg/L	5	0	<1		
Bicarbonate as CACO3	mg/L	5	96	1260	235	
Total Alkalinity as CACO3	mg/L	5	96	1260	235	
Dissolved Major Cations	mg/L	J	- 50	1200	200	
Calcium	mg/L	0.1	603	1280	956	
Iron	mg/L	0.1	<0.1	63.4	2.6	
Magnesium	mg/L	0.1	342	5200	1075	
Sodium	mg/L	0.1	6030	88900	13926	
Potassium	mg/L	0.1	64	800	151	
Total Metals						
Iron	mg/L	0.1	5.72	51.4	20.0	
Dissolved Metals		-		-		
Arsenic	mg/L	0.001	0.001	0.018	0.003	
Barium	mg/L	0.001	0.018	0.82	0.055	
Boron	mg/L	0.001	0.001	12	3.10	
Cobalt	mg/L	0.001	0.001	0.017	0.004	
Copper	mg/L	0.001	0.001	0.032	0.007	
Lead	mg/L	0.001	0.001	1.5	0.005	
Manganese	mg/L	0.001	0.029	2.2	0.39	
Nickel	mg/L	0.001	0.001	0.043	0.012	
Selenium	mg/L	0.001	0.01	0.1	0.043	
Strontium	mg/L	0.001	6.3	20	14.0	
Thallium	mg/L	0.001	0.001	0.074	0.002	
Thorium	mg/L	0.001	0.001	0.01	0.004	
Uranium	mg/L	0.001	0.0014	0.067	0.01	
Zinc	mg/L	0.001	0.001	0.24	0.038	
Dissolved Anions						
Sulphate	mg/L	2	2500	10000	4184	
Chloride	mg/L	1	4900	150000	17586	
Fluoride	mg/L	0.1	0.5	3.8	0.70	
NO2-N	mg/L	0.5	0.01	0.5	0.32	
NO3-N	mg/L	0.5	0.02	18	0.75	
Other parameters						
TKN as N	mg/L	1	0.1	34.7	1.69	
Total Nitrogen (as N)	mg/L	2	2	34.7	3.41	
Silica	mg/L	1	7.96	38	16.5	
Total Organic Carbon	mg/L	1	1	25	2.1	

Note: where values were less than the Limit Of Reporting (LOR), the geomean has been calculated setting values at the LOR (ie. the geomean is slightly overestimated).

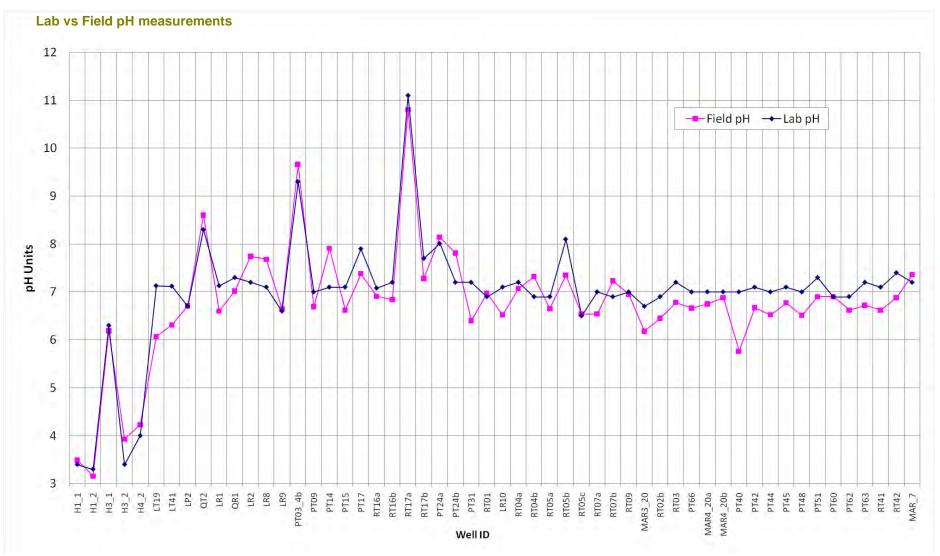
Summary of THA aquifer groundwater chemistry for the regional wells

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean
pH Value and Total Dissolved Solids	5				
pH	pH Unit	0.1	6.9	7.2	7.05
TDS	mg/L	1	4000	200000	25823
Electrical conductivity	uS/cm	1	6520	132000	28966
Alkalinity					
Hydroxide as CaCO3	mg/L	5	-	-	-
Carbonate as CACO3	mg/L	5	0	1	-
Bicarbonate as CACO3	mg/L	5	130	380	223
Total Alkalinity as CACO3	mg/L	5	130	380	223
Dissolved Major Cations					
Calcium	mg/L	0.1	98.2	802	388
Iron	mg/L	0.1	0.282	8.7	3.5
Magnesium	mg/L	0.1	83.1	4160	567
Sodium	mg/L	0.1	1190	71400	7537
Potassium	mg/L	0.1	1	1000	46.5
Total Metals		•			
Iron	mg/L	0.1	-	-	-

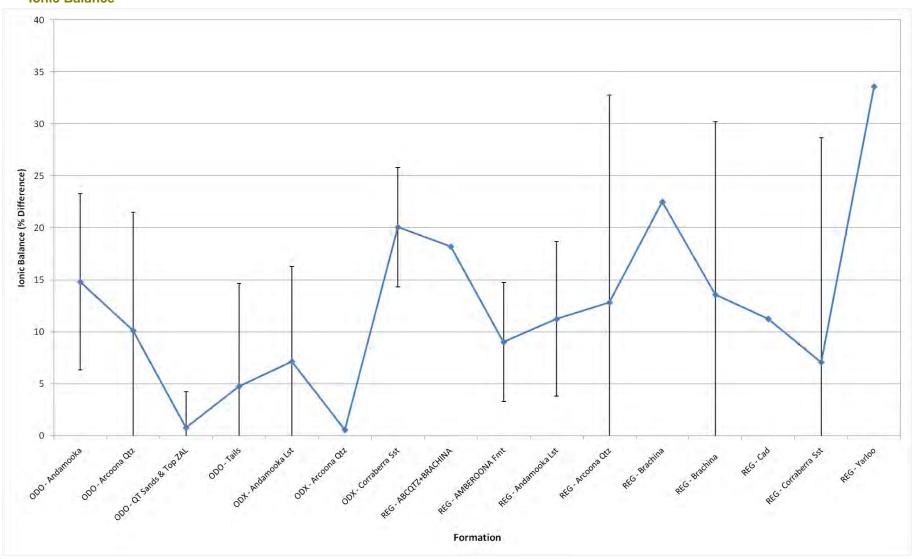
Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean
Dissolved Metals					
Arsenic	mg/L	0.001	0.005	0.08	0.008
Barium	mg/L	0.001	0.086	0.13	0.101
Boron	mg/L	0.001	2	12	4.85
Cobalt	mg/L	0.001	0.005	0.073	0.009
Copper	mg/L	0.001	0.005	0.14	0.012
Lead	mg/L	0.001	0.005	0.019	0.006
Manganese	mg/L	0.001	0.29	6.2	0.97
Nickel	mg/L	0.001	0.005	0.084	0.011
Selenium	mg/L	0.001	0.015	0.2	0.052
Strontium	mg/L	0.001	1.6	18	6.4
Thallium	mg/L	0.001	0.005	0.025	0.006
Thorium	mg/L	0.001	0.005	0.005	0.005
Uranium	mg/L	0.001	0.005	0.0085	0.005
Zinc	mg/L	0.001	0.05	0.59	0.09
Dissolved Anions					
Sulphate	mg/L	2	170	9200	1917
Chloride	mg/L	1	720	100000	9419
Fluoride	mg/L	0.1	0.5	0.5	0.5
NO2-N	mg/L	0.5	0.5	0.5	0.5
NO3-N	mg/L	0.5	0.5	2.1	0.67
Other parameters					
TKN as N	mg/L	1	1	8.4	1.7
Total Nitrogen (as N)	mg/L	2	2	8	2.63
Silica	mg/L	1	5.5	19	9.48
Total Organic Carbon	mg/L	1	1	46	5.99

Note: where values were less than the Limit Of Reporting (LOR), the geomean has been calculated setting values at the LOR (ie. the geomean is slightly overestimated).

Summary of Brachina Formation groundwater chemistry

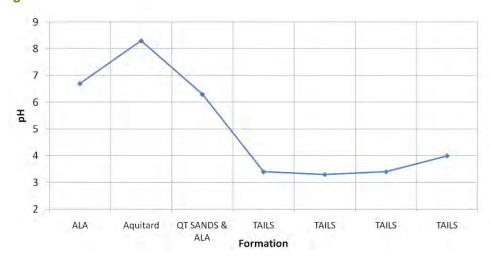

Analyte	Units	Primary Lab LOR	Minimum	Maximum	Geometric mean	
pH Value and Total Dissolved Sol	lids					
рН	pH Unit	0.1	7	7.4	7.17	
TDS	mg/L	1	26000	77000	41745	
Electrical conductivity	uS/cm	1	30500	77000	49501	
Alkalinity						
Hydroxide as CaCO3	mg/L	5	0	0	0	
Carbonate as CACO3	mg/L	5	1	1	1	
Bicarbonate as CACO3	mg/L	5	120	380	199	
Total Alkalinity as CACO3	mg/L	5	120	380	199	
Dissolved Major Cations						
Calcium	mg/L	0.1	829	1250	1044	
Iron	mg/L	0.1	0.759	9.39	2.81	
Magnesium	mg/L	0.1	653	1940	891	
Sodium	mg/L	0.1	10100	24500	14133	
Potassium	mg/L	0.1	85	230	139	
Total Metals						
Iron	mg/L	0.1	-	-	-	
Dissolved Metals						
Arsenic	mg/L	0.001	0.001	0.100	0.010	
Barium	mg/L	0.001	0.032	0.12	0.056	
Boron	mg/L	0.001	7.8	11	8.8	
Cobalt	mg/L	0.001	0.001	0.0054	0.002	
Copper	mg/L	0.001	0.005	0.014	0.008	
Lead	mg/L	0.001	0.001	0.001	0.001	
Manganese	mg/L	0.001	0.49	3.6	0.95	
Nickel	mg/L	0.001	0.01	0.017	0.013	
Selenium	mg/L	0.001	0.026	0.062	0.032	
Strontium	mg/L	0.001	12	34	19.8	
Thallium	mg/L	0.001	0.001	0.001	0.001	
Thorium	mg/L	0.001	0	0	0	
Uranium	mg/L	0.001	0.001	0.0087	0.003	
Zinc	mg/L	0.001	0.015	0.063	0.025	
Dissolved Anions						
Sulphate	mg/L	2	1500	6700	3177	
Chloride	mg/L	1	9400	27000	13695	
Fluoride	mg/L	0.1	0.5	0.5	0.5	
NO2-N	mg/L	0.5	0.5	0.5	0.5	
NO3-N	mg/L	0.5	0.5	19	1.24	
Other parameters						
TKN as N	mg/L	1	1	3.6	1.6	
Total Nitrogen (as N)	mg/L	2	2	21	4.3	
Silica	mg/L	1	14.4	25	17.0	
Total Organic Carbon	mg/L	1	1.6	15	5.7	

Note: where values were less than the Limit Of Reporting (LOR), the geomean has been calculated setting values at the LOR (ie. the geomean is slightly overestimated).

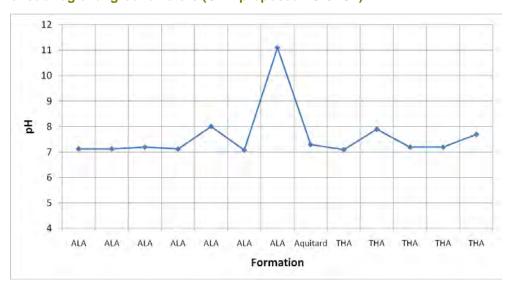


Summary of Amberoona Formation groundwater chemistry

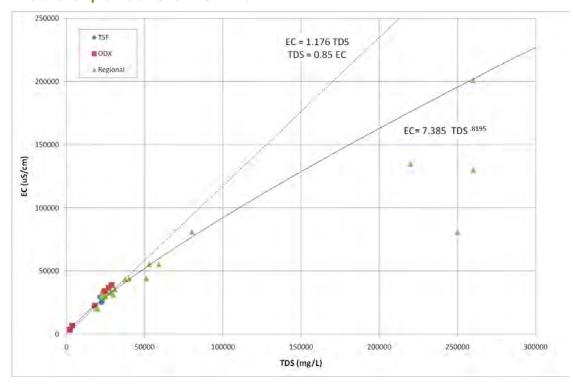
		Dimen		
Analyte	Units	Primary Lab LOR	Minimum	Maximum
pH Value and Total Dissolved Solid	ds			
рН	pH Unit	0.1	6.9	7
TDS	mg/L	1	55000	150000
Electrical conductivity	uS/cm	1	56900	120000
Alkalinity				
Hydroxide as CaCO3	mg/L	5	-	-
Carbonate as CACO3	mg/L	5	0	0
Bicarbonate as CACO3	mg/L	5	91	150
Total Alkalinity as CACO3	mg/L	5	91	150
Dissolved Major Cations				
Calcium	mg/L	0.1	1650	2040
Iron	mg/L	0.1	3.19	3.71
Magnesium	mg/L	0.1	1180	2040
Sodium	mg/L	0.1	17800	57900
Potassium	mg/L	0.1	120	630
Total Metals				
Iron	mg/L	0.1	-	-
Dissolved Metals				
Arsenic	mg/L	0.001	<0.001	<0.07
Barium	mg/L	0.001	0.045	0.1
Boron	mg/L	0.001	3.1	7.1
Cobalt	mg/L	0.001	0.0016	0.0027
Copper	mg/L	0.001	0.021	0.046
Lead	mg/L	0.001	<0.001	0.0011
Manganese	mg/L	0.001	3.7	5.3
Nickel	mg/L	0.001	0.018	0.027
Selenium	mg/L	0.001	0.039	0.083
Strontium	mg/L	0.001	34	44
Thallium	mg/L	0.001	<0.001	<0.001
Thorium	mg/L	0.001	-	-
Uranium	mg/L	0.001	<0.001	0.005
Zinc	mg/L	0.001	0.094	0.13
Dissolved Anions				
Sulphate	mg/L	2	3600	5300
Chloride	mg/L	1	21000	78000
Fluoride	mg/L	0.5	<0.5	<0.5
NO2-N	mg/L	0.5	<0.5	<0.5
NO3-N	mg/L	0.5	<0.5	<0.5
Other parameters	-			
TKN as N	mg/L	1	<1	6.5
Total Nitrogen (as N)	mg/L	2	<2	6
Silica	mg/L	1	6.5	13.3
Total Organic Carbon	mg/L	1	<1	6.1



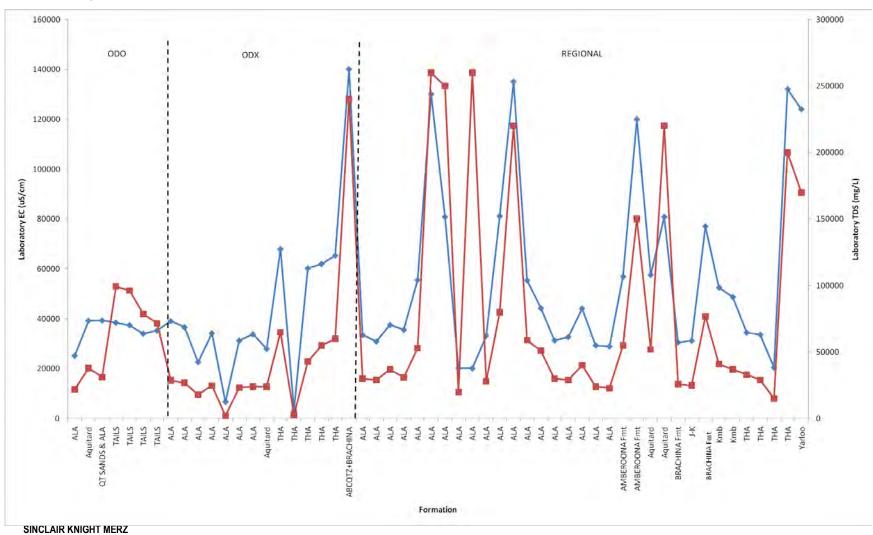
Ionic Balance

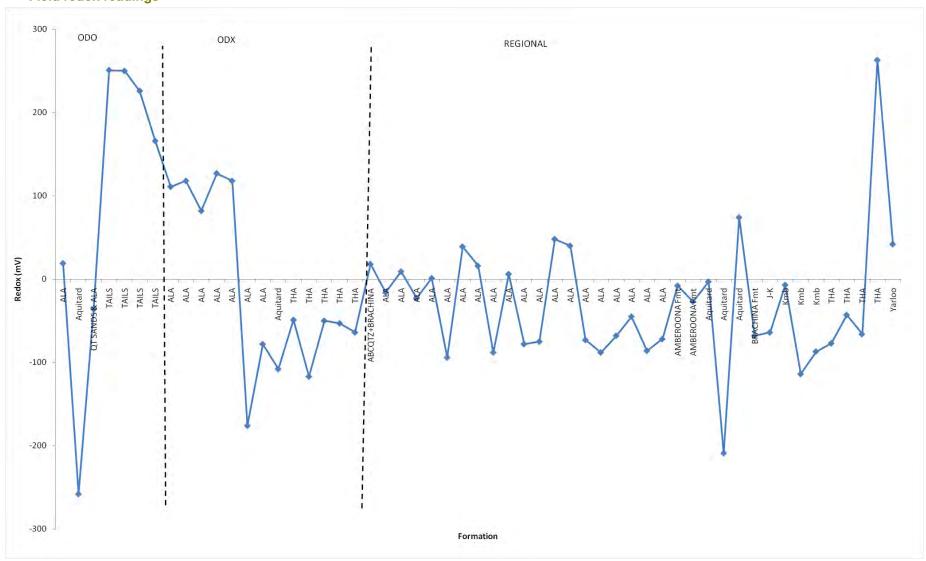


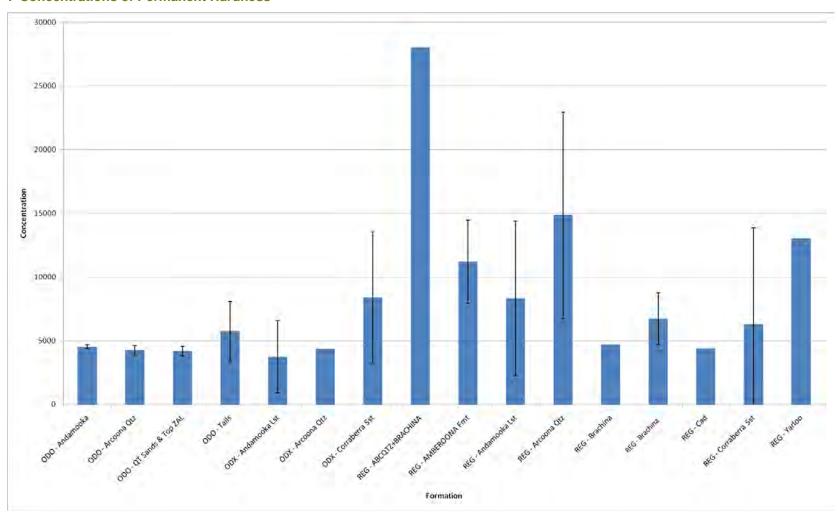
pH of groundwater in the ODO TSF area

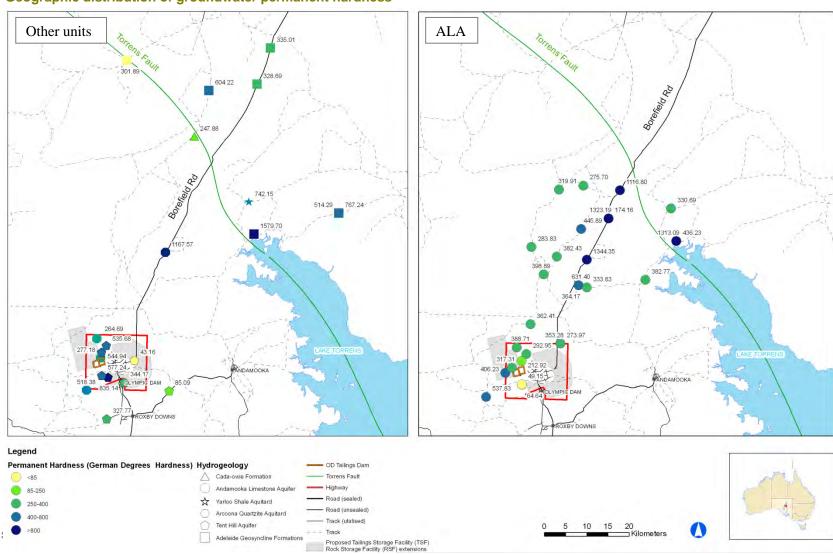


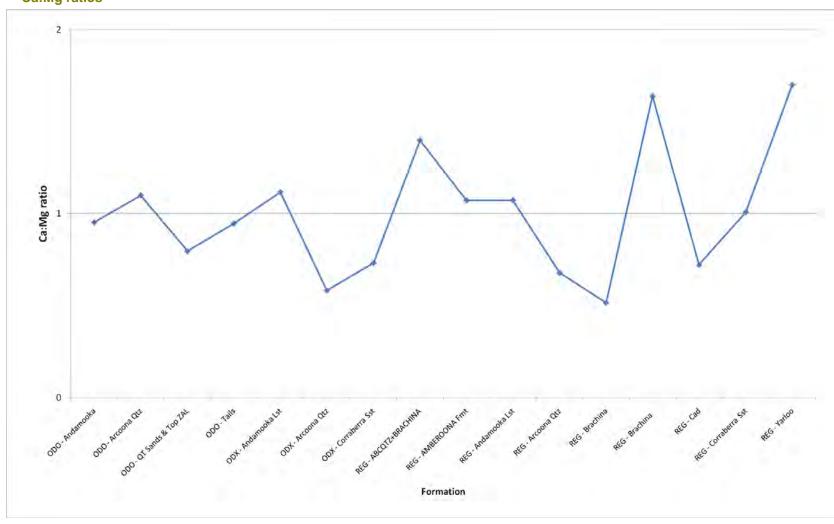
pH of sub-regional groundwaters (ODX proposed TSF/RSF)

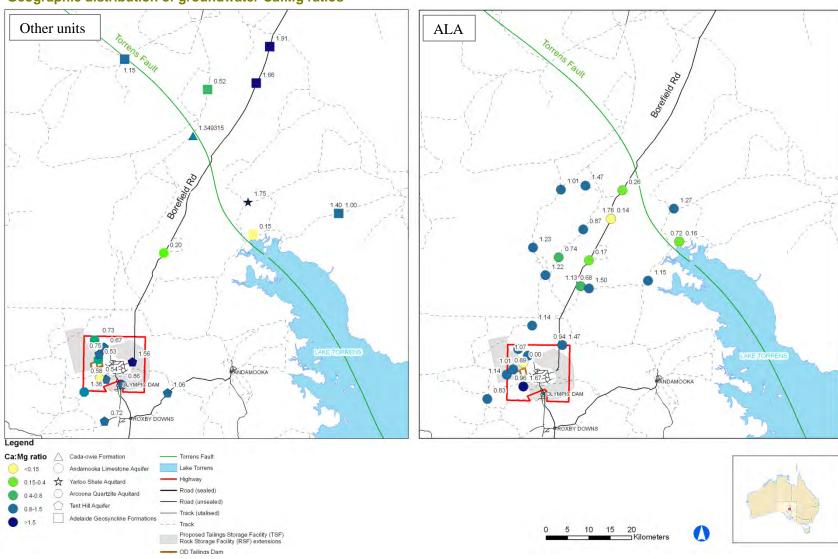


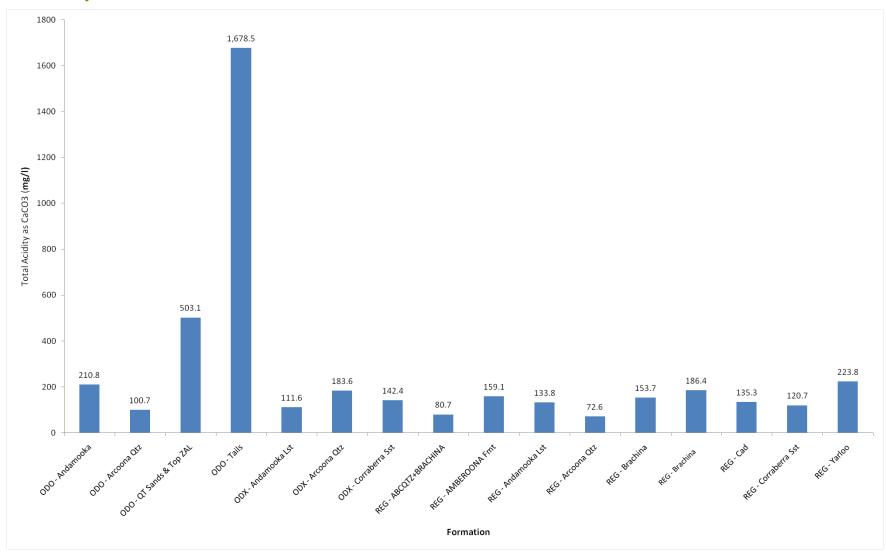

Relationship of Lab EC to TDS in the ALA

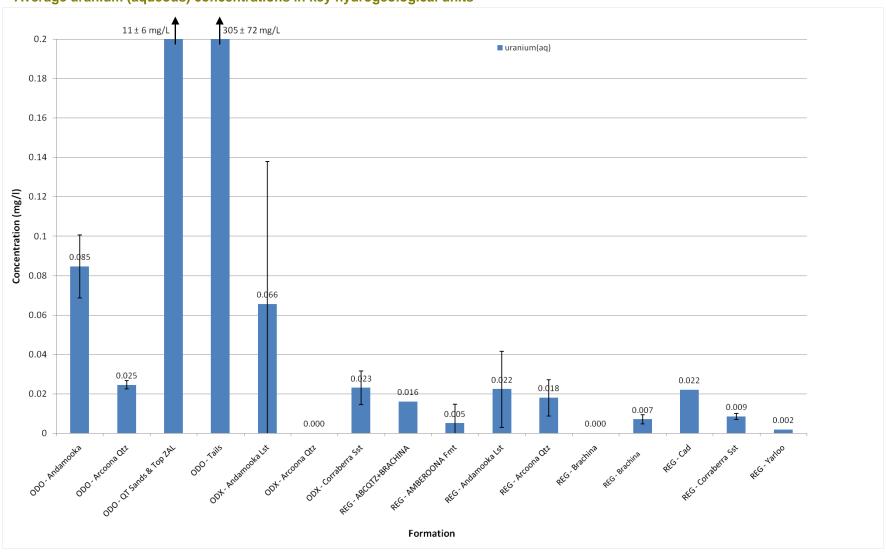

Laboratory measurements of EC and TDS

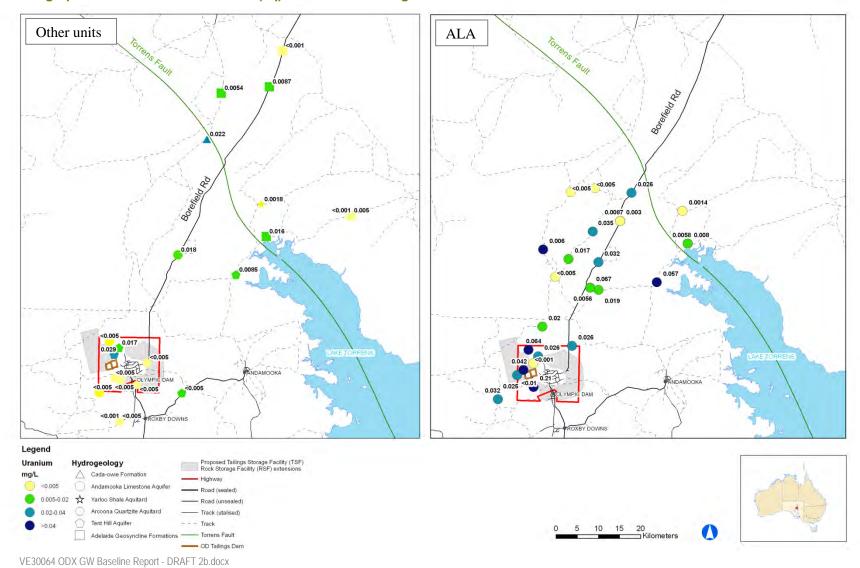

Field redox readings


. Concentrations of Permanent Hardness


Geographic distribution of groundwater permanent hardness


Ca:Mg ratios


Geographic distribution of groundwater Ca:Mg ratios


Total Acidity

Average uranium (aqueous) concentrations in key hydrogeological units

Geographical distribution of uranium (aq) concentrations in groundwater

Client: BHP-Billiton Job Name: BHP-B Baseline GW Survey Project No: VE30064

Date: July - Sep 2008 Levels by: SKM

Section Process Proc	Monitoring Well	Program	Screened Lithology	Date sampled	SWI (m)	pH	Laboratory pH	Electrical Conductivity	Laboratory EC	TDS (mg/L)	Laboratory TDS	TDS/EC	Redox (mV)	Temperature (°C)	Appearance
March Marc								(uS/cm)	(uS/cm)		(mg/L)				
1.	_														
1. 2															
Marcing Pile Marc															
	H4 2														
Striker The March Marc	LP2	Existing TSF			N/A	6.71	6.70	29400	25200	19110	22000	0.75	19	19.4	
Pageoned DEX PSYS MA	QT2	Existing TSF	Arcoona		83.17	8.60	8.30	50900	39200	33085	38000	0.75	-258	21.7	Clear, dark grey tinge, H ₂ S odour
The Proposed COX 1976/29 A. A. 2807/2000 4.08 6.07 7.13 7.700 7.000 2.00	LR1	Proposed ODX TSF/RSF	ALA	27/07/2008	55.32	6.60	7.13	34900	36600	22685	26900	0.77	118	10.6	Clear
The Proposed COX PSY/MS M. 2007/2000 1,01 711 720	LR2	Proposed ODX TSF/RSF	ALA	30/07/2008	55.58	7.74	7.20	30300	22600	19695	18000	0.59	82	20.0	Clear, no odour
Prints Proposed DOX 197/87 Pol. 1,000/2004 25.00 25.	LT19		ALA	28/07/2008	48.96										Slightly cloudy/clear
Printle Proposed DON TSP/RS No. 3790/2008 2016 7346 7470 9770	LT41														
Proposed DOX TS PASS	PT15														
Proposed COX TSP/FEF															
Proposed COX TSP/F6F Annews										2321		0.61			
Proposed DIX TSF/RS										20540		0.76			
Proposed DIX TSP/SS NA 279/2008 53.1 6.91 7.68 7.08	40.14			13/06/2006	30.46	7.02	7.30	31000	27900	20340	24000	0.76	-100	22.0	
Proposed COX 157/1678 NA				27/07/2008	59.33	6.91	7.08	30600	31200	19890	23300	0.76	-176	9.5	
Proposed OX 157/85 A. 27/07/000 53.84 30.0 11.10 13.200 33.00 21.05 53.00															
Proposed OOK TSP/TSP TWA	RT17a														
Negronal Pydrogeology AA 2001/2008 129 652 7.30 14480 37500 912 37000 2.6 2.3 2.3 2.3 2.3 2.3 2.3 2.4 2.5	RT17b	Proposed ODX TSF/RSF			70.24	7.28	7.70	85500	65300			0.70	-64	19.8	
Mag	LR10	Regional hydrogeology	ALA		12.59	6.52	7.10	14480	37500	9412	37000	2.56	-23	23.7	
No. Mark	LR4	Regional hydrogeology	Arcoona	-	62.82	7.52	-	14600		9490	-	-	-3	22.4	Partially DRY, enough to sample field parameters, clear, slightly cloudy - pale orange
MAMEL 32 Regional hydrogeology AL 3.796/2008 69.34 7.36 7.20 30.00 28900 15500 25000 1.00 16 72 24.3 deep, moderate 155 obser with a second se	LR8	Regional hydrogeology	ALA	30/07/2008	54.66	7.68	7.10	47900	33500	31135	30000	0.63	-16	18.4	Slightly cloudy - clear
MARIS 20 Regional Phydrogeology AL 17/88/2008 89.81 5.88 5.70 2.50000 3.000	LR9	Regional hydrogeology	ALA	31/07/2008	39.16	6.65	6.60	39200	30900	25480	29000	0.74	9	21.5	Clear, no odour
MAM 2,00 Regional Profrequency ALA 1770/L2008 67.7 R. 5.6 P. 70.0 1900.0 193200 25350 2800.0 0.7 P. 12.4 R. turks, plane gray, modernier M.5 odour MAM 2,20 Regional Profrequency ALA 1770/L2008 50.0 9.6 P. 90.0 154100 57600 41665 5200.0 0.81 3000 20.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MAR_7	Regional hydrogeology	ALA	8/09/2008	69.14	7.36	7.20	30200	28900	19630	23000	0.76	-72	24.3	Clear, moderate H ₂ S odour
MAIN AL	MAR3_20														Pale orange/brown, turbid
Prof. Regional hydrogeology Account 10/68/2008 50.00 9.66 9.70 9.86 9.70 4.70															
Process Regional hydrogeology Th4															
Principal Segional Pytrogeology THA 11/08/2008 6.5 a.2 7.9 b. 7.10 3.9900 3.9500 2.9355 2.9000 0.81 -4.3 1.6 Clear with fines black particles 1.7 b. 1.	PT03_4b														
Princise Regional hydrogeology March 17/08/2008 6.05 6.00 7.20 N/A 20500 15300 1															
Process Regional hydrogeology ALA 17/08/2008 57.82 57.6 7.70 228000 13500 220000 0.93 48 22.9 Cloudy-white/pale brown, no odour												0.81			•
Pres Regional hydrogeology ALA 19/08/2008 37.76 6.57 7.10 31700 55400 20005 59000 1.86 40 21.0 Pale arange/frown, no adour Pres Regional hydrogeology ALA 19/08/2008 35.77 6.57 7.10 33000 31.300 21.450 30000 0.73 -73 21.4 Close, Hyb. Godur Pres Regional hydrogeology ALA 18/08/2008 40.70 5.50 7.70 33000 31.300 21.450 30000 0.75 -88 22.5 Close Pres Regional hydrogeology ALA 18/08/2008 52.76 6.51 7.00 38700 32700 25155 29000 0.75 -88 20.8 Close, no adour Pres Regional hydrogeology ALA 18/08/2008 40.7 6.50 7.30 52200 Al-10 33000 31.00 0.77 -45 24.2 Clear, no adour Pres Regional hydrogeology ALA 19/08/2008 50.55 6.62 6.50 35400 21.00 2000 21.00 0.77 -46 21.0 Clear, no adour Pres Regional hydrogeology ALA 17/08/2008 50.05 6.62 6.50 35400 21.00 21.00 0.77 -70 0.70 0.70 0.70 0.70 0.70 0.												- 0.03			
Pries Regional hydrogeology ALA 19/08/2008 35.77 6.52 7.00 68800 44200 45370 51000 0.73 -73 21.4 Gear, H ₂ S odour Pries Regional hydrogeology ALA 18/08/2008 35.77 6.77 7.10 33000 3100 21450 30000 0.91 488 22.5 Gouldy grey, H ₂ S odour Pries Regional hydrogeology ALA 18/08/2008 52.76 6.51 7.00 38700 32700 225155 2000 0.75 -68 20.8 Clear, no odour Pries Regional hydrogeology ALA 18/08/2008 50.05 6.62 6.90 33700 29300 21905 24000 0.77 -45 24.2 Glear, no odour Pries Regional hydrogeology Cadnowie 9/09/2008 50.05 6.62 6.90 33500 3100 29300 21905 24000 0.71 -64 19.3 Clear, no odour Pries Regional hydrogeology BRACHINA Fitt 9/09/2008 8.09 6.72 7.20 91900 77000 59735 77000 0.84 -7 24.0 Clear, no odour Pries Regional hydrogeology ALA 19/08/2008 8.09 6.72 7.20 91900 77000 59735 77000 0.84 -7 24.0 Clear, no odour Pries Regional hydrogeology ALA 19/08/2008 7.56 6.62 6.90 35400 3100 20100 120185 25000 0.71 -64 19.3 Clear, no odour Pries Regional hydrogeology BRACHINA Fitt 9/09/2008 8.09 6.72 7.20 91900 77000 59735 77000 0.84 -7 24.0 Clear, no odour Pries Regional hydrogeology ALA 19/08/2008 7.56 6.66 7.00 184900 20100 120185 25000 0.71 -64 19.3 Clear, no odour Pries Regional hydrogeology ALA 19/08/2008 7.56 6.67 7.00 184900 20100 120185 25000 0.71 -64 19.3 Clear, no odour Pries Regional hydrogeology ALA 19/08/2008 7.56 6.68 7.00 184900 20100 120185 25000 0.84 -7 24.0 Clear, no odour Pries Regional hydrogeology ALA 19/08/2008 6.00 6.75 6.90 179000 132000 18000 181850 25000 0.88 74 24.4 Pale brown, fronty, drilling fluid odour Pries Regional hydrogeology ALA 19/08/2008 6.00 6.78 7.20 22800 20200 18820 20000 0.88 74 24.4 Pale brown, fronty, drilling fluid odour Pries Regional hydrogeology ALA 19/08/2008 8.01 37 7.32 6.90 188800 124000 199720 170000 1.01 42 2 24.1 Yellowich disclouration. No odour Pries Regional hydrogeology ALA 20/08/2008 23.5 7.35 8.10 N/A* 13000 55500 22000 0.88 78 21.2 24.0 Yellowich disclouration. No odour Pries Regional hydrogeology ALA 20/08/2008 23.5 7.35 8.10 N/A* 13000 55500 22000 1.1															
Principal Prin															
Pril 8 Regional hydrogeology ALA 18/08/2008 52.76 6.51 7.00 38700 32700 25155 29000 0.75 6.8 20.8 Glear, no odour 18/08/2008 40.07 1.80 18/08/2008 40.07 6.90 7.30 52200 44.100 33930 40000 0.77 4.5 24.2 Glear, no odour 4.5 2.6 Glear, no decident 4.5 Gle	PT45														
Procedure Proc	PT48														
Prec Regional hydrogeology ALA 17/08/2008 75.83 6.90 6.90 33700 29300 29300 29300 29000 0.71 -86 21.6 dear, moderate H,5 odour	PT51					6.90	7.30	52200		33930	40000	0.77	-45	24.2	
Regional hydrogeology Racchinak First 9/09/2008 50.05 6.62 6.90 33400 31200 23010 25000 0.71 -64 19.3 Glear, no adour	PT60				75.83	6.90	6.90	33700	29300	21905	24000	0.71	-86	21.6	
PF66 Regional hydrogeology ALA 13/08/2008 75.61 6.66 7.00 184900 22100 122085 260000 1.41 6 26.5. Pale brown, no dour	PT62	Regional hydrogeology	Cadnowie	9/09/2008	50.05	6.62	6.90	35400	31200	23010	25000	0.71	-64	19.3	Clear, no odour
Prof. Regional hydrogeology ALA 19/08/2008 75.61 6.66 7.00 184900 20100 120185 260000 1.41 6 2.65 7.65	PT63	Regional hydrogeology	BRACHINA Fmt	9/09/2008	8.09	6.72	7.20	91900	77000	59735	77000	0.84	-7	24.0	Clear, no odour
REGIONAL Phydrogeology Acroona 17/08/2008 10.47 6.97 6.90 179000 132000 116350 200000 1.12 263 24.3 Clear, no odour 17/08/2008 20.00 17/08/2008 62.00 6.45 6.90 249000 80800 161850 20000 0.88 74 24.4 Pale brown, frothy, drilling fluid odour 18/08/2008 18/08/2008 18/08/2008 18/08/2009 18	PT64	Regional hydrogeology	BRACHINA Fmt	-	N/A	-	-	-	,	-	-	-	-	-	DRY - Not Sampled
KRT02b Regional hydrogeology Arcona 17/08/2008 6.20 6.45 6.90 249000 80800 161850 220000 0.88 7.4 24.4 Pale brown, frothy, drilling fluid odour RT03 Regional hydrogeology ALA 13/08/2008 59.86 6.78 7.20 22000 20000 0.88 7.4 24.4 Pale brown, frothy, drilling fluid odour RT04B Regional hydrogeology ALA 2/09/2008 32.2 7.0 7.20 41500 35600 27040 31000 0.75 1 23.7 Clear, microir drilling fluid odour RT05B Regional hydrogeology Yarloo 3/09/2008 36.13 7.32 6.90 16880 124000 109720 170000 1.01 42 24.1 Yellowish discolouration, too dour RT05B Regional hydrogeology ALA 20/08/2008 9.53 6.55 6.90 34000 55500 1.56 9.94 22.4 12 mr. noindwish discolouration, too dour RT05E Regional hydrogeology <td< td=""><td>PT66</td><td>Regional hydrogeology</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pale brown, no odour</td></td<>	PT66	Regional hydrogeology													Pale brown, no odour
Regional hydrogeology ALA 19/08/2008 59.86 6.78 7.20 22800 20200 14820 20000 0.88 -88 21.7 Pale grey/clear, hydrocarbon odour RTOMA Regional hydrogeology ALA 2/09/2008 32.32 707 7.20 41600 35600 27040 31000 0.75 1 23.7 Gear, minoir drilling fluid odour RTOMA Regional hydrogeology ALA 2/09/2008 33.12 7.32 6.90 168800 124000 199720 170000 1.01 42 24.1 Yellowshi discolouration. No odour RTOSA Regional hydrogeology ALA 2/09/2008 9.63 6.65 6.90 34000 55500 22100 53000 1.56 -94 22.4 Gear, no odour RTOSA Regional hydrogeology ALA 2/09/2008 21.58 7.35 8.10 N/A* 130000 - 260000 - 39 23.2 Gear no odour, very salty ALTOSA Regional hydrogeology AMBEROONA FINI 2/109/2008 18.61 6.54 6.50 199000 1400000 129350 240000 1.21 18 22.9 Gear, sightly cloudy, no odour RTOSA Regional hydrogeology AMBEROONA FINI 2/108/2008 12.93 6.54 7.00 N/A* 56900 - 55000 - 8 16.3 Gear, no odour Gear, sightly cloudy, no odour Gear, no odour Gear, sightly cloudy, no odour Gear, sightly cloudy, no odour Gear, sightly cloudy, no odour Gear, no odour Gear, sightly cloudy, no odour Gear, sightly cloudy, no odour Gear, no od	RT01		THA												
Regional hydrogeology ALA 2/09/2008 32.32 7.07 7.20 41600 35600 27040 31000 0.75 1 23.7 Ges, minoir drilling fluid odour		, , ,		, ,											
Regional hydrogeology															
REGIONAL Phytrogeology ALA 20/08/2008 9.63 6.65 6.90 34000 55500 22100 53000 1.56 -94 22.4 dear, no adour RT05b Regional hydrogeology ALA 20/08/2008 21.58 7.35 8.10 N/A* 130000 - 260000 - 39 23.2 dear no adour RT05b Regional hydrogeology ALA 20/08/2008 18.61 6.54 6.50 199000 1400000 129350 240000 1.21 18 22.9 dear no adour RT07a Regional hydrogeology AMBEROONA Fmt 21/08/2008 12.93 6.54 7.00 N/A* 56900 - 55000 - 8 16.3 dear, no adour RT07b Regional hydrogeology AMBEROONA Fmt 21/08/2008 12.93 6.54 7.00 N/A* 56900 - 55000 - 8 16.3 dear, no adour RT07b Regional hydrogeology AMBEROONA Fmt 21/08/2008 16.00 7.23 6.90 154700 120000 100555 150000 0.97 -27 18.4 Dark grey, strong drilling fluid adour RT07b Regional hydrogeology RRCHNA Fmt 3/09/2008 16.49 6.95 7.00 37200 30500 24180 26000 0.70 6.88 22.8 dear, hos adour															
RTIOS Regional hydrogeology ALA 20/08/2008 21.58 7.35 8.10 N/A* 130000 - 250000 - 39 23.2 Glear no odour, very salty RTIOS Regional hydrogeology ALA CICT2-BRACHINA 1/09/2008 18.61 6.54 6.50 199000 140000 129350 240000 1.21 18 22.9 Glear, sightly cloudy, no odour RTIOTA Regional hydrogeology AMBEROONA Fint 2/09/2008 15.93 6.54 7.00 N/A* 56900 - 55000 - 8 16.3 Glear, no odour RTIOTA Regional hydrogeology AMBEROONA Fint 2/09/2008 15.00 7.23 6.90 154700 120000 100555 150000 0.97 2-27 18.4 Dark grey, strong drilling fluid odour RTIOTA Regional hydrogeology BRACHINA Fint 3/09/2008 16.95 7.00 37200 30500 24180 26000 0.70 6-8 22.8 Glear, type of the complex of t															
RTOSC Regional hydrogeology ABCQTZ-BRACHINA 1/09/2008 18.61 6.54 6.50 19900 140000 129350 240000 1.21 18 22.9 Gear, slightly cloudy, no odour RTO7A Regional hydrogeology AMBEROONA Fint 21/08/2008 12.93 6.54 7.00 N/A* 56900 - 55000 - 8 16.3 Gear, no odour RTO7B Regional hydrogeology AMBEROONA Fint 2/09/2008 16.00 7.23 6.90 154700 120000 100555 150000 0.97 -27 18.4 Dark grey, strong drilling fluid odour RTO9 Regional hydrogeology BRACHINA Fint 3/09/2008 16.49 6.95 7.00 37200 30500 24180 25000 0.70 6.8 22.8 Gear, Mys doorur RTA1 Regional hydrogeology BRACHINA Fint 10/09/2008 19.55 6.62 7.10 57600 52500 37440 41000 0.71 -114 24.5 Gear, strong HyS odour										22100		1.50			
RRTO7a Regional hydrogeology AMBEROONA Fmt 21/08/2008 12.93 6.54 7.00 N/A* 56900 - 55000 - 8 16.3 Clear, no odour NRTO7b Regional hydrogeology AMBEROONA Fmt 21/08/2008 16.00 7.23 6.90 154700 120000 100555 15000 0.97 -27 18.4 Darkgrey, strong drilling fluid odour NRTO9 Regional hydrogeology RACHINA Fmt 3/09/2008 16.49 6.95 7.00 37200 30500 24180 26000 0.70 6.8 22.8 Clear, Hy5 odour RRTO9 Regional hydrogeology BRACHINA Fmt 10/09/2008 19.55 6.62 7.10 57600 52500 37440 41000 0.71 -114 24.5 Clear, strong Hy5 odour										129350		1.21			
REGIONAl Prior Regional hydrogeology AMEROONA Fint 2/09/2008 16.00 7.23 6.90 154700 120000 100555 150000 0.97 -27 18.4 Dark grey, strong drilling fluid odour RT09 Regional hydrogeology 8RACHINA Fint 3/09/2008 16.49 6.95 7.00 37200 30500 24180 26000 0.70 -68 22.8 Clear, H ₂ S odour RT41 Regional hydrogeology 8RACHINA Fint 10/09/2008 19.55 6.62 7.10 57600 52500 37440 41000 0.71 -114 24.5 Clear, strong H ₂ S odour										- 129330					
REGIONAI hydrogeology BRACHINA First 3/09/2008 16.49 6.95 7.00 37200 30500 24180 26000 0.70 -6.8 22.8 Clear, Hy5 odour RET41 Regional hydrogeology BRACHINA First 10/09/2008 19.55 6.62 7.10 57600 52500 37440 41000 0.71 -114 24.5 Clear, strong Hy5 odour										100555		0.97			
RT41 Regional hydrogeology BraCHINA Fmt 10/09/2008 19.55 6.62 7.10 57600 52500 37440 41000 0.71 -114 24.5 Clear, strong H, S odour	RT09														
	RT41														
	RT42	Regional hydrogeology	BRACHINA Fmt	10/09/2008	6.46	6.88	7.40	53300	48700	34645	37000	0.69	-87	26.1	Clear, strong H ₂ S odour

* EC probe malfunction, no EC recorded for monitoring well

ALA - Andamooka Limestone Aquifer Arcoona - Arcoona Quartzite Aquitard

THA - Tent Hill Aquifer

Yarloo - Yarloo Shale

J-K - Cadna-owie/Algebuckina Kmb - Bulldog Shale

SWL - Standing Water Level

														Existi	ng TSF		-				
									Andamooka Lst			Arcoona Qtz			S & top ZAL			TA	ILS		
							Sample	LP2	DUP 6	TRIPLICATE 3	QT2	DUP 8	TRIPLICATE 5	H3-1	H3-1	H1-1	H3-2	H1-1	H3-2	H4-2	H1-2
							Date	4/09/2008 08ENME0023714	4/09/2008 08ENME0023714	4/09/2008 ES0813041	4/09/2008 08FNMF0023714	9/09/2008 08FNMF0024196	10/09/2008 ES0813178001	17/06/2008 E038205	23/07/2008 F038811	17/06/2008 F038205	17/06/2008 E038205	23/07/2008 F038811	23/07/2008 F038811	23/07/2008 F038811	23/07/2008 F038811
							Lab Report Laboratory	Labmark	Labmark	ALS	Labmark	Labmark	ALS	Labmark							
							Duplication		Intra-lab	Inter-lab		Intra-lab	Inter-lab								
		Labmark		SA EPA (2003) Environmental	SA EPA (2003) Environmental	ANZECC (2000) Aquatic	ANZECC (2000) Aquatic Ecosystems -														
Analyte	Units	LOR	ALS LOR	Protection Policy - Marine Waters 95% Species Protection	Protection Policy -	Ecosystems - Marine Waters 95% Species Protection	Marine Waters 90% Species Protection														
pH Value and Total Dissol	pH Unit	0.1	0.01		6.5-8.5			6.7	6.8	6.74	8.3	7	6.77	6.3	6.3	3.5	3.5	3.4	3.4	4	3.3
TDS	mg/L	1	1					22000	23000	21000	38000	25000	23600	33700	31100	96900	73100	99300	78500	71600	96200
Electrical conductivity	uS/cm	1	1					25200	25400	29400	39200	31200	33000	41700	39300	37800	33200	38400	34000	35300	37400
Alkalinity Hydroxide as CaCO3	mg/L	5	1 1				1		1	<1			<1	<5	<5	<5	<5	<5	<5	<5	<5
Carbonate as CACO3	mg/L	5	1					<1	- <1	<1	- <1	- <1	<1 <1	<5 <5	<5						
Bicarbonate as CACO3	mg/L	5	1					920	940	949	140	340	258	1780	1920	<5	<5	<5	<5	<5	<5
Total Alkalinity as CACO3	mg/L	5	1	1	1	1	1	920	940	949	140	260	258	1780	1920	<5	<5	<5	<5	<5	<5
Dissolved Major Cations Calcium	mg/L	0.1	1 1	1	ı		1	800	799	785	469	791	769	807	755	894	697	738	669	627	690
Iron	mg/L	0.1	0.05	1	1		1	15.6	15.6	14.2	0.115	5.12	-	-	-	- 034	-	-	-	-	-
Magnesium	mg/L	0.1	1					850	852	801	877	577	552	1010	948	1590	518	839	492	1660	597
Sodium	mg/L	0.1	1					6510	6330	6610	14400	7620	7620	3720	9330	8370	3100	3810	3330	3700	3810
Potassium Total Metals	mg/L	0.1	1					61	62	63	86	110	98	780	26.6	200	800	655	730	527	752
Iron	mg/L	0.1	0.01	ı	ı	1	1					ı	5.69	7690	117	327	7420	7380	6550	8020	7460
Dissolved Metals				1	1				1			1	•		•					•	•
Aluminium	mg/L	0.001	0.01					0.024	0.018	0.02	0.039	0.0034	<0.01	9.6	0.39	13000	8200	10000	6600	3900	8200
Antimony Arsenic	mg/L mg/L	0.001 0.001	0.001	0.5 0.05	0.003 0.007			<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 0.024	0.004 0.016	0.0034 <0.001	<0.001 <0.005	<0.001 0.026	0.0012 0.0082	<0.001 0.05	0.0013 0.0091	0.0013 0.047	<0.001 <0.005
Barium	mg/L	0.001	0.001	0.03	0.7			0.018	0.019	0.016	0.029	0.048	0.043	0.02	0.019	0.020	0.045	0.062	0.033	0.023	0.038
Beryllium	mg/L	0.001	0.001					< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.001	< 0.005	0.25	0.34	0.56	0.47	0.31	0.54
Boron	mg/L	0.001	0.05	0.002	0.3			12 <0.0002	12 <0.0002	6.47	6 <0.0002	7.1 <0.0002	3.92 <0.0001	23 0.0004	33	1.9	3.3	1.4	6.1	1.8	2
Cadmium Chromium	mg/L mg/L	0.0002	0.0001	0.002	0.002	-	-	<0.0002 0.0068	<0.0002 0.0087	<0.009	<0.0002 0.0027	<0.0002 0.0016	<0.0001	0.004	<0.002	0.018 0.87	0.015 0.32	0.27	0.2	0.14	0.24
Cobalt	mg/L	0.001	0.001		0.00	0.001	0.014	0.067	0.066	0.054	<0.001	0.0047	0.004	1.6	1.8	48	27	75	43	56	69
Copper	mg/L	0.001	0.001	0.01	2			0.084	0.093	0.088	0.0067	0.0053	0.006	1	0.84	450	5.8	500	9.7	4.3	280
Lead Lithium	mg/L	0.001	0.001	0.005	0.01			<0.001	<0.001 0.87	0.005 0.856	<0.001 0.91	<0.001	<0.001 0.484	<0.001 0.95	0.013	0.086	0.031 9.7	0.99	0.029	0.2 1.4	0.029
Manganese	mg/L mg/L	0.001	0.001		0.5			2.8	2.7	2.2	1.6	0.86	0.464	8.9	16	160	9.7	200	140	240	160
Molybdenum	mg/L	0.001	0.001		0.05			<0.001	<0.001	<0.001	0.0024	0.0019	0.006	0.0072	<0.005	0.0057	0.004	<0.005	<0.005	0.047	<0.005
Nickel	mg/L	0.001	0.001	0.015	0.02			0.031	0.029	0.015	0.0059	0.02	0.01	0.3	0.32	6.1	3.5	9.7	5.7	7.7	8.6
Selenium Strontium	mg/L	0.001	0.01	0.07	0.01			0.038	0.036	<0.010	0.07 9.4	0.044 15	0.01	0.065	0.12 24	5.6 4	3.5 3.9	6.7	5.5 4.5	3.5 8.7	6.3
Thallium	mg/L mg/L	0.001	0.001	0.02				<0.001	<0.001	13.2 <0.001	<0.001	<0.001	<0.001	23 <0.001	<0.005	0.0076	0.0039	0.0077	4.5	<0.005	4.9 <0.005
Thorium	mg/L	0.001	0.001	0.02				-	-	<0.001	-	-	<0.001	-	-	-	-	-	-	-	-
Tin	mg/L	0.001	0.001					<0.001	<0.001	0.001	<0.001	<0.001	<0.001	0.0044	< 0.005	<0.001	<0.001	< 0.005	<0.005	<0.005	<0.005
Titanium Uranium	mg/L	0.001	0.01		0.00			0.0038	0.0029	<0.01	0.0068	0.0025	<0.01 0.026	0.0067	0.021	0.026	0.037	0.022	0.049	0.02	0.054 330
Vanadium	mg/L mg/L	0.001	0.001		0.02	0.1	0.16	0.0014	0.0017	0.103 <0.01	<0.001	0.023 <0.001	<0.01	0.019	0.018	330 0.64	200 0.34	320 0.88	250 0.42	400 0.52	0.82
Zinc	mg/L	0.001	0.005	0.05		7		0.079	0.076	0.046	0.019	0.024	0.018	0.15	0.38	28	19	50	32	31	0.047
Gold	mg/L	0.01	0.001				1	-	-	0.001	-	-	<0.001	<0.01	-	<0.01	<0.01	-	-	-	-
Silica Silica	ma/l	- 4	0.1	1	1		1	29.5	29.3	29.8	6.9	18.6	15.2	74		7.5	87	,	1	1	1
Sulphate	mg/L	11	0.1	1	1	1	1	29.5	23.3	28.0	0.9	10.0	13.2	14		1.5	0/				
Sulphate	mg/L	2	1		500			4300	4100	4020	4500	2600	4420	12200	9900	32200	26100	49300	39100	39900	47300
Chloride Chloride	mg/L	1	1					5700	5500	9020	13000	10000	11600	12500	9040	3180	2690	4370	4050	4200	4340
Fluoride			•			•	•														•
Fluoride		0.1	0.1		1.5			1.5	1.5	2.2	<0.5	<0.5	1	10.9	10.4	11700	9480	13400	8990	5010	10400
Total Kjeldahl Nitrogen as TKN as N	mg/L	1	0.1	5	1	1	1	9.4	11	4.4	2.9	<1	1.2	32.7	15.6	168	182	98.6	70.3	2.1	120
Ionic Balance	IIIg/L		0.1		l .	1	ll.	3.4		7.7	2.3	<u> </u>	1.2	32.1	15.0	100	102	36.0	70.3	2.1	120
Total Anions	meq/L		0.01					-268	-258	-357	-467	-345	-428	-640	-496	-1377	-1120	-1857	-1403	-1215	-1657
Total Cations	meq/L		0.01					395	388	395	725	422	418	718	529	2017	1547	1804	1328	1217	1588
Ionic Balance Total Organic Carbon (TO	%		0.01	l	l	1	1	19.3	20.1	5.1	21.6	9.9	-1.1	5.7	3.3	18.8	16.0	-1.5	-2.7	0.1	-2.1
Total Organic Carbon (10	mg/L	1	1 1	10	I	1	1	3.4	3.4	4	2.7	3.4	4	57	65	28	26	30	26	24	24
Nitrite as N												1		-	•			•	•	•	
NO2-N Nitrate as N	mg/L	0.5	0.01		1			<0.5	<0.5	<0.01	<0.5	<0.5	<0.01		0.04			0.02	<0.01	0.04	0.01
NO3-N	mg/L	0.5	0.01		10			<0.5	<0.5	<0.01	<0.5	<0.5	<0.01	10.4	10.2	0.02	0.02	0.01	<0.01	0.01	0.02
Total Nitrogen (as N) Total Nitrogen (as N)	mg/L	2	0.1	5	1	1	1	9	11 1	4.4	3	<2	1.3	43.1	25.8	168	182	98.6	70.3	2.2	121
rotar Nitrogen (as iv)	mg/L		0.1	3	1		1	,		7.7	, ,	`~	1.0	43.1	20.6	100	102	90.0	70.3	2.2	121

Notes
LOR - Limit of reporting
- Not Analysed
- Raised LOR
- Cuideline is for Hexavalent Chromium (Cr VI)
- Guideline is for 90% Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Potable Water
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection

 $I: \ VESA \ Projects \ VE30064 \ Deliverables \ Draft \ Report \ Sept \ 2008. docx$

					_	Proposed ODX TSF/RSF																						
					L							Proposed O	DX TSF/RSF															
				Sar	mple	I T19	I T41	I R1	Andamo	ooka Lst RT16a	RT17a	PT24a	PT24A	Arcoona Qtz QR1	PT15	PT17	Corraberra Sst	RT17B	PT24h	ABCQTZ+BRACHINA RT05C	AMBEROO RTO7A	DNA Fmt RT07B	IR8	DUP1	IR9	I R10	DUP 5	
				Dat	ite	27/07/2008	27/07/2008	27/07/2008	30/07/2008	27/07/2008	27/07/2008	17/06/2008	28/07/2008	13/08/2008	12/08/2008	17/08/2008	17/08/2008	17/08/2008	12/08/2008	1/09/2008	21/08/2008	2/09/2008	30/07/2008	30/07/2008	31/07/2008	20/08/2008	20/08/2008	
					b Report	EM0806112	EM0806112	EM0806112	08ENME0020073	EM0806112	EM0806112	E038205	ES0810866001	08ENME0021450	08ENME0021450		08ENME0021863	08ENME0021863	08ENME0021268	08ENME0023416		08ENME0023416	08ENME0020073	08ENME0020073		8ENME0022255	08ENME0022255	
					boratory uplication	ALS	ALS	ALS	Labmark	ALS	ALS	Labmark	ALS	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark Intra lab	Labmark	Labmark	Labmark Intra-lab	
				Du	piication						1	1									'			IIII a lab	1	ı	mire ide	
				Al	NZECC (2000)																							
		SA EPA (200 Environmen	5A EPA (2003)	ANZECC (2000)	Aquatic																							
Analyte	Units Labmark	ALS LOR Protection Po	licy - Environmental	Fcosystems -	Ecosystems -																							
.,	LOR	Marine Waters		Marine Waters 95%	Marine Waters 90% Species																							
		Species Prote	ction		Protection																							
pH Value and Total Dissol	ved Solids																											
pН	pH Unit 0.1	0.01	6.5-8.5			7.13	7.12	7.13	7.2	7.08	11.1	8.2	8.01	7.3	7.1	7.9	7.2	7.7	7.2	6.5	7	6.9	7.1	7.1	6.6	7.1	7.1	
TDS Electrical conductivity	mg/L 1	1				28800 39000	24800 34200	26900 36600	18000 22600	23300 31200	24100 33800	3580 6690	2190 3500	24000 27900	65000 67900	2800 3470	55000 62000	60000 65300	43000 60200	240000 140000	55000 56900	150000 120000	30000 33500	31000 33900	29000 30900	37000 37500	37000 37200	
Alkalinity	us/cm i				-	39000	34200	30000	22000	31200	33600	6690	3500	27900	67900	3470	62000	65300	60200	140000	56900	120000	33500	33900	30900	3/500	37200	
Hydroxide as CaCO3	mg/L 5	1				<1	<1	<1	-	<1	<1	<5	<1	-	-	-	-	-		-	-	-	-	-	-	-	-	
Carbonate as CACO3	mg/L 5	1				<1 348	<1 359	<1 263	<1 161	<1 314	31 4	<5 878	<1 915	<1 200	<1 260	<1 720	<1 253	<1 219.9	<1 320	0 75	0 150	0 91	<1 163	<1 166	<1 339	0 260	0 250	
Bicarbonate as CACO3 Total Alkalinity as CACO3	mg/L 5 mg/L 5	1	-	+		348	359	263	161	314	35	878	915 915	200	260	720	253	219.9 219.95	320	75 75	150	91	163	166	339	260	250 250	
Dissolved Major Cations	-	<u> </u>						II.																				
Calcium	mg/L 0.1	1 0.05				1130	811	935	890 0.114	777	1360	62.9	25	555 13.2	1520 15	34.5 0.307	1070 7.1	1180 <0.1	978 5.73	911 0.555	1650 3.71	2040 3.19	1030 1.28	1120 1.31	1240 5.8	1080 3.23	1130 3.41	
Iron Magnesium	mg/L 0.1 mg/L 0.1	0.05			-	991	800	1050	606	725	93	65.8	15	760	2610	22.1	1600	<0.1 1580	1820	6200	1180	2040	900	982	1490	938	992	
Sodium	mg/L 0.1	1				9210	7380	8670	7120	6580	9360	1390	848	6950	30200	875	18400	20200	22300	117000	17800	57900	10200	11100	9840	11100	11600	
Potassium	mg/L 0.1	1				105	68	83	74	56	217	73	20	290	320	6.1	150	150	160	890	120	630	140	150	120	100	100	
Total Metals	mg/L 0.1	0.01		1	-	1.76	0.52	0.34	-	0.4	1.42	1.21	0.11	-	-		-	-	-		- 1		-	-		-		
Dissolved Metals			-	1		1.70	0.02	0.01		0.4	1.72		0.11											1	1			
Aluminium	mg/L 0.001	0.01				0.02	0.02	0.06	0.0076	0.02	0.16	7.8		<0.005	<0.005	0.041	0.031	0.013	< 0.005	0.017	<0.001	0.022	0.0072	0.0079	0.0095	0.0028	<0.001	
Antimony Arsenic	mg/L 0.001 mg/L 0.001	0.001 0.5 0.001 0.05	0.003 0.007			<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.005	<0.001 <0.001	<0.001 <0.001	<0.001 0.0016	<0.001 0.001	<0.001 <0.005	0.0018 <0.005	<0.001	<0.001 <0.005	<0.001 <0.005	0.0016 <0.005	0.0023 <0.09	0.0014 <0.001	0.0014 <0.07	<0.001 <0.005	<0.001 <0.005	0.0012 <0.005	<0.001 <0.001	<0.001 <0.001	
Barium	mg/L 0.001	0.001	0.7		1	0.027	0.012	0.016	0.013	0.011	0.15	0.24	0.228	0.025	0.047	0.37	0.087	0.22	0.083	0.076	0.045	0.1	0.027	0.029	0.018	0.034	0.035	
Beryllium	ma/L 0.001	0.001				0.001	<0.001	<0.001	<0.005	<0.001	< 0.001	<0.001	<0.001	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.001	<0.001	<0.001	< 0.005	< 0.005	<0.005	<0.001	<0.001	
Boron Cadmium	mg/L 0.001 mg/L 0.0002	0.05 0.0001 0.002	0.3 0.002			10.8 0.0001	10.4 <0.0001	8.47 0.0003	7.1 <0.002	8.74 <0.0001	0.57 <0.0001	1.5 <0.0002	1.1 <0.0001	9.3 <0.002	11 <0.002	1.7 <0.002	8.4 <0.002	6.9 <0.002	7.9 <0.002	2.8 <0.0002	7.1 <0.0002	3.1 <0.0002	<0.002	6.7 <0.002	7.6 <0.002	6.7 <0.0002	6.9 <0.0002	
Chromium	mg/L 0.001	0.001 0.0044^				<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	0.0086	<0.005	0.0056	0.0058	0.02	<0.005	<0.005	<0.005	0.0028	<0.001	0.002	<0.005	<0.005	<0.002	<0.001	<0.001	
Cobalt	mg/L 0.001	0.001		0.001	0.014	0.004	0.001	0.003	< 0.005	<0.001	0.001	0.03	<0.001	< 0.005	<0.005	< 0.005	0.0097	0.0068	<0.005	0.028	0.0016	0.0027	0.0051	0.0052	< 0.005	0.0055	0.005	
Copper Lead	mg/L 0.001 mg/L 0.001	0.001 0.01 0.001 0.005	0.01			0.363	0.019	0.068 0.029	0.026 <0.005	0.008 0.012	0.008	0.058	0.006 <0.001	0.0091 <0.005	0.026 <0.005	<0.005 <0.005	0.016 <0.005	0.015 <0.005	0.017 <0.005	0.092 0.028	0.021 0.0011	0.046 <0.001	0.031 <0.005	0.032 <0.005	0.0076 <0.005	0.01 <0.001	0.011 <0.001	
Lithium	mg/L 0.001	0.001 0.003	0.01			0.493	0.443	0.32	0.17	0.012	0.00	0.17	0.146	0.27	0.6	0.17	0.59	0.66	0.52	1.6	0.4	4.9	0.23	0.24	0.3	0.37	0.34	
Manganese	mg/L 0.001	0.001	0.5			0.91	0.288	0.542	0.3	0.38	<0.001	0.11	0.002	0.91	0.95	0.13	2.1	1	0.65	2.2	3.7	5.3	0.89	0.91	2.2	0.55	0.53	
Molybdenum Nickel	mg/L 0.001 mg/L 0.001	0.001 0.001 0.015	0.05 0.02			0.002	0.001	0.004 0.109	<0.005 0.01	0.001 0.004	0.021 <0.001	<0.001 <0.001	0.001 0.026	<0.005 0.0058	<0.005 0.012	<0.005 <0.005	0.0068 0.029	0.0054 0.018	<0.005 0.012	0.012 0.048	<0.001	0.0075 0.027	<0.005 0.017	<0.005 0.017	<0.005 0.011	<0.001 0.012	<0.001 0.014	
Selenium	mg/L 0.001 mg/L 0.001		0.02			<0.010	<0.010	<0.010	0.028	<0.010	<0.010	<0.001	<0.010	0.038	0.012	0.0093	0.029	0.018	0.091	0.11	0.039	0.027	0.046	0.046	0.051	0.052	0.053	
Strontium	mg/L 0.001	0.001				17.9	15.4	19.6	12	16.7	17.3	1.3	0.001	14	26	0.81	18	17	15	17	34	44	15	16	16	20	19	
Thallium Thorium	mg/L 0.001 mg/L 0.001	0.001 0.02 0.001				<0.001 <0.001	<0.001	<0.001 <0.001	<0.005 <0.005	0.001 <0.001	<0.001 <0.001	<0.001	0.668 <0.001	<0.005 <0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005 <0.005	<0.005	0.01	<0.001	<0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.001	<0.001	
Tin	mg/L 0.001 mg/L 0.001	0.001				<0.001	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0021	<0.001	0.0012	<0.005	<0.005	<0.005	<0.001	<0.001	
Titanium	mg/L 0.001	0.01				1.19	<0.01	1.2	0.0067	<0.01	1.19	0.0038	< 0.001	0.03	0.044	0.0058	0.031	0.024	0.044	0.078	0.02	0.048	0.019	0.019	0.018	0.024	0.025	
Uranium	mg/L 0.001 mg/L 0.001	0.001 0.01	0.02	0.1	0.16	0.025 <0.01	0.042 <0.01	0.064 <0.01	0.026 <0.005	0.026 <0.01	<0.001 0.02	0.21 0.0042	<0.01 <0.001	<0.005 <0.005	<0.005	<0.005 0.012	0.017 <0.005	0.029 <0.005	<0.005 <0.005	0.016 <0.001	<0.001	0.005 <0.001	0.02 <0.005	0.021 <0.005	0.032 <0.005	0.057 <0.001	0.058 <0.001	
Vanadium Zinc	mg/L 0.001 mg/L 0.001	0.005 0.05		0.1	0.16	0.231	0.069	0.104	0.036	0.033	0.02	0.057	<0.001	0.046	0.051	0.012	0.12	0.075	0.065	0.76	0.13	0.094	0.035	0.042	0.046	0.096	0.11	
Gold	mg/L 0.01	0.001				<0.001	<0.001	<0.001	0.02	<0.001	< 0.001	<0.01	<0.001	-	-	-	-	-	<0.001		-	-	0.0036	0.0026	0.0066	-	-	
Silica Silica	mg/L 1	0.1	1	1 1		14.6	17.8	15	14	17.7	9.41	30.4	33.5	10.5	13.5	34	15.3	13.3	20	6.4	13.3	6.5	16.5	16.4	16	15	14.9	
Sulphate	mg/L I	0.1				17.0	17.0	10		17.7	J.#1	50.4	55.0		10.0	J4	13.3	13.3			10.0		10.5	10.4	10	15		
Sulphate	mg/L 2	1	500			5680	4430	4440	2300	4160	3140	441	82	3500	6100	96	5000	5100	5100	10000	3600	5300	3800	3700	4700	3000	2900	
Chloride Chloride	mg/L 1	1 1		1 1		10600	11000	10700	8200	8720	10300	2210	778	9900	28000	680	18000	22000	23000	130000	21000	78000	15000	14000	12000	13000	12000	
Fluoride						.0000		.5700	5200	5.20	.5500	2210	.70		20000	550							.5000	•				
Fluoride	mg/L 0.1	0.1	1.5			1.6	1.6	1.4	3.2	1.7	0.2	4	3.6	<0.5	5.6	3.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.8	1.7	1.8	<0.5	<0.5	
Total Kjeldahl Nitrogen as TKN as N	M mg/L 1	0.1 5		1		. 1		-	1 <1		-	0.1	<0.1	<1	1.9	3	2.5	1.6	<1	<1	<1	6.5	<1	<1	<1	<1	<1	
Ionic Balance	gr _ 1			<u> </u>					31			0.1	30.1									0.0		***		31		
Total Anions	meq/L	0.01				-421	-407	-403	-285	-341	-360	-87	-39	-359	-931	-33	-623	-738	-769	-3924	-677	-2340	-510	-480	-446	-438	-407	
Total Cations Ionic Balance	meq/L	0.01		+		542 12.6	430 2.8	513 12.1	406 17.6	387 6.3	488 15.2	71 -10.1	40 1.0	401 5.5	1615 26.8	42 11.4	991 22.8	1073 18.5	1174 20.9	5672 18.2	958 17.1	2806 9.0	574 5.8	624 13.1	617 16.1	617 17.0	646 22.7	
Total Organic Carbon (TO		3.01				.2.0	2.0	•		5.5	.0.2	•		5.5	20.0								3.0					
Total Organic Carbon	mg/L 1	1 10				3	4	<1	<1	2	12	<1	4	<1	<1	4.5	<1	3.3	1.1	8.9	<1	6.1	<1	<1	2.8	<1	<1	
Nitrite as N NO2-N	mg/L 0.5	0.01	1 1	1 1		<0.010	<0.010	<0.010	<0.5	<0.010	0.298	-	<0.010	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nitrate as N						<0.010	<0.010	X0.010	V0.0	V0.010	0.230	<u> </u>	X0.010	V0.0	Q0.0	NO.0	40.0	NO.0	NO.0	40.5	V0.0	40.5	X0.0	NO.5	VO. 5	NO.0	40.0	
NO3-N	mg/L 0.5	0.01	10			0.017	0.013	<0.010	<0.5	0.029	0.215	0.94	0.011	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	18	<0.5	<0.5	2.5	2	
Total Nitrogen (as N) Total Nitrogen (as N)	mg/L 2	0.1 5	1	1		<0.1	0.013	<0.1	<2	<0.1	1.3	1.1	<0.1	-2	- 2 T	3	2	0	<2	<2	-2	6	18	- 2	<2	3	2	
rotai mitrogen (as m)	g		ı	1 1		30.1	0.010	50.1	. ~	-0.1	1.5	1	-0.1	-4	~-	,		~~		~£	~	,	10		~	Ÿ		

Notes
LOR - Limit of reporting
- Not Analysed
- Raised LOR
- Cuideline is for Hexavalent Chromium (Cr VI)
- Guideline is for 90% Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Potable Water
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection

																					Reg	ional Hydrog	jeology						
							Comple	DUBE	DT04A	RTOEA	DTOED	MARS 30	DT09	DUBA	DTEE	Andamooka Lst MAR4 20A	MARA 20R	DT40	DT40	PT44	DT4E	DT40	PT51	DTen	DUDO	DUDO	MAD 7	DUD 7	TRIPLICATE 4
							Sample	DUP 5 20/08/2008	RT04A 2/09/2008	RTO5A 20/08/2008	RTO5B 20/08/2008	MAR3_20 17/08/2008	RT03 19/08/2008	DUP4 19/08/2008	PT66 19/08/2008	17/08/2008	MAR4_20B 17/08/2008	PT40 17/08/2008	PT42 19/08/2008	19/08/2008	PT45 18/08/2008	PT48 18/08/2008	18/08/2008	PT60 17/08/2008	DUP2 17/08/2008	DUP2 17/08/2008	MAR 7 8/09/2008	DUP 7 8/09/2008	10/09/2008
							Lab Report	ES0812254	08ENME0023416	08ENME0022255	08ENME0022255	08ENME0021863	08ENME0022217	08ENME0022217	08ENME0022217	08ENME0021863	08ENME0021863	08ENME0021863	08ENME0022217	08ENME0022217	08ENME0021986	08ENME0021986	08ENME0021986	08ENME0021863	08ENME0021863	ES0811987	08ENME0024196	08ENME0024196	ES0813178001
							Laboratory	ALS	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	ALS	Labmark	Labmark	ALS
							Duplication	Inter-lab						Intra-lab											Intra-lab	Inter-lab		Intra-lab	Inter-lab
							ANZECC (2000)																						
				SA EPA (2003) Environmental	SA EPA (2003)	ANZECC (2000) Aquatic	Aquatic																						
Analyte	Units	Labmark	ALS LOR		Environmental	Ecosystems -	Ecosystems -																						
ritaryto	Ormo	LOR	/ LO LOI	Marine Waters 95%	Protection Policy	Marine Waters 95%	Marine Waters																						
				Species Protection	Potable Water	Species Protection	90% Species Protection																						
							Trotection																						
pH Value and Total Disso			0.04	1	0505	1		0.50	7.0			6.7	7.0	7.0							7.1		7.0			201	7.0		0.04
TDS	pH Unit		0.01		6.5-8.5			6.56 37500	7.2 31000	6.9 53000	8.1 260000	250000	7.2 20000	7.3 19000	260000	28000	80000	220000	7.1 59000	51000	7.1 30000	29000	7.3 40000	6.9 24000	6.9 24000	6.64 25100	7.2 23000	7.2 23000	6.91 22700
Electrical conductivity	uS/cm		1					43400	35600	55500	130000	80800	20200	20300	20100	33200	81100	135000	55400	44200	31300	32700	44100	29300	29500	30200	28900	29000	30900
Alkalinity																													
Hydroxide as CaCO3	mg/L							<1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<1	-	-	<1
Carbonate as CACO3	mg/L		1					<1	0	0	0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bicarbonate as CACO3	mg/L		1 1	 	 	1	1	248 248	270 270	240 240	1260 1260	131.6 131.61	200 200	200 200	96 96	287.7 287.72	270.6 270.65	119.7 119.69	180 180	230 230	300 300	250 250	210 210	259.4 259.39	280.1 280.08	337 337	100 100	342 340	320 320
Total Alkalinity as CACO3 Dissolved Major Cations	mg/L	5	1 1	1	1	1	1	248	2/0	240	1260	131.61	200	200	96	281.12	2/0.65	119.69	180	230	300	250	210	259.39	280.08	337	100	340	320
Calcium	mg/L	0.1	1				1	1080	982	915	803	880	604	603	741	1010	1280	1060	1070	818	1160	832	831	880	900	877	1110	1120	1110
Calcium Iron	mg/L	0.1			Ì	1	1	-	2.45	28.6	0.175	0.565	3.12	2.74	0.239	17.2	7.23	0.22	<0.1	8.25	5.47	17.9	2.25	63.4	50.8		0.621	0.589	
Magnesium	mg/L	0.1						922	772	1270	4890	5200	343	342	5200	895	1880	4120	1230	1100	951	820	674	600	595	585	742	736	721
Sodium	mg/L	0.1						10900	9490	17700	88900	85000	6070	6030	87700	8650	28400	78000	20900	18200	8900	10200	15900	7600	7600	7630	6230	6260	6640
Potassium Total Metals	mg/L	0.1	1 1	l .	l	1	1	71	160	170	800	610	64	78	800	73	230	460	220	200	150	250	210	96	82	95	77	78	67
I otal metals	ma/l	0.1	0.01	1	1	1	1	5.72	1			_	_	1 -	_			_	_	_					-	51.4	1		27.5
Dissolved Metals	- mg/L	0.1	0.01	l .	I.	1	1	0.72	1	1				l .	l .	1						l.				01.1			27.0
Aluminium	mg/L	0.001	0.01					<0.10	0.12	<0.001	<0.001	<5	<0.001	<0.001	<0.001	0.02	0.022	<5	<0.001	0.027	0.033	0.033	0.023	0.019	0.036	0.02	0.018	0.016	<0.01
Antimony	mg/L	0.001		0.5	0.003			<0.010	< 0.001	0.0011	0.0029	0.0037	< 0.001	<0.001	0.006	<0.001	<0.001	0.0091	0.0015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.006
Arsenic	mg/L		0.001	0.05	0.007			<0.010	< 0.02	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001	<0.005	<0.005	< 0.005	<0.001	<0.001	<0.005	< 0.005	<0.005	< 0.005	<0.005	0.013	0.017	0.018	0.009
Barium	mg/L mg/L mg/L	0.001	0.001		0.7			0.022 <0.010	0.029 <0.001	0.047 <0.001	0.2 <0.001	0.26 <0.005	0.019 <0.001	0.019 <0.001	0.55 <0.001	0.05 <0.005	0.11 <0.005	0.82 <0.005	0.059 <0.001	0.045 <0.001	0.062 <0.005	0.036 <0.005	0.02 <0.005	0.044 <0.005	0.04 <0.005	0.036 <0.001	0.078 <0.001	0.077 <0.001	0.072 <0.001
Beryllium Boron	mg/L	0.001			0.3			5.66	7.3	<0.001 6	<0.001	<0.005 2.4	6.9	<0.001 7	<0.001	6.1	<0.005 5.4	2.5	4.8	5.9	<0.005 8.1	<0.005 6.1	<0.005	<0.005	<0.005 6.6	5.02	6.3	6.2	3.64
Cadmium	ma/L	0.0002	0.0001	0.002	0.002			<0.0010	<0.0002	<0.0002	<0.0002	<0.002	<0.0002	<0.0002	0.0005	<0.002	<0.002	<0.002	<0.0002	<0.0002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0001	<0.0002	<0.0002	<0.0001
Chromium	mg/L	0.001	0.001	0.0044^	0.05^			<0.010	0.0054	< 0.001	<0.001	< 0.005	0.003	0.0032	< 0.001	< 0.005	< 0.005	< 0.005	0.0023	0.0029	0.0072	0.0061	< 0.005	0.0063	0.0072	<0.001	0.0042	0.002	<0.001
Cobalt	mg/L mg/L mg/L	0.001				0.001	0.014	<0.010	<0.001	0.0011	< 0.001	0.017	< 0.001	<0.001	0.0022	< 0.005	< 0.005	0.013	0.003	0.0036	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.002	0.011	0.0093	0.008
Copper	mg/L	0.001		0.01	2			<0.020	0.0046	0.011	<0.001	< 0.005	0.0044	0.0047	0.0032	0.0059	0.01	<0.005	0.018	0.013	0.011	0.0096	0.011	0.008	0.0072	0.004	0.0064	0.0061	0.005
Lead	mg/L			0.005	0.01			<0.010	<0.001	<0.001	0.02	0.89	<0.001	<0.001	1.5	<0.005	<0.005	0.63	0.0023	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	0.002	<0.001	<0.001	<0.001
Lithium Manganese	mg/L mg/L		0.001		0.5			0.325	0.61 0.41	0.42	0.0066 0.029	0.012	0.62	0.63 0.52	0.018	0.42 0.83	2.1 0.51	0.016 0.077	0.45 0.066	0.37 0.27	0.35	0.34 0.29	0.17	0.66	0.69 1.4	0.484	0.37 0.5	0.36 0.46	0.306 0.433
Molybdenum	mg/L				0.05			<0.010	0.0034	<0.001	0.0015	0.006	0.0056	0.005	0.017	0.012	0.015	0.0081	0.000	0.27	<0.005	<0.005	0.027	<0.005	<0.005	0.004	0.085	0.085	0.433
Nickel	mg/L			0.015	0.02			<0.010	0.011	0.0087	<0.001	<0.005	0.011	0.012	0.0067	0.013	0.012	0.021	0.043	0.026	0.018	0.013	0.0098	0.013	0.013	<0.005	0.03	0.027	0.012
Selenium	mg/L			0.07	0.01			<0.100	0.036	0.053	0.03	0.041	0.019	0.022	0.065	0.046	0.087	0.056	0.057	0.054	0.069	0.063	0.044	0.048	0.046	<0.010	0.042	0.041	<0.010
Strontium	mg/L	0.001	0.001					16.8	15	15	16	15	6.5	6.3	16	14	20	16	17	14	17	12	8.6	11	11	11.2	17	17	14.5
Thallium	mg/L		0.001	0.02		1	1 1	<0.010	<0.001	<0.001	0.0038	0.074	<0.001	<0.001	0.022	<0.005	<0.005	0.0058	<0.001	<0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.001	<0.001	<0.001	0.001 <0.001
Thorium Tin	mg/L mg/L		0.001					<0.010 <0.010	<0.001	<0.001	0.0019	<0.005 <0.005	<0.001	<0.001	<0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.001	<0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.001 <0.001	<0.001	<0.001	<0.001 <0.001
Titanium	mg/L mg/L			1	1	+	+	<0.010	<0.001 0.018	<0.001 0.02	0.0019	<0.005	<0.001 0.01	<0.001	<0.001 0.0062	<0.005 0.011	<0.005 0.019	<0.005	<0.001 0.029	0.001	<0.005 0.0082	<0.005 0.0098	<0.005 0.0075	<0.005 0.013	0.005	<0.001	<0.001 0.0023	<0.001 0.0031	<0.001
Uranium	mg/L	0.001			0.02	1		0.045	0.0014	0.008	0.0058	0.032	0.003	0.003	0.0087	0.067	0.0056	0.026	0.035	0.017	<0.005	< 0.005	0.006	<0.005	<0.005	0.002	0.019	0.019	0.022
Vanadium	mg/L	0.001	0.01			0.1	0.16	<0.10	< 0.001	< 0.001	<0.001	< 0.005	0.0016	0.0019	< 0.001	< 0.005	< 0.005	< 0.005	<0.001	< 0.001	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	<0.01	0.003	0.002	<0.01
Zinc	mg/L	0.001		0.05				0.078	0.04	0.027	0.019	0.075	<0.001	<0.001	0.17	0.032	0.059	0.061	0.088	0.04	0.24	0.045	0.039	0.11	0.096	0.047	0.019	0.022	0.01
Gold	mg/L	0.01	0.001			1	1 1	<0.010	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.001	-	-	0.001
Silica Silica	ma/l	1 1	0.1	1	1		1	14.2	11.4	13.6	34.7	38	12.7	13	30	16.9	22	34.5	7.96	13.9	14.8	13.8	14.1	15.2	15.5	9.8	18	18.3	16.1
Sulphate	I IIIg/L		0.1	1	1	1	1	14.2	11.4	13.0	34.1	30	12.1	13	30	10.9	44	34.0	7.30	13.3	14.0	13.0	14.1	10.2	10.0	3.0	10	10.3	10.1
Sulphate	mg/L	2	1		500			5190	3100	3600	10000	9100	3800	3500	9600	3400	5100	9200	3500	2900	3500	3200	8300	3000	3000	3860	2700	2500	4460
Chloride																					•				•				
Chloride	mg/L	1	1					15500	12000	22000	130000	87000	4900	4900	150000	13000	34000	120000	21000	18000	11000	15000	16000	11000	11000	11000	9000	9200	10900
Fluoride	ma*	0.4	0.1	1	1.5			1.1	<0.5	-0.E	-0 E	-0.E	-0 E	-0.E	-0 E	-0.E	-0.5	-0.E	-0.E	-0 E	-0 E	-0 E	-0 E	-0.5	-0.5	1.4	4		1.5
Fluoride Total Kjeldahl Nitrogen a	ng/L	U.I	0.1	l .	1.5	1	1 1	1.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.0	<0.0	<0.5	<0.5	<0.5	<0.0	<0.0	<0.5	<0.0	<0.0	1.4	1	-	1.5
TKN as N	ma/l	1	0.1	5			1	<0.1	<1	<1	2.4	4.4	<1	<1	4	<1	3.2	3	<1	<1	<1	<1	<1	<1	<1	2	24	22	34.7
Ionic Balance					•	•																							- "
Total Anions	meq/L		0.01	<u> </u>				-555	-412	-708	-3943	-2677	-222	-216	-4487	-447	-1082	-3622	-676	-578	-392	-499	-634	-381	-381	-400	-315	-321	-410
Total Cations	meq/L		0.01					607	530	926	4333	4189	324	323	4304	503	1461	3799	1070	929	528	560	794	427	427	427	390	392	406
Ionic Balance	%		0.01			1	1 1	4.4	12.6	13.3	4.7	22.0	18.6	19.8	-2.1	5.9	14.9	2.4	22.6	23.3	14.8	5.7	11.3	5.7	5.7	3.2	10.7	10.0	-0.4
Total Organic Carbon (To Total Organic Carbon		1 1	1 1	10	1	1	1 1	<1	1 1	<1	<1	7.3	<1	<1	11	<1	25	4.3	<1	1.1	2.2	<1	<1	2.9	<1	8	6.7	5.8	9
Nitrite as N	IIIg/L	1		10	1	1	1	<1	' '	<1	<1	1.3	<1	<u> </u>		<1	20	4.3	<1	1.1	2.2	<1	<1	2.3	<1	0	0.7	5.6	9
NO2-N	mg/L	0.5	0.01		1		1	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.01	<0.5	<0.5	<0.01
Nitrate as N				•	•	•		-				-							-			-				-			
NO3-N Total Nitrogen (as N)	mg/L	0.5	0.01		10			2.94	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.6	3.9	2.7	2.4	2.4	0.02	<0.5	<0.5	0.03
T (1 N)																													

Regional Hydrogeology

Notes
LOR - Limit of reporting
- Not Analysed
- Raised LOR
- Cuideline is for Hexavalent Chromium (Cr VI)
- Guideline is for 90% Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Potable Water
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection

 $I: \ VESA \ Projects \ VE30064 \ Deliverables \ Draft \ Report \ Sept \ 2008. docx$

								-														
							CI-	PT03 4b	na Qtz RT02B	RT09	PT63	BRACI RT41	DUP 9	TRIPLICATE 6	RT42	Cadna-owie/Algebuckina PT62	PT09	PT14	Corraberra Sst PT31	DUP3	RT01	Yarloo Sh. RT04b
							Sample Date	11/08/2008	17/08/2008	3/09/2008	9/09/2008	10/09/2008	10/09/2008	10/09/2008	10/09/2008	9/09/2008	14/08/2008	11/08/2008	17/08/2008	17/08/2008	1/09/2008	3/09/2008
							Lab Report	08ENME0021268	08ENME0021863	08ENME0023714	08ENME0024196	08ENME0024479	08ENME0024479	ES0813421001	08ENME0024479	08ENME0024196	08ENME0021703	08ENME0021268		08ENME0021863	08ENME0023416	08ENME0023714
							Laboratory	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	ALS	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	Labmark
							Duplication			1			Intra-lab	Inter-lab			1			Intra-lab		
Analyte pH Value and Total Disso	Units lved Solids	Labmark LOR	ALS LOR	SA EPA (2003) Environmental Protection Policy - Marine Waters 95% Species Protection	SA EPA (2003) Environmental Protection Policy Potable Water	ANZECC (2000) Aquatic Ecosystems - Marine Waters 95% Species Protection	ANZECC (2000) Aquatic Ecosystems - Marine Waters 90% Species Protection															
pH TDS	pH Unit		0.01		6.5-8.5			9.3	6.9	7	7.2	7.1	7.1	6.19	7.4	6.9	7	7.1	7.2	7.1	6.9	6.9
Electrical conductivity	mg/L uS/cm		1					52000 57600	220000 80800	26000 30500	77000 77000	41000 52500	41000 52600	41000 54000	37000 48700	25000 31200	33000 34400	29000 33600	15000 20500	4000 6520	200000 132000	170000 124000
Alkalinity	doyciii			1	l .	ll.	I.	37000	00000	30300	77000	32300	32000	34000	40700	31200	34400	33000	20300	0020	132000	124000
Hydroxide as CaCO3	mg/L		1					-	-	-	-	-	-	<1			-	-	-	-	-	-
Carbonate as CACO3	mg/L		1					76	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0	<1
Bicarbonate as CACO3 Total Alkalinity as CACO3	mg/L ma/L		1					5.4 81	137.5 137.45	380 380	230 230	150 150	150 150	185 185	120 120	17 17	380 380	300 300	203 202.98	183.2 183.196	130 130	100 100
Dissolved Major Cations	mg/L	3	<u> </u>		l .	1		01	137.43	300	230	150	150	103	120	17	300	300	202.90	103.190	130	100
Calcium	mg/L		1					1660	900	829	1000	1250	1260	1150	1150	788	669	802	210	98.2	796	2690
Iron	mg/L	0.1	0.05					<0.1	0.107	9.39	0.759	6.65	6.95		1.31	4.65	7.32	3.8	7.94	8.7	0.282	0.276
Magnesium Sodium	mg/L	0.1	1					1220 23200	4430 74000	719 10100	1940 24500	653 12900	657 13400	851 14000	692 12500	584 7720	926 10500	932 9950	198 2740	83.1 1190	4160 71400	1540 83000
Potassium	mg/L mg/L		1					180	660	85	230	210	220	201	91	110	300	110	6.6	<1	1000	790
Total Metals					1	1																
Iron	mg/L	0.1	0.01						-					7.35			-		-			
Dissolved Metals	1 1	0.004	1 0.04			1	1	<0.005	<5	0.02	0.0076	0.0036	<0.001	<0.10	<0.001	0.0043	0.0079	0.0053	0.015	0.013	0.018	0.018
Aluminium Antimony	mg/L mg/L	0.001	0.01	0.5	0.003			<0.005 0.0025	0.004	<0.02	<0.0076	< 0.0036	<0.001	<0.10	<0.001	<0.0043	<0.0079	0.0053	<0.001	<0.001	0.018	<0.018
Arsenic	mg/L	0.001		0.05	0.007			<0.005	<0.005	<0.001	<0.05	<0.1	<0.1	0.053	<0.05	0.023	<0.005	<0.005	<0.005	<0.005	<0.08	<0.1
Barium	mg/L	0.001	0.001		0.7			0.11	0.41	0.032	0.07	0.12	0.12	0.086	0.036	0.048	0.086	0.088	0.13	0.096	0.11	0.15
Beryllium	mg/L	0.001						<0.005	<0.005	<0.001	<0.001	<0.001	<0.001	<0.010	<0.001	<0.001	<0.005	< 0.005	< 0.005	< 0.005	<0.001	<0.001
Boron Cadmium	mg/L mg/L	0.001	0.05	0.002	0.3 0.002			4.6 <0.002	2.9 0.0059	7.8 <0.0002	11 <0.0002	9 <0.0002	9 <0.0002	7.42 <0.0010	7.9 <0.0002	7.2 <0.0002	12 <0.002	8.2 <0.002	2.4 <0.002	2 <0.002	5.7 <0.0002	5.6 <0.0002
Chromium	mg/L		0.0001	0.002	0.05^			<0.002	<0.005	0.0026	0.0038	0.0033	0.0032	<0.010	0.0023	0.0018	0.002	<0.002	0.0055	0.0055	0.0046	0.0075
Cobalt	mg/L	0.001				0.001	0.014	< 0.005	<0.005	<0.001	0.0051	<0.001	<0.001	<0.010	0.0054	0.0045	<0.005	<0.005	0.0069	0.0059	0.073	0.0038
Copper	mg/L	0.001	0.001	0.01	2			0.017	0.0051	0.0066	0.014	0.008	0.0075	<0.010	0.0059	0.0051	0.013	0.007	< 0.005	< 0.005	0.14	0.032
Lead Lithium	mg/L	0.001	0.001	0.005	0.01			<0.005 0.43	0.075 0.02	<0.001	<0.001	<0.001 3.6	<0.001 3.6	<0.010	<0.001 0.37	<0.001 0.57	<0.005 0.26	<0.005 0.22	<0.005	<0.005 0.051	0.019 3.1	0.0018 11
Litnium Manganese	mg/L mg/L	0.001	0.001		0.5			0.43	0.02	0.88	3.4	0.49	0.5	0.504	0.37	0.57	1.7	0.22	0.08	0.051	3.1 6.2	2.8
Molybdenum	mg/L	0.001	0.001		0.05			<0.005	0.029	<0.001	<0.001	<0.001	<0.001	<0.010	0.004	0.0028	<0.005	<0.005	<0.005	<0.005	0.027	0.0089
Nickel	mg/L	0.001	0.001	0.015	0.02			0.013	0.0073	0.01	0.017	0.013	0.013	<0.010	0.015	0.02	0.01	0.0085	0.0063	< 0.005	0.084	0.029
Selenium	mg/L	0.001	0.01	0.07	0.01			0.089	0.067	0.026	0.062	0.026	0.025	< 0.050	0.026	0.041	0.2	0.043	0.021	0.015	0.15	0.16
Strontium Thallium	mg/L	0.001	0.001	0.02				13 <0.005	19 0.019	12 <0.001	19 <0.001	34 <0.001	32 <0.001	<0.010	20 <0.001	15 <0.001	9.3	12 <0.005	3.4 <0.005	1.6 <0.005	18 0.025	50 <0.001
Thorium	mg/L mg/L			0.02				<0.005	<0.005		- 40.001	- <0.001	- <0.001	- 40.010		-	<0.005	<0.005	<0.005	<0.005	0.025	- <0.001
Tin	mg/L	0.001	0.001					< 0.005	< 0.005	<0.001	<0.001	< 0.001	<0.001	<0.010	<0.001	<0.001	< 0.005	< 0.005	< 0.005	< 0.005	0.0033	<0.001
Titanium	mg/L	0.001	0.01					0.026	0.0076	0.049	0.0075	0.012	0.013	-	0.0064	0.0019	0.011	0.02	< 0.005	< 0.005	0.071	0.0019
Uranium Vanadium	mg/L		0.001	1	0.02	0.1	0.16	<0.005 <0.005	0.018 <0.005	<0.001 <0.001	0.0054 <0.001	<0.001 <0.001	<0.001 <0.001	<0.10	0.0087 0.0016	0.022 <0.001	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	0.0085 <0.001	0.0018 <0.001
Vanadium Zinc	mg/L mg/L			0.05	1	U. I	0.10	<0.005 0.028	<0.005 0.16	<0.001 0.028	<0.001 0.063	<0.001 0.015	<0.001 0.017	<0.10	0.0016	<0.001 0.023	<0.005 0.05	<0.005 0.076	<0.005 0.058	<0.005 0.05	<0.001 0.59	<0.001 0.042
Gold	mg/L							0.0018	-	-	-	-	-		-			0.0035	-			-
Silica																						
Silica Sulphate	mg/L	1	0.1	1	1	<u> </u>	l	<1	31	15	15.6	25	25	19.7	14.4	19		19	9.3	8.34	5.5	10
Sulphate	mg/L	2	1		500	1		4300	1200	2600	6700	1500	3400	3790	3900	2600	3700	3200	1400	170	9200	3600
Chloride				•		•																
Chloride	mg/L	1	1					21000	130000	9900	27000	9400	24000	22800	14000	10000	12000	13000	6600	720	100000	65000
Fluoride Fluoride	mg/L	0.1	0.1		1.5	1	ı	5.2	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Kjeldahl Nitrogen a	N Ing/L	0.1	0.1	1	1.5	ll.	I.	3.2	VO.5	40.3	40.5	VO.3	VO.3	0.0	V0.5	40.3	40.3	VO.3	40.0	40.5	40.3	Q0.5
TKN as N Ionic Balance	mg/L	1	0.1	5				2.6	36	<1	1.7	3.6	<1	5.8	<1	<1	<1	<1	<1	1.7	8.4	7.9
Total Anions	meq/L		0.01					-690	-3742	-343	-915	-302	-759	-733	-483	-340	-426	-443	-221	-27	-3051	-1934
Total Cations	meq/L		0.01	1		<u> </u>		1198 26.9	3648	543	1283 16.7	683 38.7	706	742	661	427 11.3	575	553 11.1	146	64	3516	3892
Ionic Balance Total Organic Carbon (TO		1	0.01	1	1	1	l .	26.9	-1.3	22.5	16.7	38.7	-3.6	0.6	15.5	11.3	14.9	11.1	-20.4	40.2	7.1	33.6
Total Organic Carbon	mg/L	1	1	10	1	1		1.5	57	1.6	6.7	15	14	15	6.6	2.7	pending	<1	46	<1	28	33
Nitrite as N				•	•	•	•					•	1		•					U.	•	
NO2-N	mg/L	0.5	0.01		1			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrate as N NO3-N	mg/L	0.5	0.01	1	40	1	1	<0.5	<0.5	<0.5	19	<0.5	<0.5	<0.01	<0.5	•	<0.5	<0.5	2.1	<0.5	<0.5	<0.5
Total Nitrogen (as N)	IIIg/L	0.0	0.01	1	10	1	1	<0.5	<0.5	<0.0	19	₹0.5	<0.0	<0.01	₹0.5	3	<0.0	<0.5	2.1	<0.5	<0.0	<0.5
Total Nitrogen (as N)	mg/L	2	0.1	5				3	36	<2	21	4	<2	5.8	<2	3	<2	<2	2	2	8	8
		•	•	-	•		•															

<0.1

<0.1
 0.033
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001
 <0.0001
 <0.0001
 <0.0002
 <0.0034
 <0.0005
 <0.38
 <0.001
 <0.5
 <0.7
 <0.001
 <0.001
 <0.002
 <0.002
 <0.001
 <0.001
 <0.002
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001
 <0.001

-<0.001 0.0083 0.027 <0.001 0.036 <0.01

32 5890 13700 1.9 6.4

6 0.02 0.13

Notes
LOR - Limit of reporting
- Not Analysed
- Raised LOR
- Cuideline is for Hexavalent Chromium (Cr VI)
- Guideline is for 90% Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (SA EPA 2003) - Potable Water
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection
- Sample in excess of the adopted guideline - (ANZECC 2000) - Marine Waters 95% Level Species Protection

results of tests, calibrations and/or measurements

AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356

Quarantine Approved Premises criteria 5.1 for quarantine Quarantine Approved remises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

included in this document are traceable to Australian/national standards. NATA is a signatory to Australian and a standards. NATA is a the APLAC mutual recognition arrangem mutual recognition of the equivalence calibration and inspection reports.

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Cover Page 1 of 4 **Laboratory Report No:** E038205 Sinclair Knight Merz Pty Ltd **Client Name:** plus Sample Results

VE30064 **Client Reference:** Russel Martin

Contact Name: Chain of Custody No: na

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY ASSURANCE CRITERIA

Sample Matrix:

1 in first 5-20, then 1 every 20 samples Accuracy: matrix spike:

> lcs, crm, method: 1 per analytical batch

addition per target organic method surrogate spike:

WATER

Precision: laboratory duplicate: 1 in first 5-10, then 1 every 10 samples

> laboratory triplicate: re-extracted & reported when duplicate

RPD values exceed acceptance criteria

Holding Times: soils, waters: Refer to LabMark Preservation & THT

table

VOC's 14 days water / soil

VAC's 7 days water or 14 days acidified

VAC's 14 days soil

SVOC's 7 days water, 14 days soil Pesticides 7 days water, 14 days soil Metals 6 months general elements

Mercury 28 days

Confirmation: target organic analysis: GC/MS, or confirmatory column

Sensitivity: EOL:

(MDL)

QUALITY CONTROL GLOBAL ACCEPTANCE CRITERIA (GAC)

Accuracy: spike, lcs, crm general analytes 70% - 130% recovery

Date Received: 17/06/2008

Date Reported: 27/06/2008

surrogate: phenol analytes 50% - 130% recovery

organophosphorous pesticide analytes

60% - 130% recovery

phenoxy acid herbicides, organotin

50% - 130% recovery

anion/cation bal: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l)

Precision: method blank: not detected >95% of the reported EQL

> duplicate lab 0-30% (>10xEQL), 0-75% (5-10xEQL)

RPD (metals): 0-100% (<5xEQL)

duplicate lab 0-50% (>10xEQL), 0-75% (5-10xEQL)

RPD: 0-100% (<5xEQL)

OUALITY CONTROL ANALYTE SPECIFIC ACCEPTANCE CRITERIA (ASAC)

Accuracy: spike, lcs, crm analyte specific recovery data

surrogate: <3xsd of historical mean

Typically 2-5 x Method Detection Limit **Uncertainty:** measurement calculated from spike, lcs:

historical analyte specific control

charts

RESULT ANNOTATION

Data Quality Objective s: matrix spike recovery p: pending bcs: batch specific lcs Data Quality Indicator d: laboratory duplicate laboratory control sample bmb: batch specific mb lcs:

Estimated Quantitation Limit t: laboratory triplicate certified reference material crm: RPD relative % difference method blank

not applicable mb:

* SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077

Ivan Povolny Quality Control (Report signatory) ivan.povolny@labmark.com.au

Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

Authorising Chemist (NATA signatory) simon.mills@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

Laboratory Report: E038205

Cover Page 2 of 4

NEPC GUIDELINE COMPLIANCE - DQO

GENERAL

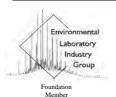
- A. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
- B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.
- C. Laboratory QA/QC samples are specific to this project.
- Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au.
- E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction.
- F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
- G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
- H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
- I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.


Reported by Amdel Limited, NATA accreditation No.1526.

Reported by Sydney Analytical Laboratories, NATA accreditation No.1884.

This document is issued in accordance with NATA's accreditation requirements.

© copyright 2000

Laboratory Report: E038205

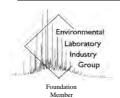
Cover Page 3 of 4

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matrix:	WATER						
Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	pH in water	4	0	0%	0	0	0%
2	Electrical conductivity (EC)	4	0	0%	0	0	0%
3	Total alkalinity	4	0	0%	0	0	0%
4	Chloride	4	0	0%	0	0	0%
5	Fluoride	4	0	0%	0	0	0%
6	Sulphate	4	0	0%	0	0	0%
7	Nitrate as N	4	0	0%	0	0	0%
8	TKN (as N)	4	0	0%	0	0	0%
9	Total Nitrogen (as N)	4	0	0%	0	0	0%
10	Alkalinity (CO3, HCO3, OH)	4	0	0%	0	0	0%
11	Total Organic Carbon (TOC)	4	1	25%	0	0	0%
12	Total Dissolved Solids (TDS)	4	1	25%	0	0	0%

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.


%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

Laboratory Report: E038205

Cover Page 4 of 4

ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, Corporate Site No. 13535, unless indicated below.

B. The following test was conducted by Amdel Limited, NATA accreditation No.1526. :- Metals analysis.

C. The following tests were conducted by Sydney Analytical Laboratories, NATA accreditation No.1884. :- TDS and TOC.SAL reference SAL20847 report issued on 27/6/2008.

D.Samples received and analysed outside technical holding time for pH. Please refer to sample receipt notice.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

Client Name:

Sinclair Knight Merz Pty Ltd

Russel Martin

plus cover page

Page: 1 of 12

Certificate

Contact Name:

Date: 27/06/08

This report supercedes reports issued on: 24/06/08

of Analysis

Final

VE30064 **Client Reference:**

Laboratory Identification		162172	162228	162229	162230			
Sample Identification		H1-1	H3-1	H3-2	PT24a			
Depth (m) Sampling Date recorded on COC		 16/6/08	 15/6/08	 15/6/08	 15/6/08			
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		17/6/08 17/6/08	17/6/08 17/6/08	17/6/08 17/6/08	17/6/08 17/6/08			
Method: E018.1 pH in water pH (pH units)	EQL 0.1	3.5	6.3	3.5	8.2			

Results expressed in pH units unless otherwise specified

Comments:

E018.1: Direct measurement by pH ion selective electrode.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

plus cover page

Page: 2 of 12

Certificate

Date: 27/06/08

of Analysis

Final

VE30064 **Client Reference:**

This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	mb			
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC			
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08			
Laboratory Analysis Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08			
Method: E032.1 Electrical conductivity (EC) Electric conductivity (uS/cm)	EQL 1	37800	41700	33200	6690	1			

Results expressed in uS/cm unless otherwise specified

Comments:

E032.1: Measurement by EC probe. Results expressed in uS/cm.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

VE30064 **Client Reference:**

Page: 3 of 12 Final

Certificate plus cover page

of Analysis **Date:** 27/06/08

This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date		18/6/08	17/6/08	18/6/08	19/6/08	17/6/08	17/6/08		
Method: E035.1 Total alkalinity Alkalinity	EQL 5	<5	1780	<5	878	103%	<5		

Results expressed in mg/l unless otherwise specified

Comments:

E035.1: Determination by colour and/or by titration. Results expressed as CaCO3.

Client Name:

Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

plus cover page

Page: 4 of 12

Certificate

Date: 27/06/08

of Analysis

Final

VE30064 **Client Reference:** This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08	20/6/08	17/6/08	17/6/08		
Method: E033.1/E045.1/E047.1 Chloride Chloride	EQL 1	3180	12500	2690	2210	103%	<1		

Results expressed in mg/l unless otherwise specified

Comments:

E033.1/E045.1/E047.1: Determination by colour and/or by Ion Chromatography. Sample filtered through a 0.45um filter prior to analysis.

Sinclair Knight Merz Pty Ltd **Client Name:**

Russel Martin **Contact Name:**

Date: 27/06/08

Page: 5 of 12

plus cover page

Final

Certificate

of Analysis

VE30064 **Client Reference:** This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m) Sampling Date recorded on COC		 16/6/08	 15/6/08	 15/6/08	 15/6/08				
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		17/6/08 20/6/08	17/6/08 20/6/08	17/6/08 20/6/08	17/6/08 20/6/08	17/6/08 17/6/08	17/6/08 17/6/08		
Method: E034.1/E045.1 Fluoride Fluoride	EQL 0.1	11700	10.9	9480	4.0	106%	<0.1		

Results expressed in mg/l unless otherwise specified

Comments: -

E034.1/E045.1: Determined by FIA-Ion Selective Electrode and/or by Ion Chromatography. Samples filtered through a 0.45um filter prior to analysis.

Client Name:

Client Reference:

Sinclair Knight Merz Pty Ltd

VE30064

Russel Martin **Contact Name:**

Date: 27/06/08

Certificate of Analysis

Page: 6 of 12

plus cover page

This report supercedes reports issued on: 24/06/08

Final

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08	20/6/08	17/6/08	17/6/08		
Method: E042.1/E045.1/E056.1 Sulphate Sulphate	EQL 2	32200	12200	26100	441	104%	<2		

Results expressed in mg/l unless otherwise specified

Comments:

E042.1/E045.1/E056.1: Determination by colour and/or by Ion Chromatography. Sample filtered through 0.45um prior to analysis.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

Date: 27/06/08

Final

Certificate

of Analysis

Page: 7 of 12

plus cover page

VE30064 **Client Reference:** This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	Н3-1	H3-2	PT24a	QC	QC		
Depth (m)				15/6/00					
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date		17/6/08	17/6/08	17/6/08	19/6/08	17/6/08	17/6/08		
Method: E037.1/E051.1 Nitrate as N NO3-N	EQL 0.01	0.02	10.4	0.02	0.94	91%	<0.01		

Results expressed in mg/l unless otherwise specified

Comments:

E037.1/E051.1: Nitrate determined by colour. Sample filtered through 0.45um prior to analysis.

Sinclair Knight Merz Pty Ltd

plus cover page

Page: 8 of 12

Certificate

Final

Contact Name:

Client Name:

Russel Martin

Date: 27/06/08

of Analysis

Client Reference:

VE30064

This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date	_	24/6/08	24/6/08	24/6/08	24/6/08	19/6/08	19/6/08		
Method: E039.1 TKN (as N) Total Kjeldahl Nitrogen	EQL 0.1	168	32.7	182	0.1	102%	<0.1		

Results expressed in mg/l unless otherwise specified

Comments:

E039.1: Sample filtered through 0.45um filter prior to analysis. Acidic digestion followed by determination by colour.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

VE30064 This report supercedes reports issued on: 24/06/08 **Client Reference:**

Page: 9 of 12

plus cover page

Date: 27/06/08

Final

Certificate

of Analysis

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date	_	24/6/08	24/6/08	24/6/08	24/6/08	19/6/08	19/6/08		
Method: E038.1 Total Nitrogen (as N) Total Nitrogen (as N)	EQL 0.1	168	43.1	182	1.1	99%	<0.1		

Results expressed in mg/l unless otherwise specified

Comments:

E038.1: Total Nitrogen by calculation.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

plus cover page

Page: 10 of 12

Certificate

Date: 27/06/08

of Analysis

Final

VE30064 **Client Reference:** This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	lcs	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC		
Depth (m)									
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08				
Laboratory Extraction (Preparation) Date		17/6/08	17/6/08	17/6/08	17/6/08	17/6/08	17/6/08		
Laboratory Analysis Date		18/6/08	17/6/08	18/6/08	19/6/08	17/6/08	17/6/08		
Method: E035.1 Alkalinity (CO3, HCO3, OH) Carbonate Bicarbonate Hydroxide	EQL 5 5 5	<5 <5 <5	<5 1780 <5	<5 <5 <5	<5 878 <5	 93% 	<5 <5 <5		

Results expressed in mg/l unless otherwise specified

Comments:

E035.1: Determination by colour and/or by titration, followed by calculation. Results expressed as CaCO3.

Sinclair Knight Merz Pty Ltd

Page: 11 of 12 plus cover page Final Certificate

Client Name: Contact Name:

Russel Martin

Date: 27/06/08

of Analysis

Client Reference:

VE30064

This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	162172d	162172r	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC	QC		
Depth (m)										
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08					
Laboratory Extraction (Preparation) Date		25/6/08	25/6/08	25/6/08	25/6/08	25/6/08		25/6/08		
Laboratory Analysis Date		26/6/08	26/6/08	26/6/08	26/6/08	26/6/08		26/6/08		
Method: E2580 Total Organic Carbon (TOC) Total Organic Carbon	EQL 1	28	57	26	<1	26	7%	<1		

Results expressed in mg/l unless otherwise specified

Comments:

E2580: TOC analyser.

Sinclair Knight Merz Pty Ltd

Russel Martin

plus cover page

Page: 12 of 12

Certificate

Contact Name:

Date: 27/06/08

of Analysis

Final

VE30064 **Client Reference:**

This report supercedes reports issued on: 24/06/08

Laboratory Identification		162172	162228	162229	162230	162172d	162172r	mb		
Sample Identification		H1-1	H3-1	H3-2	PT24a	QC	QC	QC		
Depth (m)										
Sampling Date recorded on COC		16/6/08	15/6/08	15/6/08	15/6/08					
Laboratory Extraction (Preparation) Date		25/6/08	25/6/08	25/6/08	25/6/08	25/6/08		25/6/08		
Laboratory Analysis Date		26/6/08	26/6/08	26/6/08	26/6/08	26/6/08		26/6/08		
Method: APHA 2540C Total Dissolved Solids (TDS) TDS	EQL 1	96900	33700	73100	3580	63000	42%	<1		

Results expressed in mg/l unless otherwise specified

Comments:

APHA 2540C: Determined gravimetrically.

Report Date: 18/06/2008 Report Time: 2:16:13PM

Sample

Receipt

Invoice Number: 32480

Quality, Service, Support

	Client Details	Laboratory Reference Information				
Client Name: Client Phone:	Sinclair Knight Merz Pty Ltd 08 8424 3800	II.	re this information ready contacting Labmark.			
Client Fax: Contact Name: Contact Email: Client Address:	08 8424 3810 Russel Martin rmartin@skm.com.au 33 King William St Adelaide SA 5000	Laboratory Report: Quotation Number: Laboratory Address:	E038205 - Not provided, standard prices apply Unit 1, 8 Leighton Pl. Asquith NSW 2077			
Project Name: Project Number: CoC Serial Numbe Purchase Order: Surcharge: Sample Matrix:	VE30064 - Not provided - r: - Not provided Not provided - No surcharge applied (results by 6:30pm on due date) WATER	Phone: Fax: Sample Receipt Contact Email: Reporting Contact: Email:	61 2 9476 6533 61 2 9476 8219 et: Ros Schacht Ros.Schacht@labmark.com.au Geoff Weir geoff.weir@labmark.com.au			
Date Sampled (ear Date Samples Rec Date Sample Rece Date Preliminary F	eived: 17/06/2008 eipt Notice issued: 18/06/2008	NATA Accreditation: TGA GMP License: APVMA License: AQIS Approval: AQIS Entry Permit:	13542 185-336 (Sydney) 6105 (Sydney) NO356 (Sydney) 200521534 (Sydney)			

Reporting Requirements: Electronic Data Download required: Yes

Sample Condition: COC received with samples. Report number and lab ID's defined on COC.

Samples received in good order.

Samples received with cooling media: Ice bricks .

Samples received chilled. Security seals not used .

Sample container & chemical preservation suitable .

Comments: Sample PT24a was not received initally, sample was received 19/6/08, these samples are out of THT for

Anions, NO3 and pH. Samples sent to SAL for analysis of TDS and TOC. Samples sent to Labmark Vic

for metals analysis.

Holding Times: Date received allows for insufficient time to meet Technical Holding Times.

Note: There are Samples within this batch that have been received by the laboratory 1 day(s) after Technical Holding Times expire. LabMark cannot guarantee THT compliance, refer to the extraction

dates detailed in the sample grid for confirmation.

Preservation: Chemical preservation of samples satisfactory for requested analytes.

Important Notes:

LabMark shall responsibly dispose of spent customer soil and water samples which includes the disintegration of the sample label. A sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period

Analysis comments:

Subcontracted Analyses:

Reported by Amdel Limited, NATA accreditation No.1526.

Reported by Sydney Analytical Laboratories, NATA accreditation No.1884.

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Report Date: 18/06/2008 Report Time: 2:16:13PM

Sample

Receipt

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID		Requested Analysis																		
No. Date Depth	Client Sample ID	Major cations	Alkalinity (CO3, HCO3, OH)	Chloride	Electrical conductivity (EC)	Fluoride	Nitrite as N	Nitrate as N	NOx (as N)	pH in water	PREP Not Reported	Sulphate	TKN (as N)	Total alkalinity	Total Nitrogen (as N)	External Analysis by Amdel	External Total Dissolved Solids (TDS)	External Total Organic Carbon (TOC)		
162172 16/06	H1-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•		
162228 15/06	H3-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
162229 15/06	H3-2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
162230 15/06	PT24a	•	•	•	•	•	٠	•	•	•	٠	•	٠	•	•	•	•	٠		
	Totals:	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

From : SKM Pty	and the state of t			CHAIN OF CUSTODY FOR	A	STATES OF SECURITY CONTRACTOR OF STATES	- productive and an extensive productive pro	o e e managodia de paracero nos e	S	KI	M
ABN: 37 001 024		aide, SA	A 5000				Conta	iner Identific	ation	Control of the Contro	
oh: (08) 8424 38	00 fax: (08) 842	24 3810			Size	500ml	125ml	43ml			<u> </u>
AB USE ONLY	<u> </u>		Project I	No:	Type		plastic	vile			
OUOTE NUMBÉ ob Code:	R		Project I	VE30064 Annegor:	Preser	v no	yes	yes		+	
ob Code: lue Date:			Projecti	Russell Martin							
ustody seal inta	icí?		Sampler	(s):	Analyte	s g	-				
ample coid?				Alistair Walsh		See Attached	See Attached	See Attached			
teceived for Lab	oratory by:		Checked	i:		e At	e At	e At			
						, w	ď	Š			
ate:			Date:	10/00/0000			j				
ime:		1		Sample Identification Charter Comme							
ab id	Date	Time	Matrix	Sample Identification UK Comme	its	Hick requi	red analytes			1	1
	16/06/2008		H20	H1-1 - 500ml							Ļ
	16/06/2008		H2O	H1-1-125ml & 162172		Sheex	1			ļ	
	10/00/2000		H2U	711-1 - 120mil \$ 10 -		<u> </u>	-				
	16/06/2008		H20	H1-1 - 43mi			-	-			ļ
	15/06/2008		 H2O	H3-1 - 500mi		de de la constante de la const					
	:3/00/2008	T	HZU	7		15	-			1	
	15/06/2008	-	H2O	H3-1 - 125ml & 162228			<u> </u>				+
	15/06/2008		H2O	H3-1 - 43ml		< >					
	13/00/2006	\vdash	I IIZU	100-174000		2					
	15/06/2008		H2O	H3-2 - 500ml		<u>z</u>	1	 		-	┼
	15/06/2008		H2O	H3-2 - 125ml \$ 162729		annlysis					
	10/00/2008	+	HZU	110-2 - 120(11)			 	+		 	1
	15/06/2008	<u> </u>	H2O	H3-2 - 43ml		>					-
			İ			ودي					
		┼──				ž	-			+	1
						'sT	<u> </u>			 	
	45/06/2009			7 162230		H &					
	45016/2100		1120	102230	10		+				1
	15/06/2009		+120	protectived of	18/1	108					—
	15/06/2008			DT34a 43ml	0	, V	1				
	Torona					1					
		ļ					_				
				PT24a							
							+			-	
	<u> </u>	-		 		 		+			+-
								+			+-
				•							
		-	-				+	+		-	+-
						T					
		 	-				+	+			-
		-	<u> </u>			-	+	+		-	+-
		<u> </u>	*								1
		İ		TOTA	-	1					
otes:		1									
				u and rmartin@skm.com.au upon rec							
				nalysis required, any questions plea		# ES		2.05			
74	conso	I	0	7/6/08	JUL	, ,, <u> </u>	- -	Sheet	•		

rtes List

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
/ s	Sample Batch fee			
	Calcium (Ca)			
Major Cations (mg/L)	Magnesium (Mg)			
Maj ions (Sodium	1 mg/L	7 days	
Cati	(Na) Potassium	-		
	(K) Calcium Carbonate			
9/L)	(CaCO ₃) Sulphate			
w) st	(SO ₄) Chloride	1 mg/L		
Anior	(Ci)	 	48 Hrs	
Major Anions (mg/L.)	Carbonate (CO ₂)	1 mg/L		
	Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units) Fluoride	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Silica (Si)			
	Aluminum	10 µg/L		
	(Ai) Antimony	0.5 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/IMS
	(Sb) Arsenic	0.5 µg/L	6 months	
	(As) Barium	 	6 months	
	(Ba) Beryllium	5 μg/L	6 months	
	(Be) Boron	0.1 μg/L	6 months	
	(B) Cadmium	100 µg/L	6 months	
	(Cd) Chromium	0.2 μg/L	6 months	
	(Cr)	0.5 µg/L	6 months	
	(Co)	0.2 μg/L	6 months	
	Copper (Cu)	5 μg/L	6 months	
J/6L)	Gold (Ag)	0.1 μg/L	6 months	
ats (n	Lead (Pb)	0.2 μg/L	6 months	-
Dissolved Metals (mg/L)	Lithium (Li)	5 µg/L	6 months	
solve	Manganese (Mn)	0.5 μg/L	6 months	
Sig	Molybdenum (Mo)	0.1 μg/L	6 months	
	Nickel (Ni)	0.5 μg/L	6 months	
	Selenium (Se)	5 μg/L	6 months	
	Strontium (Sr)	10 μg/L	6 months	
	Thallium (TI)	0.1 μg/L	6 months	
	Thorium (Th)	0.1 μg/L	6 months	
	Tin (Sn)	5 µg/L	6 months	
	Titanium (Ti)	5 µg/L	6 months	•
	Uranium (U)	0.1 μg/L	6 months	
	Vanadium (V)	0.5 μg/L		
	Zinc (Zn)	5 μg/Ł	6 months	
	Iron - total	5 μg/L	6 months	
remove	(Fe)	5 µg/L	6 months	ICP OES
A	lron	5 µg/L	24 hrs	Separate
7.0	(Fe3+)	0.01 mg/L	24 hrs	Separate
			48 hrs	measured together
		0.01 mg/L 0.01 mg/L	48 hrs 28 days	
		1 mg/L	28 days	
	4.1	0.1 mg/L		
	-tetal CO		28 days	
	Free CO ₂ .			measure in field by titration measure in field by titration
		Cost/sample		

Job#2038205

Health, Safety, Environment & Community

File: 6.1- Radiation and Hygiene\6.1.2-

Management\KT\Transport\Correspondence Reports Exemption.doc

16 June 2008

To Whom it May Concern

bhpbilliton

BHP Billiton Limited Olympic Way: Olympic Dam, South Australia, 5725 Australia

PO Box 150 Olympic Dam, South Australia, 5725 Australia

Tel +61 (08) 8671 8468 Fax +61 (08) 8671 2493 david.kruss@bhpbilliton.com

Dear Sir/Madam

Re: Transportation of materials below Exemption Levels

The bearers of the attached groundwater samples are transporting them at levels below the level of concern for radiological purposes. In particular, the levels are below 10,000Bq of Uranium-238, Lead-210 and Polonium-210. These levels are the exemption levels provided in the IAEA Code of Practice for Safe Transport of Radioactive Substances 1990 as adopted by all States and the Commonwealth within Australia and also by relevant international bodies including IATA and IMO. The ground water is acidic; however the volume is below 5 litres and is therefore an exempted corrosive substance under the Australian Dangerous Goods code.

At these very low levels the material is not considered corrosive or radioactive for transport or licencing purposes and poses minimal health or safety risk.

There is some acidity and radioactive content in the groundwater samples and safety precautions should be taken during handling. Gloves should be worn when handling the samples and if any activity is conducted which may give rise to airborne dust, then a dust mask should be worn. Processes which create dust should be avoided.

The samples should be analysed in work area be covered to prevent loss of any spill and any material removed from the groundwater samples should be collected, sealed in an approved dangerous goods container suitable for liquids and returned to Olympic Dam with the groundwater samples in a similar manner to which the groundwater samples was supplied. Any personal protective equipment used in the handling of these groundwater samples should also be collected, sealed in a plastic bag and returned to Olympic Dam.

If you have any further queries on the transport of these samples, please contact me on +61 8 8671 8468, my mobile +61 417 814 359, or my e-mail address at david.kruss@bhpbilliton.com.

Yours sincerely,

David Kruss

1) Knes

Radiation Safety Officer - Process

Revision No: 2.0

OLYMPIC DAM EVAPORATION POND LIQUOR

Hazard Alert Code: EXTREME

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: OLYMPIC DAM EVAPORATION POND LIQUOR

SYNONYMS

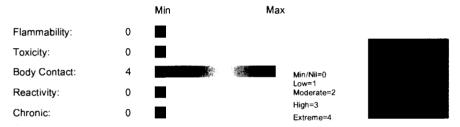
"evaporation pond liquid", "pond liquors"

PROPER SHIPPING NAME

CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (contains sulfuric acid)

PRODUCT USE

Process liquors as held in Evaporating Ponds at Olympic Dam operations.


SUPPLIER

Company: BHP Billiton - Olympic Dam

Address: PO Box 150 Roxby Downs SA, 5725 AUS

Telephone: +61 8 8671 8888 Fax: +61 8 8671 8807

HAZARD RATINGS

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

POISONS SCHEDULE

RISK

Irritating to eyes respiratory system and skin.

Harmful to aquatic organisms may cause long-term adverse effects in the aquatic environment.

Cumulative effects may result following exposure*.

* (limited evidence).

SAFETY

Do not breathe gas/ fumes/ vapour/ spray.

Avoid contact with skin.

Wear eye/ face protection.

To clean the floor and all objects contaminated by this material use water.

In case of contact with eyes rinse with plenty of water and contact Doctor or Poisons Information Centre.

If swallowed IMMEDIATELY contact Doctor or Poisons Information Centre (show this container or label).

This material and its container must be disposed of as hazardous

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
sulfuric acid	7664-93-9	<10
Cu 2.5-7.0 g/L as		
copper sulfate	7758-98 - 7	<1
Fe 30-87 g/L as .		
ferrous sulfate anhydrous	7720-78-7	1-10
Ca 0.85-1.49 g/L as		
calcium sulfate	7778-18-9	<0.5

Hazard Alert Code: EXTREME
Chemwatch 5501-93
CD 2008/2
0.04
0.87
0.9

>60

Revision No: 2.0

7732-18-5

Uranium mixed oxides max dissolved SiO2 as alkali silicate max Radionuclides: Po210 max 0.2 Bq/q Pb210 max 1.8 Bq/g water

Section 4 - FIRST AID MEASURES

Chemwatch Material Safety Data Sheet (REVIEW)

SWALLOWED

Issue Date: 28-Sep-2003

For advice, contact a Poisons Information Centre or a doctor.

- If swallowed do NOT induce vomiting
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs, remove contaminated clothing and flush skin and hair with running water.

INHALED

- If inhaled, remove quickly from contaminated area.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, baq-valve mask device, or pocket mask as trained. Perform CPR if necessary.

NOTES TO PHYSICIAN

For acute or short term repeated exposures to strong acids:

- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

FYF.

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.

Chemwatch Material Safety Data Sheet (REVIEW)

Revision No: 2.0

Hazard Alert Code: EXTREME Chemwatch 5501-93

CD 2008/2

Issue Date: 28-Sep-2003

- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

Non combustible liquid.

Will not burn, but heat produces highly toxic fumes/vapours. Reacts with metals producing flammable / explosive hydrogen gas. If involved in fire emits toxic fumes of: sulfur oxides (SOx).

FIRE INCOMPATIBILITY

Avoid contact with, strong alkalis, strong oxidisers and cyanides.

HAZCHEM

Personal Protective Equipment

Gas tight chemical resistant suit.

Section 6 - ACCIDENTAL RELEASE MEASURES

EMERGENCY PROCEDURES

MINOR SPILLS

Carefully, contain and neutralise with slaked lime.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labelled container for waste disposal.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE half evacuation downwind direction distance From IERG (Canada/Australia) wind Isolation down wind distance Isolation Distance 25 metres Downwind Protection Distance 250 metres Distance direction IERG Number 37 half evacuation downwind direction distance INITIAL **ISOLATION**

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

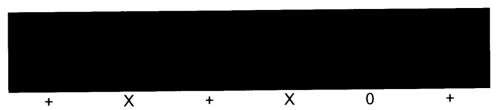
5 Guide 154 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

Page

Hazard Alert Code:


OLYMPIC DAM EVAPORATION POND LIQUOR

Chemwatch Material Safety Data Sheet (REVIEW)

Revision No: 2.0

EXTREME Chemwatch 5501-93 CD 2008/2

Issue Date: 28-Sep-2003

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are

SUITABLE CONTAINER

Check that containers are clearly labelled

Bulk, open pondage

STORAGE INCOMPATIBILITY

Segregate quantities of liquor outside the Evaporation Pond from strong alkalies and cyanides

STORAGE REQUIREMENTS

Prevent contact with corrodible materials.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS TWA STEL STEL Peak Peak TWA **TWA** Material F/CC Source mg/m³ ppm mg/m³ mg/m³ mag Australia Exposure 3 sulfuric acid (Sulphuric acid) Standards Australia Exposure copper sulfate (Copper, dusts & mists Standards (as Cu)) Australia Exposure 0.2 copper sulfate (Copper (fume)) Standards ferrous sulfate anhydrous (Iron salts, Australia Exposure soluble (as Fe)) Standards Australia Exposure calcium sulfate (Calcium sulphate (a)) 10 Standards The following materials had no OELs on our records • water: CAS:7732-18-5 **EMERGENCY EXPOSURE LIMITS** Revised IDLH Value (ppm) Revised IDLH Value (mg/m3) Material sulfuric acid

MATERIAL DATA

None assigned. Refer to individual constituents.

INGREDIENT DATA

FERROUS SULFATE ANHYDROUS:

SULFURIC ACID:

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal noobservable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling

Hazard Alert Code: **EXTREME**

Revision No: 2.0 Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

FERROUS SULFATE ANHYDROUS:

The recommended TLV is thought to reduce the likelihood of respiratory irritation and skin irritation from exposure to aerosols and mists of soluble iron salts.

CALCIUM SULFATE:

The TLV-TWA is thought to be protective against the significant risks of eye, skin and other physical irritation.

WATER

No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

EYE

- Chemical goggles
- Full face shield
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

PVC gloves.

OTHER

- Overalls
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirato
1000	10	E-AUS P	-
1000	50	-	E-AUS P
5000	50	Airline *	-
5000	100	-	E-2 P
10000	100	-	E-3 P
	100+		Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

If risk of inhalation or overexposure exists, wear SAA approved respirator or work in fume hood.

Correct respirator fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Opaque, greyish blue-green liquid. Characteristic odour. Miscible with water. Corrosive to metals, 241.5mm per year on aluminium (7075 T6 non-clad) when tested in accordance with NACE Method TM 0169-76.

PHYSICAL PROPERTIES

Hazard Alert Code: FXTREME

Chemwatch 5501-93

Page

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Liquid.

Mixes with water.

Corrosive.

Acid.

Molecular Weight: Not applicable.

Melting Range (°C): Not available. Solubility in water (q/L): Miscible

pH (1% solution): Not available

Volatile Component (%vol): Not available Relative Vapour Density (air=1): Not available. Lower Explosive Limit (%): Not applicable

Autoignition Temp (°C): Not available.

State: Liquid

Boiling Range (°C): >100

Specific Gravity (water=1): 1.1 estd.

Revision No. 2.0

pH (as supplied): 1.1-1.6

Vapour Pressure (kPa): Not available Evaporation Rate: Not available Flash Point (°C): Not applicable

Upper Explosive Limit (%): Not applicable Decomposition Temp (°C): Not available

Section 10 - CHEMICAL STABILITY AND REACTIVITY INFORMATION

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable
- Hazardous polymerisation will not occur.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS **ACUTE HEALTH EFFECTS**

SWALLOWED

The liquid is. highly corrosive to the gastro-intestinal tract and capable of causing severe burns if swallowed.

Considered an unlikely route of entry in commercial/industrial environments.

EYE

The vapour/liquid is, extremely corrosive to the eyes and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

SKIN

The vapour/liquid is, corrosive to the skin and is capable of causing burns.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

INHALED

Not normally a hazard due to non-volatile nature of product.

The vapour/mist is. highly discomforting to the upper respiratory tract and lungs.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

CHRONIC HEALTH EFFECTS

Primary route of exposure is usually by skin contact/eye contact.

TOXICITY AND IRRITATION

Not available. Refer to individual constituents.

SULFURIC ACID:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Oral (rat) LD50: 2140 mg/kg

Eye (rabbit): 1.38 mg SEVERE

Inhalation (rat) LC50: 510 mg/m3/2h

Eye (rabbit): 5 mg/30sec SEVERE

Inhalation (human) TCLo: 3 mg/m3/24w

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO

Occupational exposures to strong inorganic acid mists of sulfuric acid: **COPPER SULFATE:**

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Oral (human) LDLo: 50 mg/kg Nil Reported

Oral (man) LDLo: 857 mg/kg Oral (human) TDLo: 11 mg/kg Oral (rat) LD50: 300 mg/kg

Hazard Alert Code: **EXTREME**

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a nonatopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Nil Reported

Revision No: 2.0

FERROUS SULFATE ANHYDROUS:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Oral (woman) LDLo: 60 mg/kg

Oral (woman) TDLo: 600 mg/kg Oral (woman) TDLo: 10.56 mg/kg Oral (rat) LD50: 319 mg/kg Oral (Human) TDLo: 68640 mg/kg

Oral (Human) TDLo: 960 mg/kg Oral (Mouse) LD50: 680 mg/kg

Intraperitoneal (Mouse) LD50: 106 mg/kg Intravenous (Mouse) LD50: 112 mg/kg Intravenous (Dog) LD50: 79 mg/kg Oral (Human) LD: 60 mg/kg Oral (Human) LD: 699 mg/kg Subcutaneous (Rat) LD50: 155 mg/kg Oral (Guinea) pig: LD50 1200 mg/kg

CALCIUM SULFATE:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

for dihydrate

[RTEC NO.: EW 4150000]

Inhalation (human) TCLo: 194000 mg/m³/10Y Nil reported

-Intermittent

WATER:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Marine Pollutant: Not Determined

DO NOT discharge into sewer or waterways.

Refer to data for ingredients, which follows:

SUI FURIC ACID:

Prevent, by any means available, spillage from entering drains or water

DO NOT discharge into sewer or waterways.

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre.

Sulfuric acid is soluble in water and remains indefinitely in the environment as sulfate.

Large discharges may contribute to the acidification of water and be fatal to aquatic life and soil micro-organisms.

Large discharges may contribute to the acidification of effluent treatment systems and injure sewage treatment organisms. [ICI UK] COPPER SULFATE:

Fish LC50 (96hr.) (mg/l):

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Copper is unlikely to accumulate in the atmosphere due to a short residence time for airborne copper aerosols. Airborne coppers, however, may be transported over large distances. Copper accumulates significantly in the food chain.

Drinking Water Standards:

3000 ug/l (UK max)

2000 ug/l (WHO provisional Guideline)

1000 ug/l (WHO level where individuals complain)

Soil Guidelines: Dutch Criteria

36 mg/kg (target)

190 mg/kg (intervention)

Air Quality Standards: no data available.

The toxic effect of copper in the aquatic biota depends on the bio-availability of copper in water which, in turn, depends on its physicochemical form (ie speciation). Bioavailability is decreased by complexation and adsorption of copper by natural organic matter, iron and manganese hydrated oxides, and chelating agents excreted by algae and other aquatic organisms. Toxicity is also affected by pH and hardness. Total copper is rarely useful as a predictor of toxicity. In natural sea water, more than 98% of copper is organically bound and in river waters a high percentage is often organically bound, but the actual percentage depends on the river water and its

Page

OLYMPIC DAM EVAPORATION POND LIQUOR

Hazard Alert Code: EXTREME

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Copper exhibits significant toxicity in some aquatic organisms. Some algal species are very sensitive to copper with EC50 (96 hour) values as low as 47 ug/litre dissolved copper whilst for other algal species EC50 values of up to 481 ug/litre have been reported. However many of the reportedly high EC50 values may arise in experiments conducted with a culture media containing coppercomplexing agents such as silicate, iron, manganese and EDTA which reduce bioavailability.

Toxic effects arising following exposure by aquatic species to copper are typically:

Algae EC50 (96 h)

Daphnia magna LC50 (48-96 h)

h)

Amphipods LC50 (48-96 Gastropods LC50 (48-96 Crab larvae LC50 (48-96

47-481 *

7-54 *

37-183 *

58-112 *

Revision No: 2.0

50-100 *

* ug/litre

Exposure to concentrations ranging from one to a few hundred micrograms per litre has led to sublethal effects and effects on longterm survival. For high bioavailability waters, effect concentrations for several sensitive species may be below 10 ug Cu/litre. In fish, the acute lethal concentration of copper ranges from a few ug/litre to several mg/litre, depending both on test species and exposure conditions. Where the value is less than 50 ug Cu/litre, test waters generally have a low dissolved organic carbon (DOC) level, low hardness and neutral to slightly acidic pH. Exposure to concentrations ranging from one to a few hundred micrograms per litre has led to sublethal effects and effects on long-term survival. Lower effect concentrations are generally associated with test waters of high bioavailability

In summary:

Responses expected for high concentration ranges of copper *

Total dissolved Cu concentration range (ug/litre)

1-10

10-100

100-1000

>1000

Effects of high availability in water

Significant effects are expected for diatoms and sensitive invertebrates, notably cladocerans. Effects on fish could be significant in freshwaters with low pH and hardness.

Significant effects are expected on various species of microalgae, some species of macroalgae, and a range of invertebrates, including crustaceans, gastropods and sea urchins. Survival of sensitive fish will be affected and a variety of fish show sublethal

Most taxonomic groups of macroalgae and invertebrates will be severely affected. Lethal levels for most fish species will be reached.

Lethal concentrations for most tolerant organisms are reached.

Sites chosen have moderate to high bioavailability similar to water used in most toxicity tests. In soil, copper levels are raised by application of fertiliser, fungicides, from deposition of highway dusts and from urban, mining and industrial sources. Generally, vegetation rooted in soils reflects the soil copper levels in its foliage. This is dependent upon the bioavailability of copper and the physiological requirements of species concerned. Typical foliar levels of copper are:

Uncontaminated soils (0.3-250 mg/kg)

Contaminated soils (150-450 mg/kg)

Mining/smelting soils

6.1-25 mg/kg

80 ma/ka

300 ma/ka

Plants rarely show symptoms of toxicity or of adverse growth effects at normal soil concentrations of copper. Crops are often more sensitive to copper than the native flora, so protection levels for agricultural crops range from 25 mg Cu/kg to several hundred mg/kg, depending on country. Chronic and or acute effects on sensitive species occur at copper levels occurring in some soils as a result of human activities such as copper fertiliser addition, and addition of sludge.

When soil levels exceed 150 mg Cu/kg, native and agricultural species show chronic effects. Soils in the range 500-1000 mg Cu/kg act in a strongly selective fashion allowing the survival of only copper-tolerant species and strains. At 2000 Cu mg/kg most species cannot survive. By 3500 mg Cu/kg areas are largely devoid of vegetation cover. The organic content of the soil appears to be a key factor affecting the bioavailability of copper.

On normal forest soils, non-rooted plants such as mosses and lichens show higher copper concentrations. The fruiting bodies and mycorrhizal sheaths of soil fungi associated with higher plants in forests often accumulate copper to much higher levels than plants at the same site. International Programme on Chemical Safety (IPCS): Environmental Health Criteria 200.

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre. DO NOT discharge into sewer or waterways.

The material is classified as an ecotoxin* because the Fish LC50 (96 hours) is less than or equal to 0.1 mg/l

* Classification of Substances as Ecotoxic (Dangerous to the Environment)

Compiler's Guide for the Preparation of International Chemical Safety Cards: 1993 Commission of the European Communities.

FERROUS SULFATE ANHYDROUS:

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre. DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Treat and neutralise at an effluent treatment plant.
- Use soda ash or slaked lime to neutralise.
- Recycle containers, otherwise dispose of in an authorised landfill.

Hazard Alert Code: **EXTREME**

Chemwatch Material Safety Data Sheet (REVIEW)

Revision No: 2.0

Chemwatch 5501-93

CD 2008/2

Issue Date: 28-Sep-2003

Section 14 - TRANSPORTATION INFORMATION

Labels Required: CORROSIVE

HAZCHEM: 2X

UNDG:

Dangerous Goods Class:

8

Subrisk:

None

UN Number:

3264 Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.

Packing Group:

Ш

(contains sulfuric acid)

Air Transport IATA:

ICAO/IATA Class: UN/ID Number:

3264

ICAO/IATA Subrisk:

None

Special provisions:

A3

Packing Group:

Ш

Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. *

Maritime Transport IMDG:

IMDG Class:

8

IMDG Subrisk:

None

UN Number: EMS Number:

3264 F-A,S-B

Packing Group:

Limited Quantities:

5 L

Special provisions: Marine Pollutant:

223 274 944 Not Determined

Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE

REGULATIONS

Olympic Dam Evaporation Pond Liquor (CAS: None):

No regulations applicable

sulfuric acid (CAS: 7664-93-9) is found on the following regulatory lists;

Australia Exposure Standards

Australia Hazardous Substances

Australia High Volume Industrial Chemical List (HVICL)

Australia Illicit Drug Reagents/Essential Chemicals - Category III

Australia Inventory of Chemical Substances (AICS)

Australia National Pollutant Inventory

Australia National Poliutant Inventory

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6

China (Hong Kong) Control of Chemicals Ordinance

China (Hong Kong) Fire Service Department - List of Dangerous Goods China (Hong Kong) Occupational Exposure Limits

China (Hong Kong) Occupational Exposure Limbs
China (Hong Kong) Pharmacy and Poisons Regulations - Poisons Exempted from Labelling Provisions
China (Hong Kong) Pharmacy and Poisons Regulations - Special Exemptions
China (Hong Kong) Poisons List Regulations - Poisons List
China Classification and Labelling of Dangerous Chemical Substances

China Dangerous Chemicals Names List

China Inventory of Existing Chemical Substances

China National Dangerous Wastes Name List (Chinese)
China Occupational Exposure Limits for Hazardous Agents in the Workplace

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk

India Chemical Accidents Rules - Schedule 1: List of Hazardous Chemicals
India Hazardous Wastes Rules - Schedule 2: List of Wastes Constituents with Concentration Limits

India Manufacture, Storage and Import of Hazardous Chemical Rules - Schedule 1: List of Hazardous and Toxic Chemicals India Permissible Levels of Certain Chemical Substances in Work Environment

International Air Transport Association (IATA) Dangerous Goods Regulations

International Council of Chemical Associations (ICCA) - High Production Volume List Japan Air Pollution Prevention

Japan Chemical Substances Control Law - Existing/New Chemical Substances

Japan Civil Aeronautics Law

Japan Ford Enforcement Legislation
Japan Fire Service Law - Obstacle Substances to Fire Fighting
Japan Food Sanitation Law - Designated Additives

Japan Food Sanitation Law - Designated Additives (Japanese) Japan GHS Classifications (Japanese)

Japan Industrial Safety and Health Law (ISHL) - Chemicals Requiring Eye Protection

Japan Industrial Safety and Health Law (ISHL) - Corrosive Liquid (English)

Hazard Alert Code: EXTREME

Revision No: 2.0

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Japan Industrial Safety and Health Law (ISHL) - Corrosive Liquid (Japanese)

Japan Industrial Safety and Health Law (ISHL) - Notifiable Substances

Japan Industrial Safety and Health Law (ISHL) - Specified Chemical Substances

Japan Marine Pollution and Disasters

Japan Occupational Exposure Limits

Japan Occupational Exposure Limits (Japanese)

Japan Poisonous and Deleterious Substances Control Law

Japan Poisonous and Deleterious Substances Control Law - Deleterious Substances

Japan Road Law

Japan Shipping Legislation
Korea (South) Existing Chemicals List (KECL)

Korea (South) Occupational Exposure Standards (Korean)
Korea (South) Toxic Chemicals Control Act - Toxic Chemicals

Korea (South) Toxic Release Inventory (TRI) Chemicals Korea GHS Classifications (Korean)

Malaysia Permissible Exposure Limits

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Hazardous Substances Register

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Scheduled Toxic Substances
New Zealand Inventory of Chemicals (NZIoC)
New Zealand Poisons Schedule [NLV]
New Zealand Transferred List of Single Component Substances

New Zealand Workplace Exposure Standards (WES)
OECD Representative List of High Production Volume (HPV) Chemicals

Philippines Inventory of Chemicals and Chemical Substances (PICCS)

Philippines Occupational Exposure Limits

Philippines Regulatory Guidelines Concerning Food Additives - Permitted Food Additives

Philippines Regulatory Guidelines Concerning Food Additives - Recommended Levels of Use for some Food Additives

Singapore Environmental Pollution Control (Hazardous Substances) Regulations

Singapore Environmental Pollution Control Act (EPCA) - List of Controlled Hazardous Substances

Singapore Food Regulations - Food Additives - Permitted General Purpose Food Additives

Singapore Odour Thresholds and Irritation Concentration of Chemicals

Singapore Permissible Exposure Limits of Toxic Substances

Taiwan Hazard Prevention Standard for Specified Chemical Substances - Specified Chemical Substances (Category A - D) & Specified Controlled Substances

Taiwan Permissible Concentration of Airborne Harmful Substances

Taiwan Rules for Hazard Communication for Dangerous and Harmful Materials - Harmful Materials (Chinese)

Taiwan Scope and Application Standards of Food Additives - Chemicals for Food Industry

Thailand Harmful Chemicals - List I

Thailand List of Precursor and Chemical Control (Watch List)

Thailand Occupational Exposure Limits - Working Safety and Environmental Condition (Chemical) Table 1

United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II

United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic

Substances Under International Control - Table II

Vietnam Air Quality Hazardous Substances Standards copper sulfate (CAS: 7758-98-7) is found on the following regulatory lists;

Australia Dangerous Goods Code Draft 7th Edition - List of Common Pesticides with Corresponding UN Numbers

Australia Exposure Standards

Australia Hazardous Substances

Australia High Volume Industrial Chemical List (HVICL)

Australia Inventory of Chemical Substances (AICS)

Australia National Pollutant Inventory

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix A

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 4

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 5

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6
Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines

Cambodia Water Pollution Control - Annex 1 Type of the hazardous substances

China Dangerous Chemicals Names List

China Inventory of Existing Chemical Substances
China National Dangerous Wastes Name List (Chinese)

India Chemical Accidents Rules - Schedule 1: List of Hazardous Chemicals

India Hazardous Wastes Rules - Schedule 2: List of Wastes Constituents with Concentration Limits

India Manufacture, Storage and Import of Hazardous Chemical Rules - Schedule 1: List of Hazardous and Toxic Chemicals

India Permissible Levels of Certain Chemical Substances in Work Environment International Council of Chemical Associations (ICCA) - High Production Volume List

Japan Chemical Substances Control Law - Existing/New Chemical Substances

Japan Food Sanitation Law - Designated Additives

Japan Food Sanitation Law - Designated Additives (Japanese)

Japan GHS Classifications (Japanese)

Japan Industrial Safety and Health Law (ISHL) - Notifiable Substances

Japan Poisonous and Deleterious Substances Control Law

Japan Poisonous and Deleterious Substances Control Law - Deleterious Substances

Japan PRTR Law

Japan Water Pollution Control Law - National Effluent Standards

Korea (South) Existing Chemicals List (KECL)

Korea (South) Occupational Exposure Standards (Korean)
Korea (South) Toxic Chemicals Control Act - Chemicals not Relevant to Toxic
Korea (South) Toxic Release Inventory (TRI) Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Hazardous Substances Register

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Pesticides

Hazard Alert Code: **EXTREME**

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Malaysia Food Regulations - Permitted Food Conditioners

Malaysia Permissible Exposure Limits

New Zealand Inventory of Chemicals (NZIoC)
New Zealand Transferred List of Single Component Substances

New Zealand Workplace Exposure Standards (WES)

OECD Representative List of High Production Volume (HPV) Chemicals

Philippines Inventory of Chemicals and Chemical Substances (PICCS)

Philippines Regulatory Guidelines Concerning Food Additives - Permitted Food Additives

Singapore Food Regulations - Food Addititves - Permitted Nutrient Supplement

Singapore Permissible Exposure Limits of Toxic Substances

Taiwan Scope and Application Standards of Food Additives - Food quality improvement, fermentation and food processing agents

Thailand Food Act - Bottled Drinking Water Quality Standard

Thailand Ground Water Act - Ground Water Quality Standards for Drinking Purposes Thailand Industrial Products Standards Act - Drinking Water Quality Standards

Thailand Notification No 84 (B.E. 2527) Food Additives - Section 4: Salts calcium sulfate (CAS: 10101-41-4) is found on the following regulatory lists;

Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (Domestic water

supply - inorganic chemicals)

Australia - Australian Capital Territory Environment Protection Regulation Pollutants entering waterways - Agricultural uses

Australia - Australian Capital Territory Environment Protection Regulation Pollutants entering waterways - Domestic water

Cambodia Water Pollution Control - Annex 2 Effluent standard for pollution sources discharging wastewater to public water

areas or sewer

Thailand Food Act - Bottled Drinking Water Quality Standard
Thailand Ground Water Act - Ground Water Quality Standards for Drinking Purposes

Thailand Industrial Products Standards Act - Drinking Water Quality Standards

water (CAS: 7732-18-5) is found on the following regulatory lists;

Australia Inventory of Chemical Substances (AICS)

China Inventory of Existing Chemical Substances

IMO IBC Code Chapter 18: List of products to which the Code does not apply India Hazardous Wastes Rules - Schedule 2: List of Wastes Constituents with Concentration Limits

Korea (South) Existing Chemicals List (KECL)

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Transferred List of Single Component Substances

OECD Representative List of High Production Volume (HPV) Chemicals

Philippines Inventory of Chemicals and Chemical Substances (PICCS)

Thailand Harmful Chemicals - List I

Section 16 - OTHER INFORMATION

Ingredients with multiple CAS Nos

Ingredient Name

ferrous sulfate anhydrous

calcium sulfate

CAS

7720-78-7, 13463-43-9 7778-18-9, 10101-41-4

Revision No: 2.0

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent

review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios.

Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 28-Sep-2003 Print Date: 16-Jun-2008

AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356

Quarantine Approved Premises criteria 5.1 for quarantine Quarantine Approved remises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Accredited for compliance with ISO/IEC 17025. The results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to Australian and a standards. NATA is a the APLAC mutual recognition arrangem mutual recognition of the equivalence calibration and inspection reports.

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Cover Page 1 of 4 **Laboratory Report No:** E038250 Sinclair Knight Merz Pty Ltd **Client Name:** plus Sample Results

VE30064 **Client Reference:** Russel Martin

Contact Name: Chain of Custody No: na

WATER

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY ASSURANCE CRITERIA

Sample Matrix:

1 in first 5-20, then 1 every 20 samples Accuracy: matrix spike:

> lcs, crm, method: 1 per analytical batch

addition per target organic method surrogate spike:

Precision: laboratory duplicate: 1 in first 5-10, then 1 every 10 samples

> laboratory triplicate: re-extracted & reported when duplicate

RPD values exceed acceptance criteria

Holding Times: soils, waters: Refer to LabMark Preservation & THT

table

VOC's 14 days water / soil

VAC's 7 days water or 14 days acidified

VAC's 14 days soil

SVOC's 7 days water, 14 days soil Pesticides 7 days water, 14 days soil Metals 6 months general elements

Mercury 28 days

Confirmation: target organic analysis: GC/MS, or confirmatory column

Sensitivity: EOL:

(MDL)

QUALITY CONTROL GLOBAL ACCEPTANCE CRITERIA (GAC)

Accuracy: spike, lcs, crm general analytes 70% - 130% recovery

Date Received: 20/05/2008

Date Reported: 27/06/2008

surrogate: phenol analytes 50% - 130% recovery

organophosphorous pesticide analytes

60% - 130% recovery phenoxy acid herbicides, organotin

50% - 130% recovery

anion/cation bal: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l)

Precision: method blank: not detected >95% of the reported EQL

> duplicate lab 0-30% (>10xEQL), 0-75% (5-10xEQL)

RPD (metals): 0-100% (<5xEQL)

duplicate lab 0-50% (>10xEQL), 0-75% (5-10xEQL)

RPD: 0-100% (<5xEQL)

OUALITY CONTROL ANALYTE SPECIFIC ACCEPTANCE CRITERIA (ASAC)

Accuracy: spike, lcs, crm analyte specific recovery data

surrogate: <3xsd of historical mean

Typically 2-5 x Method Detection Limit **Uncertainty:** measurement calculated from spike, lcs:

historical analyte specific control

charts

RESULT ANNOTATION

Data Quality Objective s: matrix spike recovery p: pending bcs: batch specific lcs Data Quality Indicator d: laboratory duplicate laboratory control sample bmb: batch specific mb lcs: t: certified reference material crm:

Estimated Quantitation Limit laboratory triplicate RPD relative % difference mb: method blank

not applicable

* SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077

Quality Control (Report signatory) geoff.weir@labmark.com.au

Ivan Povolny Authorising Chemist (NATA signatory)

ivan.povolny@labmark.com.au

Authorising Chemist (NATA signatory) simon mills@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

copyright 2000

Laboratory Report: E038250

Cover Page 2 of 4

NEPC GUIDELINE COMPLIANCE - DQO

GENERAL

- A. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
- B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.
- C. Laboratory QA/QC samples are specific to this project.
- Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au.
- E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction.
- F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
- G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
- H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
- I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

Reported by Amdel Limited, NATA accreditation No.1526.

Reported by Sydney Analytical Laboratories, NATA accreditation No.1884.

This document is issued in accordance with NATA's accreditation requirements.

© copyright 2000

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E038250

Cover Page 3 of 4

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matrix:	WATER						
Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	pH in water	1	0	0%	0	0	0%
2	Electrical conductivity (EC)	1	0	0%	0	0	0%
3	Total alkalinity	1	0	0%	0	0	0%
4	Chloride	1	0	0%	0	0	0%
5	Fluoride	1	0	0%	0	0	0%
6	Sulphate	1	0	0%	0	0	0%
7	Nitrate as N	1	0	0%	0	0	0%
7	Nitrite as N	1	0	0%	0	0	0%
8	TKN (as N)	1	0	0%	0	0	0%
9	Total Nitrogen (as N)	1	0	0%	0	0	0%
10	Alkalinity (CO3, HCO3, OH)	1	0	0%	0	0	0%
11	Total Organic Carbon (TOC)	1	1	100%	0	0	0%
12	Total Dissolved Solids (TDS)	1	1	100%	0	0	0%

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Environmental Laboratory Industry Group

Laboratory Report: E038250

Cover Page 4 of 4

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, Corporate Site No. 13535, unless indicated below.

B. The following tests were conducted by Sydney Analytical Laboratories, NATA accreditation No.1884. :- TDS and TOC. SAL reference SAL20854 report issued on 27/6/2008

C. The following test was conducted by Amdel Limited, NATA accreditation No.1526. :- Metals analysis.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

Client Name:

Contact Name:

Sinclair Knight Merz Pty Ltd

Russel Martin **Date:** 27/06/08

Page: 1 of 12

plus cover page

Final

Certificate

of Analysis

VE30064 This report supercedes reports issued on: 26/06/08

Client Reference:

Laboratory Identification		162565					
Sample Identification		LT02/LP2					
Depth (m) Sampling Date recorded on COC		 18/6/08					
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		20/6/08 20/6/08					
Method: E018.1 pH in water pH (pH units)	EQL 0.1	6.2					

Results expressed in pH units unless otherwise specified

Comments:

E018.1: Direct measurement by pH ion selective electrode.

Client Name:

Client Reference:

Sinclair Knight Merz Pty Ltd

VE30064

Russel Martin **Contact Name:**

Date: 27/06/08

Page: 2 of 12

plus cover page

Certificate of Analysis

Final

This report supercedes reports issued on: 26/06/08

Laboratory Identification		162565	mb				
Sample Identification		LT02/LP2	QC				
Depth (m)							
Sampling Date recorded on COC		18/6/08					
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08				
Method: E032.1 Electrical conductivity (EC) Electric conductivity (uS/cm)	EQL 1	38700	1				

Results expressed in uS/cm unless otherwise specified

Comments:

E032.1: Measurement by EC probe. Results expressed in uS/cm.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name: Date:** 27/06/08

VE30064 **Client Reference:** This report supercedes reports issued on: 26/06/08

Page: 3 of 12

plus cover page

Final

Certificate

of Analysis

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08				
Method: E035.1 Total alkalinity Alkalinity	EQL 5	698	90%	<5				

Results expressed in mg/l unless otherwise specified

Comments:

E035.1: Determination by colour and/or by titration. Results expressed as CaCO3.

Sinclair Knight Merz Pty Ltd

plus cover page

Page: 4 of 12

Certificate

Final

Client Name: Contact Name:

Russel Martin

Date: 27/06/08

of Analysis

Client Reference:

VE30064

This report supercedes reports issued on: 26/06/08

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08				
Method: E033.1/E045.1/E047.1 Chloride Chloride	EQL 1	13700	103%	<1				

Results expressed in mg/l unless otherwise specified

Comments:

E033.1/E045.1/E047.1: Determination by colour and/or by Ion Chromatography. Sample filtered through a 0.45um filter prior to analysis.

Contact Name:

Sinclair Knight Merz Pty Ltd **Client Name:**

> Russel Martin **Date:** 27/06/08

VE30064 **Client Reference:** This report supercedes reports issued on: 26/06/08

Page: 5 of 12

plus cover page

Final

Certificate

of Analysis

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08				
Method: E034.1/E045.1 Fluoride	EQL							
Fluoride	0.1	1.9	106%	<0.1				

Results expressed in mg/l unless otherwise specified

Comments:

E034.1/E045.1: Determined by FIA-Ion Selective Electrode and/or by Ion Chromatography. Samples filtered through a 0.45um filter prior to analysis.

Client Name:

Contact Name:

Sinclair Knight Merz Pty Ltd

Russel Martin

plus cover page

of Analysis **Date:** 27/06/08

Final

Certificate

Page: 6 of 12

VE30064 **Client Reference:** This report supercedes reports issued on: 26/06/08

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08				
Method: E042.1/E045.1/E056.1 Sulphate Sulphate	EQL 2	5890	103%	<2				

Results expressed in mg/l unless otherwise specified

Comments:

E042.1/E045.1/E056.1: Determination by colour and/or by Ion Chromatography. Sample filtered through 0.45um prior to analysis.

Client Name:

Contact Name:

Sinclair Knight Merz Pty Ltd

Russel Martin

Date: 27/06/08

plus cover page

Page: 7 of 12

Certificate

Final

of Analysis

VE30064 This report supercedes reports issued on: 26/06/08 **Client Reference:**

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08				
Method: E037.1/E051.1 Nitrite as N NO2-N	EQL 0.01	0.02	102%	<0.01				
Method: E037.1/E051.1 Nitrate as N NO3-N	EQL 0.01	0.13	97%	<0.01				

Results expressed in mg/l unless otherwise specified

Comments:

E037.1/E051.1: Nitrate determined by colour. Sample filtered through 0.45um prior to analysis. E037.1/E051.1: Nitrite determined by colour. Sample filtered through 0.45um prior to analysis.

Sinclair Knight Merz Pty Ltd

Russel Martin **Date:** 27/06/08 **Contact Name:**

VE30064 **Client Reference:** This report supercedes reports issued on: 26/06/08

Page: 8 of 12

plus cover page

Final

Certificate

of Analysis

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		25/6/08	25/6/08	25/6/08				
Method: E039.1 TKN (as N) Total Kjeldahl Nitrogen	EQL 0.1	6.4	85%	<0.1				

Results expressed in mg/l unless otherwise specified

Comments:

E039.1: Sample filtered through 0.45um filter prior to analysis. Acidic digestion followed by determination by colour.

Client Name:

Contact Name:

Client Name: Sinclair Knight Merz Pty Ltd

> Russel Martin **Date:** 27/06/08

Page: 9 of 12

plus cover page

Final

Certificate

of Analysis

VE30064 This report supercedes reports issued on: 26/06/08 **Client Reference:**

Laboratory Identification		162565	lcs	mb				
Sample Identification]	LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		25/6/08	25/6/08	25/6/08				
	E QL 0.1	6.5	92%	<0.1				

Results expressed in mg/l unless otherwise specified

Comments:

E038.1: Total Nitrogen by calculation.

Client Name:

Client Reference:

Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

VE30064

of Analysis **Date:** 27/06/08

Page: 10 of 12

plus cover page

This report supercedes reports issued on: 26/06/08

Final

Certificate

Laboratory Identification		162565	lcs	mb				
Sample Identification		LT02/LP2	QC	QC				
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		20/6/08	20/6/08	20/6/08				
Laboratory Analysis Date		20/6/08	20/6/08	20/6/08				
Method: E035.1 Alkalinity (CO3, HCO3, OH) Carbonate Bicarbonate Hydroxide	EQL 5 5 5	<5 698 <5	 90% 	<5 <5 <5				

Results expressed in mg/l unless otherwise specified

Comments:

E035.1: Determination by colour and/or by titration, followed by calculation. Results expressed as CaCO3.

Sinclair Knight Merz Pty Ltd **Client Name:**

Russel Martin **Contact Name:**

Date: 27/06/08

Page: 11 of 12

plus cover page

Final

Certificate

of Analysis

VE30064 This report supercedes reports issued on: 26/06/08 **Client Reference:**

Laboratory Identification		162565	162565d	162565r	mb			
Sample Identification		LT02/LP2	QC	QC	QC			
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		25/6/08	25/6/08		25/6/08			
Laboratory Analysis Date		26/6/08	26/6/08		26/6/08			
Method: E2580 Total Organic Carbon (TOC) Total Organic Carbon	EQL 1	6	5	18%	<1			

Results expressed in mg/l unless otherwise specified

Comments:

E2580: TOC analyser.

Client Name: Sinclair Knight Merz Pty Ltd

Russel Martin **Contact Name:**

plus cover page **Date:** 27/06/08

Page: 12 of 12

Certificate

of Analysis

Final

VE30064 This report supercedes reports issued on: 26/06/08 **Client Reference:**

Laboratory Identification		162565	162565d	162565r	mb			
Sample Identification		LT02/LP2	QC	QC	QC			
Depth (m)								
Sampling Date recorded on COC		18/6/08						
Laboratory Extraction (Preparation) Date		25/6/08	25/6/08		25/6/08			
Laboratory Analysis Date		25/6/08	25/6/08		26/6/08			
Method: APHA 2540C Total Dissolved Solids (TDS) TDS	EQL 1	27500	28000	2%	<1			

Results expressed in mg/l unless otherwise specified

Comments:

APHA 2540C: Determined gravimetrically.

Report Date: 20/06/2008 Report Time: 2:18:38PM

Sample

Receipt

Quality, Service, Support

Notice (SRN) for E038250

	Client Details	Laboratory	Reference Information			
Client Name: Client Phone:	Sinclair Knight Merz Pty Ltd 08 8424 3800	Please have this information ready when contacting Labmark.				
Client Fax: Contact Name: Contact Email:	08 8424 3810 Russel Martin rmartin@skm.com.au	Laboratory Report: Quotation Number:	E038250 - Not provided, standard prices apply			
Client Address:	33 King William St Adelaide SA 5000	Laboratory Address:	Unit 1, 8 Leighton Pl. Asquith NSW 2077			
Project Name: Project Number:	VE30064 - Not provided -	Phone: Fax:	61 2 9476 6533 61 2 9476 8219			
CoC Serial Number Purchase Order: Surcharge:	r: - Not provided Not provided - No surcharge applied (results by 6:30pm on due date) WATER	Sample Receipt Conta Email: Reporting Contact: Email:	ct: Ros Schacht Ros.Schacht@labmark.com.au Geoff Weir geoff.weir@labmark.com.au			
Date Sampled (ea	rliest date): 18/06/2008 ceived: 20/05/2008 cipt Notice issued: 20/06/2008	NATA Accreditation: TGA GMP License: APVMA License: AQIS Approval: AQIS Entry Permit:	13542 185-336 (Sydney) 6105 (Sydney) NO356 (Sydney) 200521534 (Sydney)			
Reporting Requir	ements: Electronic Data Download required: Y	es I	nvoice Number: 32528			

COC received with samples. Report number and lab ID's defined on COC. Sample Condition:

Samples received in good order .

Samples received with cooling media: Ice bricks .

Samples received chilled. Security seals not used .

Sample container & chemical preservation suitable.

Comments: TDS and TOC subcontracted to SAL | Metals analysis subcontracted to LabMark Melbourne

Holding Times: Date received allows for sufficient time to meet Technical Holding Times.

Preservation: Chemical preservation of samples unsatisfactory for requested analytes.

Important Notes:

LabMark shall responsibly dispose of spent customer soil and water samples which includes the disintegration of the sample label. A sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Reported by Amdel Limited, NATA accreditation No.1526.

Reported by Sydney Analytical Laboratories, NATA accreditation No.1884.

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Report Date: 20/06/2008 Report Time: 2:18:38PM

Sample

Receipt

Quality, Service, Support

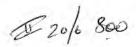
Totals:

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT

GRID REVIEW TABLE			Requested Analysis																
No. Date Depth Client Sample ID	Alkalinity (CO3, HCO3, OH)	Chloride	Electrical conductivity (EC)	Fluoride	Nitrite as N	Nitrate as N	NOx (as N)	pH in water	PREP Not Reported	Sulphate	TKN (as N)	Total alkalinity	Total Nitrogen (as N)	External Analysis by Amdel	External Total Dissolved Solids (TDS)	External Total Organic Carbon (TOC)			
162565 18/06 LT02/LP2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			

requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.


ontainer Identification ml 43ml titic vile s yes lytes A qualy \$15
s yes
1 1
1 1
1 1
s

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
0-	male Retab for			
	mple Batch fee Calcium			
3	(Ca) Magnesium			
Major Cations (mg/L)	(Mg)	1 mg/L	7 days	
tion M	Sodlum (Na)		. 0010	
ទី	Potassium			
-	(K) Calcium Carbonate		_	
(7)	(CaCO ₃)			
вш)	Sulphate (SO ₄)	1 mg/L		
ions	Chloride		48 Hrs	
ır An	(CI) Carbonate	4 mail		
Major Anions (mg/L)	(CO ₃) Bicarbonate	1 mg/L		
	(HCO ₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH_(units)	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Fluoride Silica			
	(Si)			
	Aluminum (AI)	10 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Antimony (Sb)	0.5 µg/L	6 months	
	Arsenic	0.5 µg/L		
	(As) Barium		6 months	
	(Ba) Beryllium	5 µg/L	6 months	
	(Be)	0.1 µg/L	6 months	
	Boron (B)	100 µg/L	6 months	
	' Cadmium	0.2 µg/L		
	(Cd) Chromium	0.5 µg/L	6 months	
	(Cr) Cobalt	7 7 7 7	6 months	
	(Co)	0.2 μg/L	6 months	
	Copper (Cu)	5 μg/L	6 months	
0	Gold (Ag)	0.1 µg/L	6 months	
Dissolved Metals (mg/L)	Lead	0.2 µg/L		
etals	(Pb) Lithium		6 months	
M P	(Li)	5 µg/L	6 months	
solve	Manganese (Mn)	0.5 μg/L	6 months	
Dis	Molybdenum (Mo)	0.1 µg/L	6 months	
	Nickel	0.5 µg/L	5000	
	(Ni) Selenium	7 7 7	6 months	
	(Se)	5 μg/L	6 months	
	Strontlum (Sr)	10 μg/L	6 months	
	Thallium (TI)	0.1 µg/L	6 months	
	Thorium	0.1 µg/L	100	
	Tin	5 µg/L	6 months	
	(Sn) Titanium		6 months	
3	(Ti)	5 μg/L	6 months	
4	(U)	0.1 μg/L	6 months	h
	Vanadium (V)	0.5 µg/L	6 months	
	Zinc (Zn)	5 µg/L	6 months	
	Iron - total	5 µg/L	0.0000000	
	(Fe) Nitrite as N (NO ₂)	0.01 mg/L	6 months	ICP OES
g/L)	Nitrate as N		48 hrs	measured together
Nutrients (mg/L)	(NO _s) Total Nitrogen	0.01 mg/L 0.01 mg/L	48 hrs	
rien	Total Organic Carbon	0.01 mg/L 1 mg/L	28 days	
Nu	(TOC) Total Kjeldahl	100-00	28 days	
3	Nitrogen (TKN)	0.1 mg/L	28 days	
	Free CO ₂			measure in field by titration measure in field by titration
		Cost/sample		

Total Cost

Note: If highly saline, samples may require a 1:5 x dilution therfore LORs raised by a factor of 5 time: 1 in every 10 sample required for laboratory duplicate to comply with QA/QC 1 in every 20 samples required for inter laboratory testing for QA/QC.

E038250

Health, Safety, Environment & Community

File: 6.1- Radiation and Hygiene\6.1.2-

Management\KT\Transport\Correspondence Reports Exemption.doc

16 June 2008

To Whom it May Concern

bhpbilliton

BHP Billiton Limited Olympic Way: Olympic Dam, South Australia, 5725 Australia

PO Box 150 Olympic Dam, South Australia, 5725 Australia

Tel +61 (08) 8671 8468 Fax +61 (08) 8671 2493 david.kruss@bhpbilliton.com

Dear Sir/Madam

Re: Transportation of materials below Exemption Levels

The bearers of the attached groundwater samples are transporting them at levels below the level of concern for radiological purposes. In particular, the levels are below 10,000Bq of Uranium-238, Lead-210 and Polonium-210. These levels are the exemption levels provided in the IAEA Code of Practice for Safe Transport of Radioactive Substances 1990 as adopted by all States and the Commonwealth within Australia and also by relevant international bodies including IATA and IMO. The ground water is acidic; however the volume is below 5 litres and is therefore an exempted corrosive substance under the Australian Dangerous Goods code.

At these very low levels the material is not considered corrosive or radioactive for transport or licencing purposes and poses minimal health or safety risk.

There is some acidity and radioactive content in the groundwater samples and safety precautions should be taken during handling. Gloves should be worn when handling the samples and if any activity is conducted which may give rise to airborne dust, then a dust mask should be worn. Processes which create dust should be avoided.

The samples should be analysed in work area be covered to prevent loss of any spill and any material removed from the groundwater samples should be collected, sealed in an approved dangerous goods container suitable for liquids and returned to Olympic Dam with the groundwater samples in a similar manner to which the groundwater samples was supplied. Any personal protective equipment used in the handling of these groundwater samples should also be collected, sealed in a plastic bag and returned to Olympic Dam.

If you have any further queries on the transport of these samples, please contact me on +61 8 8671 8468, my mobile +61 417 814 359, or my e-mail address at david.kruss@bhpbilliton.com.

Yours sincerely,

David Kruss

1) Knes

Radiation Safety Officer - Process

Revision No: 2.0

OLYMPIC DAM EVAPORATION POND LIQUOR

Hazard Alert Code: EXTREME

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: OLYMPIC DAM EVAPORATION POND LIQUOR

SYNONYMS

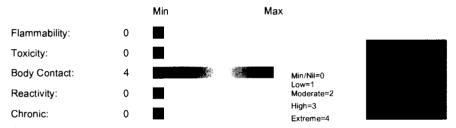
"evaporation pond liquid", "pond liquors"

PROPER SHIPPING NAME

CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (contains sulfuric acid)

PRODUCT USE

Process liquors as held in Evaporating Ponds at Olympic Dam operations.


SUPPLIER

Company: BHP Billiton - Olympic Dam

Address: PO Box 150 Roxby Downs SA, 5725 AUS

Telephone: +61 8 8671 8888 Fax: +61 8 8671 8807

HAZARD RATINGS

Section 2 - HAZARDS IDENTIFICATION

STATEMENT OF HAZARDOUS NATURE

HAZARDOUS SUBSTANCE. DANGEROUS GOODS. According to the Criteria of NOHSC, and the ADG Code.

POISONS SCHEDULE

RISK

Irritating to eyes respiratory system and skin.

Harmful to aquatic organisms may cause long-term adverse effects in the aquatic environment.

Cumulative effects may result following exposure*.

SAFETY

Do not breathe gas/ fumes/ vapour/ spray.

Avoid contact with skin.

Wear eye/ face protection.

To clean the floor and all objects contaminated by this material use water.

In case of contact with eyes rinse with plenty of water and contact Doctor or Poisons Information Centre.

If swallowed IMMEDIATELY contact Doctor or Poisons Information Centre (show this container or label).

This material and its container must be disposed of as hazardous

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
sulfuric acid	7664-93-9	<10
Cu 2.5-7.0 g/L as		
copper sulfate	7758-98 - 7	<1
Fe 30-87 g/L as .	•	
ferrous sulfate anhydrous	7720-78-7	1-10
Ca 0.85-1.49 g/L as		
calcium sulfate	7778-18-9	<0.5

^{* (}limited evidence).

EXTREME	
Chemwatch 5501-93	
CD 2008/2	

zard Alart Coda

Chemwatch Material Safety Data Sheet (REVIEW)	Revision No: 2.0	Chemwa
Issue Date: 28-Sep-2003		
Uranium mixed oxides max		0.04
dissolved SiO2 as alkali silicate max		0.87
CI- max		0.9
Radionuclides: Po210 max 0.2 Bq/g		
Pb210 max 1.8 Bq/g		
water	7732-18-5	>60

Section 4 - FIRST AID MEASURES

SWALLOWED

For advice, contact a Poisons Information Centre or a doctor.

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs, remove contaminated clothing and flush skin and hair with running water.

INHALED

- If inhaled, remove quickly from contaminated area.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, baq-valve mask device, or pocket mask as trained. Perform CPR if necessary.

NOTES TO PHYSICIAN

For acute or short term repeated exposures to strong acids:

- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

FYF.

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.

Chemwatch Material Safety Data Sheet (REVIEW)

Revision No: 2.0

Hazard Alert Code: EXTREME Chemwatch 5501-93

CD 2008/2

Issue Date: 28-Sep-2003

- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

FIRE/EXPLOSION HAZARD

Non combustible liquid.

Will not burn, but heat produces highly toxic fumes/vapours. Reacts with metals producing flammable / explosive hydrogen gas. If involved in fire emits toxic fumes of: sulfur oxides (SOx).

FIRE INCOMPATIBILITY

Avoid contact with, strong alkalis, strong oxidisers and cyanides.

HAZCHEM

Personal Protective Equipment

Gas tight chemical resistant suit.

Section 6 - ACCIDENTAL RELEASE MEASURES

EMERGENCY PROCEDURES

MINOR SPILLS

Carefully, contain and neutralise with slaked lime.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labelled container for waste disposal.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE half evacuation downwind direction distance From IERG (Canada/Australia) wind Isolation down wind distance Isolation Distance 25 metres Downwind Protection Distance 250 metres Distance direction IERG Number 37 half evacuation downwind direction distance INITIAL **ISOLATION**

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

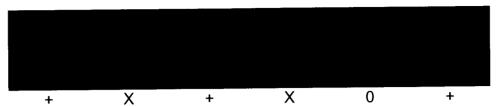
4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 154 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

Page


Hazard Alert Code:

OLYMPIC DAM EVAPORATION POND LIQUOR

Chemwatch Material Safety Data Sheet (REVIEW)

Revision No: 2.0

EXTREME Chemwatch 5501-93 CD 2008/2

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Issue Date: 28-Sep-2003

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are

SUITABLE CONTAINER

Check that containers are clearly labelled

Bulk, open pondage

STORAGE INCOMPATIBILITY

Segregate quantities of liquor outside the Evaporation Pond from strong alkalies and cyanides

STORAGE REQUIREMENTS

Prevent contact with corrodible materials.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS TWA STEL STEL Peak Peak TWA **TWA** Material F/CC Source mg/m³ ppm mg/m³ mg/m³ mag Australia Exposure 3 sulfuric acid (Sulphuric acid) Standards Australia Exposure copper sulfate (Copper, dusts & mists Standards (as Cu)) Australia Exposure 0.2 copper sulfate (Copper (fume)) Standards ferrous sulfate anhydrous (Iron salts, Australia Exposure soluble (as Fe)) Standards Australia Exposure calcium sulfate (Calcium sulphate (a)) 10 Standards The following materials had no OELs on our records • water: CAS:7732-18-5 **EMERGENCY EXPOSURE LIMITS** Revised IDLH Value (ppm) Revised IDLH Value (mg/m3) Material sulfuric acid

MATERIAL DATA

None assigned. Refer to individual constituents.

INGREDIENT DATA

FERROUS SULFATE ANHYDROUS:

SULFURIC ACID:

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal noobservable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling

Hazard Alert Code: **EXTREME**

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

FERROUS SULFATE ANHYDROUS:

The recommended TLV is thought to reduce the likelihood of respiratory irritation and skin irritation from exposure to aerosols and mists of soluble iron salts.

CALCIUM SULFATE:

The TLV-TWA is thought to be protective against the significant risks of eye, skin and other physical irritation.

WATER

No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

Revision No: 2.0

EYE

- Chemical goggles
- Full face shield
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

PVC gloves.

OTHER

- Overalls
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirato
1000	10	E-AUS P	-
1000	50	-	E-AUS P
5000	50	Airline *	-
5000	100	-	E-2 P
10000	100	-	E-3 P
	100+		Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. For further information consult site specific CHEMWATCH data (if available), or your Occupational Health and Safety Advisor.

ENGINEERING CONTROLS

If risk of inhalation or overexposure exists, wear SAA approved respirator or work in fume hood.

Correct respirator fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE

Opaque, greyish blue-green liquid. Characteristic odour. Miscible with water. Corrosive to metals, 241.5mm per year on aluminium (7075 T6 non-clad) when tested in accordance with NACE Method TM 0169-76.

PHYSICAL PROPERTIES

Hazard Alert Code: FXTREME

Chemwatch 5501-93

Page

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Liquid. Mixes with water.

Corrosive. Acid.

Molecular Weight: Not applicable.

Melting Range (°C): Not available. Solubility in water (q/L): Miscible

pH (1% solution): Not available Volatile Component (%vol): Not available Relative Vapour Density (air=1): Not available.

Lower Explosive Limit (%): Not applicable Autoignition Temp (°C): Not available.

State: Liquid

Boiling Range (°C): >100

Specific Gravity (water=1): 1.1 estd.

Revision No. 2.0

pH (as supplied): 1.1-1.6

Vapour Pressure (kPa): Not available Evaporation Rate: Not available Flash Point (°C): Not applicable

Upper Explosive Limit (%): Not applicable Decomposition Temp (°C): Not available

Section 10 - CHEMICAL STABILITY AND REACTIVITY INFORMATION

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable
- Hazardous polymerisation will not occur.

Section 11 - TOXICOLOGICAL INFORMATION

POTENTIAL HEALTH EFFECTS **ACUTE HEALTH EFFECTS**

SWALLOWED

The liquid is. highly corrosive to the gastro-intestinal tract and capable of causing severe burns if swallowed.

Considered an unlikely route of entry in commercial/industrial environments.

EYE

The vapour/liquid is, extremely corrosive to the eyes and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

SKIN

The vapour/liquid is, corrosive to the skin and is capable of causing burns.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

INHALED

Not normally a hazard due to non-volatile nature of product.

The vapour/mist is. highly discomforting to the upper respiratory tract and lungs.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

CHRONIC HEALTH EFFECTS

Primary route of exposure is usually by skin contact/eye contact.

TOXICITY AND IRRITATION

Not available. Refer to individual constituents.

SULFURIC ACID:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Oral (rat) LD50: 2140 mg/kg

Eye (rabbit): 1.38 mg SEVERE

Inhalation (rat) LC50: 510 mg/m3/2h

Eye (rabbit): 5 mg/30sec SEVERE

Inhalation (human) TCLo: 3 mg/m3/24w

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

WARNING: For inhalation exposure ONLY: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO

Occupational exposures to strong inorganic acid mists of sulfuric acid: **COPPER SULFATE:**

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Nil Reported

Oral (human) LDLo: 50 mg/kg Oral (man) LDLo: 857 mg/kg Oral (human) TDLo: 11 mg/kg Oral (rat) LD50: 300 mg/kg

Hazard Alert Code: **EXTREME**

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a nonatopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

FERROUS SULFATE ANHYDROUS:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Oral (woman) LDLo: 60 mg/kg

Nil Reported

Revision No: 2.0

Oral (woman) TDLo: 600 mg/kg Oral (woman) TDLo: 10.56 mg/kg Oral (rat) LD50: 319 mg/kg Oral (Human) TDLo: 68640 mg/kg

Oral (Human) TDLo: 960 mg/kg Oral (Mouse) LD50: 680 mg/kg

Intraperitoneal (Mouse) LD50: 106 mg/kg Intravenous (Mouse) LD50: 112 mg/kg Intravenous (Dog) LD50: 79 mg/kg Oral (Human) LD: 60 mg/kg Oral (Human) LD: 699 mg/kg Subcutaneous (Rat) LD50: 155 mg/kg Oral (Guinea) pig: LD50 1200 mg/kg

CALCIUM SULFATE:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

for dihydrate

[RTEC NO.: EW 4150000]

Inhalation (human) TCLo: 194000 mg/m³/10Y Nil reported

-Intermittent

WATER:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Marine Pollutant: Not Determined

DO NOT discharge into sewer or waterways.

Refer to data for ingredients, which follows:

SUI FURIC ACID:

Prevent, by any means available, spillage from entering drains or water

DO NOT discharge into sewer or waterways.

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre.

Sulfuric acid is soluble in water and remains indefinitely in the environment as sulfate.

Large discharges may contribute to the acidification of water and be fatal to aquatic life and soil micro-organisms.

Large discharges may contribute to the acidification of effluent treatment systems and injure sewage treatment organisms. [ICI UK] COPPER SULFATE:

Fish LC50 (96hr.) (mg/l):

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Copper is unlikely to accumulate in the atmosphere due to a short residence time for airborne copper aerosols. Airborne coppers, however, may be transported over large distances. Copper accumulates significantly in the food chain.

Drinking Water Standards:

3000 ug/l (UK max)

2000 ug/l (WHO provisional Guideline)

1000 ug/l (WHO level where individuals complain)

Soil Guidelines: Dutch Criteria

36 mg/kg (target)

190 mg/kg (intervention)

Air Quality Standards: no data available.

The toxic effect of copper in the aquatic biota depends on the bio-availability of copper in water which, in turn, depends on its physicochemical form (ie speciation). Bioavailability is decreased by complexation and adsorption of copper by natural organic matter, iron and manganese hydrated oxides, and chelating agents excreted by algae and other aquatic organisms. Toxicity is also affected by pH and hardness. Total copper is rarely useful as a predictor of toxicity. In natural sea water, more than 98% of copper is organically bound and in river waters a high percentage is often organically bound, but the actual percentage depends on the river water and its

Page

OLYMPIC DAM EVAPORATION POND LIQUOR

Hazard Alert Code: EXTREME

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Copper exhibits significant toxicity in some aquatic organisms. Some algal species are very sensitive to copper with EC50 (96 hour) values as low as 47 ug/litre dissolved copper whilst for other algal species EC50 values of up to 481 ug/litre have been reported. However many of the reportedly high EC50 values may arise in experiments conducted with a culture media containing coppercomplexing agents such as silicate, iron, manganese and EDTA which reduce bioavailability.

Toxic effects arising following exposure by aquatic species to copper are typically:

Algae EC50 (96 h)

Daphnia magna LC50 (48-96 h)

h)

Amphipods LC50 (48-96 Gastropods LC50 (48-96 Crab larvae LC50 (48-96

47-481 *

7-54 *

37-183 *

58-112 *

Revision No: 2.0

50-100 *

* ug/litre

Exposure to concentrations ranging from one to a few hundred micrograms per litre has led to sublethal effects and effects on longterm survival. For high bioavailability waters, effect concentrations for several sensitive species may be below 10 ug Cu/litre. In fish, the acute lethal concentration of copper ranges from a few ug/litre to several mg/litre, depending both on test species and exposure conditions. Where the value is less than 50 ug Cu/litre, test waters generally have a low dissolved organic carbon (DOC) level, low hardness and neutral to slightly acidic pH. Exposure to concentrations ranging from one to a few hundred micrograms per litre has led to sublethal effects and effects on long-term survival. Lower effect concentrations are generally associated with test waters of high bioavailability

In summary:

Responses expected for high concentration ranges of copper *

Total dissolved Cu concentration range (ug/litre)

1-10

10-100

100-1000

Effects of high availability in water

Significant effects are expected for diatoms and sensitive invertebrates, notably cladocerans. Effects on fish could be significant in freshwaters with low pH and hardness.

Significant effects are expected on various species of microalgae, some species of macroalgae, and a range of invertebrates, including crustaceans, gastropods and sea urchins. Survival of sensitive fish will be affected and a variety of fish show sublethal

Most taxonomic groups of macroalgae and invertebrates will be severely affected. Lethal levels for most fish species will be reached.

>1000

Lethal concentrations for most tolerant organisms are reached.

Sites chosen have moderate to high bioavailability similar to water used in most toxicity tests. In soil, copper levels are raised by application of fertiliser, fungicides, from deposition of highway dusts and from urban, mining and industrial sources. Generally, vegetation rooted in soils reflects the soil copper levels in its foliage. This is dependent upon the bioavailability of copper and the physiological requirements of species concerned. Typical foliar levels of copper are:

Uncontaminated soils (0.3-250 mg/kg)

Contaminated soils (150-450 mg/kg)

Mining/smelting soils

6.1-25 mg/kg

80 ma/ka

300 ma/ka

Plants rarely show symptoms of toxicity or of adverse growth effects at normal soil concentrations of copper. Crops are often more sensitive to copper than the native flora, so protection levels for agricultural crops range from 25 mg Cu/kg to several hundred mg/kg, depending on country. Chronic and or acute effects on sensitive species occur at copper levels occurring in some soils as a result of human activities such as copper fertiliser addition, and addition of sludge.

When soil levels exceed 150 mg Cu/kg, native and agricultural species show chronic effects. Soils in the range 500-1000 mg Cu/kg act in a strongly selective fashion allowing the survival of only copper-tolerant species and strains. At 2000 Cu mg/kg most species cannot survive. By 3500 mg Cu/kg areas are largely devoid of vegetation cover. The organic content of the soil appears to be a key factor affecting the bioavailability of copper.

On normal forest soils, non-rooted plants such as mosses and lichens show higher copper concentrations. The fruiting bodies and mycorrhizal sheaths of soil fungi associated with higher plants in forests often accumulate copper to much higher levels than plants at the same site. International Programme on Chemical Safety (IPCS): Environmental Health Criteria 200.

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre. DO NOT discharge into sewer or waterways.

The material is classified as an ecotoxin* because the Fish LC50 (96 hours) is less than or equal to 0.1 mg/l

* Classification of Substances as Ecotoxic (Dangerous to the Environment)

Compiler's Guide for the Preparation of International Chemical Safety Cards: 1993 Commission of the European Communities.

FERROUS SULFATE ANHYDROUS:

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre. DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Treat and neutralise at an effluent treatment plant.
- Use soda ash or slaked lime to neutralise.
- Recycle containers, otherwise dispose of in an authorised landfill.

Hazard Alert Code: **EXTREME**

Chemwatch Material Safety Data Sheet (REVIEW)

Revision No: 2.0

Chemwatch 5501-93

CD 2008/2

Issue Date: 28-Sep-2003

Section 14 - TRANSPORTATION INFORMATION

Labels Required: CORROSIVE

HAZCHEM: 2X

UNDG:

Dangerous Goods Class:

8

Subrisk:

None

UN Number:

3264 Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. Ш

(contains sulfuric acid)

Air Transport IATA:

ICAO/IATA Class: UN/ID Number:

ICAO/IATA Subrisk:

None

3264

Packing Group:

Packing Group:

Special provisions:

A3

Ш

Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. *

Maritime Transport IMDG:

IMDG Class:

8

IMDG Subrisk:

None

UN Number: EMS Number:

3264 F-A,S-B

Packing Group:

Limited Quantities:

Special provisions: Marine Pollutant:

223 274 944 Not Determined

5 L

Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.

Section 15 - REGULATORY INFORMATION

POISONS SCHEDULE

REGULATIONS

Olympic Dam Evaporation Pond Liquor (CAS: None):

No regulations applicable

sulfuric acid (CAS: 7664-93-9) is found on the following regulatory lists;

Australia Exposure Standards

Australia Hazardous Substances

Australia High Volume Industrial Chemical List (HVICL)

Australia Illicit Drug Reagents/Essential Chemicals - Category III

Australia Inventory of Chemical Substances (AICS)

Australia National Pollutant Inventory

Australia National Poliutant Inventory

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix E (Part 2)

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix F (Part 3)

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6

China (Hong Kong) Control of Chemicals Ordinance

China (Hong Kong) Fire Service Department - List of Dangerous Goods China (Hong Kong) Occupational Exposure Limits

China (Hong Kong) Occupational Exposure Limbs
China (Hong Kong) Pharmacy and Poisons Regulations - Poisons Exempted from Labelling Provisions
China (Hong Kong) Pharmacy and Poisons Regulations - Special Exemptions
China (Hong Kong) Poisons List Regulations - Poisons List
China Classification and Labelling of Dangerous Chemical Substances

China Dangerous Chemicals Names List

China Inventory of Existing Chemical Substances

China National Dangerous Wastes Name List (Chinese)
China Occupational Exposure Limits for Hazardous Agents in the Workplace

IMO IBC Code Chapter 17: Summary of minimum requirements

IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk

India Chemical Accidents Rules - Schedule 1: List of Hazardous Chemicals
India Hazardous Wastes Rules - Schedule 2: List of Wastes Constituents with Concentration Limits

India Manufacture, Storage and Import of Hazardous Chemical Rules - Schedule 1: List of Hazardous and Toxic Chemicals India Permissible Levels of Certain Chemical Substances in Work Environment

International Air Transport Association (IATA) Dangerous Goods Regulations International Council of Chemical Associations (ICCA) - High Production Volume List

Japan Air Pollution Prevention

Japan Chemical Substances Control Law - Existing/New Chemical Substances

Japan Civil Aeronautics Law

Japan Ford Endings Law
Japan Prug Enforcement Legislation
Japan Fire Service Law - Obstacle Substances to Fire Fighting
Japan Food Sanitation Law - Designated Additives

Japan Food Sanitation Law - Designated Additives (Japanese) Japan GHS Classifications (Japanese)

Japan Industrial Safety and Health Law (ISHL) - Chemicals Requiring Eye Protection

Japan Industrial Safety and Health Law (ISHL) - Corrosive Liquid (English)

Hazard Alert Code: EXTREME

Revision No: 2.0

Chemwatch 5501-93

CD 2008/2

```
Chemwatch Material Safety Data Sheet (REVIEW)
```

Issue Date: 28-Sep-2003

Japan Industrial Safety and Health Law (ISHL) - Corrosive Liquid (Japanese)

Japan Industrial Safety and Health Law (ISHL) - Notifiable Substances

Japan Industrial Safety and Health Law (ISHL) - Specified Chemical Substances

Japan Marine Pollution and Disasters

Japan Occupational Exposure Limits

Japan Occupational Exposure Limits (Japanese)

Japan Poisonous and Deleterious Substances Control Law

Japan Poisonous and Deleterious Substances Control Law - Deleterious Substances

Japan Road Law

Japan Shipping Legislation
Korea (South) Existing Chemicals List (KECL)

Korea (South) Occupational Exposure Standards (Korean)
Korea (South) Toxic Chemicals Control Act - Toxic Chemicals

Korea (South) Toxic Release Inventory (TRI) Chemicals Korea GHS Classifications (Korean)

Malaysia Permissible Exposure Limits

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Hazardous Substances Register

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Scheduled Toxic Substances
New Zealand Inventory of Chemicals (NZIoC)
New Zealand Poisons Schedule [NLV]
New Zealand Transferred List of Single Component Substances

New Zealand Workplace Exposure Standards (WES)
OECD Representative List of High Production Volume (HPV) Chemicals

Philippines Inventory of Chemicals and Chemical Substances (PICCS)

Philippines Occupational Exposure Limits

Philippines Regulatory Guidelines Concerning Food Additives - Permitted Food Additives

Philippines Regulatory Guidelines Concerning Food Additives - Recommended Levels of Use for some Food Additives

Singapore Environmental Pollution Control (Hazardous Substances) Regulations

Singapore Environmental Pollution Control Act (EPCA) - List of Controlled Hazardous Substances

Singapore Food Regulations - Food Additives - Permitted General Purpose Food Additives

Singapore Odour Thresholds and Irritation Concentration of Chemicals

Singapore Permissible Exposure Limits of Toxic Substances

Taiwan Hazard Prevention Standard for Specified Chemical Substances - Specified Chemical Substances (Category A - D) &

Specified Controlled Substances

Taiwan Permissible Concentration of Airborne Harmful Substances

Taiwan Rules for Hazard Communication for Dangerous and Harmful Materials - Harmful Materials (Chinese)

Taiwan Scope and Application Standards of Food Additives - Chemicals for Food Industry

Thailand Harmful Chemicals - List I

Thailand List of Precursor and Chemical Control (Watch List)

Thailand Occupational Exposure Limits - Working Safety and Environmental Condition (Chemical) Table 1

United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II

United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic

Substances Under International Control - Table II

Vietnam Air Quality Hazardous Substances Standards copper sulfate (CAS: 7758-98-7) is found on the following regulatory lists;

Australia Dangerous Goods Code Draft 7th Edition - List of Common Pesticides with Corresponding UN Numbers

Australia Exposure Standards

Australia Hazardous Substances

Australia High Volume Industrial Chemical List (HVICL)

Australia Inventory of Chemical Substances (AICS)

Australia National Pollutant Inventory

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Appendix A

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 4

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 5

Australia Standard for the Uniform Scheduling of Drugs and Poisons (SUSDP) - Schedule 6
Australia Therapeutic Goods Administration (TGA) Substances that may be used as active ingredients in Listed medicines

Cambodia Water Pollution Control - Annex 1 Type of the hazardous substances

China Dangerous Chemicals Names List

China Inventory of Existing Chemical Substances
China National Dangerous Wastes Name List (Chinese)

India Chemical Accidents Rules - Schedule 1: List of Hazardous Chemicals

India Hazardous Wastes Rules - Schedule 2: List of Wastes Constituents with Concentration Limits

India Manufacture, Storage and Import of Hazardous Chemical Rules - Schedule 1: List of Hazardous and Toxic Chemicals

India Permissible Levels of Certain Chemical Substances in Work Environment International Council of Chemical Associations (ICCA) - High Production Volume List

Japan Chemical Substances Control Law - Existing/New Chemical Substances

Japan Food Sanitation Law - Designated Additives

Japan Food Sanitation Law - Designated Additives (Japanese)

Japan GHS Classifications (Japanese)

Japan Industrial Safety and Health Law (ISHL) - Notifiable Substances

Japan Poisonous and Deleterious Substances Control Law

Japan Poisonous and Deleterious Substances Control Law - Deleterious Substances

Japan PRTR Law

Japan Water Pollution Control Law - National Effluent Standards

Korea (South) Existing Chemicals List (KECL)

Korea (South) Occupational Exposure Standards (Korean)
Korea (South) Toxic Chemicals Control Act - Chemicals not Relevant to Toxic
Korea (South) Toxic Release Inventory (TRI) Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Hazardous Substances Register

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Pesticides

Hazard Alert Code: **EXTREME**

Chemwatch 5501-93

CD 2008/2

Chemwatch Material Safety Data Sheet (REVIEW)

Issue Date: 28-Sep-2003

Malaysia Food Regulations - Permitted Food Conditioners

Malaysia Permissible Exposure Limits

New Zealand Inventory of Chemicals (NZIoC)
New Zealand Transferred List of Single Component Substances

New Zealand Workplace Exposure Standards (WES)

OECD Representative List of High Production Volume (HPV) Chemicals

Philippines Inventory of Chemicals and Chemical Substances (PICCS)

Philippines Regulatory Guidelines Concerning Food Additives - Permitted Food Additives

Singapore Food Regulations - Food Addititves - Permitted Nutrient Supplement

Singapore Permissible Exposure Limits of Toxic Substances

Taiwan Scope and Application Standards of Food Additives - Food quality improvement, fermentation and food processing agents

Thailand Food Act - Bottled Drinking Water Quality Standard

Thailand Ground Water Act - Ground Water Quality Standards for Drinking Purposes Thailand Industrial Products Standards Act - Drinking Water Quality Standards

Thailand Notification No 84 (B.E. 2527) Food Additives - Section 4: Salts calcium sulfate (CAS: 10101-41-4) is found on the following regulatory lists;

Australia - Australian Capital Territory - Environment Protection Regulation: Ambient environmental standards (Domestic water

supply - inorganic chemicals)

Australia - Australian Capital Territory Environment Protection Regulation Pollutants entering waterways - Agricultural uses

Australia - Australian Capital Territory Environment Protection Regulation Pollutants entering waterways - Domestic water

Cambodia Water Pollution Control - Annex 2 Effluent standard for pollution sources discharging wastewater to public water

areas or sewer

Thailand Food Act - Bottled Drinking Water Quality Standard
Thailand Ground Water Act - Ground Water Quality Standards for Drinking Purposes

Thailand Industrial Products Standards Act - Drinking Water Quality Standards

water (CAS: 7732-18-5) is found on the following regulatory lists;

Australia Inventory of Chemical Substances (AICS)

China Inventory of Existing Chemical Substances

IMO IBC Code Chapter 18: List of products to which the Code does not apply India Hazardous Wastes Rules - Schedule 2: List of Wastes Constituents with Concentration Limits

Korea (South) Existing Chemicals List (KECL)

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Transferred List of Single Component Substances

OECD Representative List of High Production Volume (HPV) Chemicals

Philippines Inventory of Chemicals and Chemical Substances (PICCS)

Thailand Harmful Chemicals - List I

Section 16 - OTHER INFORMATION

Ingredients with multiple CAS Nos

Ingredient Name

ferrous sulfate anhydrous

CAS

7720-78-7, 13463-43-9 7778-18-9, 10101-41-4

Revision No: 2.0

calcium sulfate

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent

review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios.

Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: 28-Sep-2003 Print Date: 16-Jun-2008

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0020073

Client Reference VE30064

Received Date 01/08/2008 02:39:00 PM

Customer Sample ID Amdel Sample Number Date Sampled			LR 9 1111342 31/07/2008	LR 2 1111343 31/07/2008	LR 8 1111344 31/07/2008	Duplicate 1111345 31/07/2008
Test/Reference	PQL	Unit				
0000 Gold (Au)						
Gold (Au)*	-	μg/L	6.6	20	3.6	2.6
Metals						
Test/Reference	PQL	Unit				
3100 Dissolved Metals in Water I	By ICP/MS					
Aluminium	5	μg/L	9.5	7.6	7.2	7.9
Antimony	1	μg/L	1.2	<1	<1	<1
Arsenic	5	μg/L	<5	<5	<5	<5
Barium	5	μg/L	18	13	27	29
Beryllium	5	μg/L	<5	<5	<5	<5
Boron	5	μg/L	7600	7100	7000	6700
Cadmium	2	μg/L	<2	<2	<2	<2
Chromium	5	μg/L	<5	<5	<5	<5
Cobalt	5	μg/L	<5	<5	5.1	5.2
Copper	5	μg/L	7.6	26	31	32
∟ead	5	μg/L	<5	<5	<5	<5
Lithium	5	μg/L	300	170	230	240
Manganese	5	μg/L	2200	300	890	910
Molybdenum	5	μg/L	<5	<5	<5	<5
Nickel	5	μg/L	11	10	17	17
Selenium	5	μg/L	51	28	46	46
Strontium	5	μg/L	16000	12000	15000	16000
Thallium	5	μg/L	<5	<5	<5	<5
Thorium	5	μg/L	<5	<5	<5	<5
Tin	5	μg/L	<5	<5	<5	<5
Titanium	5	μg/L	18	6.7	19	19
Uranium	5	μg/L	32	26	20	21
Vanadium	5	μg/L	<5	<5	<5	<5
Zinc	5	μg/L	46	36	35	42
3200 Dissolved Metals in Water -	ICP/AES					
Calcium	100	μg/L	1240000	890000	1030000	1120000
Iron	100	μg/L	5800	114	1280	1310
Magnesium	100	μg/L	1490000	606000	900000	982000
Potassium	1000	μg/L	120000	74000	140000	150000
Sodium	100	μg/L	9840000	7120000	10200000	11100000
Inorganics Test/Reference	PQL	Unit				
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	30900	22600	33500	33900

Final Report Number: 323422

Customer Sample ID Amdel Sample Number Date Sampled Inorganics			LR 9 1111342 31/07/2008	LR 2 1111343 31/07/2008	LR 8 1111344 31/07/2008	Duplicate 1111345 31/07/2008
Test/Reference	PQL	Unit				
4000 pH in Water	0.1	рН	6.6	7.2	7.1	7.1
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	29000	18000	30000	31000
4540 TKN in Water by Titration TKN	1	mg/L	<1	<1	<1	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	2.8	<1	<1	<1
4941 Total Nitrogen in Water by Ca Total Nitrogen	ilc 2	mg N/L	<2	<2	18	<2
4300 Anions in Water by IC Chloride	0.5	mg/L	12000	8200	15000	14000
Fluoride	0.5	mg/L	1.8	3.2	3.8	1.7
Nitrate as N	0.5	mg N/L	<0.5	<0.5	18	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	4700	2300	3800	3700
Miscellaneous Test/Reference	PQL	Unit				
Total Alkalinity as CaCo3*	_	mg/L	339	161	163	166
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	339	161	163	166
Silica*	-	mg/L	16	14	16.5	16.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
0000 Gold (Au)		14/08/2008
3100 Dissolved Metals in Water By ICP/MS	04/08/2008	11/08/2008
3200 Dissolved Metals in Water - ICP/AES	04/08/2008	06/08/2008
4000 pH in Water		04/08/2008
4010 Conductivity in Water		05/08/2008
4110 Dissolved Solids in Water		06/08/2008
4300 Anions in Water by IC	04/08/2008	08/08/2008
4410 TOC in Water By Analyser	04/08/2008	06/08/2008
4540 TKN in Water by Titration	04/08/2008	05/08/2008
4941 Total Nitrogen in Water by Calc		05/08/2008
NEW TEST01		11/08/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Date Printed: 14 August 2008

LR 9

All the TDS results have been performed in duplicate, with the duplicate results all demonstration RPD's <5%.

LR 2

All the TDS results have been performed in duplicate, with the duplicate results all demonstration RPD's <5%.

LR 8

All the TDS results have been performed in duplicate, with the duplicate results all demonstration RPD's <5%.

Duplicate

All the TDS results have been performed in duplicate, with the duplicate results all demonstration RPD's <5%.

Amdel Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Amdel QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Form LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Codes
1113311 [Method Blank]	_	•	•	•	
3200 Dissolved Metals in Water - ICP/AES					
Calcium	μg/L	<100	< 100	Т	
Iron	μg/L	<100	< 100	Т	
Magnesium	μg/L	<100	< 100	Т	
Phosphorus	μg/L	<100	< 100	Т	
Potassium	μg/L	<1000	< 1000	Т	
Sodium	μg/L	<100	< 100	Т	
1113391 [Method Blank]	•		•	•	
3100 Dissolved Metals in Water By ICP/MS					
Antimony	μg/L	<1	< 1	Т	
Arsenic	μg/L	<5	< 5	Т	
Barium	μg/L	<5	< 5	Т	
Beryllium	μg/L	<5	< 5	Т	
Boron	μg/L	<5	< 5	Т	
Cadmium	μg/L	<2	< 2	Т	
Chromium	μg/L	<5	< 5	Т	
Cobalt	μg/L	<5	< 5	Т	
Copper	μg/L	<5	< 5	Т	
Lead	μg/L	<5	< 5	Т	
Manganese	μg/L	<5	< 5	Т	
Molybdenum	μg/L	<5	< 5	Т	
Nickel	μg/L	<5	< 5	Т	
Selenium	μg/L	<5	< 5	Т	
Tin	μg/L	<5	< 5	Т	
Vanadium	μg/L	<5	< 5	Т	
Zinc	μg/L	<5	< 5	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 4 of 6 First Reported: 8 August 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 323422

Date Printed: 14 August 2008

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1113392 [Laboratory Control Sample]	•						
3100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	92	100.0	92	80-120 %	Т	
Arsenic	μg/L	100	100.0	102	80-120 %	Т	
Barium	μg/L	97	100.0	97	80-120 %	Т	
Beryllium	μg/L	100	100.0	101	80-120 %	Т	
Cadmium	μg/L	97	100.0	97	80-120 %	Т	
Chromium	μg/L	96	100.0	96	80-120 %	Т	
Cobalt	μg/L	97	100.0	97	80-120 %	Т	
Copper	μg/L	99	100.0	99	80-120 %	Т	
Lead	μg/L	92	100.0	92	80-120 %	Т	
Manganese	μg/L	99	100.0	99	80-120 %	Т	
Molybdenum	μg/L	120	100.0	119	80-120 %	Т	
Nickel	μg/L	98	100.0	98	80-120 %	Т	
Selenium	μg/L	110	100.0	108	80-120 %	Т	
Tin	μg/L	97	100.0	97	80-120 %	Т	
Vanadium	μg/L	98	100.0	98	80-120 %	Т	
Zinc	μg/L	100	100.0	100	80-120 %	Т	

Laboratory: EN WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1112787 [Method Blank]	-		•	•		-	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1112926 [Method Blank]	•	•	•			•	
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1113566 [Method Blank]	•	•	•			•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1113990 [Method Blank]	•	•	•			•	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<5			< 5	Т	
1112789 [Laboratory Control Sample]	•		•				
4300 Anions in Water by IC			Expected Value	Percent Recovery			
Bromide	mg/L	95	100.0	95	80-120 %	Т	
Chloride	mg/L	95	100.0	95	80-120 %	Т	
Fluoride	mg/L	94	100.0	94	80-120 %	Т	
Nitrate	mg/L	110	100.0	109	80-120 %	Т	
Nitrite	mg/L	85	100.0	85	80-120 %	Т	
Orthophosphate as P	mg/L	92	100.0	92	80-120 %	Т	
Sulphate	mg/L	93	100.0	93	80-120 %	Т	
1112928 [Laboratory Control Sample]	•	•	<u>.</u>			•	
4410 TOC in Water By Analyser			Expected Value	Percent Recovery		_	
Total Organic Carbon	mg/L	9.2	10.0	92	80-120 %	Т	
1113158 [Laboratory Control Sample]	•	_'	•			•	
4010 Conductivity in Water			Expected Value	Percent Recovery		_	
Electrical Conductivity	μS/cm	1420	N/A	N/A	N/A	N/A	
1113568 [Laboratory Control Sample]	•		•				
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	96	100.0	96	80-120 %	Т	

Final Report Number: 323422

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1113991 [Laboratory Control Sample]							
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	950	1000.0	95	90-110 %	Т	

Report Results Information

Gold (Au) Amdel Melbourne

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

N/A

Authorised By

Carol Cawrse Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Helen Lei Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

First Reported: 8 August 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 6 of 6

Date Printed: 14 August 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number : 323422

ALK as New test

				CHAIN OF CU	STODY FORM						S		
From : SKM Pty ABN: 37 001 02	4 095							2.1					
Level 5, 33 King ph: (08) 8424 38	William St, Ad	ielaide, 1424 381	SA 5000 10					Conta	iner Ident	ncation			T
ľ		A27 00				Size	1000ml	43m!	.125ml	100ml			
LAB USE ONLY			Project			Туре	plastic	glass	plastic	plastic			
QUOTE NUMBE	R		L	VE30064		Preserv	NO	YES	YES	NO			<u> </u>
Job Code: Due Date:			Project	Manager: Daniel Pierce			Major anions, TDS, pH, EC, FI, NO3, NO2, Total Nitrogen and TKN		Ę.				
Custody seal inta	nct?		Sample			Analytes	S 7 X		Major Cations, Si and Dissolved Metals	Ultra Frace	-		
Sample cold?				Alistair Walsh / Tom Kelly			무질투	İ	S F	<u> </u>	- 1		
Received for Lab	oratory by:		Checke				n S. n	55	g gi	62			
rederved for Edit	oratory by.		Choone	-		1	Se Se	-	200	ಿ			
				•			호드분		Big	2	.		
Date:			Date:	04/07/2000			불입		Σ	<u> </u>			
Time:	1	1		31/07/2008					L	l			
Lab id	Date	Time	Matrix	Sample Identification	Comments		Tick requi	red analyte	es i	- T			
	31/07/2008		H20	LR9			x	i l		i	- 1		
		<u> </u>											
	31/07/2008	ļ	H20	LR9				X					
	31/07/2008		H20	LR9	Field Filtered	[х		- [
	31/0//2006		1120	Lite	Tield t litered	· · · · · ·			_^	t	.		
	31/07/2008		H20	LR9	Field Filtered	l				х			
												-	
			ļ										
	30/07/2008		H20	LR2			x						
		l											
	30/07/2008		H20	LR2				х					
	30/07/2008		H20	LR2	Field Filtered		i		x	İ			
	30/07/2000		1120	LINZ	r tela r interea								
	30/07/2008		H20	LR2	Field Filtered					х			
		l ,									-		
	30/07/2008		H20	LR8			x	l				- 1	
	30/07/2008		H20	LR8				. х					
	30/07/2008		H20	LR8	Field Filtered		ĺ		х		- 1		
	30/07/2006		1120	LIVO	T ICIO T IIICI CU	<u> </u>							
	30/07/2008		H20	LR8	Field Filtered					х			
								ĺ					
	30/07/2008		H20	Duplicate		İ	х					l.	
		i											
	30/07/2008		H20	Duplicate				X					
	30/07/2008		H20	Duplicate	Field Filtered		ı		x				
	30/01/2005		1120	Doblicate	T July 1 Med de								
	30/07/2008		H20	Duplicate	Field Filtered					Х			
							-						
					 				-+				
		ĺ											
							*						
												-	
ĺ					l i	-	i		İ				
•						1							
					<u> </u>							-	
1													
-										1	\neg		
					<u> </u>								
						i				ļ			
					-								
	ĺ			9					-				
Ì									- [
								-				i	
			T			1		1	l	I	l.		
					 	+		111134	12/08E	NME002 9-01/	0073-	1 -	
			- 1						▗▆▗▗ ▗▆▘▍▍▓▆▘	コーピュノ	a a ma		
-			-		1	-							
			Į									_	
		-	-					1	1	1	. 1	ĺ	
		-+						- -				-	
			· <u></u>	•	TOTAL								
				•	IOIAL								
lotes								•					

Please email awalsh@skm.com.au and dpierce@skm.com.au reults and upon receival of samples

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

Dee: Del LABORAL 1/8/08 2-39pm

Sample Analytes List

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
	mula Batab for			
	nple Batch fee Calcium (Ca) Magnesium (Mg)			
Major Cations (mg/L)	Sodium (Na) Potassium (K)	- 1 mg/L	7 days	
Major Anlons (mg/L.)	Calcium Carbonate (CaCO _s) Sulphate (SO ₄) Chloride	1 mg/L		
or Anloi	(CI) Carbonate (CO ₃)	1 mg/L	48 Hrs	
E E	Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units) Fluoride	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Silica (Si) Aluminum			
	(Al) Antimony	10 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb) Arsenic	0.5 µg/L 0.5 µg/L	6 months	
	(As) Barium	5 µg/L	6 months	
	(Ba) Beryllium (Be)	0.1 µg/L	6 months	
	Boron (B)	100 µg/L	6 months	
	Cadmium (Cd)	0.2 μg/L	6 months	
	Chromium (Cr)	0.5 µg/L	6 months	
	Cobalt (Co)	0.2 μg/L	6 months	
	Copper (Cu)	5 µg/L	6 months	1
ng/L)	Gold (Ag)	0.1 µg/L	6 months	
Dissolved Metals (mg/L)	Lead (Pb) Lithium	0.2 μg/L	6 months	
M Pe	(Li) Manganese	5 µg/L	6 months	
viossi	(Mn) Molybdenum	0.5 µg/L 0.1 µg/L	6 months	
	(Mo) Nickel	0.1 μg/L 0.5 μg/L	6 months	
	(Ni) Selenium	5 µg/L	6 months	
	(Se) Strontium (Sr)	10 μg/L	6 months	
	Thallium (TI)	0.1 μg/L	6 months	
	Thorium (Th)	0.1 µg/L	6 months	
	Tin (Sn)	5 μg/L	6 months	
	Titanium (Ti)	5 µg/L	6 months	
	Uranium (U)	-0.1 μg/L	6 months	
	Vanadium (V)	0.5 μg/L	6 months	
	Zinc (Zn) Iron - total	5 μg/L	6 months	
	(Fe)	5 μg/L	6 months	ICP OES
3	Nitrite as N (NC ₃) Nitrate as N	0.01 mg/L	48 hrs	measured together
§ 8	(NC-) Total Nitrogen	0.01 mg/L 0.01 mg/L	48 hrs 28 days	
Nütrients (mg/L)	Fotal Organic Carbon (TOC)	1 mg/L	28 days	
	Total Kjeldahl Nitrogen (TKN)	0.1 mg/L	28 days	

Total Cost

Note: If highly saline, samples may require a 1:5 x dilution therfore LORs raised by a factor of 5 times

Rec: Del LABORAL 118700 2.39pm

Sample Receipt Advice

Customer Service - 1300 552 389

Client Name:Sinclair Knight MertzDate Received:1 August 2008Attention:MR Daniel PierceDue Date:8 August 2008

Client Reference number: VE30064 Turnaround: Standard

Amdel Reference number: 08ENME0020073 Your Amdel Contact: Vanda Dabkowski

0395382267

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Sample Integrity

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

N/A

Samples received within HoldingTime

Yes

Some samples have been subcontracted

Custody Seals Intact (if used)

Yes

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	4
Conductivity in Water	4010	4
Gold (Au)	0000	4
Dissolved Metals in Water - ICP/AES	3200	4
Dissolved Metals in Water By ICP/MS	3100	4
	NEW_TEST01	4
pH in Water	4000	4
Dissolved Solids in Water	4110	4
TKN in Water by Titration	4540	4
TOC in Water By Analyser	4410	4
Total Nitrogen in Water by Calc	4941	4

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by: Duncan Harrison Date: Fri 1 August 2008

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Labmark P/L Unit 1 / 8 Leighton Plc Asquith NSW 2077 Australia

Attention: Poonam Raj

Project 08ENME0019303

Client Reference E038811

Received Date 24/07/2008 11:36:00 AM

Customer Sample ID Amdel Sample Number Date Sampled			168101 1098391 21/07/2008	168102 1098392 21/07/2008	168103 1098393 21/07/2008	168104 1098394 21/07/2008	168105 1098395 21/07/2008
Metals Test/Reference	PQL	Unit					
3200 Total Metals in Water by	ICP/AES						
Iron	100	μg/L	7380000	117000	6550000	8020000	7460000
3100 Dissolved Metals in Wat	-						
Aluminium	5	μg/L	1000000	390	6600000	3900000	8200000
Antimony	1	μg/L	<1	<1	1.3	1.3	<1
Arsenic	5	μg/L	50	<5	9.1	47	<5
Barium	5	μg/L	62	19	33	23	38
Beryllium	5	μg/L	560	<5	470	310	540
Boron	5	μg/L	1400	33000	6100	1800	2000
Cadmium	2	μg/L	270	<2	200	140	240
Cobalt	5	μg/L	75000	1800	43000	56000	69000
Copper	5	μg/L	500000	840	9700	4300	280000
Lead	5	μg/L	99	13	29	200	29
Lithium	5	μg/L	21000	620	16000	14000	20000
Manganese	5	μg/L	200000	16000	140000	240000	160000
Molybdenum	5	μg/L	<5	<5	<5	47	<5
Nickel	5	μg/L	9700	320	5700	7700	8600
Selenium	5	μg/L	6700	120	5500	3500	6300
Silver	5	μg/L	8.2	7.4	6.9	6.7	6.8
Strontium	5	μg/L	4900	24000	4500	8700	4900
Thallium	5	μg/L	7.7	<5	<5	<5	<5
Tin	5	μg/L	<5	<5	<5	<5	<5
Titanium	5	μg/L	22	21	49	20	54
Uranium	5	μg/L	320000	11000	250000	400000	330000
Vanadium	5	μg/L	880	18	420	520	820
Zinc	5	μg/L	50000	380	32000	31000	47000
3200 Dissolved Metals in Wat	er - ICP/AES						
Silicon	100	μg/L	35800	7130	38200	28900	40800

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Dissolved Metals in Water By ICP/MS	25/07/2008	30/07/2008
3200 Dissolved Metals in Water - ICP/AES	28/07/2008	30/07/2008
3200 Total Metals in Water by ICP/AES	28/07/2008	30/07/2008

Amdel Internal Quality Control Review

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
 are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Amdel QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Form LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1102581 [Method Blank]	-	•	-	•	•	
3100 Dissolved Metals in Water By ICP/MS						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<5		< 5	Т	
Barium	μg/L	<5		< 5	Т	
Beryllium	μg/L	<5		< 5	Т	
Boron	μg/L	<5		< 5	Т	
Cadmium	μg/L	<2		< 2	Т	
Chromium	μg/L	<5		< 5	Т	
Cobalt	μg/L	<5		< 5	Т	
Copper	μg/L	<5		< 5	Т	
Lead	μg/L	<5		< 5	Т	
Manganese	μg/L	<5		< 5	Т	
Molybdenum	μg/L	<5		< 5	Т	
Nickel	μg/L	<5		< 5	Т	
Selenium	μg/L	<5		< 5	Т	
Tin	μg/L	<5		< 5	Т	
Vanadium	μg/L	<5		< 5	Т	
Zinc	μg/L	7.7		< 5	F	
1102641 [Method Blank]	-			•	•	
3200 Dissolved Metals in Water - ICP/AES						
Iron	μg/L	<100		< 100	Т	
1102651 [Method Blank]	•	•	•	•	•	
3200 Total Metals in Water by ICP/AES						
Iron	μg/L	<100		< 100	Т	

First Reported: 30 July 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 2 of 4

Date Printed: 30 July 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 319511

Laboratory: EN_METALS

					A 1	T	0
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1102582 [Laboratory Control Sample]	•	1		-		-	
3100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	99	100.0	99	80-120 %	Т	
Arsenic	μg/L	100	100.0	100	80-120 %	Т	
Barium	μg/L	99	100.0	99	80-120 %	Т	
Beryllium	μg/L	100	100.0	100	80-120 %	Т	
Boron	μg/L	110	100.0	105	80-120 %	Т	
Cadmium	μg/L	100	100.0	102	80-120 %	Т	
Chromium	μg/L	97	100.0	97	80-120 %	Т	
Cobalt	μg/L	99	100.0	99	80-120 %	Т	
Copper	μg/L	100	100.0	100	80-120 %	Т	
Lead	μg/L	98	100.0	98	80-120 %	Т	
Manganese	μg/L	98	100.0	98	80-120 %	Т	
Molybdenum	μg/L	120	100.0	115	80-120 %	Т	
Nickel	μg/L	100	100.0	100	80-120 %	Т	
Selenium	μg/L	96	100.0	96	80-120 %	Т	
Tin	μg/L	100	100.0	101	80-120 %	Т	
Vanadium	μg/L	97	100.0	97	80-120 %	Т	
Zinc	μg/L	100	100.0	101	80-120 %	Т	
1098411 [Duplicate of 1098391]	•	•	•	-			
3200 Dissolved Metals in Water - ICP/AES			Result 2	RPD			
Silicon	μg/L	35600	35800	N/A	N/A	N/A	
1098412 [Duplicate of 1098391]	1					-	
3200 Total Metals in Water by ICP/AES			Result 2	RPD			
Iron	μg/L	7310000	7380000	1	0-30 %	Т	
1098413 [Duplicate of 1098391]	F-9			 			
3100 Dissolved Metals in Water By ICP/MS			Result 2	RPD			
Aluminium	μg/L	8900000	10000000	17	0-10 %	F	
Antimony	µg/L	<1	<1	<1	0-10 %	† †	
Arsenic	µg/L	38	50	26	0-10 %	F ·	
Barium	µg/L	60	62	2	0-10 %	' T	
Beryllium	µg/L	640	560	14	0-10 %	F	
Boron	µg/L	1800	1400	20	0-10 %	F '	
Cadmium	µg/L	280	270	5	0-10 %	T .	
Cobalt	µg/L	71000	75000	5	0-10 %	† ·	
Copper	µg/L	540000	500000	8	0-10 %	† †	
Lead	µg/L	99	99	<1	0-10 %	 '	
Lithium	µg/L	21000	21000	1	0-10 %	 '	
Manganese	μg/L μg/L	21000	200000	5	0-10 %	 '	
Molybdenum	µg/L	<5	<5	<1	0-10 %	 '	
Nickel	µg/L	9200	9700	5	0-10 %	 '	
Selenium	µg/L	6500	6700	3	0-10 %	 '	
Silver	µg/L	7.0	8.2	16	0-10 %	F	
Strontium	µg/L	5000	4900	<1	0-10 %	† †	
Thallium	µg/L	7.6	7.7	1	0-10 %	 '	
Tin	μg/L μg/L	7.6 <5	<5	<1	0-10 %	' T	-
1111	µg/L	νυ				F '	-
Titanium	110/1	25	າາ	10			
Titanium	μg/L	25	22	13	0-10 %	_	
Titanium Uranium Vanadium	μg/L μg/L μg/L	25 340000 980	22 320000 880	13 7 11	0-10 % 0-10 % 0-10 %	T	

Sample Integrity

Attempt to Chill was evident Yes
Samples correctly preserved Yes
Samples received within HoldingTime Yes
Some samples have been subcontracted No

Final Report Number: 319511

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Cal

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

Client Reference:

Sinclair Knight Merz Pty Ltd

VE30064

Daniel Pierce **Contact Name:**

Page: 3 of 13 plus cover page

Certificate

Final

Date: 08/08/08

of Analysis

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	Н3-1	Н3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date	<u>-</u>	24/7/08	24/7/08	24/7/08	24/7/08	24/7/08	24/7/08		24/7/08	24/7/08	24/7/08
Method: E035.1 Total alkalinity Alkalinity	EQL 5	<5	1920	<5	<5	<5	<5		#	92%	<5

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E035.1: Determination by colour and/or by titration. Results expressed as CaCO3.

Client Name:

Sinclair Knight Merz Pty Ltd

Daniel Pierce **Contact Name:**

Page: 4 of 13 plus cover page

Certificate

Final

Date: 08/08/08

of Analysis

VE30064 **Client Reference:**

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Method: E033.1/E045.1/E047.1 Chloride Chloride	EQL 1	4370	9040	4050	4200	4340	4600	5%	#	105%	<1

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E033.1/E045.1/E047.1: Determination by colour and/or by Ion Chromatography. Sample filtered through a 0.45um filter prior to analysis.

Sinclair Knight Merz Pty Ltd

plus cover page

Certificate

Contact Name:

Client Name:

Daniel Pierce

Date: 08/08/08

Page: 5 of 13

of Analysis

Final

Client Reference:

VE30064

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		23/7/08 23/7/08	23/7/08 23/7/08	23/7/08 23/7/08	23/7/08 23/7/08	23/7/08 23/7/08	23/7/08 23/7/08		23/7/08 23/7/08	23/7/08 23/7/08	23/7/08 23/7/08
Method: E034.1/E045.1 Fluoride Fluoride	EQL 0.1	13400	10.4	8990	5010	10400	13800	3%	#	103%	<0.1

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E034.1/E045.1: Determined by FIA-Ion Selective Electrode and/or by Ion Chromatography. Samples filtered through a 0.45um filter prior to analysis.

Client Reference:

Sinclair Knight Merz Pty Ltd **Client Name:**

VE30064

Daniel Pierce **Contact Name:**

Date: 08/08/08

Page: 6 of 13

plus cover page

This report supercedes reports issued on: 31/07/08

Final

Certificate

of Analysis

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date	<u>-</u>	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Method: E042.1/E045.1/E056.1 Sulphate Sulphate	EQL 2	49300	9900	39100	39900	47300	49000	1%	#	105%	<2

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E042.1/E045.1/E056.1: Determination by colour and/or by Ion Chromatography. Sample filtered through 0.45um prior to analysis.

Client Name:

Sinclair Knight Merz Pty Ltd

Daniel Pierce **Contact Name:**

Page: 7 of 13 plus cover page

Certificate

Final

Date: 08/08/08

of Analysis

VE30064 **Client Reference:** This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Method: E037.1/E051.1 Nitrite as N NO2-N	EQL 0.01	0.02	0.04	<0.01	0.04	0.01	0.02	0%	111%	90%	<0.01
Method: E037.1/E051.1 Nitrate as N NO3-N	EQL 0.01	0.01	10.2	<0.01	0.01	0.02	0.01	0%	#	103%	<0.01

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E037.1/E051.1: Nitrate determined by colour. Sample filtered through 0.45um prior to analysis.

E037.1/E051.1: Nitrite determined by colour. Sample filtered through 0.45um prior to analysis.

Sinclair Knight Merz Pty Ltd

Daniel Pierce **Contact Name:**

Page: 8 of 13 plus cover page

Certificate

Date: 08/08/08

of Analysis

Final

VE30064 **Client Reference:**

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date	a	25/7/08	25/7/08	25/7/08	25/7/08	25/7/08	25/7/08		25/7/08	24/7/08	24/7/08
Method: E039.1 TKN (as N) Total Kjeldahl Nitrogen	EQL 0.1	98.6	15.6	70.3	2.1	120	82.6	18%	#	92%	<0.1

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E039.1: Acidic digestion followed by determination by colour.

Sinclair Knight Merz Pty Ltd

Daniel Pierce **Contact Name:**

plus cover page

Page: 9 of 13

Certificate

Final

Date: 08/08/08

of Analysis

VE30064 **Client Reference:**

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
mple Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		23/7/08 25/7/08	23/7/08 25/7/08	23/7/08 25/7/08	23/7/08 25/7/08	23/7/08 25/7/08	23/7/08 25/7/08		23/7/08 25/7/08	23/7/08 24/7/08	23/7/08 24/7/08
•	ı	23/1/08	23/1/08	23/1/06	23/1/06	23/1/06	23/1/08		23/1/06	24/ //08	24/1/06
Method: E038.1 Total Nitrogen (as N) Total Nitrogen (as N)	EQL 0.1	98.6	25.8	70.3	2.2	121	82.6	18%	#	95%	<0.1

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E038.1: Total Nitrogen by calculation.

Client Reference:

Sinclair Knight Merz Pty Ltd

VE30064

Daniel Pierce **Contact Name:**

Page: 10 of 13 plus cover page

Certificate

Date: 08/08/08

of Analysis

Final

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	H3-1	Н3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date		25/7/08	25/7/08	25/7/08	25/7/08	25/7/08	31/7/08		31/7/08	25/7/08	25/7/08
Method: E020.1/E030.1 Major cations	EQL										
Calcium	0.1	738	755	669	627	690	725	2%	#	109%	< 0.1
Magnesium	0.1	839	948	492	1660	597	808	4%	#	112%	< 0.1
Sodium	0.1	3810	9330	3330	3700	3810	3740	2%	#	109%	< 0.1
Potassium	0.1	655	26.6	730	527	752	633	3%	#	100%	< 0.1

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E020.1/E030.1: Sample directly analysed by Flame AAS and/or ICP-OES.

Client Reference:

Client Name: Sinclair Knight Merz Pty Ltd

VE30064

Daniel Pierce **Contact Name:**

Date: 08/08/08

Page: 11 of 13

plus cover page

This report supercedes reports issued on: 31/07/08

Final

Certificate

of Analysis

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	168102s	lcs	mb
Sample Identification		H1-1	Н3-1	H3-2	H4-2	H1-2	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08					
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	23/7/08	23/7/08
Laboratory Analysis Date		24/7/08	24/7/08	24/7/08	24/7/08	24/7/08	24/7/08		24/7/08	24/7/08	24/7/08
Method: E035.1 Alkalinity (CO3, HCO3, OH) Carbonate Bicarbonate Hydroxide	EQL 5 5 5	<5 <5 <5	<5 1920 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	<5 <5 <5	 	 # 	 92% 	<5 <5 <5

Results expressed in mg/l unless otherwise specified

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

E035.1: Determination by colour and/or by titration, followed by calculation. Results expressed as CaCO3.

E038811 **Laboratory Report No:**

Client Reference:

Sinclair Knight Merz Pty Ltd

Daniel Pierce VE30064

Page: 12 of 13 plus cover page Final Certificate

Date: 08/08/08

of Analysis

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168105d	168105r	mb	
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	
Depth (m)										
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08				
Laboratory Extraction (Preparation) Date		28/7/08	28/7/08	28/7/08	28/7/08	28/7/08	28/7/08		28/7/08	
Laboratory Analysis Date	_	31/7/08	31/7/08	31/7/08	31/7/08	31/7/08	31/7/08		29/7/08	
Method: E2580 Total Organic Carbon (TOC) Total Organic Carbon	EQL 1	30	65	26	24	24	27	12%	<1	

Results expressed in mg/l unless otherwise specified

Comments:

E2580: TOC analyser.

E038811 **Laboratory Report No:**

Client Reference:

Sinclair Knight Merz Pty Ltd

VE30064

Daniel Pierce **Contact Name:**

plus cover page

Page: 13 of 13

Certificate

Date: 08/08/08

of Analysis

Final

This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168105d	168105r	mb	
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	
Depth (m)										
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08				
Laboratory Extraction (Preparation) Date		28/7/08	28/7/08	28/7/08	28/7/08	28/7/08	28/7/08		28/7/08	
Laboratory Analysis Date		29/7/08	29/7/08	29/7/08	29/7/08	29/7/08	29/7/08		29/7/08	
Method: APHA 2540C Total Dissolved Solids (TDS) TDS	EQL 1	99300	31100	78500	71600	96200	98800	3%	<1	

Results expressed in mg/l unless otherwise specified

Comments:

APHA 2540C: Determined gravimetrically.

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Labmark P/L Unit 1 / 8 Leighton Plc Asquith NSW 2077 Australia

Attention: Poonam Raj

Project 08ENME0019303

Client Reference E038811

Received Date 24/07/2008 11:36:00 AM

Customer Sample ID Amdel Sample Number Date Sampled			168101 1098391 21/07/2008	168102 1098392 21/07/2008	168103 1098393 21/07/2008	168104 1098394 21/07/2008	168105 1098395 21/07/2008
Metals Test/Reference	PQL	Unit					
3200 Total Metals in Water by	ICP/AES						
Iron	100	μg/L	7380000	117000	6550000	8020000	7460000
3100 Dissolved Metals in Wat	-						
Aluminium	5	μg/L	1000000	390	6600000	3900000	8200000
Antimony	1	μg/L	<1	<1	1.3	1.3	<1
Arsenic	5	μg/L	50	<5	9.1	47	<5
Barium	5	μg/L	62	19	33	23	38
Beryllium	5	μg/L	560	<5	470	310	540
Boron	5	μg/L	1400	33000	6100	1800	2000
Cadmium	2	μg/L	270	<2	200	140	240
Cobalt	5	μg/L	75000	1800	43000	56000	69000
Copper	5	μg/L	500000	840	9700	4300	280000
Lead	5	μg/L	99	13	29	200	29
Lithium	5	μg/L	21000	620	16000	14000	20000
Manganese	5	μg/L	200000	16000	140000	240000	160000
Molybdenum	5	μg/L	<5	<5	<5	47	<5
Nickel	5	μg/L	9700	320	5700	7700	8600
Selenium	5	μg/L	6700	120	5500	3500	6300
Silver	5	μg/L	8.2	7.4	6.9	6.7	6.8
Strontium	5	μg/L	4900	24000	4500	8700	4900
Thallium	5	μg/L	7.7	<5	<5	<5	<5
Tin	5	μg/L	<5	<5	<5	<5	<5
Titanium	5	μg/L	22	21	49	20	54
Uranium	5	μg/L	320000	11000	250000	400000	330000
Vanadium	5	μg/L	880	18	420	520	820
Zinc	5	μg/L	50000	380	32000	31000	47000
3200 Dissolved Metals in Wat	er - ICP/AES						
Silicon	100	μg/L	35800	7130	38200	28900	40800

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Dissolved Metals in Water By ICP/MS	25/07/2008	30/07/2008
3200 Dissolved Metals in Water - ICP/AES	28/07/2008	30/07/2008
3200 Total Metals in Water by ICP/AES	28/07/2008	30/07/2008

Amdel Internal Quality Control Review

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
 are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Amdel QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Form LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1102581 [Method Blank]	-	•	-	•	•	
3100 Dissolved Metals in Water By ICP/MS						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<5		< 5	Т	
Barium	μg/L	<5		< 5	Т	
Beryllium	μg/L	<5		< 5	Т	
Boron	μg/L	<5		< 5	Т	
Cadmium	μg/L	<2		< 2	Т	
Chromium	μg/L	<5		< 5	Т	
Cobalt	μg/L	<5		< 5	Т	
Copper	μg/L	<5		< 5	Т	
Lead	μg/L	<5		< 5	Т	
Manganese	μg/L	<5		< 5	Т	
Molybdenum	μg/L	<5		< 5	Т	
Nickel	μg/L	<5		< 5	Т	
Selenium	μg/L	<5		< 5	Т	
Tin	μg/L	<5		< 5	Т	
Vanadium	μg/L	<5		< 5	Т	
Zinc	μg/L	7.7		< 5	F	
1102641 [Method Blank]	-			•	•	
3200 Dissolved Metals in Water - ICP/AES						
Iron	μg/L	<100		< 100	Т	
1102651 [Method Blank]	•	•	•	•	•	
3200 Total Metals in Water by ICP/AES						
Iron	μg/L	<100		< 100	Т	

First Reported: 30 July 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 2 of 4

Date Printed: 30 July 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 319511

Laboratory: EN_METALS

					A 1	T	0
Sample, Test, Result Reference	ole, Test, Result Reference Units Result 1				Acceptance Limits	Pass Limits	Qualifying Codes
1102582 [Laboratory Control Sample]	•	1		-		-	
3100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	99	100.0	99	80-120 %	Т	
Arsenic	μg/L	100	100.0	100	80-120 %	Т	
Barium	μg/L	99	100.0	99	80-120 %	Т	
Beryllium	μg/L	100	100.0	100	80-120 %	Т	
Boron	μg/L	110	100.0	105	80-120 %	Т	
Cadmium	μg/L	100	100.0	102	80-120 %	Т	
Chromium	μg/L	97	100.0	97	80-120 %	Т	
Cobalt	μg/L	99	100.0	99	80-120 %	Т	
Copper	μg/L	100	100.0	100	80-120 %	Т	
Lead	μg/L	98	100.0	98	80-120 %	Т	
Manganese	μg/L	98	100.0	98	80-120 %	Т	
Molybdenum	μg/L	120	100.0	115	80-120 %	Т	
Nickel	μg/L	100	100.0	100	80-120 %	Т	
Selenium	μg/L	96	100.0	96	80-120 %	Т	
Tin	μg/L	100	100.0	101	80-120 %	Т	
Vanadium	μg/L	97	100.0	97	80-120 %	Т	
Zinc	μg/L	100	100.0	101	80-120 %	Т	
1098411 [Duplicate of 1098391]	•	•	•	-			
3200 Dissolved Metals in Water - ICP/AES			Result 2	RPD			
Silicon	μg/L	35600	35800	N/A	N/A	N/A	
1098412 [Duplicate of 1098391]	1					-	
3200 Total Metals in Water by ICP/AES			Result 2	RPD			
Iron	μg/L	7310000	7380000	1	0-30 %	Т	
1098413 [Duplicate of 1098391]	F-9			 			
3100 Dissolved Metals in Water By ICP/MS			Result 2	RPD			
Aluminium	μg/L	8900000	10000000	17	0-10 %	F	
Antimony	µg/L	<1	<1	<1	0-10 %	† †	
Arsenic	µg/L	38	50	26	0-10 %	F ·	
Barium	µg/L	60	62	2	0-10 %	' T	
Beryllium	µg/L	640	560	14	0-10 %	F	
Boron	µg/L	1800	1400	20	0-10 %	F '	
Cadmium	µg/L	280	270	5	0-10 %	T .	
Cobalt	µg/L	71000	75000	5	0-10 %	† ·	
Copper	µg/L	540000	500000	8	0-10 %	† †	
Lead	µg/L	99	99	<1	0-10 %	 '	
Lithium	µg/L	21000	21000	1	0-10 %	 '	
Manganese	μg/L μg/L	21000	200000	5	0-10 %	 '	
Molybdenum	µg/L	<5	<5	<1	0-10 %	 '	
Nickel	µg/L	9200	9700	5	0-10 %	 '	
Selenium	µg/L	6500	6700	3	0-10 %	 '	
Silver	µg/L	7.0	8.2	16	0-10 %	F	
Strontium	µg/L	5000	4900	<1	0-10 %	† †	
Thallium	µg/L	7.6	7.7	1	0-10 %	 '	
Tin	μg/L μg/L	7.6 <5	<5	<1	0-10 %	' T	-
1111	µg/L	νυ				F '	-
Titanium	110/1	25	າາ	10			
Titanium	μg/L	25	22	13	0-10 %	_	
Titanium Uranium Vanadium	μg/L μg/L μg/L	25 340000 980	22 320000 880	13 7 11	0-10 % 0-10 % 0-10 %	T	

Sample Integrity

Attempt to Chill was evident Yes
Samples correctly preserved Yes
Samples received within HoldingTime Yes
Some samples have been subcontracted No

Final Report Number: 319511

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Cal

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

Report Date: 23/07/2008 **Report Time: 12:37:37PM**

Sample

Receipt

Quality, Service, Support

Notice (SRN) for E038811

	Client Details	Laboratory	Reference Information
Client Name: Client Phone:	Sinclair Knight Merz Pty Ltd 08 8424 3800	II.	ve this information ready contacting Labmark.
Client Fax: Contact Name:	08 8424 3810 Daniel Pierce	Laboratory Report:	E038811
Contact Email: Client Address:	dpierce@skm.com.au Level 5, 33 King William St Adelaide SA 5000	Quotation Number: Laboratory Address:	 Not provided, standard prices apply Unit 1, 8 Leighton Pl. Asquith NSW 2077
Project Name: Project Number:	VE30064 - Not provided -	Phone: Fax:	61 2 9476 6533 61 2 9476 8219
CoC Serial Number Purchase Order: Surcharge:	r: - Not provided Not provided - No surcharge applied (results by 6:30pm on due date) WATER	Sample Receipt Contactions Reporting Contactions Email:	ct: Ros Schacht Ros.Schacht@labmark.com.au Geoff Weir geoff.weir@labmark.com.au
Date Sampled (ea	rliest date): 21/07/2008 ceived: 23/07/2008 cipt Notice issued: 23/07/2008	NATA Accreditation: TGA GMP License: APVMA License: AQIS Approval: AQIS Entry Permit:	13542 185-336 (Sydney) 6105 (Sydney) NO356 (Sydney) 200521534 (Sydney)
Reporting Requir	ements: Electronic Data Download required: Y	es I	nvoice Number: 33156

Sample Condition: COC received with samples. Report number and lab ID's defined on COC.

Samples received in good order.

Samples received with cooling media: Ice bricks .

Samples received chilled. Security seals not used .

Sample container & chemical preservation suitable.

Comments: Metals subcontracted to LabMark Melbourne | TOC, TDS subconcracted to SAL

Holding Times: Date received allows for insufficient time to meet Technical Holding Times.

Note: There are Samples within this batch that have been received by the laboratory 1 day(s) after Technical Holding Times expire. LabMark cannot guarantee THT compliance, refer to the extraction

dates detailed in the sample grid for confirmation.

Preservation: Chemical preservation of samples satisfactory for requested analytes.

Important Notes:

LabMark shall responsibly dispose of spent customer soil and water samples which includes the disintegration of the sample label. A sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Reported by Amdel Limited, NATA accreditation No.1526.

Reported by Sydney Analytical Laboratories, NATA accreditation No.1884.

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Report Date : 23/07/2008 Report Time : 12:37:37PM

Sample

Receipt

Quality, Service, Support

Notice (SRN) for E038811

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID R	EVIEW TABLE									Re	ques	ted A	naly	sis						
No. Date Depth	Client Sample ID	Major cations	Alkalinity (CO3, HCO3, OH)	Chloride	Electrical conductivity (EC)	Fluoride	Nitrite as N	Nitrate as N	NOx (as N)	pH in water	PREP Not Reported	Sulphate	TKN (as N)	Total alkalinity	Total Nitrogen (as N)	External Analysis by Amdel	External Total Dissolved Solids (TDS)	External Total Organic Carbon (TOC)		
168101 21/07	H1-1	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		
168102 21/07	H3-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
168103 21/07	H3-2	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		
168104 21/07	H4-2	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	•		
168105 21/07	H1-2	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		
	Totals:	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5		

^{&#}x27;PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

CHAIN OF CUSTODY FORM From : SKM Pty Ltd ABN: 37 001 024 095 Level 5, 33 King Willam St, Adelaide, SA 5000 Container Identification ph: (08) 8424 3800 fax: (08) 8424 3810 Size 1000ml 125ml 43ml LAB USE ONLY Project No: plastic plastic vile QUOTE NUMBER VE30064 Preserv Job Code: Project Manager: Due Date: Daniel Pierce Custody seal intact? Sampler(s): Analytes See Attached See Attached See Attached Sample cold? E038811 Allstair Walsh Received for Laboratory by: Checked: Michael Cowin Date: Date: 22/07/2008 Matrix Lab Id Time Date Sample Identification Tick required analytes Comments 168101 21/07/2008 H20 H1-1 -1000ml 21/07/2008 H20 H1-1 - 125ml 21/07/2008 H20 H1-1 - 43ml 168102 21/07/2008 H20 H3-1 - 1000mi 21/07/2008 H20 H3-1 - 125ml 21/07/2008 H20 H3-1 - 43ml 168103 21/07/2008 H3-2 - 1000ml 21/07/2008 H20 H3-2 - 125ml 21/07/2008 H20 H3-2 - 43ml 168104 21/07/2008 H20 H4-2 - 1000ml 21/07/2008 H20 H4-2 - 125ml 21/07/2008 H20 H4-2 - 43ml 168105 21/07/2008 H20 H1-2 - 1000ml 21/07/2008 H1-2 - 125ml H1-2 - 43ml Please email awalsh@skm.com.au and dpierce@skm.com.au upon receival of samples. Thanks See attached spreadsheet for analysis required, any questions please call 0430288222 Ree'd &\$ 23/7/08 10.00am Sheet

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
0	inle Ratch for		1-3-	
	ple Batch fee Calcium			
(7/8.	(Ca) Magnesium			
major Cations (mg/L)	(Mg)	1 mg/L	7 days	1
ation	Sodium (Na)	1 2 2 1		
O	Potassium (K)	3		
7	Calcium Carbonate	- 1		
1g/L)	(CaCO ₃) Sulphate	1 mg/L		
ns (n	(SO ₄) Chloride	- mg/L		
Anio	(CI) ·		48 Hrs	
Major Anions (mg/L)	Carbonate (CO ₃)	1 mg/L		
2	Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L)	1 mg/L	28 days	
	EC (uS/cm) pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride Silica			
	(SI) Aluminum			
15	(AI)	10 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Antimony (Sb)	0.5 µg/L	6 months	
	Arsenic (As)	0.5 µg/L	6 months	
G C	Barium (Ba)	5 µg/L	6 months	
	Beryllium	0.1 µg/L		
	(Be) Boron	100 µg/L	6 months	
	(B) Cadmlum	100	6 months	
	(Cd) Chromlum	0.2 μg/L	6 months	
	(Cr)	0.5 µg/L	6 months	
	Cobalt (Co)	0.2 μg/L	6 months	
	Copper (Cu)	5 μg/L	6 months	
72	Gold (Ag)	0.1 μg/L	6 months	
s (m)	Lead (Pb)	0.2 μg/L	6 months	
Dissolved Metals (mg/L)	Lithium	5 µg/L	100	
ved	(LI) Manganese	0.5 µg/L	6 months	
isso	(Mn) Molybdenum		6 months	
	(Mo) Nickel	0.1 µg/L	6 months	
	(Ni)	0.5 μg/L	6 months	
	Selenium (Se)	5 μg/L	6 months	
	Strontium (Sr)	10 µg/L	6 months	
	Thallium (TI)	0.1 μg/L	6 months	
	Thorium (Th)	0.1 µg/L	1 50 5 4	
	Tin	5 µg/L	6 months	
	(Sn) Titanium	5 µg/L	6 months	
ł	(Ti) Uranlum		6 months	
	(U) Vanadium	0.1 µg/L	6 months	
	(V) Zinc	0.5 µg/L	6 months	
	(Zn)	5 μg/L	6 months	
	(Fe)	5 μg/L	6 months	ICP OES
•	Nitrite as N (NO ₂)	0.01 mg/L	48 hrs	Leading in the control
Nutrients (mg/L)	Nitrate as N (NO₂)	0.01 mg/L	48 hrs	measured together
ents	Total Nitrogen Total Organic Carbon	0.01 mg/L	28 days	
Nutri	(TOC)	1 mg/L	28 days	
7 7	Total Kjeldahl Nitrogen (TKN)	0.1 mg/L	28 days	

Total Cost

Note: If highly saline, samples may require a 1:5 x dilution therfore LORs raised by a factor of 5 time:

AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356

Quarantine Approved Premises criteria 5.1 for quarantine Quarantine Approved remises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to Australian and a standards. NATA is a the APLAC mutual recognition arrangem mutual recognition of the equivalence calibration and inspection reports.

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Cover Page 1 of 4 **Laboratory Report No:** E038811 Sinclair Knight Merz Pty Ltd **Client Name:** plus Sample Results

VE30064 **Client Reference: Daniel Pierce**

Contact Name: Chain of Custody No:

Sample Matrix: This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA

accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY ASSURANCE CRITERIA

1 in first 5-20, then 1 every 20 samples Accuracy: matrix spike:

> lcs, crm, method: 1 per analytical batch

addition per target organic method surrogate spike:

WATER

Precision: laboratory duplicate: 1 in first 5-10, then 1 every 10 samples

> laboratory triplicate: re-extracted & reported when duplicate

> > RPD values exceed acceptance criteria

Holding Times: soils, waters: Refer to LabMark Preservation & THT

table

VOC's 14 days water / soil

VAC's 7 days water or 14 days acidified

VAC's 14 days soil

SVOC's 7 days water, 14 days soil Pesticides 7 days water, 14 days soil Metals 6 months general elements

Mercury 28 days

Confirmation: target organic analysis: GC/MS, or confirmatory column

Sensitivity: EOL:

(MDL)

QUALITY CONTROL GLOBAL ACCEPTANCE CRITERIA (GAC)

Accuracy: spike, lcs, crm general analytes 70% - 130% recovery

Date Received: 23/07/2008

Date Reported: 08/08/2008

surrogate: phenol analytes 50% - 130% recovery

organophosphorous pesticide analytes

60% - 130% recovery

phenoxy acid herbicides, organotin 50% - 130% recovery

anion/cation bal: +/- 10% (0-3 meq/l),

+/- 5% (>3 meq/l) Precision: method blank: not detected >95% of the reported EQL

> duplicate lab 0-30% (>10xEQL), 0-75% (5-10xEQL)

RPD (metals): 0-100% (<5xEQL)

duplicate lab 0-50% (>10xEQL), 0-75% (5-10xEQL)

RPD: 0-100% (<5xEQL)

OUALITY CONTROL ANALYTE SPECIFIC ACCEPTANCE CRITERIA (ASAC)

Accuracy: spike, lcs, crm analyte specific recovery data

surrogate: <3xsd of historical mean

Typically 2-5 x Method Detection Limit **Uncertainty:** measurement calculated from spike, lcs:

historical analyte specific control

charts

RESULT ANNOTATION

Data Quality Objective matrix spike recovery s: p: pending bcs: batch specific lcs Data Quality Indicator d: laboratory duplicate laboratory control sample bmb: batch specific mb lcs:

Estimated Quantitation Limit t: laboratory triplicate certified reference material crm:

RPD relative % difference not applicable mb: method blank

* SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077

Quality Control (Report signatory) david.burns@labmark.com.au

Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

Authorising Chemist (NATA signatory) simon.mills@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

copyright 2000

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E038811

Cover Page 2 of 4

NEPC GUIDELINE COMPLIANCE - DQO

GENERAL

- A. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
- B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.
- C. Laboratory QA/QC samples are specific to this project.
- Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au.
- E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction.
- F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
- G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
- H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
- I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

Reported by Amdel Limited, NATA accreditation No.1526.

Reported by Sydney Analytical Laboratories, NATA accreditation No.1884.

This document is issued in accordance with NATA's accreditation requirements.

© copyright 2000

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E038811

Cover Page 3 of 4

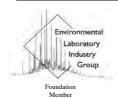
4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matrix:	WATER						
Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	pH in water	5	1	20%	0	0	0%
2	Electrical conductivity (EC)	5	1	20%	0	0	0%
3	Total alkalinity	5	1	20%	0	1	20%
4	Chloride	5	1	20%	0	1	20%
5	Fluoride	5	1	20%	0	1	20%
6	Sulphate	5	1	20%	0	1	20%
7	Nitrate as N	5	1	20%	0	1	20%
7	Nitrite as N	5	1	20%	0	1	20%
8	TKN (as N)	5	1	20%	0	1	20%
9	Total Nitrogen (as N)	5	1	20%	0	1	20%
10	Major cations	5	1	20%	0	1	20%
11	Alkalinity (CO3, HCO3, OH)	5	1	20%	0	1	20%
12	Total Organic Carbon (TOC)	5	1	20%	0	0	0%
13	Total Dissolved Solids (TDS)	5	1	20%	0	0	0%

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).


#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E038811

Cover Page 4 of 4

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, Corporate Site No. 13535, unless indicated below.

B. The following test was conducted by Amdel Limited, NATA accreditation No.1526. :Metals, see attached report.

C. The following tests were conducted by Sydney Analytical Laboratories, NATA accreditation No.1884. :- TDS and TOC SAL reference SAL21040 report issued on 04/08/2008.

D.Samples received and measured for pH outside technical holding times.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

E038811 **Laboratory Report No:**

Sinclair Knight Merz Pty Ltd

Daniel Pierce **Contact Name:**

Page: 1 of 13 plus cover page

Certificate

Date: 08/08/08

of Analysis

Final

VE30064 **Client Reference:**

This report supercedes reports issued on: 31/07/08

Laboratory Identification	Laboratory Identification		168102	168103	168104	168105	168101d	168101r		
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC		
Depth (m)										
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08				
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08			
Laboratory Analysis Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08			
Method : E018.1 EQL pH in water EQL pH (pH units) 0.1		3.4	6.3	3.4	4.0	3.3	3.4	0%		

Results expressed in pH units unless otherwise specified

Comments:

E018.1: Direct measurement by pH ion selective electrode.

E038811 **Laboratory Report No:**

Sinclair Knight Merz Pty Ltd

Daniel Pierce **Contact Name:**

Page: 2 of 13 plus cover page

Certificate

Final

Date: 08/08/08

of Analysis

VE30064 **Client Reference:** This report supercedes reports issued on: 31/07/08

Laboratory Identification		168101	168102	168103	168104	168105	168101d	168101r	mb	
Sample Identification		H1-1	H3-1	H3-2	H4-2	H1-2	QC	QC	QC	
Depth (m)										
Sampling Date recorded on COC		21/7/08	21/7/08	21/7/08	21/7/08	21/7/08				
Laboratory Extraction (Preparation) Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	
Laboratory Analysis Date		23/7/08	23/7/08	23/7/08	23/7/08	23/7/08	23/7/08		23/7/08	
Method: E032.1 Electrical conductivity (EC) Electric conductivity (uS/cm) EQL		38400	39300	34000	35300	37400	38400	0%	1	

Results expressed in uS/cm unless otherwise specified

Comments:

E032.1: Measurement by EC probe. Results expressed in uS/cm.

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0021268

Client Reference VE30064

Received Date 13/08/2008 09:32:00 AM

Customer Sample ID Amdel Sample Number Date Sampled			PT03_4b 1126323 11/08/2008	PT14 1126324 11/08/2008	PT24b 1126325 12/08/2008	
Test/Reference	PQL	Unit				
0000 Gold (Au) Gold (Au)*	-	μg/L	1.8	3.5	<1	
Metals						
Test/Reference	PQL	Unit				
3100 Dissolved Metals in Water	er By ICP/MS					
Aluminium	5	μg/L	<5	5.3	<5	
Antimony	1	μg/L	2.5	1.1	1.6	
Arsenic	5	μg/L	<5	<5	<5	
Barium	5	μg/L	110	88	83	
Beryllium	5	μg/L	<5	<5	<5	
Boron	5	μg/L	4600	8200	7900	
Cadmium	2	μg/L	<2	<2	<2	
Chromium	5	μg/L	<5	<5	<5	
Cobalt	5	μg/L	<5	<5	<5	
Copper	5	μg/L	17	7.0	17	
Lead	5	μg/L	<5	<5	<5	
Lithium	5	μg/L	430	220	520	
Manganese	5	μg/L	81	690	650	
Molybdenum	5	μg/L	<5	<5	<5	
Nickel	5	μg/L	13	8.5	12	
Selenium	5	μg/L	89	43	91	
Strontium	5	μg/L	13000	12000	15000	
Thallium	5	μg/L	<5	<5	<5	
Thorium	5	μg/L	<5	<5	<5	
Tin	5	μg/L	<5	<5	<5	
Titanium	5	μg/L	26	20	44	
Uranium	5	μg/L	<5	<5	<5	
Vanadium	5	μg/L	<5	<5	<5	
Zinc	5	μg/L	28	76	65	
3200 Dissolved Metals in Water	er - ICP/AES					
Calcium	100	μg/L	1660000	802000	978000	
Iron	100	μg/L	<100	3800	5730	
Magnesium	100	μg/L	1220000	932000	1820000	
Potassium	1000	μg/L	180000	110000	160000	
Sodium	100	μg/L	23200000	9950000	22300000	
Inorganics Test/Reference	PQL	Unit				
4010 Conductivity in Water						
Electrical Conductivity	20	μS/cm	57600	33600	60200	

Final Report Number: 324944

Customer Sample ID Amdel Sample Number Date Sampled Inorganics			PT03_4b 1126323 11/08/2008	PT14 1126324 11/08/2008	PT24b 1126325 12/08/2008
Test/Reference	PQL	Unit			
4000 pH in Water					
рН	0.1	pН	9.3	7.1	7.2
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	52000	29000	43000
4540 TKN in Water by Titration TKN	1	mg/L	2.6	<1	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	1.5	<1	1.1
4941 Total Nitrogen in Water by Ca Total Nitrogen	i lc 2	mg N/L	3	<2	<2
4300 Anions in Water by IC Chloride	0.5	mg/L	21000	13000	23000
Fluoride	0.5	mg/L	5.2	<0.5	<0.5
Nitrate as N	0.5	mg N/L	<0.5	<0.5	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	4300	3200	5100
Miscellaneous Test/Reference	PQL	Unit			
Total Alkalinity as CaCo3*	-	mg/L	81	300	320
Carbonate Alkalinity as CaCo3*	-	mg/L	76	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	5.4	300	320
Silica*	-	mg/L	<1	19	20

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
0000 Gold (Au)		14/08/2008
3100 Dissolved Metals in Water By ICP/MS	14/08/2008	15/08/2008
3200 Dissolved Metals in Water - ICP/AES	14/08/2008	14/08/2008
4000 pH in Water		14/08/2008
4010 Conductivity in Water		19/08/2008
4110 Dissolved Solids in Water		18/08/2008
4300 Anions in Water by IC	14/08/2008	15/08/2008
4410 TOC in Water By Analyser	20/08/2008	21/08/2008
4540 TKN in Water by Titration	14/08/2008	15/08/2008
4941 Total Nitrogen in Water by Calc		15/08/2008
NEW TEST01		14/08/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times $\,$

Final Report Number: 324944

Amdel Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Amdel QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Form LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Codes
1127454 [Method Blank]	_	•	•	•	
3200 Dissolved Metals in Water - ICP/AES					
Calcium	μg/L	<100	< 100	Т	
Iron	μg/L	<100	< 100	Т	
Magnesium	μg/L	<100	< 100	Т	
Potassium	μg/L	<1000	< 1000	Т	
Sodium	μg/L	<100	< 100	Т	
1127537 [Method Blank]	-		•	•	
3100 Dissolved Metals in Water By ICP/MS					
Antimony	μg/L	<1	<1	Т	
Arsenic	μg/L	<5	< 5	Т	
Barium	μg/L	<5	< 5	Т	
Beryllium	μg/L	<5	< 5	Т	
Boron	μg/L	<5	< 5	Т	
Cadmium	μg/L	<2	< 2	Т	
Chromium	μg/L	<5	< 5	Т	
Cobalt	μg/L	<5	< 5	Т	
Copper	μg/L	<5	< 5	Т	
Lead	μg/L	<5	< 5	Т	
Manganese	μg/L	<5	< 5	Т	
Molybdenum	μg/L	<5	< 5	Т	
Nickel	μg/L	<5	< 5	Т	
Selenium	μg/L	<5	< 5	Т	
Tin	μg/L	<5	< 5	Т	
Vanadium	μg/L	<5	< 5	Т	
Zinc	μg/L	<5	< 5	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 First Reported: 20 August 2008 Page 3 of 5 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 324944

Date Printed: 21 August 2008

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1127538 [Laboratory Control Sample]	•	•				•	
3100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	100	100.0	101	80-120 %	Т	
Arsenic	μg/L	99	100.0	99	80-120 %	Т	
Barium	μg/L	100	100.0	102	80-120 %	Т	
Beryllium	μg/L	100	100.0	100	80-120 %	Т	
Boron	μg/L	100	100.0	103	80-120 %	Т	
Cadmium	μg/L	100	100.0	100	80-120 %	Т	
Chromium	μg/L	97	100.0	97	80-120 %	Т	
Cobalt	μg/L	99	100.0	99	80-120 %	Т	
Copper	μg/L	96	100.0	96	80-120 %	Т	
Lead	μg/L	100	100.0	101	80-120 %	Т	
Manganese	μg/L	98	100.0	98	80-120 %	Т	
Molybdenum	μg/L	110	100.0	112	80-120 %	Т	
Nickel	μg/L	99	100.0	99	80-120 %	Т	
Selenium	μg/L	100	100.0	100	80-120 %	Т	
Tin	μg/L	99	100.0	99	80-120 %	Т	
Vanadium	μg/L	97	100.0	97	80-120 %	Т	
Zinc	μg/L	100	100.0	101	80-120 %	Т	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1127241 [Method Blank]	_		1	 			33435
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1129009 [Method Blank]	-	•	•	•		-	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1130108 [Method Blank]	•	•	•	•		-	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1135708 [Method Blank]	•	•	•				
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1135709 [Method Blank]	-		•			•	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1127243 [Laboratory Control Sample]	-		•			•	
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	95	100.0	95	80-120 %	Т	
1127309 [Laboratory Control Sample]	-	•	•	-		•	
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1360	N/A	N/A	N/A	N/A	
1129010 [Laboratory Control Sample]	•	•	•			•	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	950	1000.0	95	90-110 %	Т	

Final Report Number: 324944

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1130109 [Laboratory Control Sample]						•	
4300 Anions in Water by IC			Expected Value	Percent Recovery			
Bromide	mg/L	97	100.0	97	80-120 %	Т	
Chloride	mg/L	96	100.0	96	80-120 %	Т	
Fluoride	mg/L	94	100.0	94	80-120 %	Т	
Nitrate	mg/L	110	100.0	114	80-120 %	Т	
Nitrite	mg/L	86	100.0	86	80-120 %	Т	
Orthophosphate as P	mg/L	110	100.0	107	80-120 %	Т	
Sulphate	mg/L	99	100.0	99	80-120 %	Т	
1135710 [Laboratory Control Sample]						•	
4410 TOC in Water By Analyser			Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	9.2	10.0	92	80-120 %	Т	
1135711 [Laboratory Control Sample]			_				
4410 TOC in Water By Analyser	_	_	Expected Value	Percent Recovery		_	
Dissolved Organic Carbon	mg/L	9.2	10.0	92	80-120 %	Т	

Report Results Information

Gold (Au) Amdel Mineral Chemistry, Accreditation: 1526

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

N/A

Samples received within HoldingTime

Yes

Some samples have been subcontracted

N/A

Authorised By

Carol Cawrse Client Services Officer

Mark HerbstreitSenior Analyst - MetalsAccreditation Number: 1645Helen LeiSenior Analyst - WatersAccreditation Number: 1645Jian ZhouLab OfficerAccreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

From : SKM Pty L			-	CHAIN OF CUS	1021,1014						S	K	M
ABN: 37 001 024 Level 5, 3 <u>3 King</u> V	095 William St, Ade	laide, S	A 5000					Con	tainer Ident	fication		T	
ph: (88) 8424 380	6 fax: (08) 84:	24 3810			·	Size	1000ml	43ml	125ml	125ml	-	 	+
LABUSEONLY	<i>)</i>		Project	No:		Type	plastic	glass	plastic	plastic			工
QUOTE NUMBER	:			VE30064		Preserv	NO	YES	YES	NO	T		工
Job Code: Due Date:			Project	Manager: Daniel Pierce			and S		olver				
Custody seal intact	?		Sample			Analytes	H. E.		. S	1 8			
Sample cold?				Alistair Walsh / Michael Cowin			0 Z Z	0	als	APPOUNTER OF			
Received for Liabor	atory by:	1	Checke	d:			F P 로	700	Matu	1			
BULL L	was well	_				İ	D2,		atlon	1 1			
Date: 123/8 Time:	lo (93	2And	Date:	12/08/2008			Major anions, TDS, pH, EC, Fl, NO3, NO2, Total Nitrogen and TKN		Major Cations, Sl and Dissolved Metals	<u>`</u>			
Lab ld	Date	Time	Matrix	Sample Identification	Comments		Tick require	d analyte	s				
	11/08/2008	<u> </u>	H20	PT03_4b		1	х		ļ				
	11/08/2008		H20	PT03_4b	X 2 Viles			х					
	11/03/2008	ļ	H20	PT03_4b	Field Filtered				x				
	11/04/2006	1	F120						1				+
	11/08/2008		H20	PT03_4b	Field Filtered - HOLD	SAMPLE				Х			\vdash
	11/08/2008		H20	PT14			х						-
	11/08/2008		H20	PT14	X 2 Viles			Х					-
	11/08/2008		H20	PT14	Field Filtered				·x				-
	11/08/2008		H20	PT14	Field Filtered - HOLD	SAMPLE				х			┼
- 1									1 1				-
	12/08/2008		H20	PT24b			х						
	12/03/2008		H20	PT24b	X 2 Vies			х					ļ .
	12/08/2008		H20	PT24b	Field Filtered				х				-
1	12/08/2008.		H20	PT24b	Field Filtered - HOLD S	SAMPLE				х			<u> </u>
			:										
						1							
							-						<u> </u>
													<u> </u>
													—
													<u> </u>
											.		<u> </u>
													<u> </u>
					<u> </u>								
]										
		. [BENME SKM_FID	0021	268-10	1126	323)		
		ļ					KM_AD	EL(P	ГØЗ_4t		 I		
						·							
					TOTAL								

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

Sheet 1 of 2

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
Sar	nple Batch fee			
	Calcium (Ca) Magnesium (Mg)			
Major Cations (mg/L)	Sodium (Na) Potassium (K)	1 mg/L	7 days	
ng/L)	Calcium Carbonate (CaCO₃) Sulphate	1 mg/L		
Major Anions (mg/L)	(SO ₄) Chloride (CI) Carbonate	1 mg/L	48 Hrs	
Majc	(CO ₃) Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units) Fluoride Silica	0.01 pH unit	6-12 hrs	Measure+G39 in field
	(Si) Aluminum (Ai)	10 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC//CP/MS
. [Antimony (Sb) Arsenic	0.5 μg/L	6 months	
	(As) Barium	0.5 μg/L 5 μg/L	6 months	
	(Ba) Beryllium (Be)	0.1 µg/L	6 months 6 months	
	Boron (B) Cadmium	100 μg/L	6 months	
	(Cd) Chromium	0.2 μg/L 0.5 μg/L	6 months	
	(Cr) Cobalt (Co)	0.2 μg/L	6 months	
	Copper (Cu) Gold	5 μg/L	6 months	
s (mg/L)	(Ag) Lead	0.1 μg/L 0.2 μg/L	6 months	
Dissolved Metals (mg/L)	(Pb) Lithium (Li)	5 µg/L	6 months	
exlossi	Manganese (Mn) Molyodenum	0.5 μg/L	6 months	
^ }	(Mo) Nickel (Ni)	0.1 μg/L 0.5 μg/L	6 months	
	Selenium (Se)	5 µg/L	6 months	
	Strontium (Sr) Thallium	10 μg/L	6 months	
	(TI) Thorium	0.1 μg/L 0.1 μg/L	6 months	
	(Th) Tin (Sn)	5 μg/L	6 months 6 months	
	Titanium (Ti) Uranium	5 µg/L	6 months	
	(U) Vanadium	0.1 μg/L 0.5 μg/L	6 months	
·	(V) Zinc (Zn)	5 μg/L	6 months 6 months	
	fron - total (Fe)	5 μg/L	6 months	ICP OES
	Nitrite as N (NO ₂) Nitrate as N	0.01 mg/L	48 hrs	measured together
Nutrients (mg).	(NO ₃) Total Nitrogen	0.01 mg/L 0.01 mg/L	48 hrs 28 days	
Nuttre	otal Organic Carbon (TOC) Total Kjeldahi	1 mg/L	28 days	
	Nitrogen (TKN)	0.1 mg/L ost/sample	28 days	

Total Cost

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 13 August 2008

Attention: MR Daniel Pierce Due Date: 20 August 2008

Amdel Reference number: 08ENME0021268 Your Amdel Contact: Vanda Dabkowski

0395382267

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

N/A

Samples received within HoldingTime

Yes

Some samples have been subcontracted

Custody Seals Intact (if used)

Yes

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	3
Conductivity in Water	4010	3
Gold (Au)	0000	3
Dissolved Metals in Water - ICP/AES	3200	3
Dissolved Metals in Water By ICP/MS	3100	3
	NEW_TEST01	3
pH in Water	4000	3
Dissolved Solids in Water	4110	3
TKN in Water by Titration	4540	3
TOC in Water By Analyser	4410	3
Total Nitrogen in Water by Calc	4941	3

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by: Duncan Harrison Date: Wed 13 August 2008

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0021450

Client Reference VE30064

Received Date 14/08/2008 09:55:00 AM

Customer Sample ID			PT15	QR1	
Amdel Sample Number			1128571	1128572	
Date Sampled			12/08/2008	13/08/2008	
Metals Test/Reference	PQL	Unit			
	FQL	Offic			
3100 Dissolved Metals in Water	-		-5	ar.	
Aluminium	5	μg/L "	<5	<5	
Antimony	1	μg/L	1.8	<1	
Arsenic	5	μg/L "	<5	<5	
Barium	5	μg/L	47	25	
Beryllium	5	μg/L	<5	<5	
Boron	5	μg/L	11000	9300	
Cadmium	2	μg/L	<2	<2	
Chromium	5	μg/L	5.8	5.6	
Cobalt	5	μg/L	<5	<5	
Copper	5	μg/L	26	9.1	
Lead	5	μg/L	<5	<5	
Lithium	5	μg/L	600	270	
Manganese	5	μg/L	950	910	
Molybdenum	5	μg/L	<5	<5	
Nickel	5	μg/L	12	5.8	
Selenium	5	μg/L	94	38	
Strontium	5	μg/L	26000	14000	
Thallium	5	μg/L	<5	<5	
Thorium	5	μg/L	<5	<5	
Tin	5	μg/L	<5	<5	
Titanium	5	μg/L	44	30	
Uranium	5	μg/L	<5	<5	
Vanadium	5	μg/L	<5	<5	
Zinc	5	μg/L	51	46	
3200 Dissolved Metals in Water	er - ICP/AES				
Calcium	100	μg/L	1520000	555000	
Iron	100	μg/L	15000	-	
Magnesium	100	μg/L	2610000	-	
Iron	100	μg/L	-	13200	
Potassium	1000	μg/L	320000	-	
Magnesium	100	μg/L	-	760000	
Potassium	1000	μg/L	-	290000	
Sodium	100	μg/L	30200000	6950000	
Inorganics					
Test/Reference	PQL	Unit			
4040 Conductivity in Mater					
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	67900	27900	
	20	μο, σ. π	0.000	=. 000	

Final Report Number: 325186

Customer Sample ID			PT15	QR1	
Amdel Sample Number			1128571	1128572	
Date Sampled			12/08/2008	13/08/2008	
Inorganics					
Test/Reference	PQL	Unit			
4000 pH in Water					
pH	0.1	pН	7.1	7.3	
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	65000	24000	
4540 TKN in Water by Titration TKN	1	mg/L	1.9	<1	
4410 TOC in Water By Analyser					
Total Organic Carbon	1	mg/L	<1	<1	
4941 Total Nitrogen in Water by Ca	alc				
Total Nitrogen	2	mg N/L	<2	<2	
4300 Anions in Water by IC					
Chloride	0.5	mg/L	28000	9900	
Fluoride	0.5	mg/L	5.6	<0.5	
Nitrate as N	0.5	mg N/L	<0.5	0.7	
Nitrite as N	0.5	mg N/L	<0.5	<0.5	
Sulphate	0.5	mg/L	6100	3500	
Miscellaneous					
Test/Reference	PQL	Unit			
Total Alkalinity as CaCo3*	-	mg/L	260	200	
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	
Bicarbonate Alkalinity as CaCo3*	-	mg/L	260	200	
Silica*	-	mg/L	13.5	10.5	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Dissolved Metals in Water By ICP/MS	15/08/2008	19/08/2008
3200 Dissolved Metals in Water - ICP/AES	18/08/2008	21/08/2008
4000 pH in Water		19/08/2008
4010 Conductivity in Water		19/08/2008
4110 Dissolved Solids in Water		20/08/2008
4300 Anions in Water by IC	15/08/2008	19/08/2008
4410 TOC in Water By Analyser	20/08/2008	21/08/2008
4540 TKN in Water by Titration	18/08/2008	19/08/2008
4941 Total Nitrogen in Water by Calc		19/08/2008
NEW_TEST01		22/08/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Final Report Number: 325186

Amdel Internal Quality Control Review

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
 are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Amdel QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (Form LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1130342 [Method Blank]		•	'	•	+	
3100 Dissolved Metals in Water By ICP/MS						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<5		< 5	Т	
Barium	μg/L	<5		< 5	Т	
Beryllium	μg/L	<5		< 5	Т	
Boron	μg/L	<5		< 5	Т	
Cadmium	μg/L	<2		< 2	Т	
Chromium	μg/L	<5		< 5	Т	
Cobalt	μg/L	<5		< 5	Т	
Copper	μg/L	<5		< 5	Т	
Lead	μg/L	<5		< 5	Т	
Manganese	μg/L	<5		< 5	Т	
Molybdenum	μg/L	<5		< 5	Т	
Nickel	μg/L	<5		< 5	Т	
Selenium	μg/L	<5		< 5	Т	
Tin	μg/L	<5		< 5	Т	
Vanadium	μg/L	<5		< 5	Т	
Zinc	μg/L	<5		< 5	Т	
1132018 [Method Blank]	•		•	•		
3200 Dissolved Metals in Water - ICP/AES						
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	

First Reported: 21 August 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 3 of 5

Date Printed: 22 August 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number : 325186

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
130343 [Laboratory Control Sample]	•	•	•			1	
100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	100	100.0	102	80-120 %	Т	
Arsenic	μg/L	100	100.0	101	80-120 %	Т	
Barium	μg/L	110	100.0	106	80-120 %	Т	
Beryllium	μg/L	110	100.0	106	80-120 %	Т	
Boron	μg/L	110	100.0	107	80-120 %	Т	
Cadmium	μg/L	110	100.0	105	80-120 %	Т	
Chromium	μg/L	100	100.0	101	80-120 %	Т	
Cobalt	μg/L	99	100.0	99	80-120 %	Т	
Copper	μg/L	99	100.0	99	80-120 %	Т	
Lead	μg/L	100	100.0	101	80-120 %	Т	
Manganese	μg/L	100	100.0	101	80-120 %	Т	
Molybdenum	μg/L	110	100.0	112	80-120 %	Т	
Nickel	μg/L	99	100.0	99	80-120 %	Т	
Selenium	μg/L	100	100.0	104	80-120 %	Т	
Tin	μg/L	100	100.0	103	80-120 %	Т	
Vanadium	μg/L	100	100.0	101	80-120 %	Т	
Zinc	μg/L	100	100.0	102	80-120 %	Т	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1129009 [Method Blank]	-!	 	+			1	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1129281 [Method Blank]			•			•	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1131315 [Method Blank]	•	•				•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1135708 [Method Blank]	•	•	•			•	
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1135709 [Method Blank]	•					•	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1128943 [Laboratory Control Sample]		•	•	•		•	
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1410	N/A	N/A	N/A	N/A	
1129010 [Laboratory Control Sample]		•	•	•		-	
4110 Dissolved Solids in Water	'		Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	950	1000.0	95	90-110 %	Т	
1129283 [Laboratory Control Sample]		•	1	•		-	
4300 Anions in Water by IC	<u>'</u>		Expected Value	Percent Recovery			
Bromide	mg/L	89	100.0	89	80-120 %	Т	
Chloride	mg/L	91	100.0	91	80-120 %	Т	
Fluoride	mg/L	90	100.0	90	80-120 %	Т	
Nitrate	mg/L	110	100.0	106	80-120 %	Т	
Nitrite	mg/L	89	100.0	89	80-120 %	Т	
Orthophosphate as P	mg/L	88	100.0	88	80-120 %	Т	
Sulphate	mg/L	90	100.0	90	80-120 %	Т	

Final Report Number: 325186

Page 5 of 5

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1131317 [Laboratory Control Sample]						•	
4540 TKN in Water by Titration	_		Expected Value	Percent Recovery			
TKN	mg/L	88	100.0	88	80-120 %	T	
1135710 [Laboratory Control Sample]		•		•		•	
4410 TOC in Water By Analyser	_		Expected Value	Percent Recovery		_	
Total Organic Carbon	mg/L	9.2	10.0	92	80-120 %	T	
1135711 [Laboratory Control Sample]		•	_	•			
4410 TOC in Water By Analyser		_	Expected Value	Percent Recovery		_	
Dissolved Organic Carbon	mg/L	9.2	10.0	92	80-120 %	Т	

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Samples correctly preserved Yes Organic samples had Teflon liners Yes Samples received with Zero Headspace N/A Samples received within HoldingTime Yes Some samples have been subcontracted No

Authorised By

Carol Cawrse Client Services Officer Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Helen Lei Senior Analyst - Waters Accreditation Number: 1645 Jian Zhou Lab Officer Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretaton given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

Size 1000ml 43ml 125ml	om : SKM Pty I IN: 37 001 024 vel 5. 33 King !	095	laide. S	1 , 5000	•				Cont	ainer Iden	tification			
### 1998 ONLY 1998										T				1
OTT NUMBER VEROUGE Project Membrane: Section S													+-	+
Control Cont				Project?								1	+	+
1	DOTE NUMBER b Code:	L .		Project I			LidsetA		100		1		+	——
1	ue Date:			,,				O a		ylosi				
1		?		Sampler	(s):		Analytes	H g			ge			
1	imple cold?				Alistair Walsh / Michael Cowin		1	S Z	o	1 8 8 B	=		İ	
1	ceived for Labor	ratory by:		Checker	r ·		ſ	급통	ě	S, SI	1			1
1						*		lons 72, 'S		n of the	28			
Dols				Date:			i	Major ar NO3, N		Major C				
12082056		Date	Time	Matrix		Comments		Tick require	d analyte	5			1	1
12082000		12/08/2008		H20	PT15			х						
1908-2008 190 PTTS		12/08/2008		H20		X 2 Viles			x					
1908-2008 190 PTTS		12/08/2008		H20	PT15	Field Filtered				x		ļ		
13060008 H20 0R1 X2 View X X X 13060008 H20 0R1 Find Finered X X X X X X X X X X X X X X X X X X X					PT15	Field Filtered - HOLD	SAMPLE				x			
130092008														
130092008		13/08/2008		Han	OR1			x						
13009308 H20 OR1 Field Filtered X X X 3 30092088 H20 OR1 Field Filtered +HCLD SAMPLE X X 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-					X 2 Väes			х					
130092000 H2C OR1 Feld Flored - HCLD SAMPLE X Red Flored														
08ENTE0021450-1(1)203 SKR_RDEL(PTIS)							AMPI =			-	v			
08EME0021450-1(11285 SKN_RDEL(PTIS)		12/08/2008	-	riz0	SENT	From Fatered - FIOLUS	will LC	.			<u> </u>			1
08ENME0021450-1(11285 SKN_RDEL(PTIS)											_			
08ENME0021450-1(11285 SKN_RDEL(PTIS)													1	\top
08ENME0021450-1(11285 SKN_RDEL(PTIS)													+	T
08EME0021450-1(11285 SKM_RDEL(PTIS)														1
08EME0021450-1(11285 SKM_RDEL(PTIS)	1												<u> </u>	
08EME0021450-1(11285 SKN_RDEL(PTIS)													_	-
08ENME0021450-1(11285 SKN_RDEL(PTIS)													-	+
08EME0021450-1(11285 SKN_RDEL(PTIS)											-			-
08F.ME0021450-1(11295 5KM_ADEL(PTIS)		ĺ			-		-						-	
08F.ME0021450-1(11295 5KM_ADEL(PTIS)														1
08F.ME0021450-1(11295 5KM_ADEL(PTIS)														
08ENME0021450-1(11285 5KM_ADEL(PT15)							-	-						+
08ENME0021450-1(11285 5KM_ADEL(PT15)														\vdash
08ENME0021450-1(11285 5KM_ADEL(PT15)				.				- 1					ļ <u>.</u>	-
08ENME0021450-1(11285 5KM_ADEL(PT15)							. +	-			- 1		<u> </u>	
08ENME0021450-1(11285 SKM_RDELCPT15)														-
08ENME0021450-1(11285 SKM_RDELCPT15)														
08ENME0021450-1(11285 SKM_RDELCPT15)			-				.							
08ENME0021450-1(11285 SKM_RDELCPT15)														
08ENME0021450-1(11285 SKM_RDELCPT15)				į		_								
08ENME0021450-1(11285 SKM_RDELCPT15)														<u> </u>
														<u> </u>
									Ì	NDENN	ENN2	1450	-1(11	285
										SKM_F	DEL(PT15) [[[[]]]	
TOTAL														
TOTAL					200.00					111 11311		1		
						TOTAL								
9:	· ·					<u> </u>			1.					

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

Sheet 1 of

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
Sam	nple Batch fee	. ,		
Major (mg/L)	Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium (K)	1 mg/L	. 7 days	
Major Anions (mg/L)	Calcium Carbonate (CaCO ₃) Sulphate (SO ₄) Chloride (CI)	1 mg/L	48 Hrs	
Major A	Carbonate (CO ₃) Bicarbonate (HCO ₃)	1 mg/L 1 mg/L		
	TDS (mg/L) EC (uS/cm) pH (units)	1 mg/L 0.01 pH unit	28 days 28 days 6-12 hrs	Measure+G39 in field
	Fluoride Silica (Si) Aleminum			
	(Ai) Antimony (Sb)	10 μg/L 0.5 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Arsenic (As) Barium	0.5 µg/L 5 µg/L	6 months	
	(Ba) Beryllium (Be) Boron	0.1 μg/L	6 months	
	(B) Cadmium (Cd)	100 μg/L 0.2 μg/L	6 months	
	Chromium (Cr) Cobalt (Co)	0.5 μg/L 0.2 μg/L	6 months	
	Copper (Cu) Gold	5 µg/L 0.1 µg/L	6 months	
stals (mg/	(Ag) Lead (Pb) Lithium	0.2 μg/L	6 months	
Dissolved Metals (mg/L)	(Li) Manganese (Mn)	5 μg/L 0.5 μg/L	6 months	
sio	Molybdenum (Mo) Nickel (Ni)	0.1 µg/L 0.5 µg/L	6 months	
	Selenium (Se) Strontium	5 µg/L	6 months	
	(Sr) Thallium (TI)	10 μg/L 0.1 μg/L	6 months	
	Thorium (Th) Tin (Sn)	0.1 μg/L 5 μg/L	6 months	
-	Titanium (Ti) Uranium	5 µg/L	6 months	
	(U) Vanadium (V)	0.1 μg/L 0.5 μg/L	6 months	
	Zinc (Zn) Iron - total (Fe)	5 μg/L 5 μg/L	6 months	ICP OES
3	Nitrite as N (NO ₂). Nitrate as N	0.01 mg/L	48 hrs	measured together
ittents (mg/L)	Nicrate 35 N (NC _s) Total Nitrogen Total Organic Carbon	0.01 mg/L 0.01 mg/L	48 hrs 28 days	
Num	(TOC) Total Kjeldahl Nitrogeri (TKN)	1 mg/L 0.1 mg/L Cost/sample	28 days 28 days	

Total Cost

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Sinclair Knight Mertz 14 August 2008 **Client Name: Date Received:**

MR Daniel Pierce Due Date: 21 August 2008 Attention: Client Reference number:

Amdel Reference number: 08ENME0021450 Your Amdel Contact: Vanda Dabkowski

0395382267

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Sample Integrity

Attempt to Chill was evident Yes Samples correctly preserved Yes Organic samples had Teflon liners Yes Samples received with Zero Headspace N/A Samples received within HoldingTime Yes Some samples have been subcontracted No Custody Seals Intact (if used) N/A

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	2
Conductivity in Water	4010	2
Gold (Au)	0000	2
Dissolved Metals in Water - ICP/AES	3200	2
Dissolved Metals in Water By ICP/MS	3100	2
	NEW_TEST01	2
pH in Water	4000	2
Dissolved Solids in Water	4110	2
TKN in Water by Titration	4540	2
TOC in Water By Analyser	4410	2
Total Nitrogen in Water by Calc	4941	2

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by: Duncan Harrison Date: Thu 14 August 2008

Accreditation Number: 1645

(i) LabMark ENVIRONMENTAL LABORATORIES Interim Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Alistair Walsh

08ENME0021703 **Project**

Client Reference VE30064

Received Date 15/08/2008 10:00:00 AM

Customer Sample ID			PT09	
Amdel Sample Number			1131895	
Date Sampled			14/08/2008	
Metals				
Test/Reference	PQL	Unit		
3100 Dissolved Metals in Water By	/ ICP/MS			
Aluminium	5	μg/L	7.9	
Antimony	1	μg/L	<1	
Arsenic	5	μg/L	<5	
Barium	5	μg/L	86	
Beryllium	5	μg/L	<5	
Boron	5	μg/L	12000	
Cadmium	2	μg/L	<2	
Chromium	5	μg/L	7.5	
Cobalt	5	μg/L	<5	
Copper	5	μg/L	13	
Lead	5	μg/L	<5	
Lithium	5	μg/L	260	
Manganese	5	μg/L	1700	
Molybdenum	5	μg/L	<5	
Nickel	5	μg/L	10	
Selenium	5	μg/L	200	
Strontium	5	μg/L	9300	
Thallium	5	μg/L	<5	
Thorium	5	μg/L	<5	
Tin	5	μg/L	<5	
Titanium	5	μg/L	11	
Uranium	5	μg/L	<5	
Vanadium	5	μg/L	<5	
Zinc	5	μg/L	50	
3200 Dissolved Metals in Water - I	CP/AES			
Calcium	100	μg/L	669000	
Iron	100	μg/L	7320	
Magnesium	100	μg/L	926000	
Potassium	1000	μg/L	300000	
Sodium	100	μg/L	10500000	
Inorganics				
Test/Reference	PQL	Unit		
4010 Conductivity in Water				
Electrical Conductivity	20	μS/cm	34400	
4000 pH in Water pH	0.1	рН	7.0	
4110 Dissolved Solids in Water		•		
Total Dissolved Solids	20	mg/L	33000	

Interim Report Number: 325437

Date Printed: 22 August 2008

Customer Sample ID			PT09	
Amdel Sample Number			1131895	
Date Sampled			14/08/2008	
Inorganics				
Test/Reference	PQL	Unit		
4540 TKN in Water by Titration				
TKN	1	mg/L	<1	
4410 TOC in Water By Analyser				
Total Organic Carbon	1	mg/L	Pending	
4941 Total Nitrogen in Water by 0				
Total Nitrogen	2	mg N/L	<2	
4300 Anions in Water by IC				
Chloride	0.5	mg/L	12000	
Fluoride	0.5	mg/L	<0.5	
Nitrate as N	0.5	mg N/L	<0.5	
Nitrite as N	0.5	mg N/L	<0.5	
Sulphate	0.5	mg/L	3700	
Miscellaneous				
Test/Reference	PQL	Unit		
Total Alkalinity as CaCo3*	-	mg/L	380	
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	
Bicarbonate Alkalinity as CaCo3*	-	mg/L	380	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Dissolved Metals in Water By ICP/MS	19/08/2008	21/08/2008
3200 Dissolved Metals in Water - ICP/AES	19/08/2008	21/08/2008
4000 pH in Water	19/08/2008	19/08/2008
4010 Conductivity in Water	19/08/2008	19/08/2008
4110 Dissolved Solids in Water		22/08/2008
4300 Anions in Water by IC	19/08/2008	21/08/2008
4410 TOC in Water By Analyser	N/A20/08/2008	
4540 TKN in Water by Titration	20/08/2008	22/08/2008
4941 Total Nitrogen in Water by Calc		22/08/2008
NEW_TEST01		19/08/2008

Test Description

4000 pH in Water As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore

this test has been analysed in the laboratory outside Holding Times

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Samples correctly preserved Yes Organic samples had Teflon liners Yes Samples received with Zero Headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Senior Analyst - Waters Helen Lei Accreditation Number: 1645 Lab Officer Accreditation Number: 1645 Jian Zhou

Laboratory Manager

Anthony Crane

Operations Manager

Sal J

Interim Report. A final report will be issued once all testing is complete

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Amdel Limited shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Amdel Limited be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

First Reported: 22 August 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168

Date Printed: 22 August 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278

Page 3 of 3

Interim Report Number: 325437

rom : SKM Pty ABN: 37 001 024			CHAIN OF CUS	TOUT FURM						S	图图
.evel 5, 33 King	William St, Adelaide, 00 fax: (08) 8424 381						Соп	ainer Ident	ification		
in: (08) 6424 38	00 Tax: (08) 8424 38	TU			Size	1000ml	43ml	125ml	125ml		
AB USE ONLY		Project N	o: VE30064		Type Preserv	olastic NO	glass	plastic	plastic NO		_
ob Code:	к	Project M			rteserv	D	TES		NO	-	-+
oue Date: Sustody seal intag	at 2	Sampler(s	Daniel Pierce		Analytes	or aniona, TDS, pH, EC, F 3, NO2, Total Nitrogen an TKN		Major Cations, Si and Dissolved Metals			1
ample cold?	ar.		ey. Alislair Walsh / Michael Cowin		Analytes	至喜	İ	P .	rage		
eceived for Labo	oratory by:	Checked:		•		E SE SE	8	Si a fetals	ORC Ultra Trade		
	,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•]	iona,	[tions	20		
ate:		Date:			1	E N		ខ្ល	0	İ	
ime:			/08/2008			Mo SO SO		Majo			İ
ab id	Date Time		Sample Identification	Comments		Tick require	ed analyte:	3			
	10/1/19	[]	PT 09		"						
-	12.6.6.6.0	H20				X					
	14/3/08	- H20	PTO9	X 2 Viles			х				
	1018 108	H20	PT09	Field Filtered	1			x		-	
	1000	F120 (PT09	ricia Filterea	· L · · · ·			. ^		_	+
	14/3/00	H20	PT07	Field Filtered - HOLD	SAMPLE				х		
	11										
		 _ 									
		23			Ţ.	An				-	_
		120		No.			con				
		77			- T			,	- 1		\top
		H20-		- Feedland	- 						
		H20		THE REST					19		
]	1									T
	-				-						-
			<u>.</u>						ļ		
									T		\top
									-+	_	+
											T
										_	+
							į	-		-	+
					1						- 1
									-		+
						ļ					
	·						Ť				_
				•	-						+
				······································							
- 1			, 		-					-	+
-											
	- 				4	- 				_	+
				1				*.			
				1					1		
		 		+	+	+		+		_	+
		<u> </u>									
j								1			-
				1			1	- -	.	\neg	\neg
						_			- 1	\longrightarrow	+
	į	.									
							İ				
	·	-	•		-	+	\rightarrow	-		-	+
	1			<u> </u>							
		İ									
					+	_	+		+	+	+
				<u> </u>].					
					T	T	\top	T		T	
		<u> </u>				+	1		\dashv		+
			4	TOTAL							Ì
									•	 	+
s:							J.	1	1.1	MAA	b
		_					سالي	1	nul	pri HOVI	-1.
ise email au	valsh@skm.com	au and dei	erce@skm.com.au reults and	upon receival of sa	moles		-	1.1		2MAA 10:00	
oc oman av	-GONEGORIII.COIII.	aa aa ia api	a cowomicom au reuro anu	Commission St.	pica			15/	8 1	0:00	
								' [•		
			reakdown of analytes re							- 100 1	

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
94	ample Batch fee			
Major Catlons (mg/L)	Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L.)	(K) Calcium Carbonate (CaCO ₂) Sulphate (SO ₄) Chloride (CI)	1 mg/L	48 Hrs	
Major A	Carbonate (CO ₃) Bicarbonate	1 mg/L		
	(HCO₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units)	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Fluoride Silica (Si)			
	Aluminum (Al) Antimony	10 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb)	0.5 μg/L	6 months	
٠	Arsenic (As)	0.5 μg/L	6 months	
	Barium (Ba)	5 µg/L	6 months	
•	Beryllium (Be)	0.1 μg/L	6 months	
	Boron (B)	100 µg/L	6 months	
	Cadmium (Cd)	0.2 μg/L	6 months	
.	Chromium (Cr)	0.5 μg/L	6 months	
	Cobalt (Co)	0.2 µg/L	6 months	-
	Copper (Cu) Gold	5 µg/L	6 months	
mg/L)	(Ag) Lead	0.1 μg/L	6 months	_
stals ((Pb) Lithlum	0.2 μg/L	6 months	-
Dissolved Metals (mg/L)	(Li) Manganese	5 μg/L	6 months	
ssolv	(Mn) Molybdenum	0.5 μg/L	6 months	
_	(Mo) Nickel	0.1 μg/L	6 months	
	(Ni) Selenium	0.5 μg/L	6 months	
	(Se) Strontium	5 μg/L 10 μg/L	6 months	
	(Sr) Thallium	0.1 μg/L	6 months	
	(TI) Thorium	0.1 µg/L	6 months	
• •	(Th) Tin	5 μg/L	6 months	
	(Sn) Titanium	. 5 µg/L	6 months	
	(Ti) Uranium	0.1 μg/L	6 months	
ļ	(U) Vanadium (V)	0.5 μ g/L	6 months	
Ī	Zinc (Zn)	5 µg/L	6 months	
	Iron - total (Fe)	5 µg/L	6 months	ICP OES
	Nitrite as N (NO ₂)	0.01 mg/L	48 hrs	measured together
Ē	Nitrate as N (NO ₃)	0.01 mg/L	48 hrs	
Nutrients (mg/L	Total Nitrogen Total Organic Carbon	0.01 mg/L	28 days	
Jin .	(TOC) Total Kjeldahi	1 mg/L	28 days	
	Nitrogen (TKN)	0.1 mg/L Cost/sample	28 days	

Total Cost

Sample Receipt Advice

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 15 August 2008

Attention: MR Alistair Walsh Due Date: 22 August 2008

Amdel Reference number: 08ENME0021703 Your Amdel Contact: Vanda Dabkowski

0395382267

Standard

Turnaround:

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Custody Seals Intact (if used)

Yes

NA

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	1
Conductivity in Water	4010	1
Gold (Au)	0000	1
Dissolved Metals in Water - ICP/AES	3200	1
Dissolved Metals in Water By ICP/MS	3100	1
	NEW_TEST01	1
pH in Water	4000	1
Dissolved Solids in Water	4110	1
TKN in Water by Titration	4540	1
TOC in Water By Analyser	4410	1
Total Nitrogen in Water by Calc	4941	1

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by: Damien Battaglia Date: Mon 18 August 2008

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0021863

Client Reference VE30064 Order Number VE30064

Received Date 19/08/2008 09:00:00 AM

Customer Sample ID Labmark Sample No. Date Sampled Metals			MAR4_20A 1134842 17/08/2008	MAR4_20B 1134843 17/08/2008	MAR3_20 1134844 17/08/2008	RT02B 1134845 17/08/2008	RT16B 1134846 17/08/2008
Test/Reference	PQL	Unit					
3100 Dissolved Metals in Water I	By ICP/MS						
Aluminium	5	μg/L	20	22	<5	<5	31
Antimony	1	μg/L	<1	<1	3.7	4.0	<1
Arsenic	5	μg/L	<5	<5	<5	<5	<5
Barium	5	μg/L	50	110	260	410	87
Beryllium	5	μg/L	<5	<5	<5	<5	<5
Boron	5	μg/L	6100	5400	2400	2900	8400
Cadmium	2	μg/L	<2	<2	<2	5.9	<2
Chromium	5	μg/L	<5	<5	<5	<5	<5
Cobalt	5	μg/L	<5	<5	17	<5	9.7
Copper	5	μg/L	5.9	10	<5	5.1	16
Lead	5	μg/L	<5	<5	890	75	<5
Lithium	5	μg/L	420	2100	12	20	590
Manganese	5	μg/L	830	510	99	160	2100
Molybdenum	5	μg/L	12	15	6.0	29	6.8
Nickel	5	μg/L	13	12	<5	7.3	29
Selenium	5	μg/L	46	87	41	67	120
Strontium	5	μg/L	14000	20000	15000	19000	18000
Γhallium	5	μg/L	<5	<5	74	19	<5
Γhorium	5	μg/L	<5	<5	<5	<5	<5
Γin	5	μg/L	<5	<5	<5	<5	<5
Гitanium	5	μg/L	11	19	<5	7.6	31
Jranium	5	μg/L	67	5.6	32	18	17
/anadium	5	μg/L	<5	<5	<5	<5	<5
Zinc	5	μg/L	32	59	75	160	120
3200 Dissolved Metals in Water -	- ICP/AES						
Calcium	100	μg/L	1010000	1280000	880000	900000	1070000
ron	100	μg/L	17200	7230	565	107	7100
Magnesium	100	μg/L	895000	1880000	5200000	4430000	1600000
Potassium	1000	μg/L	73000	230000	610000	660000	150000
Sodium	100	μg/L	8650000	28400000	85000000	74000000	18400000
norganics							
Гest/Reference	PQL	Unit					
1010 Conductivity in Water Electrical Conductivity	20	μS/cm	33200	93600	165000	163000	62000
1000 pH in Water ⊳H	0.1	pН	7.0	7.0	6.7	6.9	7.2

Customer Sample ID Labmark Sample No. Date Sampled			MAR4_20A 1134842 17/08/2008	MAR4_20B 1134843 17/08/2008	MAR3_20 1134844 17/08/2008	RT02B 1134845 17/08/2008	RT16B 1134846 17/08/200
Inorganics							
Test/Reference	PQL	Unit					
Fotal Dissolved Solids	20	mg/L	28000	80000	250000	220000	55000
4540 TKN in Water by Titration							
TKN	1	mg/L	<1	3.2	4.4	36	2.5
1410 TOC in Water By Analyser Fotal Organic Carbon	1	mg/L	<1	25	7.3	57	<1
1941 Total Nitrogen in Water by Ca Fotal Nitrogen	i lc 2	mg N/L	<2	3	4	36	2
4300 Anions in Water by IC							
Chloride	0.5	mg/L	13000	34000	87000	130000	18000
Fluoride	0.5	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
litrate as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	3400	5100	9100	1200	5000
Miscellaneous Fest/Reference	PQL	Unit					
Γotal Alkalinity as CaCo3*	-	mg/L	287.72	270.65	131.61	137.45	252.99
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	287.7	270.6	131.6	137.5	253
•		•				0.4	45.0
Customer Sample ID	-	mg/L	16.9 RT17B	22 PT17	9740	91 PT60	15.3 PT31
Customer Sample ID Labmark Sample No. Date Sampled	-	mg/L					
Customer Sample ID .abmark Sample No. Date Sampled Metals	-	mg/L	RT17B 1134847	PT17 1134848	PT40 1134849	PT60 1134850	PT31 1134851
Customer Sample ID .abmark Sample No. Date Sampled Metals	- PQL	mg/L Unit	RT17B 1134847	PT17 1134848	PT40 1134849	PT60 1134850	PT31 1134851
Customer Sample ID Labmark Sample No.	PQL		RT17B 1134847	PT17 1134848	PT40 1134849	PT60 1134850	PT31 1134851
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference 1100 Dissolved Metals in Water By	PQL	Unit µg/L	RT17B 1134847	PT17 1134848	PT40 1134849	PT60 1134850	PT31 1134851
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference 1100 Dissolved Metals in Water By	PQL	Unit	RT17B 1134847 17/08/2008	PT17 1134848 17/08/2008 41 <1	PT40 1134849 17/08/2008	PT60 1134850 17/08/2008	PT31 1134851 17/08/200
Customer Sample ID Labmark Sample No. Date Sampled Metals Fest/Reference S100 Dissolved Metals in Water By Aluminium Antimony Arsenic	PQL ICP/MS 5 1 5	Unit µg/L µg/L µg/L	RT17B 1134847 17/08/2008 13 <1 <5	PT17 1134848 17/08/2008 41 <1 7.8	PT40 1134849 17/08/2008 <5 9.1 <5	PT60 1134850 17/08/2008 19 <1 <5	PT31 1134851 17/08/200
Customer Sample ID Labmark Sample No. Date Sampled Metals Fest/Reference 8100 Dissolved Metals in Water By Aluminium Antimony Arsenic Barium	PQL 5 11 5 5	Unit µg/L µg/L µg/L µg/L µg/L	RT17B 1134847 17/08/2008 13 <1 <5 220	PT17 1134848 17/08/2008 41 <1 7.8 370	PT40 1134849 17/08/2008 <5 9.1 <5 820	PT60 1134850 17/08/2008 19 <1 <5 44	PT31 1134851 17/08/200 15 <1 <5 130
Customer Sample ID Labmark Sample No. Date Sampled Metals Fest/Reference 8100 Dissolved Metals in Water By Aluminium Antimony Arsenic Barium	PQL ICP/MS 5 1 5	Unit µg/L µg/L µg/L µg/L µg/L µg/L	RT17B 1134847 17/08/2008 13 <1 <5	PT17 1134848 17/08/2008 41 <1 7.8 370 <5	PT40 1134849 17/08/2008 <5 9.1 <5	PT60 1134850 17/08/2008 19 <1 <5 44 <5	PT31 1134851 17/08/200
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference C100 Dissolved Metals in Water By Aluminium Antimony Arsenic Barium Beryllium	PQL ICP/MS 5 1 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000	PT31 1134851 17/08/2000 15 <1 <5 130 <5 2400
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference C100 Dissolved Metals in Water By Aluminium Antimony Arsenic Barium Beryllium	PQL 5 1 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5	PT17 1134848 17/08/2008 41 <1 7.8 370 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5	PT60 1134850 17/08/2008 19 <1 <5 44 <5	PT31 1134851 17/08/200
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference B100 Dissolved Metals in Water By Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium	PQL ICP/MS 5 1 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference B100 Dissolved Metals in Water By Aluminium Antimony	PQL 5 1 5 5 5 5 5 2	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5	PT31 1134851 17/08/2000 15 <1 <5 130 <5 2400 <2 5.5 6.9
Customer Sample ID abmark Sample No. Date Sampled Metals Test/Reference S100 Dissolved Metals in Water By Numinium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	PQL 5 11 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5
Customer Sample ID abmark Sample No. Date Sampled Metals Fest/Reference 100 Dissolved Metals in Water By Juminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	PQL 5 ICP/MS 5 1 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5
Eustomer Sample ID abmark Sample No. Pate Sampled Retals Fest/Reference 100 Dissolved Metals in Water By Retalian Retal	PQL ICP/MS 5 1 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 170	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80
Eustomer Sample ID abmark Sample No. Pate Sampled Petals Sest/Reference 100 Dissolved Metals in Water By Juminium Intimony Interval Inter	PQL 5 10 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 <170 130	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80 400
Customer Sample ID Customer Sample No. Cabmark Sampled Cest/Reference Customer Sampled Cest/Reference Customer Sampled Cest/Reference Customer Sampled Customer	PQL 5 1 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 170	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80
Customer Sample ID abmark Sample No. Date Sampled Metals Fest/Reference 2100 Dissolved Metals in Water By Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chromium Chobalt Copper Lead Lithium Manganese Molybdenum	PQL 5 1CP/MS 5 1 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 <170 130	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77 8.1 21	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400 <5 13	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80 400
Customer Sample ID abmark Sample No. Date Sampled Metals Fest/Reference 100 Dissolved Metals in Water By Juminium Jumi	PQL 5 1 5 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000 5.4	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 170 130 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77 8.1	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400 <5	PT31 1134851 17/08/2000 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80 400 <5
Customer Sample ID abmark Sample No. Date Sampled Metals Fest/Reference C100 Dissolved Metals in Water By Muminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chromium Chopper Lead Lithium Manganese Molybdenum Lickel Belenium	PQL ICP/MS 5 1 5 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000 5.4 18	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <55 <5 170 130 <5 <5 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77 8.1 21	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400 <5 13	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80 400 <5 6.3
Eustomer Sample ID abmark Sample No. Pate Sampled Petals Sest/Reference 100 Dissolved Metals in Water By Juminium Intimony Interval Inter	PQL 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000 5.4 18 130	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 <5 170 130 <5 <5 9.3	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77 8.1 21 56	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400 <5 13 48	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <80 400 <5 6.3 21
Customer Sample ID abmark Sample No. Date Sampled Metals Test/Reference 1100 Dissolved Metals in Water By Muminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chromium Manganese Molybdenum Lickel Belenium Berontium Berontium Manganese Molybdenum Lickel Belenium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium Berontium	PQL 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000 5.4 18 130 17000	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 170 130 <5 <5 9.3 810	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77 8.1 21 56 16000	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400 <5 13 48 11000	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80 400 <5 6.3 21 3400
Customer Sample ID Labmark Sample No. Date Sampled Metals Test/Reference S100 Dissolved Metals in Water By Numinium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chobalt	PQL 5 1CP/MS 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Unit	RT17B 1134847 17/08/2008 13 <1 <5 220 <5 6900 <2 <5 6.8 15 <5 660 1000 5.4 18 130 17000 <5	PT17 1134848 17/08/2008 41 <1 7.8 370 <5 1700 <2 20 <5 <5 <5 <5 170 130 <5 <5 9.3 810 <5	PT40 1134849 17/08/2008 <5 9.1 <5 820 <5 2500 <2 <5 13 <5 630 16 77 8.1 21 56 16000 5.8	PT60 1134850 17/08/2008 19 <1 <5 44 <5 6000 <2 6.3 <5 8.0 <5 660 1400 <5 13 48 11000 <5	PT31 1134851 17/08/200 15 <1 <5 130 <5 2400 <2 5.5 6.9 <5 <5 80 400 <5 6.3 21 3400 <5

Customer Sample ID			RT17B	PT17	PT40	PT60	PT31
Labmark Sample No. Date Sampled			1134847 17/08/2008	1134848 17/08/2008	1134849 17/08/2008	1134850 17/08/2008	1134851 17/08/2008
Metals			17700/2000	17700/2000	17700/2000	17700/2000	1770072000
Test/Reference	PQL	Unit					
Uranium	5	μg/L	29	<5	26	<5	<5
Vanadium	5	μg/L	<5	12	<5	<5	<5
Zinc	5	μg/L	75	150	61	110	58
3200 Dissolved Metals in Water - IC	P/AES						
Calcium	100	μg/L	1180000	34500	1060000	-	210000
Iron	100	μg/L	<100	307	220	-	7940
Calcium	100	μg/L	-	-	-	880000	-
Magnesium	100	μg/L	1580000	22100	4120000	-	198000
Iron	100	μg/L	-	-	-	63400	-
Magnesium	100	μg/L	-	-	-	600000	-
Potassium	1000	μg/L	150000	6100	460000	96000	6600
Sodium	100	μg/L	20200000	875000	78000000	7600000	2740000
Inorganics Teet/Reference	DO	Linit					
Test/Reference	PQL	Unit					
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	65300	3470	135000	29300	20500
4000 pH in Water pH	0.1	рН	7.7	7.9	7.0	6.9	7.2
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	60000	2800	220000	24000	15000
4540 TKN in Water by Titration TKN	1	mg/L	1.6	3.0	3.0	<1	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	3.3	4.5	4.3	2.9	46
4941 Total Nitrogen in Water by Cal Total Nitrogen	c 2	mg N/L	<2	3	3	2	2
4300 Anions in Water by IC Chloride	0.5	mg/L	22000	680	120000	11000	6600
Fluoride	0.5	mg/L	<0.5	3.2	<0.5	<0.5	<0.5
Nitrate as N	0.5	mg N/L	<0.5	<0.5	<0.5	2.4	2.1
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	5100	96	9200	3000	1400
·	0.0	mg/L	3100	50	0200	0000	1-100
Miscellaneous Test/Reference	PQL	Unit					
Total Alkalinity as CaCo3*	-	mg/L	219.95	719.97	119.69	259.39	202.98
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	219.9	720	119.7	259.4	203
Silica*	-	mg/L	13.3	34	34.5	15.2	9.3
Customer Sample ID Labmark Sample No. Date Sampled			DUP2 1134852 17/08/2008	DUP3 1134853 17/08/2008			
Metals Test/Reference	PQL	Unit					
3100 Dissolved Metals in Water By Aluminium	ICP/MS	μg/L	36	13			
		-					

Customer Sample ID Labmark Sample No.			DUP2 1134852	DUP3 1134853	
Date Sampled			17/08/2008	17/08/2008	
Metals Test/Reference	DOL	Linit			
Test/Reference	PQL	Unit			
Arsenic	5	μg/L	<5	<5	
Barium	5	μg/L	40	96	
Beryllium	5	μg/L	<5	<5	
Boron	5	μg/L	6600	2000	
Cadmium	2	μg/L	<2	<2	
Chromium	5	μg/L	7.2	5.5	
Cobalt	5	μg/L	<5	5.9	
Copper	5	μg/L	7.2	<5	
Lead	5	μg/L	<5	<5	
Lithium	5	μg/L	690	51	
Manganese	5	μg/L	1400	290	
Molybdenum	5	μg/L	<5	<5	
Nickel	5	μg/L	13	<5	
Selenium	5	μg/L	46	15	
Strontium	5	μg/L	11000	1600	
Thallium	5	μg/L	<5	<5	
Thorium	5	μg/L	<5	<5	
Tin	5	μg/L	<5	<5	
Titanium	5	μg/L	9.3	<5	
Uranium	5	μg/L	<5	<5	
Vanadium	5	μg/L	<5	<5	
Zinc	5	μg/L	96	50	
3200 Dissolved Metals in Water -	ICP/AES				
Calcium	100	μg/L	900000	98200	
Iron	100	μg/L	50800	8700	
Magnesium	100	μg/L	595000	83100	
Potassium	1000	μg/L	82000	<1000	
Sodium	100	μg/L	7600000	1190000	
Inorganics					
Test/Reference	PQL	Unit			
4010 Conductivity in Water					
Electrical Conductivity	20	μS/cm	29500	6520	
4000 pH in Water					
pH	0.1	рН	6.9	7.1	
4110 Dissolved Solids in Water					
Total Dissolved Solids	20	mg/L	24000	4000	
4540 TKN in Water by Titration TKN	1	mg/L	<1	1.7	
4410 TOC in Water By Analyser					
Total Organic Carbon	1	mg/L	<1	<1	
4941 Total Nitrogen in Water by C Total Nitrogen	Calc 2	mg N/L	2	2	
4300 Anions in Water by IC					
Chloride	0.5	mg/L	11000	720	
Fluoride	0.5	mg/L	<0.5	<0.5	
Nitrate as N	0.5	mg N/L	2.4	<0.5	
Nitrite as N	0.5	mg N/L	<0.5	<0.5	
Sulphate	0.5	mg/L	3000	170	
Miscellaneous					
Test/Reference	PQL	Unit			

Customer Sample ID			DUP2	DUP3	
Labmark Sample No.			1134852	1134853	
Date Sampled			17/08/2008	17/08/2008	
Miscellaneous					
Test/Reference	PQL	Unit			
otal Alkalinity as CaCo3*	-	mg/L	280.08	183.196	
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	
Bicarbonate Alkalinity as CaCo3*	-	mg/L	280.1	183.2	
Silica*	-	mg/L	15.5	8.34	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Dissolved Metals in Water By ICP/MS	21/08/2008	25/08/2008
3200 Dissolved Metals in Water - ICP/AES	21/08/2008	26/08/2008
4000 pH in Water	21/08/2008	22/08/2008
4010 Conductivity in Water	21/08/2008	22/08/2008
4110 Dissolved Solids in Water		26/08/2008
4300 Anions in Water by IC	21/08/2008	01/09/2008
4410 TOC in Water By Analyser	26/08/2008	28/08/2008
4540 TKN in Water by Titration	22/08/2008	25/08/2008
4941 Total Nitrogen in Water by Calc		01/09/2008
NEW_TEST01		27/08/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Labmark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Labmark QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1138606 [Method Blank]		•			•	
3100 Dissolved Metals in Water By ICP/MS						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<5		< 5	Т	
Barium	μg/L	<5		< 5	Т	
Beryllium	μg/L	<5		< 5	Т	
Boron	μg/L	<5		< 5	Т	
Cadmium	μg/L	<2		< 2	Т	
Chromium	μg/L	<5		< 5	Т	
Cobalt	μg/L	<5		< 5	Т	
Copper	μg/L	<5		< 5	Т	
Lead	μg/L	<5		< 5	Т	
Manganese	μg/L	<5		< 5	Т	
Molybdenum	μg/L	<5		< 5	Т	
Nickel	μg/L	<5		< 5	Т	
Selenium	μg/L	<5		< 5	Т	
Tin	μg/L	<5		< 5	Т	
Vanadium	μg/L	<5		< 5	Т	
Zinc	μg/L	<5		< 5	Т	
1138815 [Method Blank]	•		•		•	
3200 Dissolved Metals in Water - ICP/AES						
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance	Pass	Qualifying
1 / /	Units	IVESUIL I	1		Limits	Limits	Codes
1138607 [Laboratory Control Sample]			T				
3100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	98	N/A	N/A	N/A	N/A	
Arsenic	μg/L	100	N/A	N/A	N/A	N/A	
Barium	μg/L	100	N/A	N/A	N/A	N/A	
Beryllium	μg/L	99	N/A	N/A	N/A	N/A	
Boron	μg/L	100	N/A	N/A	N/A	N/A	
Cadmium	μg/L	100	N/A	N/A	N/A	N/A	
Chromium	μg/L	100	N/A	N/A	N/A	N/A	
Cobalt	μg/L	99	N/A	N/A	N/A	N/A	
Copper	μg/L	100	N/A	N/A	N/A	N/A	
Lead	μg/L	100	N/A	N/A	N/A	N/A	
Manganese	μg/L	99	N/A	N/A	N/A	N/A	
Molybdenum	μg/L	110	N/A	N/A	N/A	N/A	
Nickel	μg/L	100	N/A	N/A	N/A	N/A	
Selenium	μg/L	100	N/A	N/A	N/A	N/A	
Tin	μg/L	99	N/A	N/A	N/A	N/A	
Vanadium	μg/L	99	N/A	N/A	N/A	N/A	
Zinc	μg/L	98	N/A	N/A	N/A	N/A	
1134950 [Duplicate of 1134842]	1 10		-			-	
3200 Dissolved Metals in Water - ICP/AES			Result 2	RPD			
Calcium	μg/L	1020000	1010000	1	0-10 %	Т	
Iron	μg/L	17200	17200	<1	0-10 %	† <u>†</u>	
Magnesium		905000	895000	1	0-10 %	† †	
Potassium	μg/L	79000	73000	8	0-10 %	† † T	
Sodium	μg/L μg/L	8800000	8650000	2	0-10 %	+ +	
	ру/с	8800000	0030000		0-10 /0	+ '-	
1134951 [Duplicate of 1134843]			1 5 "0	1 222			
3200 Dissolved Metals in Water - ICP/AES	1	4000000	Result 2	RPD	0.40.0/	1 -	-
Calcium .	μg/L	1260000	1280000	1	0-10 %	T	—
Iron	μg/L	6640	7230	9	0-10 %	T	-
Magnesium	μg/L 	1840000	1880000	2	0-10 %	T	
Potassium	μg/L	220000	230000	5	0-10 %	T	
Sodium	μg/L	27800000	28400000	2	0-10 %	Т	ļ
1134953 [Duplicate of 1134842]							
3100 Dissolved Metals in Water By ICP/MS			Result 2	RPD		_	
Antimony	μg/L	<1	<1	<1	0-10 %	Т	
Arsenic	μg/L	<5	<5	<1	0-10 %	Т	
Barium	μg/L	47	50	6	0-10 %	Т	
Beryllium	μg/L	<5	<5	<1	0-10 %	Т	
Boron	μg/L	6400	6100	4	0-10 %	Т	
Cadmium	μg/L	<2	<2	<1	0-10 %	Т	
Cobalt	μg/L	<5	<5	<1	0-10 %	Т	
Lead	μg/L	<5	<5	<1	0-10 %	Т	
Molybdenum	μg/L	12	12	4	0-10 %	Т	
Strontium	μg/L	15000	14000	4	0-10 %	Т	
Thallium	μg/L	<5	<5	<1	0-10 %	Т	
Thorium	μg/L	<5	<5	<5	0-10 %	Т	
Tin	µg/L	<5	<5	<1	0-10 %	T	
Titanium	μg/L	12	11	8	0-10 %	T	
Uranium	µg/L	63	67	6	0-10 %	T .	
Vanadium	μg/L	<5	<5	<1	0-10 %	† † T	
variation	µg/L	\"	\υ	`1	U-1U 70		<u> </u>

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1134954 [Duplicate of 1134843]	-	•	•	•		-	
3100 Dissolved Metals in Water By ICP/MS			Result 2	RPD			
Antimony	μg/L	<1	<1	<1	0-10 %	Т	
Arsenic	μg/L	<5	<5	<1	0-10 %	Т	
Barium	μg/L	120	110	10	0-10 %	Т	
Beryllium	μg/L	<5	<5	<1	0-10 %	Т	
Boron	μg/L	5400	5400	<1	0-10 %	Т	
Cadmium	μg/L	<2	<2	<1	0-10 %	Т	
Chromium	μg/L	<5	<5	<1	0-10 %	Т	
Cobalt	μg/L	5.4	<5	7	0-10 %	Т	
Lead	μg/L	<5	<5	<1	0-10 %	Т	
Lithium	μg/L	2100	2100	3	0-10 %	Т	
Molybdenum	μg/L	15	15	1	0-10 %	Т	
Strontium	μg/L	19000	20000	1	0-10 %	Т	
Thallium	μg/L	<5	<5	<1	0-10 %	Т	
Thorium	μg/L	<5	<5	<5	0-10 %	Т	
Tin	μg/L	<5	<5	<1	0-10 %	Т	
Uranium	μg/L	5.9	5.6	5	0-10 %	Т	
Vanadium	μg/L	<5	<5	<1	0-10 %	Т	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1137589 [Method Blank]	+		1	! 		-	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1139123 [Method Blank]	•					•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1141307 [Method Blank]	•		•			•	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1143278 [Method Blank]	•					•	
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1143279 [Method Blank]	•					•	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1137330 [Laboratory Control Sample]	•		•	•		•	
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1420	N/A	N/A	N/A	N/A	
1137331 [Laboratory Control Sample]	_		•			•	
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1390	N/A	N/A	N/A	N/A	
1137591 [Laboratory Control Sample]						•	
4300 Anions in Water by IC			Expected Value	Percent Recovery			
Bromide	mg/L	99	100.0	99	80-120 %	Т	
Chloride	mg/L	100	100.0	101	80-120 %	Т	
Fluoride	mg/L	100	100.0	102	80-120 %	Т	
Nitrate	mg/L	120	100.0	120	80-120 %	Т	
Nitrite	mg/L	90	100.0	90	80-120 %	Т	
Orthophosphate as P	mg/L	100	100.0	101	80-120 %	Т	
Sulphate	mg/L	100	100.0	105	80-120 %	Т	

Laboratory: EN_WATERS

Laboratory. EN_WATERS							
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1139125 [Laboratory Control Sample]		ļ	+	!	Lillie	Liiiillo	00000
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	86	100.0	86	80-120 %	Т	
1141308 [Laboratory Control Sample]				1		+	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	990	1000.0	99	90-110 %	Т	
1143280 [Laboratory Control Sample]	mg/L	330	1000.0		30-110 /0	+ '-	
			Expected Value	Dargant Daggyany			
4410 TOC in Water By Analyser Total Organic Carbon	ma/l	9.2	10.0	Percent Recovery 92	80-120 %	Т	
	mg/L	9.2	10.0	92	00-120 %	<u> </u>	
1143281 [Laboratory Control Sample]			1 =	15 (5 1			
4410 TOC in Water By Analyser			Expected Value	Percent Recovery	22.422.0/	T -	-
Dissolved Organic Carbon	mg/L	9.5	10.0	95	80-120 %	T	
1134944 [Duplicate of 1134842]							
4300 Anions in Water by IC		1	Result 2	RPD		_	ļ
Chloride	mg/L	13000	13000	<1	0-10 %	Т	
Fluoride	mg/L	<0.5	<0.5	<1	0-10 %	T	<u> </u>
Nitrate as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	<u> </u>
Nitrite as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	<u> </u>
Sulphate	mg/L	3400	3400	<1	0-10 %	Т	
1134946 [Duplicate of 1134843]				, ,			<u> </u>
4300 Anions in Water by IC			Result 2	RPD			
Chloride	mg/L	34000	34000	<1	0-10 %	Т	
Fluoride	mg/L	<0.5	<0.5	<1	0-10 %	T	
Nitrate as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	
Nitrite as N	mg N/L	<0.5	<0.5	<1	0-10 %	Т	
Sulphate	mg/L	5100	5100	1	0-10 %	Т	
1134947 [Duplicate of 1134842]							
4010 Conductivity in Water			Result 2	RPD			
Electrical Conductivity	μS/cm	33500	33200	1	0-10 %	Т	
1134948 [Duplicate of 1134843]	•	•				•	
4010 Conductivity in Water			Result 2	RPD			
Electrical Conductivity	μS/cm	80800	93600	<1	0-10 %	Т	
1134955 [Duplicate of 1134842]	•	•	•	•		•	
4000 pH in Water			Result 2	RPD			
pH	рН	7.0	7.0	0.0	0-0.2 pH	Т	
1134956 [Duplicate of 1134843]	•		•	• •		•	
4000 pH in Water			Result 2	RPD			
pH	pН	7.1	7.0	0.0	0-0.2 pH	Т	
1134957 [Duplicate of 1134842]	ł		1	+	-	-	
4110 Dissolved Solids in Water			Result 2	RPD			
Total Dissolved Solids	mg/L	29000	28000	3	0-10 %	Т	
1134958 [Duplicate of 1134843]			+	·	/ 0		
4110 Dissolved Solids in Water			Result 2	RPD			
Total Dissolved Solids Total Dissolved Solids	mg/L	79000	80000	1 RPD	0-10 %	Т	
1134959 [Duplicate of 1134842]	my/L	79000	50000	' 	0-10 70	+ '-	
• •			D # 0	1 000			
4540 TKN in Water by Titration		1	Result 2	RPD	0.00.0/	1 -	
TKN	mg/L	<1	<1	<1	0-20 %	Т	
1134960 [Duplicate of 1134843]			1 -				
4540 TKN in Water by Titration	1 .	I	Result 2	RPD		1 -	
TKN	mg/L	3.2	3.2	3	0-20 %	Т	
1134961 [Spike of 1134844]			1	,			
4300 Anions in Water by IC	1	1	Spike Value	Percent Recovery		_	ļ
Nitrate as N	mg N/L	27	N/A	N/A	N/A	N/A	<u> </u>
Nitrite as N	mg N/L	33	N/A	N/A	N/A	N/A	<u> </u>
1134963 [Spike of 1134844]							
4540 TKN in Water by Titration			Spike Value	Percent Recovery			
TKN	mg/L	87	100.0	82	80-120 -	Т	
	-			· —			

Project Comments

Comments Note TOC machine down. May have sub-contract.

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Authorised By

Carol Cawrse Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Helen Lei Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Amended Report: This report replaces report # 327584

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

LABMARY

From : SKM Plv Ltd ABN: 37 001 024 095 Level 5, 33 King William St, Adelaide, SA 5000 ph: (08) 8424 3800 fax: (08) 8424 3810 Container Identification 900 43ml 125ml 125ml Тура plastic plastic LAB USE ONLY QUOTE NUMBER VE30064 YES NO roject Manager: Job Code: or anlons, TOS, pH, EC, Fl 3, NO2, Total Nitrogen and TKN Due Date: Custody seal intact? Cations, Stand Dissolv Metals Daniel Pierce ORC Ulfra Trade Alistair Walsh / Michael Cowin Sample cold? 70C Received for Laboratory by ALISTAR WALSH 18-Aug-08 Major NO3, Time Matrix Sample Identification Comments Tick required analyte: Lab ld Date MAR4_20a MAR4_20a MAR4_20a MAR4_20b H20 AR4_20b H20 X 2 Viles H20 MAR4_20b Field Filtered Field Filtered - HOLD SAMPLE MAR4_20b H20 MAR3_20 H20 H20 MAR3_20 H20 Field Filtered MAR3_20 ield Filtered - HOLD SAMPLE H20 MAR3_20 H20 RT02b H20 ⟨2 Viles RT02b H20 RT025 Field Filtered - HOLD SAMPLE H20 RT02b RT16b H20 X 2 Vites RT16b Field Filtered H20 H20 RT17b 2 Viles RT176 H20 H20 RT17b H20 RT17b H20 PT17 H20 PT17 H20 PT17 H20 PT17 TOTAL 19/8/08 Notes: 08ENME0021863-1(1134842) Please email awalsh@skm.com.au and dpierce@skm.com.au reuits and upon receival of samples

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

From : SKM Pty Ltd			CHAIN U	FCUSIO	DY FORW						S	K	V
ABN: 37 001 024 095 Level 5, 33 King William St, A ph: (08) 8424 3800 fax: (08)						- e	1200mi		ainer Identif				Ţ
LAB USE ONLY		Project N	ło:			Size Type	plastic	43mi glass	125ml plastic	125ml plastic			
QUOTE NUMBER Job Code: Due Date: Custody seal intact? Sample cold? Received for Laboratory by		Project N Sampler(Checked	VE30064 Manager: Daniel Pierce [s]: Alistair Walsh / Michael Cowin	Preserv Analytes	a anions, TDS, pH, EC, Fl, S, NO2, Total Nivogen and G	YES	Major Cations, SI and Dissolved K	ORC Ulta Trace					
Date:		Date:	18-Aug-08				Major and NO3, NO		Majar Ca	O			
Lab ld Date	Time	Matrix	Sample Identification		Comments		Tick require	d analytes	;				
PT40		H20					х						1
PT40		H20			X 2 Viles			х_	<u> </u>				<u> </u>
PT40		H20	777		Field Filtered				x				<u> </u>
PT40		H20			Field Filtered - HOLD S	AMPLE				х			
								_					
PT60		H20					х				.		
PT60		H20			X 2 Viles			х					ļ
PT60		H20			Field Filtered				х				ļ .
PT60		H20			Field Filtered - HOLD S	AMPLE				х			-
	_		-								-		
PT31		H20					х				-		-
PT31		H20			X 2 Viles		-	х	\vdash	-			-
PT31 ·	<u> </u>	H20			Field Filtered				x		-		
PT31		H20			Field Filtered - HOLD S	AMPLE		-		х	-	-	-
							-		-		\dashv		
DUP2	_	H20					х			-	-		
OUP2		H20			X 2 Viles			х			-		
DUP2		H20			Field Filtered				x		_		<u> </u>
DUP2		H20			Field Filtered - HOLD S	AMPLE				х	\dashv		
	+									-			
DUP3	-	H20					x					_	
DUP3	1 1	H2D			X 2 Viles			Х					
DUP3	+	H20			Field Filtered				х	-			-
DUPS		H20			Field Filtered - HOLD S	AMPLE				х	\dashv		
	1								_	\top			
	++					-							
	+												
	+					-		.	1		\top		
	-									\neg			
							-	_					
	+++	-								-		_	
<u> </u>								-			+		
	1								-		-	\dashv	<u>:</u>
	-			-		-	+		-+		\dashv		
	1	F	-			-	-			+	_		
<u> </u>	-								-			-	
	<u> </u>		Or I	-/	TOTAL								
Rec		au and d		reults and u	9/8/03 pon receival of sa	(a) (amples	70C	08EN skm_ 	ME002	1863- MAR4	·1(11 -20A)	3484 	2)
See attached spread	dsheet sis of C	for ful ORC UI	l breakdown of an	alytes rec Any quest	quired. Please ions please ca	analys all Alis	se all di tair Wa	issolv Ilsh or	ed met 1 04302	zis us 28822:	ing iC	P-MS	5

000-Rev

	Analytes	Limits of Reporting (LOR)	Maximum holding tim	Comments
	Sample Batch fee	ĺ		
Major Catlons (mn/l)	Calcium	1 mg/L	7 days	
Major Anions (mg/L.)	Całcium Carbonat (CaCO ₃) Sulphate (SO ₄) Chloride (CI)	1 mg/L	48 Hrs	
Major	Carbonate (CO₃) Bicarbonate	1 mg/L	-	
	(HCO₃)	1 mg/L		·
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units)	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Fluoride Silica (Si)			
	Aluminum (Al)	10 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICPAMS
ĺ	Antimony (Sb)	0.5 μg/L	6 months	·
	Arsenic (As)	0.5 µg/L	6 months	
	Barium (Ba)	5 μg/L	6 months	
	Beryllium (Be)	0.1 μg/L	6 months	
	Boron (B)	100 µg/L	6 months	·
	Cadmium (Cd)	0.2 μg/L	6 months	
	Chromlum (Cr) Cobalt	0.5 µg/L	6 months	
	(Co) Copper	0.2 μg/L	6 months	
	(Cu) Gold	5 µg/L	6 months	
Dissolved Metals (mg/L.)	(Ag)	0.1 µg/L	6 months	
etals ((Pb) Lithium	0.2 μg/L	6 months	
ed W	(Li) Manganese	5 µg/L	6 months	
Issolv	(Mn) Molybdenum	0.5 µg/L	6 months	
•	(Mo) Nickel	0.1 μg/L	6 months	
	(Ni) Selenium	0.5 µg/L	6 months	
	(Se) Strontium	5 µg/L 10 µg/L	6 months	
	(Sr) Thallium	0.1 μg/L	6 months	
	(TI) Thorium	0.1 μg/L	6 months	
	(Th) Tin	5 µg/L	6 months	
	(Sn) Titanium	5 μg/L	6 months	
	(Ti) Uranium (U)	0.1 µg/L	6 months	
	Vanadium (V)	0.5 µg/L	6 months	
	Zinc (Zn)	5 μg/L	6 months	
	iron - total (Fe)	5 μg/L	6 months	ICP OES
	Nitrite as N (NO.)	0.01 mg/L	48 hrs	
Nutrients (mg/L)	Nitrate as N (NO ₂)	0.01 mg/L	48 hrs	neasured together
lents	Total Nitrogen Total Organic Carbon	0.01 mg/L	28 days	
3	(TOC)	1 mg/L	28 days	
	Total Kjeldahl Nitrogen (TKN)	0.1 mg/L Cost/sample	28 days	

Total Cost

Sample Receipt Advice

Customer Service - 1300 552 389

Client Name:Sinclair Knight MertzDate Received:19 August 2008Attention:MR Daniel PierceDue Date:26 August 2008

Client Reference number: VE30064 Turnaround: Standard

Amdel Reference number: 08ENME0021863 Your Amdel Contact: Vanda Dabkowski

0395382267

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Project Comments

Comments Note TOC machine down. May have sub-contract.

Sample Integrity

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Custody Seals Intact (if used)

Yes

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	12
Conductivity in Water	4010	12
Gold (Au)	0000	12
Dissolved Metals in Water - ICP/AES	3200	12
Dissolved Metals in Water By ICP/MS	3100	12
	NEW_TEST01	12
pH in Water	4000	12
Dissolved Solids in Water	4110	12
TKN in Water by Titration	4540	12
Total Nitrogen in Water by Calc	4941	12

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by: Chris Slevison Date: Tue 19 August 2008

Accreditation Number: 1645

(i) LabMark **ENVIRONMENTAL LABORATORIES** Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0021986

Client Reference VE30064

Received Date 20/08/2008 09:00:00 AM

Customer Sample ID Labmark Sample No. Date Sampled			PT45 1136477 19/08/2008	PT48 1136478 19/08/2008	PT51 1136479 19/08/2008	
Metals Test/Reference	PQL	Unit				
3100 Dissolved Metals in Water	er By ICP/MS					
Aluminium	5	μg/L	33	33	23	
Antimony	1	μg/L	<1	<1	<1	
Arsenic	5	μg/L	<5	<5	<5	
Barium	5	μg/L	62	36	20	
Beryllium	5	μg/L	<5	<5	<5	
Boron	5	μg/L	8100	6100	12000	
Cadmium	2	μg/L	<2	<2	<2	
Chromium	5	μg/L	7.2	6.1	<5	
Cobalt	5	μg/L	<5	<5	<5	
Copper	5	μg/L	11	9.6	11	
Lead	5	μg/L	<5	<5	<5	
Lithium	5	μg/L	350	340	170	
Manganese	5	μg/L	900	290	110	
Molybdenum	5	μg/L	<5	<5	27	
Nickel	5	μg/L	18	13	9.8	
Selenium	5	μg/L	69	63	44	
Strontium	5	μg/L	17000	12000	8600	
Thallium	5	μg/L	<5	<5	<5	
Thorium	5	μg/L	<5	<5	<5	
Tin	5	μg/L	<5	<5	<5	
Titanium	5	μg/L	8.2	9.8	7.5	
Uranium	5	μg/L	<5	<5	6.0	
Vanadium	5	μg/L	<5	<5	<5	
Zinc	5	μg/L	240	45	39	
3200 Dissolved Metals in Wate		M3/-	0			
Calcium	100	μg/L	1160000	832000	831000	
Iron	100	μg/L	5470	17900	2250	
Magnesium	100	μg/L	951000	820000	674000	
Potassium	1000	μg/L	150000	250000	210000	
Sodium	100	μg/L	8900000	10200000	15900000	
Inorganics						
Test/Reference	PQL	Unit				
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	31300	32700	44100	
4000 pH in Water pH	0.1	рН	7.1	7.0	7.3	
4110 Dissolved Solids in Wate Total Dissolved Solids	e r 20	mg/L	30000	29000	40000	

Final Report Number: 326951

Date Printed: 28 August 2008

Customer Sample ID Labmark Sample No. Date Sampled			PT45 1136477 19/08/2008	PT48 1136478 19/08/2008	PT51 1136479 19/08/2008
Inorganics Test/Reference	PQL	Unit			
4540 TKN in Water by Titration	1	mg/L	<1	<1	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	2.2	<1	<1
4941 Total Nitrogen in Water by Cal e Total Nitrogen	c 2	mg N/L	3	4	3
4300 Anions in Water by IC Chloride	0.5	mg/L	11000	15000	16000
Fluoride Nitrate as N	0.5 0.5	mg/L mg N/L	<0.5 2.6	<0.5 3.9	<0.5 2.7
Nitrite as N Sulphate	0.5 0.5	mg N/L mg/L	<0.5 3500	<0.5 3200	<0.5 8300
Miscellaneous Test/Reference	PQL	Unit	3300	3200	0300
Total Alkalinity as CaCo3*	-	mg/L	300	250	210
Carbonate Alkalinity as CaCo3* Bicarbonate Alkalinity as CaCo3*	-	mg/L mg/L	<1 300	<1 250	<1 210
Silica*	-	mg/L	14.8	13.8	14.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Dissolved Metals in Water By ICP/MS	21/08/2008	25/08/2008
3200 Dissolved Metals in Water - ICP/AES	21/08/2008	27/08/2008
4000 pH in Water	21/08/2008	21/08/2008
4010 Conductivity in Water	21/08/2008	22/08/2008
4110 Dissolved Solids in Water		27/08/2008
4300 Anions in Water by IC	21/08/2008	28/08/2008
4410 TOC in Water By Analyser	26/08/2008	27/08/2008
4540 TKN in Water by Titration	25/08/2008	26/08/2008
4941 Total Nitrogen in Water by Calc		26/08/2008
NEW_TEST01		27/08/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Labmark Internal Quality Control Review

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
 are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Labmark QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1138639 [Method Blank]	-	•	•	•		•	
3100 Dissolved Metals in Water By ICP/MS							
Antimony	μg/L	<1			< 1	Т	
Arsenic	μg/L	<5			< 5	Т	
Barium	μg/L	<5			< 5	Т	
Beryllium	μg/L	<5			< 5	Т	
Boron	μg/L	<5			< 5	Т	
Cadmium	μg/L	<2			< 2	Т	
Chromium	μg/L	<5			< 5	Т	
Cobalt	μg/L	<5			< 5	Т	
Copper	μg/L	<5			< 5	Т	
Lead	μg/L	<5			< 5	Т	
Manganese	μg/L	<5			< 5	Т	
Molybdenum	μg/L	<5			< 5	Т	
Nickel	μg/L	<5			< 5	Т	
Selenium	μg/L	<5			< 5	Т	
Tin	μg/L	<5			< 5	Т	
Vanadium	μg/L	<5			< 5	Т	
Zinc	μg/L	<5			< 5	Т	
1138792 [Method Blank]	•	•	•	•			
3200 Dissolved Metals in Water - ICP/AES							
Calcium	μg/L	<100			< 100	Т	
Iron	μg/L	<100			< 100	Т	
Magnesium	μg/L	<100			< 100	Т	
Phosphorus	μg/L	<100			< 100	Т	
Potassium	μg/L	<1000			< 1000	Т	
Sodium	μg/L	<100			< 100	Т	

First Reported: 28 August 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 3 of 5

Date Printed: 28 August 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number : 326951

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1138640 [Laboratory Control Sample]	•					•	
3100 Dissolved Metals in Water By ICP/MS			Expected Value	Percent Recovery			
Antimony	μg/L	92	100.0	92	80-120 %	Т	
Arsenic	μg/L	110	100.0	108	80-120 %	Т	
Barium	μg/L	100	100.0	100	80-120 %	Т	
Beryllium	μg/L	110	100.0	112	80-120 %	Т	
Cadmium	μg/L	100	100.0	100	80-120 %	Т	
Chromium	μg/L	100	100.0	102	80-120 %	Т	
Cobalt	μg/L	100	100.0	102	80-120 %	Т	
Copper	μg/L	100	100.0	102	80-120 %	Т	
Lead	μg/L	93	100.0	93	80-120 %	Т	
Manganese	μg/L	100	100.0	104	80-120 %	Т	
Nickel	μg/L	100	100.0	103	80-120 %	Т	
Selenium	μg/L	110	100.0	108	80-120 %	Т	
Tin	μg/L	96	100.0	96	80-120 %	Т	
Vanadium	μg/L	100	100.0	104	80-120 %	Т	
Zinc	μg/L	98	100.0	98	80-120 %	Т	

Laboratory: EN WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1137589 [Method Blank]				ļļ.	Liiiiis	LIIIIII	Codes
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	T	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1141307 [Method Blank]	•		+	'		-	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1141436 [Method Blank]	•		•	+		•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1143278 [Method Blank]	- -		+	 		-	
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1143279 [Method Blank]	•		•	!		-	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1137332 [Laboratory Control Sample]	_ 		-	-		-	
4010 Conductivity in Water	<u> </u>		Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1360	N/A	N/A	N/A	N/A	
1137591 [Laboratory Control Sample]	_ .		4	-		-	
4300 Anions in Water by IC	<u> </u>		Expected Value	Percent Recovery			
Bromide	mg/L	99	100.0	99	80-120 %	Т	
Chloride	mg/L	100	100.0	101	80-120 %	Т	
Fluoride	mg/L	100	100.0	102	80-120 %	Т	
Nitrate	mg/L	120	100.0	120	80-120 %	Т	
Nitrite	mg/L	90	100.0	90	80-120 %	Т	
Orthophosphate as P	mg/L	100	100.0	101	80-120 %	Т	
Sulphate	mg/L	100	100.0	105	80-120 %	Т	
1141308 [Laboratory Control Sample]	•					•	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	990	1000.0	99	90-110 %	Т	
1141438 [Laboratory Control Sample]	•		-			•	
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	92	100.0	92	80-120 %	Т	

Final Report Number: 326951

Date Printed: 28 August 2008

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1143280 [Laboratory Control Sample]						•	
4410 TOC in Water By Analyser	_		Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	9.2	10.0	92	80-120 %	T	
1143281 [Laboratory Control Sample]							
4410 TOC in Water By Analyser	_		Expected Value	Percent Recovery			
Dissolved Organic Carbon	mg/L	9.5	10.0	95	80-120 %	T	

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	N/A
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Carol Cawrse Client Services Officer Ruth Callander Client Services Officer Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Helen Lei Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 First Reported: 28 August 2008 Page 5 of 5 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 326951

16, 33 kmg Williams 81, Aeclaids, 56 A600	┵				D 4'			/I
State Stat	_		Conta	iner identi	cation .			
YENDRE Project Manager: Daniel Pierce		500ml	43ml	125m1	125ml			_
Project Manager Daniel Piere D		plastic NO	glass YES	plastic YES	plastic NO		-+	
Analyse places of the place of			, 23		"			
Aliquir Watch / Michael Cowin Chackad:	. 5	EC B		SSO				
Date 19-Aug-08 1409/2008 H20 Field Filtered H20	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	F PH		D Pu	Trace	İ	i	
Date 19-Aug-08 18/09/2008 120	1	Major anions, TDS, pH, EC, Ft, NO3, NO2, Total Nitrogen and TKN	J05	Major Cations, Si and Dissolved Metals	ORC Ultra Trace	.		
Matrix Sample Identification Comments		12. T	•	tions	5			
Matrix Sample Identification Comments		는 것 당하		S	°			
1808/2008 H20] 3	<u>∞</u> 2		Maj				
18/08/2008	Tk	ick required	analytes					
18/08/2008		V				1		
18/08/2008	╅	х						
18/08/2008	+		х					
18/08/2008				x				
18/08/2008 H20 X 2 Vics 18/08/2008 H20 Field Filtered 18/08/2008 H20 Field Filtered 18/08/2008 H20 X 2 Vics 18/08/2008 H20 Field Filtered 18/08/2008 H20 X 2 Vics 18/08/2008 H20 Field Filtered Field Filtered Field Filtered - HOLD SAMPLE 18/08/2008 H20 Field Filtered - HOLD SAMPLE								
18/08/2008	+				X			
18/08/2008	1							
18/08/2008	1.	x			İ			
18/08/2008			"			$\neg \uparrow$		
18/08/2008	+	+	Х					
18/08/2008	L			х			\perp	
18/08/2008 H20 X2 Vies 18/08/2008 H20 Field Fitered - HOLD SAMPLE 18/08/2008 H20 Field Fitered - HOLD SAMPLE					x			
18/08/2008 H20 Field Fitered - HOLD SAMPLE 18/08/2008 H20 Field Fitered - HOLD SAMPLE	\top					<u>_</u>	_	
18/08/2008 H20 Field Fitered - HOLD SAMPLE 18/08/2008 H20 Field Fitered - HOLD SAMPLE	+	-					+	
18/08/2008 H20 Field Fitered - HOLD SAMPLE 18/08/2008 H20 Field Fitered - HOLD SAMPLE	\perp	х			.			
18/08/2008 H20 Field Fitered - HOLD SAMPLE			х					
18/08/2008 H20 Field Fitered - HOLD SAMPLE	+		^	-		_		
	<u> </u>			Х				
				ĺ	х			
	Т	1						
	┿		- 1			-	-	
	\perp							
	İ	İ			-			
	\top			1				
	+				-	-	-	
	_							
	1							ĺ
	1				Ì			
	\vdash		<u> </u>				_	\dashv
		İ						İ
	1							\neg
	-		-	\dashv		+	_	
					1	Ţ		Ī
	+-		+			-	+	
							_	ᆜ
							_	
							1	
	\vdash	-+	-+	-	+	\dashv		\dashv
	<u> </u>						_	_
								ĺ
		<u> </u>			- i			
	-						\dashv	\dashv
							_	
	1	1			ſ	ĺ		
		-+	$\overline{}$					\dashv
	<u> </u>						_	
			i					
TOTAL							[_
20 Cal b 2-10		G 1	200					\neg
2 Cabmark 20/8		q:	Ω¥		i	08ENM SKM_AL	FAADI	gor
•					5	SKM_A	EL(P	JUD' 745
e email awaish@skm.com.au and dpierce@skm.com.au reuils and upon receival of samples					11			

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

heet 1 of

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
0-	male Datab for 1		İ	
Major Cations (mg/L)	mple Batch fee Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L)	(K) Calcium Carbonate (CaCO ₃) Sulphate (SO ₄) Chloride (CI) Carbonate	1 mg/L	48 Hrs	
Major	(CO ₃) Bicarbonate (HCO ₃)	1 mg/L 1 mg/L		
	TDS (mg/L)	1 mg/L	28 days	
	EC (uS/cm) pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride Silica (Si)			
	Aluminum (Al)	10 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Antimony (Sb)	0.5 µg/L	6 months	
	Arsenic (As) Barlum	0.5 μg/L	6 months	
, * 4	(Ba) Beryllium	5 µg/∟	6 months	
	(Be) Boron	0.1 µg/L	6 months	
	(B) Cadmium	100 µg/L	6 months	
	(Cd) Chromium	0.2 μg/L 0.5 μg/L	6 months	·
	(Cr) Cobalt	0.5 μg/L 0.2 μg/L	6 months	
	(Co) Copper	5 μg/L	6 months	
1	(Cu) Gold	0.1 µg/L	6 months 6 months	
s (mg/	(Ag) Lead (Pb)	0.2 μg/L	6 months	
Dissolved Metals (mg/L)	Lithium (Li)	5 µg/L	6 months	
olved	Manganese (Mn)	0.5 μg/L	6 months	
Olss	Molybdenum (Mo)	0.1 μg/L	6 months	
	Nickel (Ni)	0.5 µg/L	6 months	
	Selenium (Se)	5 µg/L	6 months	
	Strontium (Sr) Thallium	10 µg/L	6 months	
	(TI) Thorium	0.1 μg/L	6 months	
	(Th)	0.1 μg/L	6 months	
	(Sn) Titanium	5 µg/L 5 µg/L	6 months	
12	(Ti) Uranium	5 μg/L 0.1 μg/L	6 months	
	(U) Vanadium	0.5 μg/L	6 months	
	(V) Zinc	5 μg/L	6 months	
	(Zn) Iron - total (Fe)	5 μg/L	6 menths 6 months	ICP OES
	Nitrite as N (NO ₂)	0.01 mg/L	48 hrs	
nts (mg/L)	Nitrate as N (NO ₃)	0.01 mg/L	48 hrs	measured together
ents (Total Nitrogen Total Organic Carbon	0.01 mg/L	28 days	
Ž.	Total Organic Carbon (TOC) Total Kjeldahi	1 mg/L	28 days	
	Nitrogen (TKN)	0.1 mg/L Cost/sample	28 days	

Total Cost

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 20 August 2008

Attention: MR Daniel Pierce Due Date: 27 August 2008

Amdel Reference number: 08ENME0021986 Your Amdel Contact: Vanda Dabkowski

0395382267

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

N/A

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Custody Seals Intact (if used)

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	3
Conductivity in Water	4010	3
Gold (Au)	0000	3
Dissolved Metals in Water - ICP/AES	3200	3
Dissolved Metals in Water By ICP/MS	3100	3
	NEW_TEST01	3
pH in Water	4000	3
Dissolved Solids in Water	4110	3
TKN in Water by Titration	4540	3
TOC in Water By Analyser	4410	3
Total Nitrogen in Water by Calc	4941	3

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by: Duncan Harrison Date: Wed 20 August 2008

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0022255

Client Reference VE30064

Received Date 22/08/2008 12:00:00 AM

Customer Sample ID Labmark Sample No.			LR10 1140189	RTO5A 1140190	RTO5B 1140191	RTO7A 1140192	DUP 5 1140193
Date Sampled			20/08/2008	20/08/2008	20/08/2008	20/08/2008	20/08/2008
Metals							
Test/Reference	PQL	Unit					
3100 Low Level Dissolved Metals	s in Water						
Aluminium	1	μg/L	2.8	<1	<1	<1	<1
Antimony	1	μg/L	<1	1.1	2.9	1.4	<1
Arsenic	1	μg/L	<1	<1	<1	<1	<1
Barium	1	μg/L	34	47	200	45	35
Beryllium	1	μg/L	<1	<1	<1	<1	<1
Boron	1	μg/L	6700	6000	<1	7100	6900
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	1	μg/L	<1	<1	<1	<1	<1
Cobalt	1	μg/L	5.5	1.1	<1	1.6	5.0
Copper	1	μg/L	10	11	<1	21	11
Lead	1	μg/L	<1	<1	20	1.1	<1
Lithium	1	μg/L	370	420	6.6	400	340
Manganese	1	μg/L	550	230	29	3700	530
Molybdenum	1	μg/L	<1	<1	1.5	<1	<1
Nickel	1	μg/L	12	8.7	<1	18	14
Selenium	1	μg/L	52	53	30	39	53
Strontium	1	μg/L	20000	15000	16000	34000	19000
Гhallium	1	μg/L	<1	<1	3.8	<1	<1
Γin	1	μg/L	<1	<1	1.9	<1	<1
Titanium	1	μg/L	24	20	4.3	20	25
Jranium	1	μg/L	57	8.0	5.8	<1	58
√anadium	1	μg/L	<1	<1	<1	<1	<1
Zinc	1	μg/L	96	27	19	130	110
3200 Dissolved Metals in Water -		r3'-				.00	
Calcium	100	μg/L	1080000	915000	803000	1650000	1130000
Iron	100	μg/L	3230	28600	175	3710	3410
Magnesium	100	μg/L	938000	1270000	4890000	1180000	992000
Potassium	1000	μg/L	100000	170000	800000	120000	100000
Sodium	100	μg/L	11100000	17700000	88900000	17800000	11600000
Inorganics		P-9-					
Test/Reference	PQL	Unit					
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	37500	55500	130000	56900	37200
4000 pH in Water bH	0.1	рН	7.1	6.9	8.1	7.0	7.1
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	37000	53000	260000	55000	37000
4540 TKN in Water by Titration		ū					

Customer Sample ID Labmark Sample No. Date Sampled Inorganics			LR10 1140189 20/08/2008	RTO5A 1140190 20/08/2008	RTO5B 1140191 20/08/2008	RTO7A 1140192 20/08/2008	DUP 5 1140193 20/08/2008
Test/Reference	PQL	Unit					
TKN	1	mg/L	<1	<1	2.4	<1	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	<1	<1	<1	<1	<1
4941 Total Nitrogen in Water by Cald Total Nitrogen	2	mg N/L	3	<2	2	<2	2
4300 Anions in Water by IC Chloride	0.5	mg/L	13000	22000	130000	21000	12000
Fluoride	0.5	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrate as N	0.5	mg N/L	2.5	<0.5	<0.5	<0.5	2.0
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	3000	3600	10000	3600	2900
Miscellaneous Test/Reference	PQL	Unit					
Total Alkalinity as CaCo3*	-	mg/L	260	240	1260	150	250
Carbonate Alkalinity as CaCo3*	-	mg/L	0	0	0	0	0
Bicarbonate Alkalinity as CaCo3*	-	mg/L	260	240	1260	150	250
Silica*	-	mg/L	15	13.6	34.7	13.3	14.9

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Low Level Dissolved Metals in Water	26/08/2008	28/08/2008
3200 Dissolved Metals in Water - ICP/AES	26/08/2008	28/08/2008
4000 pH in Water		26/08/2008
4010 Conductivity in Water		26/08/2008
4110 Dissolved Solids in Water		28/08/2008
4300 Anions in Water by IC		30/08/2008
4410 TOC in Water By Analyser	27/08/2008	03/09/2008
4540 TKN in Water by Titration	27/08/2008	28/08/2008
4941 Total Nitrogen in Water by Calc		30/08/2008
NEW_TEST01		28/08/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278

Labmark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Labmark QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1144534 [Method Blank]			'	•	•	
3200 Dissolved Metals in Water - ICP/AES						
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	
1148996 [Method Blank]	•		•	•	•	
3100 Low Level Dissolved Metals in Water						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<1		< 1	Т	
Barium	μg/L	<1		< 1	Т	
Beryllium	μg/L	<1		< 1	Т	
Boron	μg/L	<1		< 1	Т	
Cadmium	μg/L	<0.2		< 0.2	Т	
Chromium	μg/L	<1		< 1	Т	
Cobalt	μg/L	<1		< 1	Т	
Copper	μg/L	<1		< 1	Т	
Lead	μg/L	<1		< 1	Т	
Manganese	μg/L	<1		< 1	Т	
Molybdenum	μg/L	<1		< 1	Т	
Nickel	μg/L	<1		< 1	Т	
Selenium	μg/L	<1		< 1	Т	
Tin	μg/L	<1		< 1	Т	
Vanadium	μg/L	<1		< 1	Т	
Zinc	μg/L	<1		< 1	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 First Reported: 3 September 2008 Page 3 of 6 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 329248

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1141365 [Duplicate of 1140189]	ł					•	
3200 Dissolved Metals in Water - ICP/AES			Result 2	RPD			
Calcium	μg/L	1120000	1080000	4	0-10 %	Т	
Iron	μg/L	3410	3230	5	0-10 %	Т	
Magnesium	μg/L	973000	938000	4	0-10 %	Т	
Sodium	μg/L	11200000	11100000	1	0-10 %	Т	
1141366 [Duplicate of 1140189]	•	•		•		•	
3100 Low Level Dissolved Metals in Water			Result 2	RPD			
Antimony	μg/L	<1	<1	N/A	N/A	N/A	
Arsenic	μg/L	<1	<1	<1	0-10 %	Т	
Barium	μg/L	35	34	1	0-10 %	Т	
Beryllium	μg/L	<1	<1	<1	0-10 %	Т	
Boron	μg/L	7000	6700	4	0-10 %	Т	
Cadmium	μg/L	<0.2	<0.2	<1	0-10 %	Т	
Chromium	μg/L	<1	<1	<1	0-10 %	Т	
Cobalt	μg/L	5.1	5.5	8	0-10 %	Т	
Copper	μg/L	10	10	<1	0-10 %	Т	
Lead	μg/L	<1	<1	N/A	N/A	N/A	
Lithium	μg/L	350	370	4	0-10 %	Т	
Manganese	μg/L	540	550	1	0-10 %	Т	
Molybdenum	μg/L	<1	<1	<1	0-10 %	Т	
Nickel	μg/L	14	12	9	0-10 %	Т	
Selenium	μg/L	54	52	3	0-10 %	Т	
Strontium	μg/L	20000	20000	<1	0-10 %	Т	
Thallium	μg/L	<1	<1	<1	0-10 %	Т	
Tin	μg/L	<1	<1	N/A	N/A	N/A	
Titanium	μg/L	24	24	N/A	N/A	N/A	
Uranium	μg/L	58	57	2	0-10 %	Т	
Vanadium	μg/L	<1	<1	<1	0-10 %	Т	
Zinc	μg/L	96	96	N/A	N/A	N/A	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1		Acceptance	Pass	Qualifying
				Limits	Limits	Codes
1141307 [Method Blank]				1		
4110 Dissolved Solids in Water		1				
Total Dissolved Solids	mg/L	<20		< 20	Т	
1141796 [Method Blank]						
4300 Anions in Water by IC		_				
Bromide	mg/L	<0.5		< 0.5	Т	
Chloride	mg/L	<0.5		< 0.5	Т	
Fluoride	mg/L	<0.5		< 0.5	Т	
Nitrate	mg/L	<0.5		< 0.5	Т	
Nitrite	mg/L	<0.5		< 0.5	Т	
Orthophosphate as P	mg/L	<0.5		< 0.5	Т	
Sulphate	mg/L	<0.5		< 0.5	Т	
1144255 [Method Blank]	•	•	•	•	•	
4110 Dissolved Solids in Water						
Total Dissolved Solids	mg/L	<20		< 20	Т	
1145150 [Method Blank]	•	•	:	-	•	
4410 TOC in Water By Analyser						
Total Organic Carbon	mg/L	<1		< 1	Т	
1145151 [Method Blank]	•		•	•	•	
4410 TOC in Water By Analyser						
Dissolved Organic Carbon	mg/L	<1		< 1	Т	
1145194 [Method Blank]	•			•		
4540 TKN in Water by Titration						
TKN	mg/L	<1		< 1	Т	

Laboratory: EN_WATERS

Units	Result 1			Acceptance		Qualifying
Office	TCSuit 1			Limits	Limits	Codes
		Evaceted Value	Dargant Daggyony			
ma/l	gan		1	90-110 %	Т	
IIIg/L	990	1000.0	99	90-110 /0	+ '	
		Evaceted Value	Dargant Daggyon/			
ma/l	aa	 	 	80-120 %	Т	
1		-				
<u> </u>						
1		-				
<u> </u>		-				
				80-120 %		
1	100	100.0	104	80-120 %	Т	
, ,		1	 		-	
		Expected Value	Percent Recovery			
uS/cm	1430		1	N/A	N/A	
po/o		1.071	1,1,7,1		1.07	
		Evnected Value	Percent Pecovery			
ma/l	990	 	1	90-110 %	т	
mg/L	390	1000.0	59	JU-110 /0	+-	
		Expected Value	Percent Peccusar			
ma/l	11	+	t t	80 120 º/	т	
mg/L		10.0	109	OU-12U 70	+ '	
		1 =	15 15 1			
//	0.0	<u> </u>	t	00.400.0/	1 -	
mg/L	9.8	10.0	98	80-120 %	_ '	
		1	1			
		 	 		1 _	
mg/L	100	100.0	102	80-120 %	Т	
	1	Result 2	RPD			
<u> </u>			-			
<u> </u>		+				
<u> </u>						
mg/L	3000	3000	<1	0-10 %	Т	
		1				
		+			_	
μS/cm	37500	37500	<1	0-10 %	Т	
		1				
		Result 2	RPD			
pН	7.1	7.1	0.0	0-0.2 pH	Т	
	•	Result 2	RPD			
mg/L	38000	37000	1	0-10 %	Т	
		Result 2	RPD			
mg/L	<1	<1	<1	0-20 %	T	
•	•				•	
		Result 2	RPD		_	
_	_			0-10 %	Т	
mg/L	<1	<1	<1	0-10 76		
mg/L	<1	<1	<1	0-10 %	 '	
mg/L	<1	<1 Spike Value	Percent Recovery	0-10 /6	- -	
mg/L	<1 27	-		N/A	N/A	
		Spike Value	Percent Recovery		· · · · · ·	
mg N/L	27	Spike Value N/A	Percent Recovery N/A	N/A	N/A	
mg N/L	27	Spike Value N/A	Percent Recovery N/A	N/A	N/A	
	mg/L	mg/L 990 mg/L 100 mg/L 100 mg/L 120 mg/L 100 mg/L 100 mg/L 100 mg/L 100 mg/L 11 mg/L 9.8 mg/L 13000 mg/L <0.5	Expected Value mg/L 990 1000.0	Expected Value Percent Recovery mg/L 990 1000.0 99	Dints Result 1	Chits

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1141374 [Spike of 1140190]							
4410 TOC in Water By Analyser			Spike Value	Percent Recovery			
Total Organic Carbon	mg/L	12	10.0	115	80-120 %	Т	

Sample Integrity

Authorised By

Helen Lei

Carol Cawrse Client Services Officer
Ruth Callander Client Services Officer
Mark Herbstreit Senior Analyst - Metals

Senior Analyst - Metals Accreditation Number: 1645 Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

	Analytes	Limits of Reporting (LOR)	Maximum holding tin	
s	ample Batch fee			
Major Cations (mg/L)	Calcium (Ca) Magneslum (Mg) Sodlum (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L)	(K) Calcium Carbona (CaCO ₃) Sulphate (SO ₄) Chloride (CI)	1 mg/L	48 Hrs	
Major Aı	Carbonate (CO₃) Bicarbonate	1 mg/L		
	(HCO ₃) TDS (mg/L)	1 mg/L	20.4	
<u>.</u>	EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units) Fluoride	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Silica (Si)			
	Aluminum	10 µg/L		
	(AI) Antimony		6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb) Arsenic	0.5 µg/L	6 months	
	(As) Barium	0.5 μg/L	6 months	
	(Ba)	5 µg/L	6 months	
	Beryllium (Be)	0.1 µg/L	6 months	· · · · · · · · · · · · · · · · · · ·
5 1 a.s.	Boron (B)	100 µg/L	6 months	
	Cadmium (Cd)	0.2 µg/L	_	
	Chromlum	0.5 μg/L	6 months	
	(Cr) Cobalt		6 months	
	(Co) Copper	0.2 µg/L	6 months	
	(Cu)	5 µg/L	6 months	
g/L)	Gold (Ag)	0.1 µg/L	6 months	
lls (m	Lead (Pb)	0.2 μg/L	6 months	
Meta	Lithium (Li)	5 μg/L	6 months	
Dissolved Metals (mg/L)	Manganese (Mn)	0.5 µg/L		
Disso	Molybdenum	0.1 µg/L	6 months	
	(Mo) Nickel	-	6 months	
	(Ni) Selenium	0.5 µg/L	6 months	
	(Se)	5 μg/L	6 months	
	Strontium (Sr)	10 µg/L	6 months	·
	Thallium (TI)	0.1 μg/L,	6 months	
	Thorium (Th)	0.1 µg/L	6 months	
	Tin (Sn)	5 µg/L	•	
	Titanium	5 µg/L	6 months	
	(Ti) Uranlum	0.1 μg/L	6 months	
-	(U) Vanadium	 -	6 months	
	(V) Zinc	0.5 μg/L	6 months	-
	(Zn) Iron - total	5 µg/L	6 months	
	(Fe)	5 μg/L,	6 months	ICP OES
19/7)	Nitrite as N (NO ₂)	0.01 mg/L 0.01 mg/L	48 hrs	measured together
į,	(NO ₃) Total Nitrogen	0.01 mg/L	48 hrs 28 days	
	fotal Organic Carbon	1 mg/L		
Z	(TOC) Total Kjeldahl	0.1 mg/L	28 days	·
	Nitrogen (TKN)	Cost/sample	28 days	

Total Cost

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 22 August 2008

Attention: MR Daniel Pierce Due Date: 29 August 2008

Amdel Reference number: 08ENME0022255 Your Amdel Contact: Vanda Dabkowski

0395382267

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	Yes
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Custody Seals Intact (if used)	N/A

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	5
Conductivity in Water	4010	5
Dissolved Metals in Water - ICP/AES	3200	5
Low Level Dissolved Metals in Water	3100	5
	NEW_TEST01	5
pH in Water	4000	5
Dissolved Solids in Water	4110	5
TKN in Water by Titration	4540	5
TOC in Water By Analyser	4410	5
Total Nitrogen in Water by Calc	4941	5

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by : Kim Jolly Date : Fri 22 August 2008

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0022217

Client Reference VE30064

Received Date 22/08/2008 12:00:00 AM

Customer Sample ID Labmark Sample No. Date Sampled			RT03 1139820 20/08/2008	PT66 1139821 20/08/2008	PT42 1139822 20/08/2008	PT44 1139823 20/08/2008	DUP4 1139824 20/08/2008
Metals Test/Reference	PQL	Unit					
3100 Low Level Dissolved Metals i	n Water						
Aluminium	1	μg/L	<1	<1	<1	27	<1
Antimony	1	μg/L	<1	6.0	1.5	<1	<1
Arsenic	1	μg/L	<1	<1	<1	<1	<1
Barium	1	μg/L	19	550	59	45	19
Beryllium	1	μg/L	<1	<1	<1	<1	<1
Boron	1	μg/L	6900	<1	4800	5900	7000
Cadmium	0.2	μg/L	<0.2	0.5	<0.2	<0.2	<0.2
Chromium	1	μg/L	3.0	<1	2.3	2.9	3.2
Cobalt	1	μg/L	<1	2.2	3.0	3.6	<1
Copper	1	μg/L	4.4	3.2	18	13	4.7
Lead	1	μg/L	<1	1500	2.3	<1	<1
Lithium	1	μg/L	620	18	450	370	630
Manganese	1	μg/L	530	80	66	270	520
Molybdenum	1	μg/L	5.6	17	11	100	5.0
Nickel	1	μg/L	11	6.7	43	26	12
Selenium	1	μg/L	19	65	57	54	22
Strontium	1	μg/L	6500	16000	17000	14000	6300
Thallium	1	μg/L	<1	22	<1	<1	<1
Tin	1	μg/L	<1	<1	<1	<1	<1
Titanium	1	μg/L	10	6.2	29	29	17
Uranium	1	μg/L	3.0	8.7	35	17	3.0
Vanadium	1	μg/L	1.6	<1	<1	<1	1.9
Zinc	1	μg/L	<1	170	88	40	<1
3200 Dissolved Metals in Water - IC	P/AES	-					
Calcium	100	μg/L	604000	741000	1070000	818000	603000
Iron	100	μg/L	3120	239	<100	8250	2740
Magnesium	100	μg/L	343000	5200000	1230000	1100000	342000
Potassium	1000	μg/L	64000	800000	220000	200000	78000
Sodium	100	μg/L	6070000	87700000	20900000	18200000	6030000
Inorganics							
Test/Reference	PQL	Unit					
4010 Conductivity in Water							
Electrical Conductivity	20	μS/cm	20200	20100	55400	44200	20300
4000 pH in Water	0.4	-11	7.0	7.0	7.4	7.0	7.0
pH	0.1	pН	7.2	7.0	7.1	7.0	7.3
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	20000	260000	59000	51000	19000
4540 TKN in Water by Titration							

Customer Sample ID Labmark Sample No. Date Sampled Inorganics			RT03 1139820 20/08/2008	PT66 1139821 20/08/2008	PT42 1139822 20/08/2008	PT44 1139823 20/08/2008	DUP4 1139824 20/08/2008
Test/Reference	PQL	Unit					
TKN	1	mg/L	<1	4.0	<1	<1	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	<1	11	<1	1.1	<1
4941 Total Nitrogen in Water by Calc Total Nitrogen	2	mg N/L	<2	4	<2	<2	<2
4300 Anions in Water by IC Chloride	0.5	mg/L	4900	150000	21000	18000	4900
Fluoride	0.5	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrate as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	3800	9600	3500	2900	3500
Miscellaneous Test/Reference	PQL	Unit					
Total Alkalinity as CaCo3*	-	mg/L	200	96	180	230	200
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	200	96	180	230	200
Silica*	-	mg/L	12.7	30	7.96	13.9	13

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Low Level Dissolved Metals in Water	27/08/2008	28/08/2008
3200 Dissolved Metals in Water - ICP/AES	26/08/2008	28/08/2008
4000 pH in Water		26/08/2008
4010 Conductivity in Water		26/08/2008
4110 Dissolved Solids in Water		28/08/2008
4300 Anions in Water by IC		02/09/2008
4410 TOC in Water By Analyser	26/08/2008	28/08/2008
4540 TKN in Water by Titration	26/08/2008	27/08/2008
4941 Total Nitrogen in Water by Calc		02/09/2008
NEW_TEST01		03/09/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278

Labmark Internal Quality Control Review

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
 are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Labmark QC Acceptance/Rejection criteria are available on request.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quotes PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Codes
1144546 [Method Blank]	_	•	•	•	
3200 Dissolved Metals in Water - ICP/AES					
Calcium	μg/L	<100	< 100	Т	
Iron	μg/L	<100	< 100	Т	
Magnesium	μg/L	<100	< 100	Т	
Potassium	μg/L	<1000	< 1000	Т	
Sodium	μg/L	<100	< 100	Т	
1146517 [Method Blank]	•	•	•	•	
3100 Low Level Dissolved Metals in Water					
Antimony	μg/L	<1	< 1	Т	
Arsenic	μg/L	<1	<1	Т	
Barium	μg/L	<1	< 1	Т	
Beryllium	μg/L	<1	< 1	Т	
Boron	μg/L	<1	< 1	Т	
Cadmium	μg/L	<0.2	< 0.2	Т	
Chromium	μg/L	<1	< 1	Т	
Cobalt	μg/L	<1	< 1	Т	
Copper	μg/L	<1	< 1	Т	
Lead	μg/L	<1	< 1	Т	
Manganese	μg/L	<1	<1	Т	
Molybdenum	μg/L	<1	< 1	Т	
Nickel	μg/L	<1	< 1	Т	
Selenium	μg/L	<1	<1	Т	
Tin	μg/L	<1	<1	Т	
Vanadium	μg/L	<1	< 1	Т	
Zinc	μg/L	<1	< 1	Т	

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1140216 [Duplicate of 1139820]			ļ	ļ			33435
3200 Dissolved Metals in Water - ICP/AES			Result 2	RPD			
Calcium	μg/L	617000	604000	2	0-10 %	Т	
Iron	μg/L	3110	3120	<1	0-10 %	Т	
Magnesium	μg/L	349000	343000	2	0-10 %	Т	
Potassium	μg/L	75000	64000	N/A	N/A	N/A	
Sodium	μg/L	6030000	6070000	1	0-10 %	Т	
1140217 [Duplicate of 1139820]	•		•			•	
3100 Low Level Dissolved Metals in Water			Result 2	RPD			
Aluminium	μg/L	<1	<1	<1	0-10 %	Т	
Antimony	μg/L	<1	<1	<1	0-10 %	Т	
Arsenic	μg/L	<1	<1	<1	0-10 %	Т	
Barium	μg/L	18	19	6	0-10 %	Т	
Beryllium	μg/L	<1	<1	<1	0-10 %	Т	
Boron	μg/L	7000	6900	1	0-10 %	Т	
Cadmium	μg/L	<0.2	<0.2	<1	0-10 %	Т	
Chromium	μg/L	3.1	3.0	6	0-10 %	Т	
Cobalt	μg/L	<1	<1	<1	0-10 %	Т	
Copper	μg/L	4.4	4.4	N/A	N/A	N/A	
Lead	μg/L	<1	<1	<1	0-10 %	Т	
Lithium	μg/L	640	620	3	0-10 %	Т	
Manganese	μg/L	530	530	<1	0-10 %	Т	
Molybdenum	μg/L	5.6	5.6	N/A	N/A	N/A	
Nickel	μg/L	11	11	N/A	N/A	N/A	
Selenium	μg/L	23	19	N/A	N/A	N/A	
Strontium	μg/L	6100	6500	6	0-10 %	Т	
Thallium	μg/L	<1	<1	<1	0-10 %	Т	
Tin	μg/L	<1	<1	<1	0-10 %	Т	
Titanium	μg/L	14	10	N/A	N/A	N/A	
Uranium	μg/L	3.0	3.0	2	0-10 %	Т	
Vanadium	μg/L	1.8	1.6	8	0-10 %	Т	
Zinc	μg/L	<1	<1	<1	0-10 %	Т	

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1141307 [Method Blank]	_		1	 	Limito	Liiiito	00000
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1141796 [Method Blank]	•	•	•	•		•	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1143092 [Method Blank]	•	•	•			•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1143282 [Method Blank]		•	•			•	
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1143283 [Method Blank]	•	•	•	•		•	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1141308 [Laboratory Control Sample]	•	•	•	•		•	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	990	1000.0	99	90-110 %	Т	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1141798 [Laboratory Control Sample]	ļ		+	+			
4300 Anions in Water by IC			Expected Value	Percent Recovery			
Bromide	mg/L	99	100.0	99	80-120 %	Т	
Chloride	mg/L	100	100.0	101	80-120 %	Т	
Fluoride	mg/L	100	100.0	103	80-120 %	Т	
Nitrate	mg/L	120	100.0	120	80-120 %	Т	
Nitrite	mg/L	90	100.0	90	80-120 %	Т	
Orthophosphate as P	mg/L	100	100.0	101	80-120 %	Т	
Sulphate	mg/L	100	100.0	104	80-120 %	Т	
1141889 [Laboratory Control Sample]	•		•			•	
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1430	N/A	N/A	N/A	N/A	
1143094 [Laboratory Control Sample]	1	•	•	•		•	
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	96	100.0	96	80-120 %	Т	
1143284 [Laboratory Control Sample]			+	+ +		•	
4410 TOC in Water By Analyser			Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	11	10.0	106	80-120 %	Т	
1143285 [Laboratory Control Sample]	<u> </u>	ļ	+	+			
4410 TOC in Water By Analyser			Expected Value	Percent Recovery			
Dissolved Organic Carbon	mg/L	11	10.0	107	80-120 %	Т	
1140214 [Duplicate of 1139820]	9.2		10.0	1	00 120 70	+ ·	
4300 Anions in Water by IC			Result 2	RPD			
Chloride	mg/L	4900	4900	<1 <1	0-10 %	Т	
Fluoride	mg/L	<0.5	<0.5	<1	0-10 %	т	
Nitrate as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	
Nitrite as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	
Sulphate	mg/L	3500	3800	9	0-10 %	T	
1140215 [Duplicate of 1139820]				+ +		-1	
4010 Conductivity in Water			Result 2	RPD			
Electrical Conductivity	μS/cm	20100	20200	<1	0-10 %	Т	
1140219 [Duplicate of 1139820]	ролон	20.00	20200	+	0.070	<u> </u>	
4000 pH in Water			Result 2	RPD			
pH	pН	7.4	7.2	0.2	0-0.2 pH	Т	
1140220 [Duplicate of 1139820]	Pii	7	1.2	0.2	0-0.2 pm	+ -	
4110 Dissolved Solids in Water			Popult 2	DDD I			
Total Dissolved Solids	ma/l	19000	Result 2 20000	RPD 4	0-10 %	Т	
	mg/L	19000	20000	+ +	0-10 /0	+ '	
1140221 [Duplicate of 1139820]			D 11.0	DDD I			
4540 TKN in Water by Titration TKN	ma/l	<1	Result 2	RPD <1	0-20 %	Т	
	mg/L	~1			0-20 %	<u> </u>	
1140235 [Duplicate of 1139820]							
4410 TOC in Water By Analyser	,		Result 2	RPD	0.400'	-	
Total Organic Carbon	mg/L	<1	<1	<1	0-10 %	Т	
1140241 [Spike of 1139821]			1 -	1			
4300 Anions in Water by IC		l	Spike Value	Percent Recovery			
Nitrate as N	mg N/L	23	N/A	N/A	N/A	N/A	
Nitrite as N	mg N/L	30	N/A	N/A	N/A	N/A	
1140243 [Spike of 1139821]				, ,			
4540 TKN in Water by Titration			Spike Value	Percent Recovery			
TKN	mg/L	110	100.0	104	80-120 -	Т	
1140244 [Spike of 1139821]							
4410 TOC in Water By Analyser	1		Spike Value	Percent Recovery			
Total Organic Carbon	mg/L	21	10.0	105	80-120 %	Т	

Sample Integrity

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

Yes

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Helen Lei Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

Accreditation Number: 1645

ENVIRONMENTAL LABORATORIES
Certificate of Analysis

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0023416

Client Reference VE30064 Order Number VE30064

Received Date 03/09/2008 09:00:00 AM

Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled			RT01 WATER 1156682 01/09/2008	RT05C WATER 1156683 01/09/2008	RT07B WATER 1156684 02/09/2008	RT04A WATER 1156685 02/09/2008
Metals Fest/Reference	PQL	Unit				
3100 Low Level Dissolved Meta	ls in Water					
Aluminium	1	μg/L	18	17	22	120
Antimony	1	μg/L	3.3	2.3	1.4	<1
Arsenic	1	μg/L	^{G01} <80	^{G01} <90	<70	<20
Barium	1	μg/L	110	76	100	29
Beryllium	1	μg/L	<1	<1	<1	<1
Boron	1	μg/L	5700	2800	3100	7300
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2
Chromium	1	μg/L	4.6	2.8	2.0	5.4
Cobalt	1	μg/L	73	28	2.7	<1
Copper	1	μg/L	140	92	46	4.6
_ead	1	μg/L	19	28	<1	<1
_ithium	1	μg/L	3100	1600	4900	610
Manganese	1	μg/L	6200	2200	5300	410
Molybdenum	1	μg/L	27	12	7.5	3.4
Nickel	1	μg/L	84	48	27	11
Selenium	1	μg/L	150	110	83	36
Strontium	1	μg/L	18000	17000	44000	15000
Гhallium	1	μg/L	25	10	<1	<1
Γin	1	μg/L	3.3	2.1	1.2	<1
Fitanium	1	μg/L	71	78	48	18
Jranium	1	μg/L	8.5	16	5.0	1.4
/anadium	1	μg/L	<1	<1	<1	<1
Zinc	1	μg/L	590	760	94	40
3200 Dissolved Metals in Water	- ICP/AES	=				
Calcium	100	μg/L	796000	911000	2040000	982000
ron	100	μg/L	282	555	3190	2450
Magnesium	100	μg/L	4160000	6200000	2040000	772000
Potassium	1000	μg/L	1000000	890000	630000	160000
Sodium	100	μg/L	71400000	117000000	57900000	9490000
norganics						
Fest/Reference	PQL	Unit				
1010 Conductivity in Water Electrical Conductivity	20	μS/cm	132000	140000	120000	35600
4000 pH in Water ⊳H	0.1	рН	6.9	6.5	6.9	7.2

Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled Inorganics			RT01 WATER 1156682 01/09/2008	RT05C WATER 1156683 01/09/2008	RT07B WATER 1156684 02/09/2008	RT04A WATER 1156685 02/09/2008
Test/Reference	PQL	Unit				
Total Dissolved Solids	20	mg/L	200000	240000	150000	31000
4540 TKN in Water by Titration TKN	1	mg/L	8.4	<1	6.5	<1
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	28	8.9	6.1	1.0
4941 Total Nitrogen in Water by Ca Total Nitrogen	alc 2	mg N/L	8	<2	6	<2
4300 Anions in Water by IC Chloride	0.5	mg/L	100000	130000	78000	12000
Fluoride	0.5	mg/L	<0.5	<0.5	<0.5	<0.5
Nitrate as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	9200	10000	5300	3100
Miscellaneous Test/Reference	PQL	Unit				
Total Alkalinity as CaCo3*	-	mg/L	130	75	91	270
Carbonate Alkalinity as CaCo3*	-	mg/L	0	0	0	0
Bicarbonate Alkalinity as CaCo3*	-	mg/L	130	75	91	270
Silica*	-	mg/L	5.5	6.4	6.5	11.4

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Low Level Dissolved Metals in Water	03/09/2008	08/09/2008
3200 Dissolved Metals in Water - ICP/AES	03/09/2008	04/09/2008
4000 pH in Water		05/09/2008
4010 Conductivity in Water		05/09/2008
4110 Dissolved Solids in Water		05/09/2008
4300 Anions in Water by IC	04/09/2008	10/09/2008
4410 TOC in Water By Analyser		17/09/2008
4540 TKN in Water by Titration	04/09/2008	05/09/2008
4941 Total Nitrogen in Water by Calc		05/09/2008
NEW_TEST01		04/09/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times $\,$

Labmark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Matrix spike recoveries are calculated on an 'As Received' basis; the parent sample result is moisture corrected after the % recovery is determined.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1157162 [Method Blank]	-	•	•	•		
3100 Low Level Dissolved Metals in Water						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<1		< 1	Т	
Barium	μg/L	<1		< 1	Т	
Beryllium	μg/L	<1		< 1	Т	
Boron	μg/L	<1		< 1	Т	
Cadmium	μg/L	<0.2		< 0.2	Т	
Chromium	μg/L	<1		< 1	Т	
Cobalt	μg/L	<1		< 1	Т	
Copper	μg/L	<1		< 1	Т	
Lead	μg/L	<1		< 1	Т	
Manganese	μg/L	<1		< 1	Т	
Molybdenum	μg/L	<1		< 1	Т	
Nickel	μg/L	<1		< 1	Т	
Selenium	μg/L	<1		< 1	Т	
Tin	μg/L	<1		< 1	Т	
Vanadium	μg/L	<1		< 1	Т	
Zinc	μg/L	1.5		< 1	F	
1157834 [Method Blank]	•	•			•	
3200 Dissolved Metals in Water - ICP/AES						
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 First Reported: 10 September 2008 Page 3 of 5 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 332183

Date Printed: 17 September 2008

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1157163 [Laboratory Control Sample]	•	•	•	-		•	
3100 Low Level Dissolved Metals in Water			Expected Value	Percent Recovery			
Antimony	μg/L	100	100.0	101	80-120 %	Т	
Arsenic	μg/L	100	100.0	104	80-120 %	Т	
Barium	μg/L	100	100.0	100	80-120 %	Т	
Beryllium	μg/L	110	100.0	106	80-120 %	Т	
Cadmium	μg/L	100	100.0	105	80-120 %	Т	
Chromium	μg/L	100	100.0	101	80-120 %	Т	
Cobalt	μg/L	100	100.0	103	80-120 %	Т	
Copper	μg/L	100	100.0	101	80-120 %	Т	
Lead	μg/L	100	100.0	100	80-120 %	Т	
Manganese	μg/L	100	100.0	103	80-120 %	Т	
Molybdenum	μg/L	110	100.0	105	80-120 %	Т	
Nickel	μg/L	100	100.0	103	80-120 %	Т	
Selenium	μg/L	100	100.0	103	80-120 %	Т	
Tin	μg/L	110	100.0	110	80-120 %	Т	
Vanadium	μg/L	100	100.0	100	80-120 %	Т	
Zinc	μg/L	100	100.0	102	80-120 %	Т	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1157225 [Method Blank]			+	+			
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1158081 [Method Blank]	•		•			•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1158263 [Method Blank]	•		•			•	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1158477 [Method Blank]		•	•			•	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1157227 [Laboratory Control Sample]							
4410 TOC in Water By Analyser			Expected Value	Percent Recovery		_	
Total Organic Carbon	mg/L	8.6	10.0	86	80-120 %	Т	
1158083 [Laboratory Control Sample]	•	•	•			•	
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	88	100.0	88	80-120 %	Т	
1158170 [Laboratory Control Sample]		•	•			•	
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1420	N/A	N/A	N/A	N/A	
1158264 [Laboratory Control Sample]						•	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	970	1000.0	97	90-110 %	Т	

Date Printed: 17 September 2008

Laboratory: EN_WATERS

Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
_		Expected Value	Percent Recovery			
mg/L	96	100.0	96	80-120 %	T	
mg/L	98	100.0	98	80-120 %	Т	
mg/L	96	100.0	96	80-120 %	Т	
mg/L	120	100.0	118	80-120 %	Т	
mg/L	80	100.0	80	80-120 %	Т	
mg/L	100	100.0	101	80-120 %	Т	
mg/L	100	100.0	101	80-120 %	Т	
	mg/L mg/L mg/L mg/L mg/L	mg/L 96 mg/L 98 mg/L 96 mg/L 120 mg/L 80 mg/L 100	Expected Value mg/L 96 100.0 mg/L 98 100.0 mg/L 96 100.0 mg/L 120 100.0 mg/L 80 100.0 mg/L 100 100.0	Expected Value Percent Recovery mg/L 96 100.0 96 mg/L 98 100.0 98 mg/L 96 100.0 96 mg/L 120 100.0 118 mg/L 80 100.0 80 mg/L 100 100.0 101	Units Result 1 Limits Expected Value Percent Recovery mg/L 96 100.0 96 80-120 % mg/L 98 100.0 98 80-120 % mg/L 96 100.0 96 80-120 % mg/L 120 100.0 118 80-120 % mg/L 80 100.0 80 80-120 % mg/L 100 100.0 101 80-120 %	Columb

Report Results Information

TOC EML - accreditation # 2731 - report # N005887

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

G01 The PQLs have been raised due to Matrix Interference

Authorised By

Carol Cawrse Client Services Officer

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645

Helen Lei Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

 First Reported: 10 September 2008
 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168
 Page 5 of 5

 Date Printed: 17 September 2008
 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278
 Final Report Number : 332183

From : SKM Ptv Ltd ABN: 37 001 024 095 Level 5, 33 King William St, Adelaide, SA 5000 ph: (08) 8424 3800 fax: (08) 8424 3810 500 125ml 125ml plastic glass plastic plastic QUOTE NUMBER VE30064 Job Code: or enions, TDS, pH, EC, FI, 8, NO2, Total Nirogen and 7 roject Manager: Due Date: Daniel Pierce Major Cations, Siand Diesolv Metals Custody seal intact? ORC Ultra Trade Sample cold? Alistair Walsh / Michael 6 700 eceived for Laboratory by Major NO3, Lab ld Tick required analytes Time 8010010 RTOI RTOI 1201 MUD RTO RT 05c 12+05L 2050 ield Filtered (17640) RTOS (Field Filtered - HOLD SAMPLE LTOT b 02 00/08 RTOTS x2 unlas RT076 RT076 (11040) 02/09/08 RT04 m RTO4 a x 2 voles 4 25049 Freld filling X ı • CHOLD RT040 TOTAL Notes:

Please email awaish@skm.com.au and dpierce@skm.com.au reults and upon receival of samples

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 3 September 2008

Attention: MR Daniel Pierce Due Date: 10 September 2008

Amdel Reference number: 08ENME0023416 Your Amdel Contact: Carol Cawrse

+61 3 9538 2277

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	Yes
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Custody Seals Intact (if used)	N/A

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	4
Conductivity in Water	4010	4
Dissolved Metals in Water - ICP/AES	3200	4
Low Level Dissolved Metals in Water	3100	4
	NEW_TEST01	4
pH in Water	4000	4
Dissolved Solids in Water	4110	4
TKN in Water by Titration	4540	4
TOC in Water By Analyser	4410	4
Total Nitrogen in Water by Calc	4941	4

<u>Note</u>

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by : James Taylor Date : Wed 3 September 2008

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0023714

Client Reference VE30064

Received Date 05/09/2008 09:00:00 AM

Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled			RT04b WATER 1160528 03/09/2008	RT09 WATER 1160529 03/09/2008	QT2 WATER 1160530 04/09/2008	LP2 WATER 1160531 04/09/2008	Duplicate 6 WATER 1160532 04/09/2008
Metals Test/Reference	PQL	Unit					
3100 Low Level Dissolved Met	tals in Water						
Aluminium	1	μg/L	18	20	39	24	18
Antimony	1	μg/L	<1	<1	<1	<1	<1
Arsenic	1	μg/L	^{G01} <100	<1	<1	<1	<1
Barium	1	μg/L	150	32	29	18	19
Beryllium	1	μg/L	<1	<1	<1	<1	<1
Boron	1	μg/L	5600	7800	6000	12000	12000
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	1	μg/L	7.5	2.6	2.7	6.8	8.7
Cobalt	1	μg/L	3.8	<1	<1	67	66
Copper	1	μg/L	32	6.6	6.7	84	93
Lead	1	μg/L	1.8	<1	<1	<1	<1
Lithium	1	μg/L	11000	880	910	880	870
Manganese	1	μg/L	2800	510	1600	2800	2700
Molybdenum	1	μg/L	8.9	<1	2.4	<1	<1
Nickel	1	μg/L	29	10	5.9	31	29
Selenium	1	μg/L	160	26	70	38	36
Strontium	1	μg/L	50000	12000	9400	14000	13000
Thallium	1	μg/L	<1	<1	<1	<1	<1
Tin	1	μg/L	<1	<1	<1	<1	<1
Titanium	1	μg/L	1.9	49	6.8	3.8	2.9
Uranium	1	μg/L	1.8	<1	<1	74	77
Vanadium	1	μg/L	<1	<1	<1	1.4	1.7
Zinc	1	μg/L	42	28	19	79	76
3200 Dissolved Metals in Wate		r5'-				. •	. •
Calcium	100	μg/L	2690000	829000	469000	800000	799000
Iron	100	μg/L	276	9390	115	15600	15600
Magnesium	100	μg/L	1540000	719000	877000	850000	852000
Potassium	1000	μg/L	790000	85000	86000	61000	62000
Sodium	100	μg/L	8300000	10100000	14400000	6510000	6330000
Inorganics Test/Reference	PQL	Unit					
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	124000	30500	39200	25200	25400
4000 pH in Water pH	0.1	рН	6.9	7.0	8.3	6.7	6.8
4110 Dissolved Solids in Wate Total Dissolved Solids	e r 20	mg/L	170000	26000	38000	22000	23000

Date Printed: 16 September 2008

Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled			RT04b WATER 1160528 03/09/2008	RT09 WATER 1160529 03/09/2008	QT2 WATER 1160530 04/09/2008	LP2 WATER 1160531 04/09/2008	Duplicate 6 WATER 1160532 04/09/2008
Inorganics Test/Reference	PQL	Unit					
4540 TKN in Water by Titration	1	mg/L	7.9	<1	2.9	9.4	11
4410 TOC in Water By Analyser Total Organic Carbon*	1	mg/L	33	1.6	2.7	3.4	3.4
4941 Total Nitrogen in Water by Ca Total Nitrogen	alc 2	mg N/L	8	<2	3	9	11
4300 Anions in Water by IC Chloride	0.5	mg/L	65000	9900	13000	5700	5500
Fluoride	0.5	mg/L	<0.5	<0.5	<0.5	1.5	1.5
Nitrate as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	3600	2600	4500	4300	4100
Miscellaneous							
Test/Reference	PQL	Unit					
Total Alkalinity as CaCo3*	-	mg/L	100	380	140	920	940
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	100	380	140	920	940
Silica*	_	mg/L	10	15	6.9	29.5	29.3
Customer Sample ID			RB2	RB1			
Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled			RB2 WATER 1160533 04/09/2008	RB1 WATER 1160534 04/09/2008			
Sample Matrix Labmark Sample No. Date Sampled Metals	PQL	Unit	WATER 1160533	WATER 1160534			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i	n Water		WATER 1160533 04/09/2008	WATER 1160534 04/09/2008			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference		μg/L	WATER 1160533	WATER 1160534			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony	n Water	μg/L μg/L	WATER 1160533 04/09/2008	WATER 1160534 04/09/2008			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic	n Water	μg/L μg/L μg/L	WATER 1160533 04/09/2008 20 <1 <1	WATER 1160534 04/09/2008 9.5 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium	n Water 1	μg/L μg/L	WATER 1160533 04/09/2008 20 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium	in Water 1 1 1 1 1	µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium	in Water 1 1 1 1	μg/L μg/L μg/L μg/L	WATER 1160533 04/09/2008 20 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium	1 1 1 1 1 0.2	µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <1 <1 <1 <0.2			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	n Water 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt	1 1 1 1 1 0.2	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	1 1 1 1 0.2 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	1 1 1 1 0.2 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <1 <1 <1 <0.2 <1 <1 <2.3 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead	1 1 1 1 0.2 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <0.2 <1 <1 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <1 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4 <0.4	9.5 <1 <1 <1 <1 <20.2 <1 <1 <2.3 <1 <1 <2.3 <1 <1 <1 <2.3 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium	1 1 1 1 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <1 <1 <1 <0.2 <1 <1 <2.3 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt	1 1 1 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <20.2 <1 <1 <2.3 <1 <1 <2.3 <1 <1 <1 <2.3 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium Manganese	1 1 1 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <0.2 <1 <1 1.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <1 <20.2 <1 <1 <21 <21 <1 <21 <1 <21 <1 <21 <1 <21 <1 <21 <2			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium Manganese Molybdenum Nickel	1 1 1 0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <0.2 <1 1.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <20.2 <1 <1 <2.3 <1 <1 <1 <2.3 <1 <1 <1 <2.3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium Manganese Molybdenum Nickel Selenium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <0.2 <1 <1 1.4 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <1 <2.3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium Manganese Molybdenum	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	9.5 <1 <1 <1 <1 <20.2 <1 <1 <2.3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium Manganese Molybdenum Nickel Selenium Strontium Thallium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1 <1 <1 <1 <20.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals i Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Lithium Manganese Molybdenum Nickel Selenium Strontium	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1160533 04/09/2008 20 <1 <1 <1 <1 <0.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	WATER 1160534 04/09/2008 9.5 <1 <1 <1 <1 <1 <2.3 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1			

First Reported: 12 September 2008 Date Printed: 16 September 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278

Page 2 of 7

Customer Sample ID Sample Matrix			RB2 WATER	RB1 WATER	
Labmark Sample No.			1160533	1160534	
Date Sampled			04/09/2008	04/09/2008	
Metals					
Test/Reference	PQL	Unit			
Vanadium	1	μg/L	<1	<1	
Zinc	1	μg/L	29	55	
3200 Dissolved Metals in Water -	ICP/AES				
Calcium	100	μg/L	201	225	
Iron	100	μg/L	<100	<100	
Magnesium	100	μg/L	<100	<100	
Potassium	1000	μg/L	<1000	<1000	
Sodium	100	μg/L	<100	<100	
Inorganics					
Test/Reference	PQL	Unit			
4410 TOC in Water By Analyser					
Total Organic Carbon*	1	mg/L	1.2	1.4	
Miscellaneous					
Test/Reference	PQL	Unit			
Silica*	-	mg/L	<1	<1	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Low Level Dissolved Metals in Water	05/09/2008	10/09/2008
3200 Dissolved Metals in Water - ICP/AES	05/09/2008	08/09/2008
4000 pH in Water		09/09/2008
4010 Conductivity in Water		09/09/2008
4110 Dissolved Solids in Water		10/09/2008
4300 Anions in Water by IC	08/09/2008	10/09/2008
4410 TOC in Water By Analyser		16/09/2008
4540 TKN in Water by Titration	08/09/2008	11/09/2008
4941 Total Nitrogen in Water by Calc		11/09/2008
NEW_TEST01		09/09/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

Labmark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Matrix spike recoveries are calculated on an 'As Received' basis; the parent sample result is moisture corrected after the % recovery is determined.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1160795 [Method Blank]	-			•	•	
3200 Dissolved Metals in Water - ICP/AES						
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	
1161775 [Method Blank]	•	•	•	•	•	
3100 Low Level Dissolved Metals in Water						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<1		< 1	Т	
Barium	μg/L	<1		< 1	Т	
Beryllium	μg/L	<1		< 1	Т	
Boron	μg/L	<1		< 1	Т	
Cadmium	μg/L	<0.2		< 0.2	Т	
Chromium	μg/L	<1		< 1	Т	
Cobalt	μg/L	<1		< 1	Т	
Copper	μg/L	<1		< 1	Т	
Lead	μg/L	<1		< 1	Т	
Manganese	μg/L	<1		< 1	Т	
Molybdenum	μg/L	<1		< 1	Т	
Nickel	μg/L	<1		<1	Т	
Selenium	μg/L	<1		<1	Т	
Tin	μg/L	<1		<1	Т	
Vanadium	μg/L	<1		<1	Т	
Zinc	μg/L	<1		< 1	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 First Reported: 12 September 2008 Page 4 of 7 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 331758

Date Printed: 16 September 2008

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1161776 [Laboratory Control Sample]			•	•		•	
3100 Low Level Dissolved Metals in Water			Expected Value	Percent Recovery			
Antimony	μg/L	100	100.0	101	80-120 %	Т	
Arsenic	μg/L	99	100.0	99	80-120 %	Т	
Barium	μg/L	97	100.0	97	80-120 %	Т	
Beryllium	μg/L	100	100.0	101	80-120 %	Т	
Boron	μg/L	110	100.0	111	80-120 %	Т	
Cadmium	μg/L	100	100.0	103	80-120 %	Т	
Chromium	μg/L	96	100.0	96	80-120 %	Т	
Cobalt	µg/L	95	100.0	95	80-120 %	Т	
Copper	μg/L	97	100.0	97	80-120 %	Т	
Lead	μg/L	98	100.0	98	80-120 %	Т	
Manganese	μg/L	96	100.0	96	80-120 %	Т	
Molybdenum	µg/L	94	100.0	94	80-120 %	Т	
Nickel	µg/L	96	100.0	96	80-120 %	T	
Selenium	μg/L	110	100.0	108	80-120 %	Т	
Tin	μg/L	100	100.0	104	80-120 %	т т	
Vanadium	μg/L	98	100.0	98	80-120 %	† <u>†</u>	
Zinc	μg/L	100	100.0	104	80-120 %	Т Т	
1160602 [Duplicate of 1160528]	µg, ∟	100	100.0	107	55 120 /0	+ -	
3200 Dissolved Metals in Water - ICP/AES			Popult 2	DDD			
Calcium	ug/l	2680000	Result 2 2690000	RPD <1	0-10 %	Т	
	μg/L	276	2690000	<1	0-10 %	T T	
Iron	μg/L			t t			
Magnesium	μg/L	1530000	1540000	2	0-10 %	T	
Potassium	μg/L	800000	790000	2	0-10 %	+ '-	
1160603 [Duplicate of 1160528]							
3100 Low Level Dissolved Metals in Water	1	1	Result 2	RPD		_	
Aluminium	μg/L	19	18	2	0-10 %	Т	
Antimony	μg/L	<1	<1	<1	0-10 %	T	
Arsenic	μg/L	<100	<100	<1	0-10 %	Т	
Barium	μg/L	150	150	1	0-10 %	Т	
Beryllium	μg/L	<1	<1	<1	0-10 %	Т	
Boron	μg/L	5600	5600	<1	0-10 %	Т	
Cadmium	μg/L	<0.2	<0.2	<1	0-10 %	Т	
Chromium	μg/L	7.3	7.5	3	0-10 %	Т	
Cobalt	μg/L	3.5	3.8	9	0-10 %	Т	
Lithium	μg/L	11000	11000	2	0-10 %	Т	
Manganese	μg/L	2800	2800	1	0-10 %	Т	
Selenium	μg/L	170	160	9	0-10 %	Т	
Strontium	μg/L	50000	50000	1	0-10 %	Т	
Thallium	μg/L	<1	<1	<1	0-10 %	Т	
Tin	μg/L	<1	<1	<1	0-10 %	Т	
Titanium	μg/L	46	1.9	N/A	N/A	N/A	
Vanadium	μg/L	<1	<1	<1	0-10 %	Т	
Zinc	μg/L	43	42	4	0-10 %	Т	
aboratory: EN_WATERS							
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifyin Codes
1162613 [Method Blank]	-	•	•			-	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1162919 [Method Blank]		· · · · · · · · · · · · · · · · · · ·	+	+	· · · · · · · · · · · · · · · · · · ·	+	
4300 Anions in Water by IC		-0.5			-05	T +	
Bromide	mg/L	<0.5		+	< 0.5	T	
Chloride	mg/L	<0.5			< 0.5	T	-
Fluoride	mg/L	<0.5			< 0.5	T	
Nitrate	mg/L	<0.5			< 0.5	T	
Nitrite	mg/L	<0.5	-		< 0.5	T	
Orthophosphate as P	mg/L	<0.5			< 0.5	T	
Sulphate	mg/L	<0.5			< 0.5	T	<u> </u>

Laboratory: EN_WATERS

Eaboratory: EN_WATERO	_	ı	_			-	
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1164257 [Method Blank]	-	ļ	!	 	Limito	Liiiillo	00000
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1169680 [Method Blank]	mg/L	-20	-		120	+ -	
			1	1			
4410 TOC in Water By Analyser Total Organic Carbon	mg/L	<1			< 1	Т	
-	IIIg/L				~ 1	+ '	
1169681 [Method Blank]			1	1			
4410 TOC in Water By Analyser	1					1 -	
Dissolved Organic Carbon	mg/L	<1		ļ <u></u>	< 1	Т	
1169684 [Method Blank]			1	1			
4410 TOC in Water By Analyser	1					1 -	
Total Organic Carbon	mg/L	<1			< 1	T	
1169685 [Method Blank]			1				
4410 TOC in Water By Analyser	1						
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1162615 [Laboratory Control Sample]							
4540 TKN in Water by Titration		1	Expected Value	Percent Recovery			
TKN	mg/L	97	100.0	97	80-120 %	Т	
1162921 [Laboratory Control Sample]							
4300 Anions in Water by IC			Expected Value	Percent Recovery			
Bromide	mg/L	94	100.0	94	80-120 %	Т	
Chloride	mg/L	95	100.0	95	80-120 %	Т	
Fluoride	mg/L	93	100.0	93	80-120 %	Т	
Nitrate	mg/L	120	100.0	120	80-120 %	Т	
Nitrite	mg/L	80	100.0	80	80-120 %	Т	
Orthophosphate as P	mg/L	98	100.0	98	80-120 %	Т	
Sulphate	mg/L	97	100.0	97	80-120 %	Т	
1163049 [Laboratory Control Sample]	•	•					
4010 Conductivity in Water			Expected Value	Percent Recovery			
Electrical Conductivity	μS/cm	1420	N/A	N/A	N/A	N/A	
1164258 [Laboratory Control Sample]	•	•	•			,	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	1000	1000.0	100	90-110 %	Т	
1169682 [Laboratory Control Sample]	•	•	•	•		•	
4410 TOC in Water By Analyser			Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	8.0	10.0	80	80-120 %	Т	
1169683 [Laboratory Control Sample]			1	-		-	
4410 TOC in Water By Analyser			Expected Value	Percent Recovery			
Dissolved Organic Carbon	mg/L	8.0	10.0	80	80-120 %	Т	
1169686 [Laboratory Control Sample]			1	1		+	
4410 TOC in Water By Analyser			Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	8.0	10.0	80	80-120 %	Т	
1169687 [Laboratory Control Sample]	mg/L	0.0	10.0	00	00 120 70	+ -	
			Funcated Value	Daniert Danieri			
4410 TOC in Water By Analyser		9.0	Expected Value	Percent Recovery	90.420.0/	Т	
Dissolved Organic Carbon	mg/L	8.0	10.0	80	80-120 %	<u> </u>	
1160600 [Duplicate of 1160528]			1	1			
4300 Anions in Water by IC	1	1	Result 2	RPD		1	
Chloride	mg/L	66000	65000	1	0-10 %	T	
Fluoride	mg/L	<0.5	<0.5	<1	0-10 %	T	
Nitrate as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	
Nitrite as N	mg N/L	<0.5	<0.5	<1	0-10 %	T	
Sulphate	mg/L	3700	3600	4	0-10 %	Т	
1160601 [Duplicate of 1160528]			1	,			
4010 Conductivity in Water	_	1	Result 2	RPD			
Electrical Conductivity	μS/cm	124000	124000	<1	0-10 %	Т	
1160604 [Duplicate of 1160528]							
			Result 2	RPD			
4000 pH in Water			result 2	1 1 2			

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1160605 [Duplicate of 1160528]	•		•	•			
4110 Dissolved Solids in Water			Result 2	RPD			
Total Dissolved Solids	mg/L	170000	170000	2	0-10 %	Т	
1160606 [Duplicate of 1160528]	•		•			•	
4540 TKN in Water by Titration			Result 2	RPD			
TKN	mg/L	6.8	7.9	15	0-20 %	Т	
1160608 [Spike of 1160529]						•	
4300 Anions in Water by IC	_		Spike Value	Percent Recovery		_	
Nitrate as N	mg N/L	26	N/A	N/A	N/A	N/A	
Nitrite as N	mg N/L	<0.5	N/A	N/A	N/A	N/A	
1160610 [Spike of 1160529]						•	
4540 TKN in Water by Titration			Spike Value	Percent Recovery		_	
TKN	mg/L	83	100.0	83	80-120 -	Т	

Report Results Information

TOC EML - accreditation # 2731 - report # N005887

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Samples correctly preserved Yes Organic samples had Teflon liners N/A Samples received with Zero Headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

G01 The PQLs have been raised due to Matrix Interference

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Senior Analyst - Waters Accreditation Number: 1645 Helen Lei

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 7 of 7 First Reported: 12 September 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Date Printed: 16 September 2008 Final Report Number: 331758

LABMARK

From : SKM Pt	y Ltd	٠.		CHAIN OF	CUSTODY FORM						SH	
ABN: 37 001 0: Level 5, 33 Kin	24 095 g William St, Ade	Jaide, S.	A 5000				[Cont	ainer identi	fication		
	800 fax: (08) 84					Size	1000ml	43ml	125ml	125ml		
LAB USE ONL	Y		Project	No:		Type	plastic	glass	plastic	plastic		
QUOTE NUMB! Job Code: Due Date: Custody seal into Sampte cold?			Project Sample	VE30064 Manager: Daniel Pierce r(s): Alisteir Walsh / 52/ASI	<i></i> ₽₽✓	Preserv Analytes	y pH, EC, FI, Vitrogen and OC	YES	YES penipssig pur	Trace 02	-	
Received for Lat	ooratory by:		Checks Date:		, , ,		Major anions, TDS, pH, EC, FI, NO3, NO2, Total Nitrogen and TKN	100	Major Cations, Si and Dissolved Metals	ORC Ultra Trace		
Time: Lab ld	Date	Time	Matrix	Sample Identification	Comments		Tick require	d analytes	3	·		
	3/09/2008		H20	RT04b			х					
	3/09/2008		H20	RT04b	X 2 Viles			х				
	3/09/2008		H20	RT04b	Field Filtered				х.			
		1		RT04b		74100 5				х		
	3/09/2008		H20	K1040	Field Filtered - HOLD S	SAMPLE		-				
	3/09/2008		H20	RTOS			х					
	3/09/2008	-	H20	RT09	X 2 Vies			х .				_
	3/09/2008		H20	RT09	Field Filtered				х			
	3/09/2008		H20	RT09	Flekt Filtered - HOLD S	SAMPLE				Х		
	4/09/2008		H20	QT2			х					-
	4/09/2008		H20	QT2	X 2 Viles			х				
	4/09/2008		H20	QT2	Field Filtered				х			
	4/90/2009		H20				-			_		
	4/09/2008		H20	LP2			х					
	4/09/2008		H20	LP2	X 2 Viles			х				
	4/09/2008		H20	LP2	Field Filtered				x			+
	4/09/2008		H20	LP2	Field Filtered - HOLD S	AMPLE		-		х		<u> </u>
							х					
	4/09/2008		H20	Duplicate 6	X 2 Viles			х				
	4/09/2008		H20	Duplicate 6	-							_
	4/09/2008		H20	Duplicate 6	Field Filtered		_		х			
	4/04/04/0		Han	Duplicate 6		HAII EL		-				+
	4/4/08		H20	RB2	<u> </u>							
	4/-7/00		d20	RB2	x 2 viles			×				+
	1 V VI		H28	1282	Field filled			^	x			
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	4/4/08		A26	RBI_								
,	** .		1/20	<u> 2 </u>	x 2 utles			×				
	× 6		No	2B1	FIELD FILLS	1			Х			
								1				_
							_08EN	ME000 ADELO	23714- (RTØ41	•](]]t	30528)	
		ŀ		<u> </u>	TOTAL		<u></u> sii 111 ii	, , , , , , , , , , , , , , , , , , , 				
lotes:	[i	1	
					•		2	4	L	Jun	ayk a:	
lease email	awaish@skm	n.com.	au and	dpierce@skm.com.au reul	lts and upon receival of sa	amples		•		e la	ni-	3

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 5 September 2008

Attention: MR Daniel Pierce Due Date: 12 September 2008

Amdel Reference number: 08ENME0023714 Your Amdel Contact: Carol Cawrse

+61 3 9538 2277

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	N/A
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Custody Seals Intact (if used)	N/A

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	5
Conductivity in Water	4010	5
Dissolved Metals in Water - ICP/AES	3200	7
Low Level Dissolved Metals in Water	3100	7
	NEW_TEST01	7
pH in Water	4000	5
Dissolved Solids in Water	4110	5
TKN in Water by Titration	4540	5
TOC in Water By Analyser	4410	7
Total Nitrogen in Water by Calc	4941	5

Note

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by : Damien Battaglia Date : Fri 5 September 2008

Accreditation Number: 1645

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Daniel Pierce

Project 08ENME0024196

Client Reference VE30064

Received Date 10/09/2008 10:06:00 AM

Customer Sample ID			M.A.R 7	PT62	PT63	RB3	Duplicate 7
Sample Matrix			WATER	WATER	WATER	WATER	WATER
Labmark Sample No.			1167583	1167584	1167585	1167586	1167587
Date Sampled			09/09/2008	09/09/2008	09/09/2008	09/09/2008	09/09/2008
Metals							
Test/Reference	PQL	Unit					
3100 Low Level Dissolved M	etals in Water						
Aluminium	1	μg/L	18	4.3	7.6	6.7	16
Antimony	1	μg/L	<1	<1	<1	<1	<1
Arsenic	1	μg/L	17	23	^{G01} <50	<1	18
Barium	1	μg/L	78	48	70	<1	77
Beryllium	1	μg/L	<1	<1	<1	<1	<1
Boron	1	μg/L	6300	7200	11000	6.4	6200
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium	1	μg/L	4.2	1.8	3.8	<1	2.0
Cobalt	1	μg/L	11	4.5	5.1	<1	9.3
Copper	1	μg/L	6.4	5.1	14	1.6	6.1
₋ead	1	μg/L	<1	<1	<1	<1	<1
ithium	1	μg/L	370	570	3400	<1	360
Manganese	1	μg/L	500	860	3600	<1	460
Molybdenum	1	μg/L	85	2.8	<1	<1	85
lickel	1	μg/L	30	20	17	<1	27
Selenium	1	μg/L	42	41	62	<1	41
Strontium	1	μg/L	17000	15000	19000	1.1	17000
- Thallium	1	μg/L	<1	<1	<1	<1	<1
Гin	1	μg/L	<1	<1	<1	<1	<1
Fitanium	1	μg/L	2.3	1.9	7.5	<1	3.1
Jranium	1	μg/L	19	22	5.4	<1	19
/anadium	1	μg/L	3.0	<1	<1	<1	2.0
Zinc	1	μg/L	19	23	63	12	22
3200 Dissolved Metals in Wa	iter - ICP/AES						
Calcium	100	μg/L	1110000	788000	1000000	167	1120000
ron	100	μg/L	621	_	759	<100	589
Magnesium	100	μg/L	742000	-	1940000	-	736000
ron	100	μg/L	-	4650	-	-	-
Magnesium	100	μg/L	-	-	-	<100	-
Potassium	1000	μg/L	77000	_	230000	-	78000
Magnesium	100	μg/L	-	584000	-	-	-
Potassium	1000	μg/L	-	-	-	<1000	-
Sodium	100	μg/L	6230000	-	24500000	-	6260000
Potassium	1000	μg/L	-	110000	-	-	-
Sodium	100	μg/L	-	7720000	-	330	-
norganics	. 30	. 5					
Test/Reference	PQL	Unit					

Date Printed: 17 September 2008

Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled			M.A.R 7 WATER 1167583 09/09/2008	PT62 WATER 1167584 09/09/2008	PT63 WATER 1167585 09/09/2008	RB3 WATER 1167586 09/09/2008	Duplicate 7 WATER 1167587 09/09/2008
Inorganics Test/Reference	PQL	Unit					
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	28900	31200	77000	<20	29000
4000 pH in Water pH	0.1	рН	7.2	6.9	7.2	8.0	7.2
4110 Dissolved Solids in Water Total Dissolved Solids	20	mg/L	23000	25000	77000	<20	23000
4540 TKN in Water by Titration TKN	1	mg/L	24	<1	1.7	<1	22
1410 TOC in Water By Analyser Fotal Organic Carbon	1	mg/L	6.7	2.7	6.7	<1	5.8
1941 Total Nitrogen in Water by Ca Fotal Nitrogen	alc 2	mg N/L	24	3	21	<2	22
4300 Anions in Water by IC Chloride	0.5	mg/L	9000	10000	27000	1.3	9200
Fluoride	0.5	mg/L	1.0	<0.5	<0.5	<0.5	1.0
Nitrate as N	0.5	mg N/L	<0.5	3.0	19	<0.5	<0.5
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	<0.5
Sulphate	0.5	mg/L	2700	2600	6700	0.9	2500
Miscellaneous Fest/Reference	PQL	Unit					
Fotal Alkalinity as CaCo3*	-	mg/L	100	17	230	20	340
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCo3*	-	mg/L	100	17	230	20	342
Silica*	-	mg/L	18	19	15.6	<1	18.3
Customer Sample ID			Duplicate 8				
<u>-</u>			Duplicate 8 WATER				
Sample Matrix Labmark Sample No. Date Sampled							
Sample Matrix Labmark Sample No. Date Sampled Metals	PQL	Unit	WATER 1167588				
Sample Matrix Labmark Sample No. Date Sampled Metals Fest/Reference		Unit	WATER 1167588				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference S100 Low Level Dissolved Metals in		Unit µg/L	WATER 1167588				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference S100 Low Level Dissolved Metals in	n Water		WATER 1167588 09/09/2008				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference St100 Low Level Dissolved Metals in Numinium Antimony	n Water	μg/L	WATER 1167588 09/09/2008				
Sample Matrix Labmark Sample No. Date Sampled Metals Fest/Reference S100 Low Level Dissolved Metals in Numinium Antimony Arsenic	n Water 1	μg/L μg/L	WATER 1167588 09/09/2008				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference S100 Low Level Dissolved Metals in Numinium Antimony Arsenic Barium	n Water 1 1 1	μg/L μg/L μg/L	WATER 1167588 09/09/2008 3.4 <1 24				
Sample Matrix Labmark Sample No. Date Sampled Metals Fest/Reference 100 Low Level Dissolved Metals in Autimony Arsenic Barium Beryllium	n Water 1 1 1 1	μg/L μg/L μg/L μg/L	WATER 1167588 09/09/2008 3.4 <1 24 48				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference E100 Low Level Dissolved Metals in Numinium Antimony Arsenic Barium Beryllium	n Water 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1				
Sample Matrix Labmark Sample No. Date Sampled Metals Fest/Reference S100 Low Level Dissolved Metals in Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium	n Water 1 1 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100				
Sample Matrix Labmark Sample No. Date Sampled Metals Fest/Reference 3100 Low Level Dissolved Metals in Autimony Arsenic Barium Beryllium Boron Cadmium Chromium	1 1 1 1 1 0.2	µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100 <0.2				
Sample Matrix Labmark Sample No. Date Sampled Metals Fest/Reference B100 Low Level Dissolved Metals in Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chobalt	n Water 1 1 1 1 1 1 0.2	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100 <0.2 1.6				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference B100 Low Level Dissolved Metals in Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper	1 1 1 1 0.2 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100 <0.2 1.6 4.7				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals in Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chopper Lead	n Water 1 1 1 1 1 0.2 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100 <0.2 1.6 4.7 5.3				
Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals in Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Chromium Copper Lead Lithium Manganese	n Water 1 1 1 1 1 0.2 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100 <0.2 1.6 4.7 5.3 <1				
Sample Matrix Labmark Sample No. Date Sampled Metals Test/Reference 3100 Low Level Dissolved Metals in Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Choper Lead Lithium	n Water 1 1 1 1 1 0.2 1 1 1 1	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	WATER 1167588 09/09/2008 3.4 <1 24 48 <1 7100 <0.2 1.6 4.7 5.3 <1 560				

First Reported: 17 September 2008 Date Printed: 17 September 2008 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Page 2 of 8

Page 3 of 8

Overtower Committee ID			Displicate 0	
Customer Sample ID Sample Matrix			Duplicate 8 WATER	
Labmark Sample No.			1167588	
Date Sampled			09/09/2008	
Metals				
Test/Reference	PQL	Unit		
Selenium	1	μg/L	44	
Strontium	1	μg/L	15000	
Thallium	1	μg/L	<1	
Tin	1	μg/L	<1	
Titanium	1	μg/L	2.5	
Uranium	1	μg/L	23	
Vanadium	1	μg/L	<1	
Zinc	1	μg/L	24	
3200 Dissolved Metals in Water -	ICP/AES	-		
Calcium	100	μg/L	791000	
Iron	100	μg/L	5120	
Magnesium	100	μg/L	577000	
Potassium	1000	μg/L	110000	
Sodium	100	μg/L	7620000	
Inorganics				
Test/Reference	PQL	Unit		
4010 Conductivity in Water				
Electrical Conductivity	20	μS/cm	31200	
4000 pH in Water				
pH	0.1	pН	7.0	
4110 Dissolved Solids in Water	20		05000	
Total Dissolved Solids	20	mg/L	25000	
4540 TKN in Water by Titration TKN	1	mg/L	<1	
		mg/L	~ 1	
4410 TOC in Water By Analyser Total Organic Carbon	1	mg/L	3.4	
4941 Total Nitrogen in Water by C		9-	***	
Total Nitrogen	2	mg N/L	<2	
4300 Anions in Water by IC		· ·		
Chloride	0.5	mg/L	10000	
Fluoride	0.5	mg/L	<0.5	
Nitrate as N	0.5	mg N/L	<0.5	
Nitrite as N	0.5	mg N/L	<0.5	
Sulphate	0.5	mg/L	2600	
Miscellaneous				
Test/Reference	PQL	Unit		
Total Alkalinity as CaCo3*	-	mg/L	260	
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	
Bicarbonate Alkalinity as CaCo3*	-	mg/L	340	
Silica*	-	mg/L	18.6	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Low Level Dissolved Metals in Water	10/09/2008	12/09/2008
3200 Dissolved Metals in Water - ICP/AES	11/09/2008	15/09/2008
4000 pH in Water		11/09/2008
4010 Conductivity in Water		11/09/2008
4110 Dissolved Solids in Water		16/09/2008
4300 Anions in Water by IC	11/09/2008	16/09/2008
4410 TOC in Water By Analyser		15/09/2008
4540 TKN in Water by Titration	11/09/2008	12/09/2008
4941 Total Nitrogen in Water by Calc		15/09/2008
NEW_TEST01		12/09/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times

 First Reported: 17 September 2008
 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168
 Page 4 of 8

 Date Printed: 17 September 2008
 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278
 Final Report Number: 331978

Labmark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Matrix spike recoveries are calculated on an 'As Received' basis; the parent sample result is moisture corrected after the % recovery is determined.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1168029 [Method Blank]	-	•	'	•	+	
3100 Low Level Dissolved Metals in Water						
Antimony	μg/L	<1		< 1	Т	
Arsenic	μg/L	<1		< 1	Т	
Barium	μg/L	<1		< 1	Т	
Beryllium	μg/L	<1		< 1	Т	
Boron	μg/L	<1		< 1	Т	
Cadmium	μg/L	<0.2		< 0.2	Т	
Chromium	μg/L	<1		< 1	Т	
Cobalt	μg/L	<1		< 1	Т	
Copper	μg/L	<1		< 1	Т	
Lead	μg/L	<1		< 1	Т	
Molybdenum	μg/L	<1		< 1	Т	
Nickel	μg/L	<1		< 1	Т	
Selenium	μg/L	<1		< 1	Т	
Tin	μg/L	<1		< 1	Т	
Vanadium	μg/L	<1		< 1	Т	
1169643 [Method Blank]	-	•	•	•	•	
3200 Dissolved Metals in Water - ICP/AES						
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 First Reported: 17 September 2008 Page 5 of 8 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 331978

Date Printed: 17 September 2008

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1168030 [Laboratory Control Sample]	-		1	ļ		-	
3100 Low Level Dissolved Metals in Water			Expected Value	Percent Recovery			
Antimony	μg/L	96	100.0	96	80-120 %	Т	
Arsenic	μg/L	100	100.0	102	80-120 %	Т	
Barium	μg/L	100	100.0	100	80-120 %	Т	
Beryllium	μg/L	87	100.0	87	80-120 %	Т	
Boron	μg/L	99	100.0	99	80-120 %	Т	
Cadmium	μg/L	100	100.0	100	80-120 %	Т	
Chromium	μg/L	94	100.0	94	80-120 %	Т	
Cobalt	μg/L	97	100.0	97	80-120 %	Т	
Copper	µg/L	98	100.0	98	80-120 %	Т	
Lead	µg/L	94	100.0	94	80-120 %	T	
Manganese	μg/L	97	100.0	97	80-120 %	Т	
Molybdenum	μg/L	95	100.0	95	80-120 %	T	
Nickel	μg/L	99	100.0	99	80-120 %	† ·	
Selenium	µg/L	100	100.0	103	80-120 %	T '	
Tin	μg/L	82	100.0	82	80-120 %	† T	
Vanadium	μg/L	97	100.0	97	80-120 %	† † T	
Zinc	μg/L μg/L	110	100.0	106	80-120 %	т т	
	ру/с	110	100.0	100	80-120 76	'	
1167779 [Duplicate of 1167583]							
3200 Dissolved Metals in Water - ICP/AES	_	1	Result 2	RPD		1	
Calcium	μg/L	1120000	1110000	1	0-10 %	Т	
Iron	μg/L	682	621	9	0-10 %	Т	
Magnesium	μg/L	737000	742000	1	0-10 %	Т	
Potassium	μg/L	77000	77000	<1	0-10 %	Т	
Sodium	μg/L	6290000	6230000	1	0-10 %	Т	
1167780 [Duplicate of 1167583]							
3100 Low Level Dissolved Metals in Water			Result 2	RPD			
Antimony	μg/L	<1	<1	<1	0-10 %	Т	
Arsenic	μg/L	17	17	<1	0-10 %	Т	
Barium	μg/L	78	78	<1	0-10 %	Т	
Beryllium	μg/L	<1	<1	<1	0-10 %	Т	
Boron	μg/L	6700	6300	6	0-10 %	Т	
Cadmium	μg/L	<0.2	<0.2	<1	0-10 %	Т	
Chromium	μg/L	4.4	4.2	7	0-10 %	Т	
Cobalt	μg/L	11	11	2	0-10 %	Т	
Copper	μg/L	5.9	6.4	7	0-10 %	Т	
Lead	μg/L	<1	<1	<1	0-10 %	Т	
Lithium	μg/L	370	370	<1	0-10 %	Т	
Manganese	μg/L	490	500	1	0-10 %	Т	
Nickel	μg/L	30	30	<1	0-10 %	Т	
Selenium	μg/L	46	42	9	0-10 %	Т	
Strontium	µg/L	16000	17000	<1	0-10 %	Т	
Thallium	μg/L	<1	<1	<1	0-10 %	T	
Tin	μg/L	<1	<1	<1	0-10 %	T	
Titanium	μg/L	2.2	2.3	2	0-10 %	T	
Uranium	μg/L	19	19	<1	0-10 %	T	
Vanadium	μg/L	2.7	3.0	10	0-10 %	т т	
aboratory: EN_WATERS	µg/L	2.1	3.0	10	U- 1U /0	+ '	
	1				Acceptance	Pass	Qualifyir
Sample, Test, Result Reference	Units	Result 1			Limits	Limits	Codes
1168689 [Method Blank]							
4540 TKN in Water by Titration				l l			

Laboratory: EN_WATERS

Laboratory: EN_WATERS			1		A t	La	0 - 116
Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1169100 [Method Blank]		ļ	1	 			
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	Т	
1169684 [Method Blank]	•	•	•	.		-	
4410 TOC in Water By Analyser							
Total Organic Carbon	mg/L	<1			< 1	Т	
1169685 [Method Blank]	- -		1	!		-	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1172295 [Method Blank]				!		+ -	
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20		+	< 20	Т	
1168691 [Laboratory Control Sample]	mg/L	-20	1		- 20	+ -	
			Expected Value	Percent Recovery			
4540 TKN in Water by Titration	ma/l	100	100.0	104	80-120 %	Т	
TKN 1168811 [Laboratory Control Sample]	mg/L	100	100.0	104	OU-12U 70	+ '	
			1	1 1			
4010 Conductivity in Water	0/1	1 4440	Expected Value	Percent Recovery	AL/A	1,1/4	
Electrical Conductivity	μS/cm	1440	N/A	N/A	N/A	N/A	
1169102 [Laboratory Control Sample]			1	1			
4300 Anions in Water by IC	1	1	Expected Value	Percent Recovery		-	
Bromide	mg/L	95	100.0	95	80-120 %	Т	
Chloride	mg/L	96	100.0	96	80-120 %	T	
Fluoride	mg/L	93	100.0	93	80-120 %	T	
Nitrate	mg/L	120	100.0	120	80-120 %	T	
Nitrite	mg/L	81	100.0	81	80-120 %	T	
Orthophosphate as P	mg/L	83	100.0	83	80-120 %	T -	
Sulphate	mg/L	97	100.0	97	80-120 %	Т	
1169686 [Laboratory Control Sample]			1	1			
4410 TOC in Water By Analyser	1	1	Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	8.0	10.0	80	80-120 %	Т	
1169687 [Laboratory Control Sample]			1				
4410 TOC in Water By Analyser	_		Expected Value	Percent Recovery		_	
Dissolved Organic Carbon	mg/L	8.0	10.0	80	80-120 %	Т	
1172296 [Laboratory Control Sample]							
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	1000	1000.0	101	90-110 %	T	
1167776 [Duplicate of 1167583]							
4300 Anions in Water by IC	_		Result 2	RPD		_	
Chloride	mg/L	9000	9000	<1	0-10 %	Т	
Fluoride	mg/L	1.0	1.0	1	0-10 %	Т	
Nitrate as N	mg N/L	<0.5	<0.5	<1	0-10 %	Т	
Nitrite as N	mg N/L	<0.5	<0.5	<1	0-10 %	Т	
Sulphate	mg/L	2800	2700	3	0-10 %	Т	
1167777 [Duplicate of 1167583]							
4010 Conductivity in Water			Result 2	RPD			
Electrical Conductivity	μS/cm	29000	28900	<1	0-10 %	Т	
1167785 [Duplicate of 1167583]							
4000 pH in Water	_	_	Result 2	RPD		_	
pH	pН	7.2	7.2	0.0	0-0.2 pH	Т	
1167786 [Duplicate of 1167583]	•	•	•			•	
4110 Dissolved Solids in Water			Result 2	RPD			
Total Dissolved Solids	mg/L	24000	23000	2	0-10 %	Т	
		 	 		**		

Laboratory: EN_WATERS

Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
•			-		1	
		Result 2	RPD			
mg/L	22	24	9	0-20 %	Т	
		•				
		Result 2	RPD			
mg/L	6.8	6.7	2	0-10 %	Т	
		<u>-</u>	•		•	
		Spike Value	Percent Recovery		_	
mg N/L	28	N/A	N/A	N/A	N/A	
mg N/L	30	N/A	N/A	N/A	N/A	
		•	•		•	
		Spike Value	Percent Recovery			
mg/L	81	100.0	81	80-120 -	Т	
		Spike Value	Percent Recovery			
mg/L	11	10.0	82	80-120 %	Т	
	mg/L mg N/L mg N/L mg N/L	mg/L 22 mg/L 6.8 mg N/L 28 mg N/L 30 mg/L 81	Result 2	Result 2 RPD 9	Result 1	Result 2 RPD

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Samples correctly preserved

Organic samples had Teflon liners

Samples received with Zero Headspace

Samples received within HoldingTime

Yes

Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

G01 The PQLs have been raised due to Matrix Interference

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accreditation Number: 1645 Helen Lei Senior Analyst - Waters Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

From : SKM Pty Ltd

Level 5, 33 King William St, Adelaide, SA 5000					Container Identification								
ph: (08) 8424 3800			3000							T			
	. ,					Size	1000ml	43ml	125ml	<u> </u>	ļ.—	 	
LAB USE ONLY			Project N			Type	plastic	glass	plastic		├─	 	-
QUOTE NUMBER			Designed &	VE30064		Preserv	NO 	YES	YES	 		 	
Job Code: Due Date:			Project	Manager: Daniel Pierce		l	E P		9.0		ļ		
Custody seal intact	?		Samplen			Analytes	Major anions, TDS, pH, EC, Fl, NO3, NO2, Total Nitrogen and TKN	•	Major Cations, Si and Dissolved Metals		1		i
Sample cold?			'	Alistair Walsh Jack Ashby			효율		s and				
Received for Labor	atons bur		Checked				를 돌 조	Ď Ž	is la		i		
received to Labor	atory by.		Circulati	•		l	2, T	-	ig v	-	İ		
				1 2		l	N S		.				
Date:			Date:				faja:		ag.	ĺ	ĺ		
Time:		,		9/09/2008	T		22		2				<u> </u>
Lab id	Date	Time	Matrix	Sample Identification	Comments		Tick require	d analytes		-			-
							v						
	8/09/2008	├	H20	M.A.R 7			Х			┿┈		 	
]	8/09/2008		H20	M.A.R 7	X 2 Viles			x					
	Gradizado												
	8/09/2008	<u> </u>	H20	M.A.R 7	Field Filtered				Х			ļ	
			l							l i			
		-											+ -
	9/09/2008		H20	PT62			х						
	5100/2000		7.50				"		·	<u> </u>			
	9/09/2008		H20	PT62	X 2 Viles			х					\perp
									v				
	9/09/2008		H20	PT62	Field Filtered				X			-	
			l				i					ŀ	
	· ·		-										
·	9/09/2008		H20	PT63			X						
	9/09/2008		H20	PT63	X 2 Viles			Х					1 -
	9/09/2008		H20	PT63	Field Filtered				х				
	9/08/2000		1120	F 103	ricia i mores						-		
												<u> </u>	
			l										
	9/09/2008		H20	RB3			x						
	nunatanan		H20	RB3	X 2 Viles			x				i	
	9/09/2008		1120	RDO	X Z VIGO								
	9/09/2008		H20	RB3	Field Filtered				Х.			<u> </u>	
						-	ĺ	ľ				ĺ	1 1
								-					\vdash
	8/09/2008		H20	Dupticate 7	-		x	İ			ļ	İ	
	G/U9/2006		1120	Diplicate 7									
	8/09/2008		H20	Duplicate 7	X 2 Viles			Х				<u> </u>	
						- 1	ı	ŀ	v				
	8/09/2008		H20	Duplicate 7	Field Filtered				X		-		
							·		J			I	
	9/09/2008		H20	Duplicate 8			X						\square
					L	i	1						
	9/09/2008		H20	Duplicate 8	X 2 Víles			Х		-			
	9/09/2008		H20	Duplicate 8	Field Filtered			1	х				
	G CONZUUD		. 12.4				1						
					L						\longrightarrow		
									i				
					+			-		-			\vdash
		ļ											
	-												
		T							מחדו	i. Вигала	4100	 17 1 11	י החברים י
				-		-		-	-ññF)	A IFANÇ	#1 <u>7</u> p_	TŽÍII	57583)
	1			·	 	i			_5KM_ 	HUEL(1 811
		1											Ш
									_				1 111
						İ			T	- T			T
					· · · · · · · · · · · · · · · · · · ·	-		+		+		\neg	
	İ				TOTAL	İ							
										l.			
Notes:													- 1
													ļ

Please email awalsh@skm.com.au and dpierce@skm.com.au reults and upon receival of samples

LABORAL 10/2/08 10 mm

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS. Any questions please call Alistair Walsh on 0430288222

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
	and Date 6			
Major Cattons (mg/L)	ample Batch fee Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L)	(K) Calcium Carbonate (CaCO ₂) Sulphate (SO ₄) Chloride (CI)	1 mg/L	48 Hrs	
Major	Carbonate (CO ₃) Bicarbonate	1 mg/L		
	(HCO₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units) Fluoride	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Silica (Si)			
	Aluminum	10 µg/L	6 mantha	Litra trace metals discolved in caline water by ODC#CD#40
	(AI) Antimony	0.5 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb) Arsenic		6 months	
	(As) Barlum	0.5 µg/L	6 months	
	(Ba)	5 μg/L.	6 months	
	Beryllium (Be)	0.1 µg/L	6 months	
	Boron (B)	100 μg/L	6 months	
	Cadmium (Cd)	0.2 μg/L	6 months	
	Chromium (Cr)	0.5 μg/L	6 months	
	Cobalt	0.2 μg/L		
	(Co) Copper	5 μg/L	6 months	
÷	(Cu) Gold	0.1 µg/L	6 months	
//6w)	(Ag) Lead	0.2 μg/L	6 months	
Dissolved Metals (m <i>g/L</i> .)	(Pb) Lithium		6 months	
. ₩	(Li) Manganese	5 µg/L	6 months	
yloss	(Mn) Molybdenum	0.5 μ g/L	6 months	
ä	(Mo)	0.1 μg/L	6 months	
	Nickel (Ni)	0.5 μ g/L	6 months	
	Selenium (Se)	5 µg/L	6 months	
	Strontium (Sr)	10 μ g/ L	6 months	
	Thallium (TI)	0.1 µg/L	6 months	
	Thorium (Th)	0.1 μg/L	6 months	
	Tin	5 μg/L	6 months	
	(Sn) Titanium	5 µg/L		
	(Ti) Uranium	0.1 µg/L	6 months	
Ì	(U) Vanadium		6 months	
	(V) Zinc	0.5 μg/L.	6 months	
	(Zn) Iron - total	5 μg/L	6 months	
	(Fe)	5 μg/L	6 months	ICP OES
3	Nitrite as N (NO.) Nitrate as N	0.01 mg/L	48 hrs	measured together
E .	(NO ₃)	0.01 mg/L	48 hrs	
Nutrants (mou	Total Nitrogen Total Organic Carbon	0.01 mg/L	28 days	
Ϋ́	(TOC) Total Kjelifahl	1 mg/L	28 days	
	Nifocentiku	0.1 mg/L	28 days	
		Cost/sample		

Total Cost

Note: If highly saline, samples may require a 1:5 x dilution therfore LORs raised by a factor of 5 times 1 in every 10 sample required for laboratory duplicate to comply with QA/QC 1 in every 20 samples required for inter laboratory testing for QA/QC

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 10 September 2008

Attention: MR Daniel Pierce Due Date: 17 September 2008

Amdel Reference number: 08ENME0024196 Your Amdel Contact: Carol Cawrse

+61 3 9538 2277

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

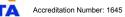
Client Reference number:

Sample Integrity

Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	Yes
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Custody Seals Intact (if used)	N/A

VE30064

Analysis Requested


Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	6
Conductivity in Water	4010	6
Dissolved Metals in Water - ICP/AES	3200	6
Low Level Dissolved Metals in Water	3100	6
	NEW_TEST01	6
pH in Water	4000	6
Dissolved Solids in Water	4110	6
TKN in Water by Titration	4540	6
TOC in Water By Analyser	4410	6
Total Nitrogen in Water by Calc	4941	6

<u>Note</u>

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by : Duncan Harrison Date : Wed 10 September 2008

Sinclair Knight Mertz Level 5, 33 King William Street Adelaide SA 5000

Attention: Alistair Walsh

Project 08ENME0024479

Client Reference VE30064

Received Date 12/09/2008 10:07:00 AM

Customer Sample ID Sample Matrix Labmark Sample No. Date Sampled			RT41 WATER 1170666 10/09/2008	RT42 WATER 1170667 10/09/2008	DUP 9 WATER 1170668 10/09/2008	RB4 WATER 1170669 10/09/2008	
Metals Test/Reference	PQL	Unit					
		- Crint					
3100 Low Level Dissolved Metals in Comments	n Water		G01				
Aluminium	1	μg/L	3.6	<1	<1	<1	
Antimony	1	μg/L	<1	<1	<1	<1	
Arsenic	1	μg/L	<100	<50	<100	<1	
Barium	1	μg/L	120	36	120	<1	
Beryllium	1	μg/L	<1	<1	<1	<1	
Boron	1	μg/L	9000	7900	9000	1.2	
Cadmium	0.2	μg/L	<0.2	<0.2	<0.2	<0.2	
Chromium	1	μg/L	3.3	2.3	3.2	<1	
Cobalt	1	μg/L	<1	5.4	<1	<1	
Copper	1	μg/L	8.0	5.9	7.5	2.5	
Lead	1	μg/L	<1	<1	<1	<1	
Lithium	1	μg/L	3600	370	3600	<1	
Manganese	1	μg/L	490	920	500	1.1	
- Molybdenum	1	μg/L	<1	4.0	<1	<1	
Nickel	1	μg/L	13	15	13	3.2	
Selenium	1	μg/L	26	26	25	<1	
Strontium	1	μg/L	34000	20000	32000	11	
Thallium	1	μg/L	<1	<1	<1	<1	
Tin	1	μg/L	<1	<1	<1	<1	
Titanium	1	μg/L	12	6.4	13	<1	
Uranium	1	μg/L	<1	8.7	<1	<1	
Vanadium	1	μg/L	<1	1.6	<1	<1	
Zinc	1	μg/L	15	15	17	R14 140	
3200 Dissolved Metals in Water - IC	P/AES						
Calcium	100	μg/L	1250000	1150000	1260000	535	
Iron	100	μg/L	6650	1310	6950	264	
Magnesium	100	μg/L	653000	692000	657000	171	
Potassium	1000	μg/L	210000	91000	220000	<1000	
Sodium	100	μg/L	12900000	12500000	13400000	1790	
Inorganics							
Test/Reference	PQL	Unit					
4010 Conductivity in Water Electrical Conductivity	20	μS/cm	52500	48700	52600	<20	
4000 pH in Water pH	0.1	рН	7.1	7.4	7.1	6.3	
4110 Dissolved Solids in Water							

Customer Sample ID			RT41	RT42	DUP 9	RB4	
Sample Matrix			WATER	WATER	WATER	WATER	
Labmark Sample No.			1170666	1170667	1170668	1170669	
Date Sampled			10/09/2008	10/09/2008	10/09/2008	10/09/2008	
Inorganics							
Test/Reference	PQL	Unit					
Total Dissolved Solids	20	mg/L	41000	37000	41000	<20	
4540 TKN in Water by Titration							
TKN	1	mg/L	3.6	<1	<1	<1	
4410 TOC in Water By Analyser							
Total Organic Carbon	1	mg/L	15	6.6	14	2.1	
4941 Total Nitrogen in Water by C	alc						
Total Nitrogen	2	mg N/L	4	<2	<2	<2	
4300 Anions in Water by IC							
Chloride	0.5	mg/L	9400	14000	24000	2.2	
Fluoride	0.5	mg/L	<0.5	<0.5	<0.5	<0.5	
Nitrate as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	
Nitrite as N	0.5	mg N/L	<0.5	<0.5	<0.5	<0.5	
Sulphate	0.5	mg/L	1500	3900	3400	1.1	
Miscellaneous							
Test/Reference	PQL	Unit					
Total Alkalinity as CaCo3*	-	mg/L	150	120	150	10	
Carbonate Alkalinity as CaCo3*	-	mg/L	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCo3*	-	mg/L	150	120	150	10	
Silica*	_	mg/L	25	14.4	25	<1	

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Extracted	Analysed
3100 Low Level Dissolved Metals in Water	12/09/2008	15/09/2008
3200 Dissolved Metals in Water - ICP/AES	12/09/2008	15/09/2008
4000 pH in Water	15/09/2008	17/09/2008
4010 Conductivity in Water	15/09/2008	17/09/2008
4110 Dissolved Solids in Water		16/09/2008
4300 Anions in Water by IC	15/09/2008	19/09/2008
4410 TOC in Water By Analyser	16/09/2008	17/09/2008
4540 TKN in Water by Titration	15/09/2008	16/09/2008
4941 Total Nitrogen in Water by Calc		18/09/2008
NEW_TEST01		17/09/2008

Test Description 4000 pH in Water

As noted in LM-FOR-ADM-020 pH should be tested in the field, therefore this test has been analysed in the laboratory outside Holding Times $\,$

Labmark Internal Quality Control Review

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. Matrix spike recoveries are calculated on an 'As Received' basis; the parent sample result is moisture corrected after the % recovery is determined.
- 3. Proficiency trial results are available on request.
- 4. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spike or surrogate recoveries.
- 6. Test samples duplicated or spiked, are for this job only and are identified in the following QC report.
- 7. SVOC analyses on waters are performed on homogenized, unfiltered sample, unless noted otherwise.
- 8. When individual results are qualified in the body of a report, refer to the qualifier descriptions that follow.
- 9. Samples were analysed on an as received basis.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sampling and Preservation Chart for Soils & Waters' for holding times. (LM-FOR-ADM-020)

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgement. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitablity qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

Quality Control Results

Laboratory: EN METALS

Sample, Test, Result Reference	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Codes
1171225 [Method Blank]	•		•	•	•	
3100 Low Level Dissolved Metals in Water						
Antimony	μg/L	<1		<1	Т	
Arsenic	μg/L	<1		< 1	Т	
Barium	μg/L	<1		< 1	Т	
Beryllium	μg/L	<1		< 1	Т	
Boron	μg/L	<1		< 1	Т	
Cadmium	μg/L	<0.2		< 0.2	Т	
Chromium	μg/L	<1		< 1	Т	
Cobalt	μg/L	<1		<1	Т	
Copper	μg/L	<1		< 1	Т	
Lead	μg/L	<1		< 1	Т	
Manganese	μg/L	<1		< 1	Т	
Molybdenum	μg/L	<1		< 1	Т	
Nickel	μg/L	<1		< 1	Т	
Selenium	μg/L	<1		< 1	Т	
Tin	μg/L	<1		< 1	Т	
Vanadium	μg/L	<1		< 1	Т	
Zinc	μg/L	<1		< 1	Т	
1171389 [Method Blank]					•	
3200 Dissolved Metals in Water - ICP/AES	_					
Calcium	μg/L	<100		< 100	Т	
Iron	μg/L	<100		< 100	Т	
Magnesium	μg/L	<100		< 100	Т	
Potassium	μg/L	<1000		< 1000	Т	
Sodium	μg/L	<100		< 100	Т	

Labmark 1868 Dandenong Rd Clayton VIC Australia 3168 Page 3 of 5 First Reported: 19 September 2008 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278 Final Report Number: 332814

Date Printed: 19 September 2008

Laboratory: EN_METALS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1171226 [Laboratory Control Sample]	•	•				1	
3100 Low Level Dissolved Metals in Water			Expected Value	Percent Recovery			
Antimony	μg/L	100	100.0	103	80-120 %	Т	
Arsenic	μg/L	100	100.0	100	80-120 %	Т	
Barium	μg/L	110	100.0	108	80-120 %	Т	
Beryllium	μg/L	93	100.0	93	80-120 %	Т	
Boron	μg/L	110	100.0	108	80-120 %	Т	
Cadmium	μg/L	110	100.0	107	80-120 %	Т	
Chromium	μg/L	100	100.0	100	80-120 %	Т	
Cobalt	μg/L	96	100.0	96	80-120 %	Т	
Copper	μg/L	99	100.0	99	80-120 %	Т	
Lead	μg/L	100	100.0	101	80-120 %	Т	
Manganese	μg/L	99	100.0	99	80-120 %	Т	
Molybdenum	μg/L	110	100.0	107	80-120 %	Т	
Nickel	μg/L	98	100.0	98	80-120 %	Т	
Selenium	μg/L	100	100.0	104	80-120 %	Т	
Tin	μg/L	96	100.0	96	80-120 %	Т	
Vanadium	μg/L	100	100.0	100	80-120 %	Т	
Zinc	μg/L	100	100.0	104	80-120 %	Т	

Laboratory: EN WATERS

Laboratory: EN_WATERS	1	<u> </u>		1	Acceptance	Pass	Qualifying
Sample, Test, Result Reference	Units	Result 1			Limits	Limits	Codes
1172295 [Method Blank]	•	•	•				
4110 Dissolved Solids in Water							
Total Dissolved Solids	mg/L	<20			< 20	Т	
1172322 [Method Blank]	•	•	•			•	
4540 TKN in Water by Titration							
TKN	mg/L	<1			< 1	Т	
1172600 [Method Blank]	•		•			•	
4300 Anions in Water by IC							
Bromide	mg/L	<0.5			< 0.5	Т	
Chloride	mg/L	<0.5			< 0.5	Т	
Fluoride	mg/L	<0.5			< 0.5	Т	
Nitrate	mg/L	<0.5			< 0.5	Т	
Nitrite	mg/L	<0.5			< 0.5	Т	
Orthophosphate as P	mg/L	<0.5			< 0.5	Т	
Sulphate	mg/L	<0.5			< 0.5	T	
1175726 [Method Blank]		-				•	
4410 TOC in Water By Analyser	_					_	
Total Organic Carbon	mg/L	<1			< 1	Т	
1175727 [Method Blank]	•	•	•			•	
4410 TOC in Water By Analyser							
Dissolved Organic Carbon	mg/L	<1			< 1	Т	
1172296 [Laboratory Control Sample]	•	_'	•			•	
4110 Dissolved Solids in Water			Expected Value	Percent Recovery			
Total Dissolved Solids	mg/L	1000	1000.0	101	90-110 %	Т	
1172324 [Laboratory Control Sample]		•	•			•	
4540 TKN in Water by Titration			Expected Value	Percent Recovery			
TKN	mg/L	96	100.0	96	80-120 %	Т	
1172602 [Laboratory Control Sample]	•		•			•	
4300 Anions in Water by IC			Expected Value	Percent Recovery			
Bromide	mg/L	92	100.0	92	80-120 %	Т	
Chloride	mg/L	95	100.0	95	80-120 %	Т	
Fluoride	mg/L	89	100.0	89	80-120 %	Т	
Nitrate	mg/L	95	100.0	95	80-120 %	Т	
Nitrite	mg/L	92	100.0	92	80-120 %	Т	
Orthophosphate as P	mg/L	90	100.0	90	80-120 %	Т	
Sulphate	mg/L	89	100.0	89	80-120 %	Т	

Laboratory: EN_WATERS

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Codes
1173644 [Laboratory Control Sample]						•	
4000 pH in Water	_		Expected Value	Percent Recovery			
рН	pН	7.4	7.4	100	95-105 %	Т	
1175728 [Laboratory Control Sample]			•	•			
4410 TOC in Water By Analyser	_		Expected Value	Percent Recovery			
Total Organic Carbon	mg/L	8.6	10.0	86	80-120 %	Т	
1175729 [Laboratory Control Sample]		_	<u>-</u>	•			
4410 TOC in Water By Analyser		_	Expected Value	Percent Recovery		_	
Dissolved Organic Carbon	mg/L	8.6	10.0	86	80-120 %	Т	

Sample Integrity

Qualifier Codes/Comments

Code Description

G01 The PQLs have been raised due to Matrix Interference R14 These results have been confirmed by repeat analysis.

Authorised By

Ruth Callander Client Services Officer

Mark Herbstreit Senior Analyst - Metals Accredit
Helen Lei Senior Analyst - Waters Accredit

Accreditation Number: 1645 Accreditation Number: 1645

Laboratory Manager

Anthony Crane Operations Manager

Final Report

- Indicates Not Requested * Indicates NATA accreditation does not cover the performance of this service

Labmark Environmental shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Labmark Environmental be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

The samples were not collected by Amdel staff.

 First Reported: 19 September 2008
 Labmark 1868 Dandenong Rd Clayton VIC Australia 3168
 Page 5 of 5

 Date Printed: 19 September 2008
 ABN: 30 008 127 802 Telephone: (03) 9538 2277 Facsimile: (03) 9538 2278
 Final Report Number : 332814

### A PATE OF THE TOTAL OF THE STATE OF THE	From : SKM Pty	Ltd			CHAIN OF CUST	UDY FURIM						S	K	11
Table Control Contro	ABN: 37 001 024 Level 5, 33 King \	095 William St, Adel		5000					Contr	ainer Identif	ication			
And USE INVY COURT SHAMEST IN COLOR SHAMEST IN COLOR SHAMEST AND COLOR SHAMEST IN COLOR SHAMEST AND COLOR SHAMEST Color SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST AND COLOR SHAMEST COLOR SHAMEST	ph: (08) 8424 380	0 fax: (08) 842	4 3810				Cina	1000ml	42ml	125ml				┼
County C	LAR USE ONLY			Project	No:	·	_					1		
Dec Time Maria Banga Israelisation Comments This required stables		t			VE30064			NO						
Dec Time Maria Banga Israelisation Comments This required stables	Job Code:			Project				E P		Ned				
Dec Time Maria Banga Israelisation Comments This required stables		17		Sample			Analytes	J. Ec		Dissic				•
Dec Time Maria Banga Israelisation Comments This required stables		.,					'	E S	İ	and (Ī		
Dec Time Maria Banga Israelisation Comments This required stables		ratory by:		Checked			•	E B E	700	s, Si		i		
Dec Time Maria Banga Israelisation Comments This required stables								snoir O2,		atjo.				
Dec Time Maria Banga Israelisation Comments This required stables	Date:			Date:	· ·		1	<u>5</u> €		ρ.				
Date Date					11/09/2008			M S		EE				<u> </u>
100000000		Date	Time	Matrix		Comments		Tick require	d analytes					
10080208	Lub is	- Date	7,111,0	Transition .				·						
100002000		10/09/2008		H20	RT41	<u></u>	-	Х						
100002000		10/00/2008		Hau	RT41	X 2 Viles			x					İ
100002000	-	TONDOIZEDOU		1120		<u> </u>				"		i		Γ
100092008		10/09/2008		H20	RT41	Field Filtered				X				
100092008			ĺ							İ				
100092008			†					-						
100/09/2008		10/09/2008		H20	RT42			Х				-		
100/09/2008		10/09/2008		H20	RT42	X 2 Viles	İ		х	.				
1009208		10,00.200		1										
10092008		10/09/2008		H20	RT42	Field Filtered	-			X	-			_
10092008								i						ĺ
10092008											i			
10092008 120 Deplicate 9 X 2 Vise X X X X X X X X X		10/09/2008		H20	Duplicate 9		-	х						<u> </u>
1006/2008		10/09/2008	İ	H20	Duplicate 9	X 2 Viles			· x			İ		
10002000		juidizado		1										
100992008		10/09/2008		H20	Duplicate 9	Field Filtered				X				-
10092008 H20 R84 X 2 View X X 10092008 H20 R84 Fedt Filtered X 10092008 H20 R84 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt F							i l					ļ		
10092008 H20 R84 X 2 View X X 10092008 H20 R84 Fedt Filtered X 10092008 H20 R84 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt Filtered X 10092008 H20 Fedt F														
10092008		10/09/2008		H20	RB4			_ x						
10092000 P2D RB4 Field Fillend X 10092000 P2D RB4 Field Fillend X		10/09/2008		H20	RB4	X 2 Viles		1	х					
36ENNE0024479-1(1170666) 5KM ADEL(RT41) 10165:								1						
DBENME0024479-1(1170666) SKML-RDEL_CRT41) SKML-RDEL_CRT41) TOTAL		10/09/2008		H20	RB4	Field Filtered				×	_			
DBENME0024479-1(1170666) SKML-RDEL_CRT41) SKML-RDEL_CRT41) TOTAL										[
DBENME0024479-1(1170666) SKML-RDEL_CRT41) SKML-RDEL_CRT41) TOTAL									}	1	İ			ı
DBENME0024479-1(1170666) SKML-RDEL_CRT41) SKML-RDEL_CRT41) TOTAL							 	.					-	
DBENME0024479-1(1170666) SKML-RDEL_CRT41) SKML-RDEL_CRT41) TOTAL														
TOTAL Dies:									ļ					
TOTAL Dies:								-		-	-			
TOTAL Dies:														
TOTAL Dies:														
TOTAL Dies:						1/11700000)	\vdash						\neg	
TOTAL Dies:					08ENMF00544\a	-1(11\00nn\								
TOTAL Dies:		ļ			5KM_ADEL(R)41	ánnkan al			1					
TOTAL Dies:														
TOTAL Dies:					(i) 100 p. (au)									
TOTAL Dies:				i	,								ĺ	
TOTAL Dites:														
TOTAL Dites:			i		···								\rightarrow	
TOTAL Dites:			Į							.				
TOTAL Dites:													\neg	
TOTAL Dites:														
TOTAL Dites:							i					-	1	
TOTAL Dites:						-								
TOTAL Dites:					·				\dashv					
otes:			- 1					.						
otes:	<u> </u>		!		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		" 		····				\neg	
		ĺ				TOTAL								
	ofes:									L				$\neg \neg$
lease email awalsh@skm.com.au.and.dnierce@skm.com.au.reults and upon receival of sambles														
lease email awalsh@skm.com au and dnierce@skm.com au reults and upon receival of sambles														
	lease email a	walsh@skm	. com :	au and	dnierce@skm.com au reults and	upon receival of	samples							

See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS. Any questions please call Alistair Walsh on 0430288222

COC-RevA

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments e
S	ample Batch fee			
Major Cations (mg/L)	Calcium (Ca) Magnesium (Mg) Sodium	1 mg/L	7 days	
	(Na) Potassium (K) Calcium Carbonate (CaCO ₂) Sulphate			
Major Anions (mg/L)	(SO ₄) Chloride (CI) Carbonate (CO ₃)	1 mg/L	48 Hrs	
ž	Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L)	1 mg/L	28 days	
	EC (uS/cm) pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride Sifica (Si)		5 72 18 3	
	Aluminum (AI) Antimony	10 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb)	0.5 µg/L	6 months	
43	Arsenic (As) Barlum	0.5 μg/L	6 months	
	(Ba) Beryllium	5 μg/L	6 months	
	(Be) Boron	0.1 μg/L	6 months	
	(B) Cadmium	100 μg/L	6 months	
	(Cd) Chromlum	0.2 µg/L	6 months	
	(Cr) Cobait	0.5 μg/L	6 months	
	(Co) Copper	0.2 μg/L 5 μg/L	6 months	
~	(Cu) Gold	0.1 μg/L	6 months	
Dissolved Metals (mg/L.)	(Ag) Lead	0.2 μg/L	6 months	
Metals	(Pb) Lithium (Li)	5 µg/L	6 months	
olved	Manganese (Mn)	0.5 μg/L	6 months	
Diss	Molybdenum (Mo)	0.1 μg/L	6 months	
	Nickel (Ni)	0.5 μ g/ L	6 months	
	Selenium (Se)	5 µg/L	6 months	
	Strontlum (Sr)	10 μg/L	6 months	
	Thailium (TI)	0.1 μg/L	6 months	
	Thorium (Th)	0.1 µg/L	6 months	·
	Tin (Sn)	5 μg/L	6 months	
	Titanlum (Ti) Uranlum	5 μg/L	6 months	· ·
	(U) Vanadium	0.1 μg/L	6 months	
	(V) Zinc	0.5 μg/L	6 months	
	(Zn)	5 µg/L	6 months	
	(Fe)	5 µg/L	6 months	ICP OES
Nutrients (mgL)	Nitrate as N (NO ₃) Nitrate as N	0.01 mg/L	48 hrs	measured together
	(NO ₃) Total Nitrogen	0.01 mg/L 0.01 mg/L	48 hrs	
Tight T	otal Organic Carbon (TOC)	1 mg/L	28 days	
ž	Total Kjeldahi	0.1 mg/L	28 days	
	Vitrogen (DVN)	Cost/sample	28 days	

Total Cost

Sample Receipt Advice

Turnaround:

Customer Service - 1300 552 389

Client Name: Sinclair Knight Mertz Date Received: 12 September 2008

Attention: MR Alistair Walsh Due Date: 19 September 2008

Amdel Reference number: 08ENME0024479 Your Amdel Contact: Carol Cawrse

+61 3 9538 2277

Standard

If you have any queries regarding turnaround and sample progress, technical queries or wish to make changes please contact the laboratory immediately.

Job Information

Client Reference number:

Sample Integrity

Attempt to Chill was evident	Yes
Samples correctly preserved	Yes
Organic samples had Teflon liners	Yes
Samples received with Zero Headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No
Custody Seals Intact (if used)	N/A

VE30064

Analysis Requested

Analysis Requested	Method Code	Number Of Samples
Anions in Water by IC	4300	4
Conductivity in Water	4010	4
Dissolved Metals in Water - ICP/AES	3200	4
Low Level Dissolved Metals in Water	3100	4
	NEW_TEST01	4
pH in Water	4000	4
Dissolved Solids in Water	4110	4
TKN in Water by Titration	4540	4
TOC in Water By Analyser	4410	4
Total Nitrogen in Water by Calc	4941	4

<u>Note</u>

- Turn Around Time starts when samples are received at the Laboratory
- For samples received after 4pm, Turn Around Time starts the next working day
- For samples received on the last day of holding time, notification of testing requirements must be given at least 6 hours prior to the sample receipt deadlines; Should the laboratory not receive the information in the required timeframe a suitably qualified results may still be reported.
- Surcharges may apply for 24 and 48 hour turnaround.
- Water samples will be discarded after 6 weeks unless notified.
- Soil samples are chilled for 1 month and will be discarded after 3 months unless notified.
- Samples submitted for Micro analysis on a Friday may incur a \$150 surcharge and / or be analysed outside holding time (24 Hour Holding Time).
- The Quoted Due Date does not apply to sub-contracted tests or some in-house tests. Contact your Customer Support Officer for details

NOTE: Unless advised otherwise - Sample analysis will commence regardless of integrity issues and / or non-conformance and these will be recorded on the final report.

Logged in by : Kim Jolly Date : Fri 12 September 2008

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0806112** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR DANIEL PIERCE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 29-JUL-2008

 Sampler
 : AW, MC
 Issue Date
 : 07-AUG-2008

Site : ----

No. of samples received : 5

Quote number : EN/003/08 No. of samples analysed : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Celine Conceicao	Spectroscopist	Inorganics	
Herman Lin	Senior Inorganic Chemist	Inorganics	
Hoa Nguyen	Inorganic Chemist	Inorganics	

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 4
Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- LOR 's for Iron for method EG020F raised due to matrix interference.
- Poor matrix spike recovery was obtained for Zinc, Beriyllium, Copper, Nickel and Cadmium for method EG020F due to matrix interference. Results have been confirmed by re-spiking and reanalysis.

Page : 3 of 4
Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	LR1	RT16a	RT17a	LT19	LT41
	C	lient samplii	ng date / time	27-JUL-2008 15:00	27-JUL-2008 15:00	27-JUL-2008 15:00	27-JUL-2008 15:00	27-JUL-2008 15:00
Compound	CAS Number	LOR	Unit	EM0806112-001	EM0806112-002	EM0806112-003	EM0806112-004	EM0806112-005
EA005P: pH by PC Titrator	Crto rtambor							
oH Value		0.01	pH Unit	7.13	7.08	11.1	7.13	7.12
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	μS/cm	36600	31200	33800	39000	34200
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	26900	23300	24100	28800	24800
ED037P: Alkalinity by PC Titrator	0.0 2.0 0.0							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	31	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	263	314	4	348	359
Fotal Alkalinity as CaCO3		1	mg/L	263	314	35	348	359
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	1	mg/L	4440	4160	3140	5680	4430
ED045P: Chloride by PC Titrator	11000100							
Chloride	16887-00-6	1	mg/L	10700	8720	10300	10600	11000
ED093F: Dissolved Major Cations	10007 00 0		g. <u></u>		VV			
Calcium	7440-70-2	1	mg/L	935	777	1360	1130	811
Magnesium	7439-95-4	1	mg/L	1050	725	93	991	800
Sodium	7440-23-5	1	mg/L	8670	6580	9360	9210	7380
Potassium	7440-09-7	1	mg/L	83	56	217	105	68
EG005T: Total Metals by ICP-AES	1110 00 1		g. <u></u>					
ron	7439-89-6	0.01	mg/L	0.34	0.40	1.42	1.76	0.52
	7439-69-0	0.01	mg/L	0.04	0.40	1.72	1.70	0.02
EG020F: Dissolved Metals by ICP-MS Aluminium	7400.00.5	0.01	mg/L	0.06	0.02	0.16	0.02	0.02
Antimony	7429-90-5 7440-36-0	0.001	mg/L	<0.001	<0.02	<0.001	<0.001	<0.001
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Beryllium	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	0.001	<0.001
Barium	7440-39-3	0.001	mg/L	0.016	0.011	0.150	0.027	0.012
Cadmium	7440-43-9	0.0001	mg/L	0.0003	<0.0001	<0.0001	0.0001	<0.0001
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	7440-48-4	0.001	mg/L	0.003	<0.001	0.001	0.004	0.001
Copper	7440-50-8	0.001	mg/L	0.068	0.008	0.008	0.363	0.019
.ead	7439-92-1	0.001	mg/L	0.029	0.012	0.006	0.006	0.006
_ithium	7439-93-2	0.001	mg/L	0.320	0.272	0.900	0.493	0.443
Manganese	7439-96-5	0.001	mg/L	0.542	0.380	<0.001	0.910	0.288
Molybdenum	7439-98-7	0.001	mg/L	0.004	0.001	0.021	0.002	0.001
Nickel	7440-02-0	0.001	mg/L	0.109	0.004	<0.001	0.380	0.007
Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010

Page : 4 of 4 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	LR1	RT16a	RT17a	LT19	LT41
	CI	ient sampli	ng date / time	27-JUL-2008 15:00	27-JUL-2008 15:00	27-JUL-2008 15:00	27-JUL-2008 15:00	27-JUL-2008 15:00
Compound	CAS Number	LOR	Unit	EM0806112-001	EM0806112-002	EM0806112-003	EM0806112-004	EM0806112-005
EG020F: Dissolved Metals by ICP-MS - Cor	ntinued							
Strontium	7440-24-6	0.001	mg/L	19.6	16.7	17.3	17.9	15.4
Thallium	7440-28-0	0.001	mg/L	<0.001	0.001	<0.001	<0.001	<0.001
Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Titanium	7440-32-6	0.01	mg/L	1.20	<0.01	1.19	1.19	<0.01
Uranium	7440-61-1	0.001	mg/L	0.064	0.026	<0.001	0.025	0.042
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01
Zinc	7440-66-6	0.005	mg/L	0.104	0.033	0.067	0.231	0.069
Boron	7440-42-8	0.05	mg/L	8.47	8.74	0.57	10.8	10.4
Gold	7440-57-5	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
EG052G: Silica by Discete Analyser								
Silica	7631-86-9	0.10	mg/L	15.0	17.7	9.41	14.6	17.8
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.4	1.7	0.2	1.6	1.6
EK057G: Nitrite as N by Discrete Analyse	r							
Nitrite as N		0.010	mg/L	<0.010	<0.010	0.298	<0.010	<0.010
EK058G: Nitrate as N by Discrete Analyse	er							•
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	0.029	0.215	0.017	0.013
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.010	mg/L	<0.010	0.029	0.513	0.017	0.013
EK061: Total Kjeldahl Nitrogen (TKN)								
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.8	<0.1	<0.1
EK062: Total Nitrogen as N								
^ Total Nitrogen as N		0.1	mg/L	<0.1	<0.1	1.3	<0.1	<0.1
EP005: Total Organic Carbon (TOC)								
Total Organic Carbon		1	mg/L	<1	2	12	3	4

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

· EM0806112 Work Order

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : ALISTAIR WALSH Contact : Paul Loewy

Address : LEVEL 5. 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia

ADELAIDE SA, AUSTRALIA 5000

E-mail : awalsh@skm.com.au E-mail : paul.loewy@alsenviro.com

Telephone Telephone : +61 08 8424 3800 : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30064 Page : 1 of 3

Order number ٠ ____

C-O-C number Quote number : ES2008SINKNI0045 (EN/003/08) : ----

Sampler QC Level : AW, MC : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 30-JUL-2008 13:08 : 29-JUL-2008 Issue Date Client Requested Due Date : 05-AUG-2008 Scheduled Reporting Date 05-AUG-2008

Delivery Details

Mode of Delivery : Carrier Temperature : 5.4 - Ice bricks present

No. of coolers/boxes No. of samples received : 1 : 5 Sercurity Seal : Intact. No. of samples analysed : 5

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Sample(s) have been received within recommended holding times
- Please direct any queries related to sample condition / numbering / breakages to Peter Ravlic.
- Analytical work for this work order will be conducted at ALS Melbourne.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 30-JUL-2008 13:08

Page : 2 of 3 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG005T : Total Recoverable Me	tals by ICP-AES	
LR1	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
RT16a	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
RT17a	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
LT19	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
LT41	- Clear Plastic Bottle - Natural	 Clear Plastic Bottle - Nitric Acid; Unfiltered
EP005 : Total Organic Carbon		
LR1	- Clear Plastic Bottle - Natural	- Amber TOC Vial- Sulphuric Acid
RT16a	- Clear Plastic Bottle - Natural	- Amber TOC Vial- Sulphuric Acid
RT17a	- Clear Plastic Bottle - Natural	- Amber TOC Vial- Sulphuric Acid
LT19	- Clear Plastic Bottle - Natural	- Amber TOC Vial- Sulphuric Acid
LT41	- Clear Plastic Bottle - Natural	- Amber TOC Vial- Sulphuric Acid

Summary of Sample(s) and Requested Analysis

process neccessar tasks. Packages r the determination tasks, that are includ When date(s) and	may contain addition of moisture con ed in the package.	n of client requested al analyses, such as tent and preparation own bracketed, these	A005P	:A010P y (PC)	NATER - EA015 rotal Dissolved Solids	:G005T-EM s by ICP-AES (Melbourne)	EG020A-F Metals by ICPMS - Suite A	EG020B-F Metals by ICPMS - Suite B	- EG052G Discrete Analyser	ЕК040-Р С)
Laboratory sample	Client sampling date / time	Client sample ID	WATER - E.	WATER - E/ Conductivity	WATER - E, Total Dissol	WATER - EC Total Metals	WATER - E	WATER - EG020B-F Dissolved Metals by	WATER - E Silica by Di	WATER - EK Fluoride(PC)
EM0806112-001	27-JUL-2008 15:00	LR1	✓	✓	✓	✓	✓	✓	✓	✓
EM0806112-002	27-JUL-2008 15:00	RT16a	✓	✓	✓	✓	✓	✓	✓	✓
EM0806112-003	27-JUL-2008 15:00	RT17a	✓	✓	✓	✓	✓	✓	✓	✓
EM0806112-004	27-JUL-2008 15:00	LT19	✓	✓	✓	✓	✓	✓	✓	✓
EM0806112-005	27-JUL-2008 15:00	LT41	✓	✓	✓	✓	✓	✓	✓	✓

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EK057G Nitrite as N by Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete Analyser		' O	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 (EB/PCT) Major Anions (Cl, SO4, Alkalinity)	WATER - W-01 7 Metals
EM0806112-001	27-JUL-2008 15:00	LR1	✓	✓	✓	✓	✓	1	✓	✓
EM0806112-002	27-JUL-2008 15:00	RT16a	✓	✓	✓	✓	✓	✓	✓	✓
EM0806112-003	27-JUL-2008 15:00	RT17a	✓	✓	✓	✓	✓	✓	1	✓
EM0806112-004	27-JUL-2008 15:00	LT19	✓	✓	✓	✓	✓	✓	✓	✓
EM0806112-005	27-JUL-2008 15:00	LT41	✓	✓	✓	✓	✓	✓	1	✓

: 30-JUL-2008 13:08 Issue Date

Page 3 of 3 EM0806112 Work Order

Client : SINCLAIR KNIGHT MERZ

Requested Deliverables

ALISTAIR WALSH

- *AU Certificate of Analysis - NATA	Email	awalsh@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	awalsh@skm.com.au
- *AU QC Report ¿ DEFAULT (Anon QC Rep) - NATA	Email	awalsh@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	awalsh@skm.com.au
- Default - Chain of Custody	Email	awalsh@skm.com.au
- EDI Format - ENMRG	Email	awalsh@skm.com.au
- EDI Format - ESDAT	Email	awalsh@skm.com.au
MR DANIEL PIERCE		

MR DANIEL PIERCE

IN DAMEET IEROE		
- *AU Certificate of Analysis - NATA	Email	dpierce@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	dpierce@skm.com.au
- *AU QC Report ¿ DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au
- Default - Chain of Custody	Email	dpierce@skm.com.au
- EDI Format - ENMRG	Email	dpierce@skm.com.au
- EDI Format - ESDAT	Email	dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

: EM0806112 **Work Order** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

: MR DANIEL PIERCE Contact Contact : Paul Loewy

Address Address : 4 Westall Rd Springvale VIC Australia 3171 : LEVEL 5, 33 KING WILLIAM ST

ADELAIDE SA, AUSTRALIA 5000

E-mail E-mail : dpierce@skm.com.au : paul.loewy@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Proiect QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement VF30064

Site

C-O-C number **Date Samples Received** : 29-JUL-2008

Sampler Issue Date : 07-AUG-2008 : AW. MC

No. of samples received : 5 . 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples analysed

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

· FN/003/08

Order number

Quote number

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Inorganics
Herman Lin	Senior Inorganic Chemist	Inorganics
Hoa Nguyen	Inorganic Chemist	Inorganics

Environmental Division Melbourne Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171 Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 8 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 8 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC T	itrator (QC Lot: 720462)								
EM0806112-001	LR1	EA005-P: pH Value		0.01	pH Unit	7.13	7.13	0.0	0% - 20%
EM0806112-005	LT41	EA005-P: pH Value		0.01	pH Unit	7.12	7.14	0.3	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC Lot: 72	20465)							
EM0806112-001	LR1	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	36600	36600	0.0	0% - 20%
EA015: Total Dissolv	ved Solids (QC Lot: 719135)								
EM0806064-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	530	510	3.8	0% - 20%
EM0806111-002	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	2600	2600	0.0	0% - 20%
ED037P: Alkalinity b	y PC Titrator (QC Lot: 72046	51)							
EM0806112-001	LR1	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	263	262	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	263	262	0.0	0% - 20%
EM0806112-005	LT41	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	359	357	0.6	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	359	357	0.6	0% - 20%
ED040F: Dissolved I	Major Anions (QC Lot: 71974	10)							
EM0806095-001	Anonymous	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	565	628	10.6	0% - 20%
EM0806112-002	RT16a	ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	4160	4530	8.5	0% - 20%
ED045P: Chloride by	PC Titrator (QC Lot: 72046	3)							
EM0806112-001	LR1	ED045-P: Chloride	16887-00-6	1	mg/L	10700	10400	2.6	0% - 20%
EM0806112-005	LT41	ED045-P: Chloride	16887-00-6	1	mg/L	11000	11000	0.5	0% - 20%
ED093F: Dissolved I	Major Cations (QC Lot: 7197	41)							
EM0806095-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	391	362	7.8	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	2380	2900	19.4	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	20100	23600	16.1	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	608	730	18.3	0% - 20%
EM0806112-002	RT16a	ED093F: Calcium	7440-70-2	1	mg/L	777	878	12.3	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	725	802	10.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	6580	7100	7.6	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	56	58	2.8	0% - 20%
EG005T: Total Metal	s by ICP-AES (QC Lot: 7187	28)							
EM0806070-018	Anonymous	EG005T: Iron	7439-89-6	0.01	mg/L	0.05	0.07	28.6	No Limit
EG020F: Dissolved I	Metals by ICP-MS (QC Lot: 7	20374)							

Page : 4 of 8 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC I	Lot: 720374) - continued							
EM0806112-001	LR1	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0003	0.0004	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.016	0.016	0.0	0% - 50%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.068	0.068	0.0	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.029	0.030	5.6	0% - 20%
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.320	0.287	11.0	0% - 20%
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.542	0.535	1.2	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.004	0.003	33.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.109	0.111	1.9	0% - 20%
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.104	0.107	3.0	0% - 20%
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.06	0.02	76.2	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	8.47	8.72	2.9	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC I	Lot: 720375)							
EM0806112-001	LR1	EG020B-F: Strontium	7440-24-6	0.001	mg/L	19.6	19.1	2.7	0% - 20%
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.064	0.063	0.0	0% - 20%
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	1.20	1.22	1.3	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC I	Lot: 720376)							
EM0806112-001	LR1	EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
FG052G: Silica by D	Discete Analyser (QC Lo								
EM0806112-001	LR1	EG052G: Silica	7631-86-9	0.10	mg/L	15.0	14.5	3.5	0% - 20%
ES0810946-007	Anonymous	EG052G: Silica	7631-86-9	0.10	mg/L	3.57	3.53	1.1	0% - 20%
EK040P: Eluorida b	y PC Titrator (QC Lot: 7				3				
EM0806112-001	LR1	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.4	1.4	0.0	0% - 50%
EM0806112-005	LT41	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.6	1.7	0.0	0% - 50%
	N by Discrete Analyser		.555. 10 0					0	3.1 33,0
EM0806064-001	Anonymous	EK057G: Nitrite as N		0.010	mg/L	0.205	0.205	0.0	0% - 20%
EM0806004-001	Anonymous			0.010	mg/L	<0.010	<0.010	0.0	No Limit
	,	EK057G: Nitrite as N		0.010	mg/L	~0.010	30.010	0.0	140 LIIIII
	by Discrete Analyser (•		0.010	ma/l	10.6	10.0	1.0	00/ 200/
EM0806064-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.010	mg/L	18.6	18.9	1.2	0% - 20%
EM0806109-004	Anonymous	EK059G: Nitrite + Nitrate as N		0.010	mg/L	1.20	1.19	8.0	0% - 20%

Page : 5 of 8
Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EK059G: NOX as N i	y Discrete Analyser (QC Lo	ot: 719110)								
EM0806112-005	LT41	EK059G: Nitrite + Nitrate as N		0.010	mg/L	0.013	0.013	0.0	No Limit	
EM0806131-010	Anonymous	EK059G: Nitrite + Nitrate as N		0.010	mg/L	<0.010	<0.010	0.0	No Limit	
EK061: Total Kjeldah	l Nitrogen (TKN) (QC Lot: 7	19169)								
EM0805994-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit	
EM0806109-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.8	13.2	No Limit	
EP005: Total Organic	Carbon (TOC) (QC Lot: 719	9761)								
EM0805997-007	Anonymous	EP005: Total Organic Carbon		1	mg/L	<1	<1	0.0	No Limit	
EM0806103-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	5	5	0.0	No Limit	

Page : 6 of 8 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

	•				•					
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EA010P: Conductivity by PC Titrator (QCLot: 720465)										
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	1412 μS/cm	100	93.6	106		
EA015: Total Dissolved Solids (QCLot: 719135)										
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	2000 mg/L	101	93.7	106		
ED037P: Alkalinity by PC Titrator (QCLot: 720461)										
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	108	80	120		
ED040F: Dissolved Major Anions (QCLot: 719740)										
ED040F: Sulfate as SO4 2-	14808-79-8	1	mg/L	<1	300 mg/L	106	86.4	118		
ED045P: Chloride by PC Titrator (QCLot: 720463)										
ED045-P: Chloride	16887-00-6	1	mg/L	<1	1000 mg/L	89.6	81.7	120		
ED093F: Dissolved Major Cations (QCLot: 719741)					_					
ED093F: Calcium	7440-70-2	1	mg/L	<1	5 mg/L	114	91.4	121		
ED093F: Magnesium	7439-95-4	1	mg/L	<1	5 mg/L	117	86.9	121		
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	112	85.2	113		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	117	82.1	118		
EG005T: Total Metals by ICP-AES (QCLot: 718728)										
EG005T: Iron	7439-89-6	0.01	mg/L	<0.01	1.00 mg/L	95.1	80	120		
EG020F: Dissolved Metals by ICP-MS (QCLot: 720374)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	101	88.1	116		
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001						
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	91.7	79.2	117		
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	99.3	79.2	117		
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	101	82	113		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	94.5	85.1	110		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	102	87	117		
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	101	86.6	117		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	99.6	80.6	115		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	100	84.1	114		
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	105	78.1	118		
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	103	84	116		
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	100	79.7	119		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	102	83	115		
EG020A-F: Selenium	7782-49-2	0.01 0.010	mg/L	 <0.010	0.1 mg/L 	98.9	73.5 	124		
		0.010	mg/L	~ 0.010						

Page : 7 of 8
Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 72037	4) - continued								
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	96.2	82.5	118	
EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	99.7	77.7	130	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	104	86.2	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	86.9	81.1	115	
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	74.8	74.7	119	
EG020F: Dissolved Metals by ICP-MS (QCLot: 72037	5)								
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	101	85.3	110	
EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001					
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	102	87.8	109	
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001					
EG020F: Dissolved Metals by ICP-MS (QCLot: 72037	6)								
EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001					
EG052G: Silica by Discete Analyser (QCLot: 720309)									
EG052G: Silica	7631-86-9	0.1	mg/L		21.4 mg/L	97.8	70	130	
		0.10	mg/L	<0.10					
EK040P: Fluoride by PC Titrator (QCLot: 720464)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5 mg/L	84.2	79.4	115	
EK057G: Nitrite as N by Discrete Analyser (QCLot:	719107)								
EK057G: Nitrite as N		0.01	mg/L		0.5 mg/L	96.2	89.9	105	
		0.010	mg/L	<0.010					
EK059G: NOX as N by Discrete Analyser (QCLot: 71	9109)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L		0.5 mg/L	106	76.5	120	
		0.010	mg/L	<0.010					
EK059G: NOX as N by Discrete Analyser (QCLot: 71	9110)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L		0.5 mg/L	100	76.5	120	
		0.010	mg/L	<0.010					
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 71916	9)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	98.6	71.4	111	
EP005: Total Organic Carbon (TOC) (QCLot: 719761)									
EP005: Total Organic Carbon		1	mg/L	<1	100 mg/L	87.1	80.5	115	

Page : 8 of 8 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045P: Chloride by	y PC Titrator (QCLot: 720463)						
EM0806104-001	Anonymous	ED045-P: Chloride	16887-00-6	4900 mg/L	81.1	70	130
EG005T: Total Metal	ls by ICP-AES (QCLot: 718728)						
EM0806070-025	Anonymous	EG005T: Iron	7439-89-6	1.00 mg/L	94.2	70	130
G020F: Dissolved	Metals by ICP-MS (QCLot: 720374)						
EM0806112-001	LR1	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	80.0	70	130
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	# 49.9	70	130
		EG020A-F: Barium	7440-39-3	0.2 mg/L	86.3	70	130
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	# 64.4	70	130
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	87.6	70	130
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	82.2	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	# 61.2	70	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	73.0	70	130
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	98.3	70	130
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	# 64.8	70	130
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	86.4	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	# 54.7	70	130
G052G: Silica by D	iscete Analyser (QCLot: 720309)						
EM0806112-001	LR1	EG052G: Silica	7631-86-9	5.0 mg/L	107	70	130
K040P: Fluoride by	PC Titrator (QCLot: 720464)						
EM0806104-001	Anonymous	EK040P: Fluoride	16984-48-8	5.0 mg/L	82.4	70	130
K057G: Nitrite as	N by Discrete Analyser (QCLot: 719107)						
EM0806103-001	Anonymous	EK057G: Nitrite as N		0.5 mg/L	98.8	70	130
K059G: NOX as N	by Discrete Analyser (QCLot: 719109)						
EM0806103-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	120	70	130
K059G: NOX as N	by Discrete Analyser (QCLot: 719110)						
EM0806131-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	105	70	130
K061: Total Kjelda	hl Nitrogen (TKN) (QCLot: 719169)						
EM0805994-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		4 mg/L	87.2	70	130
P005: Total Organi	c Carbon (TOC) (QCLot: 719761)						
EM0806047-001	Anonymous	EP005: Total Organic Carbon		100 mg/L	91.6	70	130
	•	<u> </u>					

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

: EM0806112 **Work Order** Page : 1 of 10

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

: MR DANIEL PIERCE : Paul Loewy Contact Contact

Address Address : 4 Westall Rd Springvale VIC Australia 3171 : LEVEL 5, 33 KING WILLIAM ST

ADELAIDE SA, AUSTRALIA 5000

E-mail E-mail : dpierce@skm.com.au : paul.loewy@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

QC Level Proiect · VF30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

No. of samples analysed

Site

Order number

Quote number

C-O-C number **Date Samples Received** : 29-JUL-2008

Issue Date : 07-AUG-2008 Sampler : AW. MC

No. of samples received : 5 : 5

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

· FN/003/08

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER Evaluation: × = Holding time breach; ✓ = Within holding time

Method		Sample Date	E	ktraction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	27-JUL-2008	×
RT17a,	LT19,							
LT41								
EA010P: Conductivity by PC Titrator								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								
EA015: Total Dissolved Solids			1			I	l	
Clear Plastic Bottle - Natural LR1,	RT16a,	27-JUL-2008				31-JUL-2008	03-AUG-2008	· /
RT17a,	LT19,	21-JUL-2000				31-JUL-2006	03-A0G-2006	Y
LT41	2113,							
ED037P: Alkalinity by PC Titrator								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	10-AUG-2008	
RT17a,	LT19,							_
LT41								
ED040F: Dissolved Major Anions								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				31-JUL-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								
ED045P: Chloride by PC Titrator								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								

Page : 3 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED093F: Dissolved Major Cations								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				31-JUL-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								
EG005T: Total Metals by ICP-AES								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008	30-JUL-2008	23-JAN-2009	✓	30-JUL-2008	23-JAN-2009	✓
RT17a,	LT19,							
LT41								
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Nitric Acid; Filtered								
LR1,	RT16a,	27-JUL-2008				04-AUG-2008	23-JAN-2009	✓
RT17a,	LT19,							
LT41								
EG052G: Silica by Discete Analyser			1				ı	
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								
EK040P: Fluoride by PC Titrator			<u> </u>	<u> </u>	I	1	I	
Clear Plastic Bottle - Natural	DT10	""					04 4110 0000	
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								
EK057G: Nitrite as N by Discrete Analyser							I	I
Clear Plastic Bottle - Natural	DT40-	07 HH 0000					20 1111 2000	
LR1, RT17a,	RT16a,	27-JUL-2008				30-JUL-2008	29-JUL-2008	×
LT41	LT19,							
EK059G: NOX as N by Discrete Analyser Clear Plastic Bottle - Natural			<u> </u>	<u> </u>		T	l	
LR1,	RT16a,	27-JUL-2008				30-JUL-2008	29-JUL-2008	4-
RT17a,	LT19,	27-30L-2000				30-30L-2008	29-30L-2000	×
LT41	LIIO,							
EK061: Total Kjeldahl Nitrogen (TKN)						1		
Clear Plastic Bottle - Natural						I		
LR1,	RT16a,	27-JUL-2008	01-AUG-2008	28-JUL-2008	*	01-AUG-2008	29-AUG-2008	✓
RT17a,	LT19,	27-301-2000	01-A0G-2000	20 001 2000	*	01-A00-2000	23 / 100 2000	
LT41	L119,							

Page : 4 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP005: Total Organic Carbon (TOC)								
Clear Plastic Bottle - Natural								
LR1,	RT16a,	27-JUL-2008				01-AUG-2008	24-AUG-2008	✓
RT17a,	LT19,							
LT41								

Page : 5 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Antriv. WATED

Matrix: WATER				Evaluatio	n: × = Quality Cor	ntrol frequency n	ot within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	2	14	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	4	31	12.9	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH by PC Titrator	EA005-P	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Silica (Reactive) by Discrete Analyser	EG052G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	2	19	10.5	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Recoverable Metals by ICP-AES	EG005T	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by PC Titrator	ED045-P	1	15	6.7	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	8	12.5	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.0	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	5	20.0	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	14	7.1	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	19	5.3	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	13	7.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	31	6.5	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	20	5.0	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Silica (Reactive) by Discrete Analyser	EG052G	1	20	5.0	5.0	<u>-</u> ✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	18	5.6	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	19	5.3	5.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Recoverable Metals by ICP-AES	EG005T	1	7	14.3	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Chloride by PC Titrator	ED045-P	1	15	6.7	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page : 6 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Conductivity by PC Titrator	EA010-P	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	31	6.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Silica (Reactive) by Discrete Analyser	EG052G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	18	5.6	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Recoverable Metals by ICP-AES	EG005T	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Chloride by PC Titrator	ED045-P	1	15	6.7	5.0	✓	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	5	20.0	5.0	✓	ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	14	7.1	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	31	6.5	5.0	✓	ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	20	5.0	5.0	✓	ALS QCS3 requirement
Silica (Reactive) by Discrete Analyser	EG052G	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G			ALS QCS3 requirement			
Total Organic Carbon	EP005	EP005 1 19 5.3 5.0 🗸			ALS QCS3 requirement		
Total Recoverable Metals by ICP-AES	EG005T	1	7	14.3	5.0	1	ALS QCS3 requirement

Page : 7 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	APHA 21st ed. 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica after conversion by gravimetric factor.
Chloride by PC Titrator	ED045-P	WATER	APHA 21st ed., 4500 CI - B. Automated Silver Nitrate titration.
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Recoverable Metals by ICP-AES	EG005T	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 Samples are digested by USEPA 3005 prior to analysis. The ICPAES technique ionises the sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Silica (Reactive) by Discrete Analyser	EG052G	WATER	APHA 21st ed. 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by seal at 670 nm. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Analytical Methods	Method	Matrix	Method Descriptions
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 9 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	EM0806112-001	LR1	Beryllium	7440-41-7	49.9 %	70-130%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM0806112-001	LR1	Cadmium	7440-43-9	64.4 %	70-130%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM0806112-001	LR1	Copper	7440-50-8	61.2 %	70-130%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM0806112-001	LR1	Nickel	7440-02-0	64.8 %	70-130%	Recovery less than lower data quality
							objective
EG020F: Dissolved Metals by ICP-MS	EM0806112-001	LR1	Zinc	7440-66-6	54.7 %	70-130%	Recovery less than lower data quality
							objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

IVIALIA. WATER							
Method	E	ktraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
LR1,	RT16a,				01-AUG-2008	27-JUL-2008	5
RT17a,	LT19,						
LT41							
EK057G: Nitrite as N by Discrete A	nalyser						

Page : 10 of 10 Work Order : EM0806112

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix: WATER

Method		Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EK057G: Nitrite as N by Discrete	Analyser - Analysis Holding Time Compliance						
Clear Plastic Bottle - Natural							
LR1,	RT16a,				30-JUL-2008	29-JUL-2008	1
RT17a,	LT19,						
LT41							
EK059G: NOX as N by Discrete A	Analyser						
Clear Plastic Bottle - Natural							
LR1,	RT16a,				30-JUL-2008	29-JUL-2008	1
RT17a,	LT19,						
LT41							
EK061: Total Kjeldahl Nitrogen (T	KN)						
Clear Plastic Bottle - Natural							
LR1,	RT16a,	01-AUG-2008	28-JUL-2008	4			
RT17a,	LT19,						
LT41							

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0810866** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 30-JUL-2008

 Sampler
 : A.W
 Issue Date
 : 08-AUG-2008

No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Celine ConceicaoSpectroscopistInorganicsHoa NguyenInorganic ChemistInorganics

Environmental Division Sydney
Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 4
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 4
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Sub-Matrix: WATER		Cli	ent sample ID	PT24A	 	
Out Matrix. WATER	CI		ing date / time	28-JUL-2008 15:00	 	
		· ·		ES0810866-001		
Compound	CAS Number	LOR	Unit	E50810866-001	 	
EA005: pH						
pH Value		0.01	pH Unit	8.01	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	3500	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	2190	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	915	 	
Total Alkalinity as CaCO3		1	mg/L	915	 	
ED041: Sulfate (Turbidimetric) as SO4 2-						
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	82	 	
ED045G: Chloride Discrete analyser						1
Chloride Chloride Discrete analyser	16887-00-6	1.0	mg/L	778	 	
ED093F: Dissolved Major Cations	10007 00 0		9			
Calcium	7440-70-2	1	mg/L	25	 	
Magnesium	7439-95-4	1	mg/L	15	 	
Sodium	7440-23-5	1	mg/L	848	 	
Potassium	7440-09-7	1	mg/L	20	 	
EG020F: Dissolved Metals by ICP-MS	7 1 10 00 7		····g· =			
Antimony	7440-36-0	0.001	mg/L	<0.001	 	
Arsenic	7440-38-2	0.001	mg/L	0.001	 	
Beryllium	7440-41-7	0.001	mg/L	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.228	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.005	 	
Cobalt	7440-48-4	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.006	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Lithium	7439-93-2	0.001	mg/L	0.146	 	
Manganese	7439-96-5	0.001	mg/L	0.002	 	
Molybdenum	7439-98-7	0.001	mg/L	0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.026	 	
Selenium	7782-49-2	0.010	mg/L	<0.010	 	
Silver	7440-22-4	0.001	mg/L	0.001	 	
Strontium	7440-24-6	0.001	mg/L	0.668	 	
Thallium	7440-28-0	0.001	mg/L	<0.001	 	

Page : 4 of 4 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	PT24A		 	
	CI	ient sampli	ng date / time	28-JUL-2008 15:00		 	
Compound	CAS Number	LOR	Unit	ES0810866-001		 	
EG020F: Dissolved Metals by ICP-MS - Con-	tinued						
Thorium	7440-29-1	0.001	mg/L	<0.001		 	
Tin	7440-31-5	0.001	mg/L	<0.001		 	
Titanium	7440-32-6	0.01	mg/L	<0.01		 	
Uranium	7440-61-1	0.001	mg/L	<0.001		 	
Vanadium	7440-62-2	0.01	mg/L	<0.01		 	
Boron	7440-42-8	0.05	mg/L	1.10		 	
Gold	7440-57-5	0.001	mg/L	<0.001		 	
EG020T: Total Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	0.11		 	
EG052F: Silica by ICPAES							
^ Silica	7631-86-9	0.1	mg/L	33.5		 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	3.6		 	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N		0.010	mg/L	<0.010		 	
EK058G: Nitrate as N by Discrete Analyse	r						
^ Nitrate as N	14797-55-8	0.010	mg/L	0.011		 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.010	mg/L	0.011		 	
EK061: Total Kjeldahl Nitrogen (TKN)							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1		 	
EK062: Total Nitrogen as N							
^ Total Nitrogen as N		0.1	mg/L	<0.1		 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	41.9		 	
^ Total Cations		0.01	meg/L	39.9		 	
^ Ionic Balance		0.01	%	2.52		 	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	4		 	
Total Organic Garbon		•	9.–	<u>-</u>	I		

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

: ES0810866 Work Order

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : ALISTAIR WALSH Contact : Victor Kedicioglu

Address : LEVEL 5. 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield

> ADELAIDE SA, AUSTRALIA 5000 NSW Australia 2164

E-mail : awalsh@skm.com.au E-mail : victor.kedicioglu@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555 Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 Page : 1 of 3 Order number

: ----C-O-C number Quote number : ES2008SINKNI0045 (EN/003/08) : ----

Sampler QC Level : A.W : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 30-JUL-2008 Issue Date : 30-JUL-2008 16:56 Client Requested Due Date : 08-AUG-2008 Scheduled Reporting Date 08-AUG-2008

Delivery Details

Mode of Delivery Temperature : CHILLED - Ice bricks present : Carrier

No. of coolers/boxes No. of samples received : 1 HARD : 1 Sercurity Seal No. of samples analysed · Intact : 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- Appropriately preserved bottle not supplied for total metal analyis, lab will sub sample from natural bottle provided
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 30-JUL-2008 16:56

Page : 2 of 3 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG020A-T : Total Metals by ICP-MS - Suite A		
PT24A	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered

Summary of Sample(s) and Requested Analysis

the determination tasks, that are include When date(s) and	y for the execution may contain addition of moisture cont ed in the package.	of client requested all analyses, such as ent and preparation own bracketed, these	ЕА005: рН	EA010P tivity (PC)	ER - EA015 Dissolved Solids	(- EG020A-F ed Metals by ICPMS - Suite A	ER - EG020A-T Metals by ICPMS - Suite A	EG020B-F ad Metals by ICPMS - Suite B	EG020E-F ed Metals by ICPMS - Suite E	(- EG052 otal Dissolved) by ICPAES	
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER pH	WATER - E, Conductivity	WATER Total Dis	WATER	WATER Total Me	WATER -	WATER	WATER Silica (T	
ES0810866-001	28-JUL-2008 15:00	PT24A	✓	✓	✓	✓	✓	✓	✓	✓	

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EK040-P Fluoride(PC)	WATER - EN055 - TS Ionic Balance (TS)	WATER - EP005 Total Organic Carbon (TOC)	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 Major Anions (Cl, SO4, Alkalinity)	WATER - NT-06 Total Nitrogen + NO2 + NO3	
ES0810866-001	28-JUL-2008 15:00	PT24A	✓	✓	✓	✓	✓	✓	ı

Issue Date : 30-JUL-2008 16:56

Page : 3 of 3 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Requested Deliverables

- Default - Chain of Custody

- EDI Format - ENMRG

ALISTAIR WALSH

- *AU Certificate of Analysis - NATA	Email	awalsh@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	awalsh@skm.com.au
- *AU QC Report ¿ DEFAULT (Anon QC Rep) - NATA	Email	awalsh@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	awalsh@skm.com.au
- Default - Chain of Custody	Email	awalsh@skm.com.au
- EDI Format - ENMRG	Email	awalsh@skm.com.au
MR DANIEL PIERCE		
- *AU Certificate of Analysis - NATA	Email	dpierce@skm.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) 	Email	dpierce@skm.com.au
- *AU QC Report ¿ DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au

Email

Email

dpierce@skm.com.au

dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES0810866** Page : 1 of 7

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 30-JUL-2008

 Sampler
 : A,W
 Issue Date
 : 08-AUG-2008

Order number : ---No. of samples received

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories Position Accreditation Category

Celine ConceicaoSpectroscopistInorganicsHoa NguyenInorganic ChemistInorganics

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 2 of 7 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 7 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER					Laboratory Duplicate (DUP) Report								
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%				
A005: pH (QC Lot:	: 719067)												
ES0810896-001	Anonymous	EA005: pH Value		0.01	pH Unit	7.23	7.25	0.3	0% - 20%				
A010P: Conductivi	ity by PC Titrator (QC	Lot: 720779)											
ES0810866-001	PT24A	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3500	3490	0.3	0% - 20%				
ES0810888-008	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1240	1230	0.4	0% - 20%				
A015: Total Dissolv	ved Solids (QC Lot: 7	19811)											
ES0810853-002	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	9320	9330	0.1	0% - 20%				
ES0810961-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	20200	19300	4.6	0% - 20%				
D037P: Alkalinity b	y PC Titrator (QC Lot												
ES0810866-001	PT24A	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	915	908	0.8	0% - 20%				
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	915	908	0.8	0% - 20%				
ES0810888-008	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit				
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	49	52	5.1	0% - 20%				
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	397	398	0.0	0% - 20%				
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	446	450	0.7	0% - 20%				
ED041: Sulfate (Turk	bidimetric) as SO4 2-	(QC Lot: 723604)											
ES0810789-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	648	639	1.4	0% - 20%				
ES0810845-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	2	mg/L	1840	1610	13.7	0% - 20%				
D045G: Chloride D	iscrete analyser (QC	Lot: 719476)											
ES0810839-002	Anonymous	ED045G: Chloride	16887-00-6	1.0	mg/L	48700	48500	0.4	0% - 20%				
ES0810853-001	Anonymous	ED045G: Chloride	16887-00-6	1.0	mg/L	20.6	20.2	2.0	0% - 20%				
D093F: Dissolved I	Major Cations (QC Lo												
S0810866-001	PT24A	ED093F: Calcium	7440-70-2	1	mg/L	25	25	0.0	0% - 20%				
		ED093F: Magnesium	7439-95-4	1	mg/L	15	15	0.0	0% - 50%				
		ED093F: Sodium	7440-23-5	1	mg/L	848	853	0.6	0% - 20%				
		ED093F: Potassium	7440-09-7	1	mg/L	20	20	0.0	0% - 20%				
ES0810921-008	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	104	105	0.0	0% - 20%				
		ED093F: Magnesium	7439-95-4	1	mg/L	136	137	0.7	0% - 20%				
		ED093F: Sodium	7440-23-5	1	mg/L	706	712	0.8	0% - 20%				
		ED093F: Potassium	7440-09-7	1	mg/L	12	12	0.0	0% - 50%				
G020F: Dissolved I	Metals by ICP-MS (QC												
ES0810584-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit				
	,	EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit				

Page : 4 of 7
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EG020F: Dissolved I	Metals by ICP-MS (QC Lo	t: 719496) - continued									
ES0810584-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	0.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.066	0.066	0.0	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.023	0.024	0.0	0% - 20%		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.005	0.005	0.0	No Limit		
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.002	0.002	0.0	No Limit		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.106	0.102	3.9	0% - 20%		
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.020	0.019	0.0	0% - 50%		
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
EG020F: Dissolved I	Metals by ICP-MS (QC Lo	t: 719497)									
ES0810584-001	Anonymous	EG020E-F: Gold	7440-57-5	0.001	mg/L	0.003	<0.001	110	No Limit		
EG020T: Total Metal	s by ICP-MS (QC Lot: 719	9181)									
ES0810855-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	3.86	3.64	5.9	0% - 20%		
ES0810862-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	0.13	0.12	12.3	No Limit		
FK040P: Fluoride by	PC Titrator (QC Lot: 720	780)									
ES0810866-001	PT24A	EK040P: Fluoride	16984-48-8	0.1	mg/L	3.6	3.4	5.1	0% - 20%		
ES0810941-008	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.5	0.5	0.0	No Limit		
FK057G: Nitrite as I	N by Discrete Analyser(C										
ES0810856-001	Anonymous	EK057G: Nitrite as N		0.010	mg/L	<0.010	<0.010	0.0	No Limit		
EK059G: NOY as N	by Discrete Analyser (QC				3						
ES0810866-001	PT24A	EK059G: Nitrite + Nitrate as N		0.010	mg/L	0.011	0.020	58.1	No Limit		
ES0810888-004	Anonymous	EK059G: Nitrite + Nitrate as N		0.010	mg/L	0.307	0.308	0.3	0% - 20%		
	nl Nitrogen (TKN) (QC Lo			0.0.0	9/ _	0.001	0.000	0.0	0,0 20,0		
ES0810962-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.5	32.9	No Limit		
ES0810888-008	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.2	0.3	0.0	No Limit		
	,			0.1	mg/L	0.2	U.Z	0.0	140 LIIIII		
EP005: Total Organi EP0804201-001	c Carbon (TOC) (QC Lot:	,		1	m = /I	6	5	17.8	No Limit		
ES0810960-008	Anonymous	EP005: Total Organic Carbon		1	mg/L	4	4	0.0			
E90010900-008	Anonymous	EP005: Total Organic Carbon		Т	mg/L	4	4	0.0	No Limit		

Page : 5 of 7
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER		Method Blank (MB)				Laboratory Control Spike (LCS) Report				
out mann waren			Report	Spike	Spike Recovery (%)		Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EA010P: Conductivity by PC Titrator (QCLot: 7207	779)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 μS/cm	99.8	86.3	112		
EA015: Total Dissolved Solids (QCLot: 719811)										
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	100	77.9	122		
ED037P: Alkalinity by PC Titrator (QCLot: 720781)										
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	98.0	80.2	108		
			g. 2			55.5	00.2	.00		
ED041: Sulfate (Turbidimetric) as SO4 2- (QCLot: `ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	20 mg/L	97.0	76.1	126		
			mg/L	71	Zo mg/L	07.0	70.1	120		
ED045G: Chloride Discrete analyser (QCLot: 7194	16887-00-6	4			50 mm/l	00.0	00.7	404		
ED045G: Chloride	16887-00-6	1 1.0	mg/L mg/L	<1.0	50 mg/L 	98.6	83.7	124		
		1.0	IIIg/L	\1.0						
ED093F: Dissolved Major Cations (QCLot: 720414					"			151		
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	96.9	82.9	121		
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	93.4	82.7	114		
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.3	77.4	113		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	100	84.3	118		
EG020F: Dissolved Metals by ICP-MS (QCLot: 719	<u> </u>									
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001						
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	79.2	117		
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	97.0	79.2	117		
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	99.0	82	113		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.4	85.1	110		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.6	87	117		
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	106	86.6	117		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	98.0	80.6	115		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	98.7	84.1	114		
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	101	78.1	118		
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	97.6	84	116		
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	98.6	79.7	119		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	101	83	115		
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.1 mg/L	101	73.5	124		
		0.010	mg/L	<0.010						
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	92.7	82.5	118		
EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	96.9	77.7	130		
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	101	86.2	112		

Page : 6 of 7
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 71949	96) - continued							
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	95.0	74.7	119
EG020F: Dissolved Metals by ICP-MS (QCLot: 71949	97)							
EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001				
EG020F: Dissolved Metals by ICP-MS (QCLot: 71949	98)							
EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001				
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	104	85.3	110
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	102	87.8	109
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001				
EG020T: Total Metals by ICP-MS (QCLot: 719181)								
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	98.3	75.3	113
EK040P: Fluoride by PC Titrator (QCLot: 720780)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	96.2	64.8	115
EK057G: Nitrite as N by Discrete Analyser (QCLot:	719048)							
EK057G: Nitrite as N		0.01	mg/L		0.96 mg/L	97.4	65.1	129
		0.010	mg/L	<0.010				
EK059G: NOX as N by Discrete Analyser (QCLot: 71	19059)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L		0.96 mg/L	104	76.9	122
		0.010	mg/L	<0.010				
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 72359	07)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	89.5	62.4	140
EP005: Total Organic Carbon (TOC) (QCLot: 722701))							
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	96.6	86.9	125

Page : 7 of 7
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	b-Matrix: WATER			Matrix Spike (MS) Repo	ort		
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride D	Discrete analyser (QCLot: 719476)						
ES0810839-002	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	# Not Determined	70	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 719496)						
ES0810584-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	121	70	130
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	115	70	130
		EG020A-F: Barium	7440-39-3	0.2 mg/L	109	70	130
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	115	70	130
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	112	70	130
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	124	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	111	70	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	109	70	130
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	105	70	130
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	113	70	130
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	115	70	130
EK040P: Fluoride by	y PC Titrator (QCLot: 720780)						
ES0810941-001	Anonymous	EK040P: Fluoride	16984-48-8	5.0 mg/L	98.6	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 719	048)					
ES0810856-001	Anonymous	EK057G: Nitrite as N		0.60 mg/L	91.2	70	130
EK059G: NOX as N	by Discrete Analyser (QCLot: 71908	59)					
ES0810866-001	PT24A	EK059G: Nitrite + Nitrate as N		0.60 mg/L	93.3	70	130
EK061: Total Kjelda	hl Nitrogen (TKN) (QCLot: 723597)						
ES0810962-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	79.0	70	130
EP005: Total Organ	ic Carbon (TOC) (QCLot: 722701)						
EP0804201-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	110	70	130
				-			

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES0810866** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE : Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 30-JUL-2008

 Sampler
 : A.W
 Issue Date
 : 08-AUG-2008

Order number : ----

No. of samples received : 1

Quote number : EN/003/08

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER				Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				30-JUL-2008	28-JUL-2008	æ
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				01-AUG-2008	25-AUG-2008	✓
EA015: Total Dissolved Solids							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				31-JUL-2008	04-AUG-2008	✓
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				01-AUG-2008	11-AUG-2008	✓
ED041: Sulfate (Turbidimetric) as SO4 2-							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				06-AUG-2008	25-AUG-2008	✓
ED045G: Chloride Discrete analyser							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				31-JUL-2008	25-AUG-2008	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				01-AUG-2008	25-AUG-2008	✓
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered							
PT24A	28-JUL-2008				01-AUG-2008	24-JAN-2009	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008	31-JUL-2008	24-JAN-2009	✓	31-JUL-2008	24-JAN-2009	✓
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				01-AUG-2008	25-AUG-2008	✓

Page : 3 of 8

Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation:	: × = Holding time	breach; ✓ = Withir	1 holding time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
PT24A	28-JUL-2008				30-JUL-2008	30-JUL-2008	✓
EK059G: NOX as N by Discrete Analyser							
Clear Plastic Bottle - Sulphuric Acid							
PT24A	28-JUL-2008				30-JUL-2008	25-AUG-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)							
Clear Plastic Bottle - Sulphuric Acid							
PT24A	28-JUL-2008	06-AUG-2008	25-AUG-2008	✓	06-AUG-2008	25-AUG-2008	✓
EP005: Total Organic Carbon (TOC)							
Amber TOC Vial - Sulphuric Acid							
PT24A	28-JUL-2008				05-AUG-2008	25-AUG-2008	✓

Page : 4 of 8
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	2	9	22.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	2	12	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
рН	EA005	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	2	10	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	14	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator		1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page : 5 of 8 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type			ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	12	8.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	2	50.0	5.0	✓	ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	19	5.3	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	14	7.1	5.0	✓	ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	1	ALS QCS3 requirement

Page : 6 of 8 Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated
			measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant
			with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica
			after conversion by gravimetric factor.
Sulfate (Turbidimetric) as SO4 2-	ED041	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are precipitated in an acetic acid medium with barium chloride to form
			barium sulfate crystals. Light absorbance of the BaSO4 suspension is measured by a photometer and the
			SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is
			compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to
			form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured
			ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a
			characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification.
			This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. lons are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. lons are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.

Page : 7 of 8
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Silica (Total Dissolved) by ICPAES	EG052	WATER	APHA 21st ed., 4500-SiO2. Silica (Total) determined by calculation from Silicon by ICPAES.
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA Turbidimetric and ICPAES	EN055 - TS	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 8
Work Order : ES0810866

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED045G: Chloride Discrete analyser	ES0810839-002	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
				Determined			background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

MACIAL TATER						
Method Method	E)	ktraction / Preparation		Analysis		
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA005: pH						
Clear Plastic Bottle - Natural						
PT24A				30-JUL-2008	28-JUL-2008	2

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

om : SKM Pty Li					CHAIN	OF CUSTO	DDY FORM						S	K	M
iN: 37 001 024 0 vel 5, 33 King W : (08) 8424 3800	Villiam St, Adela		5000							Conta	iner Ident	ification			
	1an. (Ud) 8424	- 30 10						Size	1000ml	250ml	43ml				
AB USE ONLY WOTE NUMBER			Project N	No: VE30064				Type Preserv	plastic no	plastic yes	vile yes			-	
b Code:			Project M	Manager:				Freserv	110	yes	yes				+-1
ue Date: ustody seal intact?	?		Sampler	Daniel Piero	e			Analytes							
ample cold?			Campion	Alistair Wals	sh			Analytes	hed	hed	hed				
eceived for Labora	atory by: B	٠.	Checked						See Attached	See Attached	See Attached				
	_								l %	See	See				
ate: 30 l	7		Date:						_/	رسه					
ne: Q'O	<u>ပ</u>			28/07/2008											
ıb ld	Date	Time	Matrix	Sample Ide	ntification		Comments		Tick require	ed analytes	<u> </u>	1			
(D) 7	28/07/2008		H2O	PT24a -1000	0ml										
7															
	28/07/2008		H2O	PT24a - 250	ımı .							-			
_ح	28/07/2008		H2O	PT24a - 43n	nl (x2)										
	29/07/2008		H20	PT24a - 125	iml		Metals	>	ICPI	15	1 (2	10	حلاك	J 400	nic
				1				1				<u> </u>	1,,,,	7	
	A	8			1	1 - 411	_				-		+	-	+
	An e	W/	er.	Serin	plc	bodylc	15 5	TIL	L	40	6		Seu	X	
	100	ا ما		10-15	evu col	ORC	1	ć	H	~ ~	~	L		1	↓
	4.	1	1	[] []	11		- Con	> -	i i				1.0	, <u>, , , , , , , , , , , , , , , , , , </u>	1
	43	٨	- 1	gept	100K	TON	fested	UU	MI	w	2	No	>MK	1	\vdash
										-					
													†	 	
								-	· · ·						
-									-				,		
							-								
									-	Envi	rann	cinta	l Divis	. :	-
										L.IIVI		enta ydne		sion	
							-					k Or			
										E	SO	81(086	66	-
									-						
					-				_						
									_		1 01 01 10 1 11				
										Teleph	one ;	+ 61-2	!-8784 8	3555	
															-
				-											
		\dashv					· · · · · · · · · · · · · · · · · · ·						 		\vdash
	i												ļ		
		- 1													
													Ì		
							TOTAL	1	- 1	l					

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
c	Sample Batch fee			
Major Cations (mg/L)	Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L)	(K) Calcium Carbonate (CaCO ₃) Sulphate (SO ₄) Chloride (CI) Carbonate	1 mg/L	48 Hrs	
Majo	(CO ₃) Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days	
	pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride Silica (Si)			•
	Aluminum (Al)	10 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Antimony (Sb)	0.5 μg/L	6 months	
	Arsenic (As)	0.5 μg/L	6 months	
	Barium (Ba)	5 μg/L	6 months	
	Beryllium (Be)	0.1 μg/L	6 months	
	Boron (B)	100 μg/L	6 months	
	Cadmium (Cd)	0.2 μg/L	6 months	
	Chromium (Cr)	0.5 μg/L		
	Cobalt	0.2 μg/L	6 months	
	(Co) Copper	5 μg/L	6 months	
<u>.</u>	(Cu) Gold	0.1 μg/L	6 months	
Dissolved Metals (mg/L)	(Ag) Lead	0.2 μg/L	6 months	
letals	(Pb) Lithium	5.2 μg/L	6 months	
Sed N	(Li) Manganese		6 months	
issolv	(Mn) Molybdenum	0.5 μg/L	6 months	
	(Mo) Nickel	0.1 μg/L	6 months	
	(Ni) Selenium	0.5 μg/L	6 months	
	(Se)	5 μg/L	6 months	
	Strontium (Sr)	10 μg/L	6 months	
	Thallium (TI)	0.1 μg/L	6 months	
	Thorium (Th)	0.1 μg/L	6 months	
	Tin (Sn)	5 μg/L	6 months	
	Titanium (Ti)	5 μg/L	6 months	
	Uranium (U)	0.1 μg/L	6 months	
	Vanadium (V)	0.5 μg/L	6 months	
	Zinc (Zn)	5 μg/L		
	Iron - total	5 µg/L	6 months	ICPOES
	(Fe) Nitrite as N (NO ₂)	0.01 mg/L	6 months	ICP OES
(7/6	Nitrate as N	0.01 mg/L	48 hrs	measured together
ts (m	(NO₃) Total Nitrogen	0.01 mg/L	48 hrs	
Nutrients (mg/L)	Total Organic Carbon	1 mg/L	28 days	
ž	(TOC) Total Kjeldahl	0.1 mg/L	28 days	
	Nitrogen (TKN)	Cost/sample	28 days	

Total Cost

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0811987** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ : Environmental Division Sydney

Contact : MR DANIEL PIERCE : Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

C-O-C number : 19-AUG-2008

Sampler : AW & MC | Issue Date : 27-AUG-2008

Site : ---No. of samples received

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Inorganics
Celine Conceicao	Spectroscopist	Inorganics
Hoa Nguyen	Inorganic Chemist	Inorganics

Environmental Division Sydney
Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 2 of 4
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

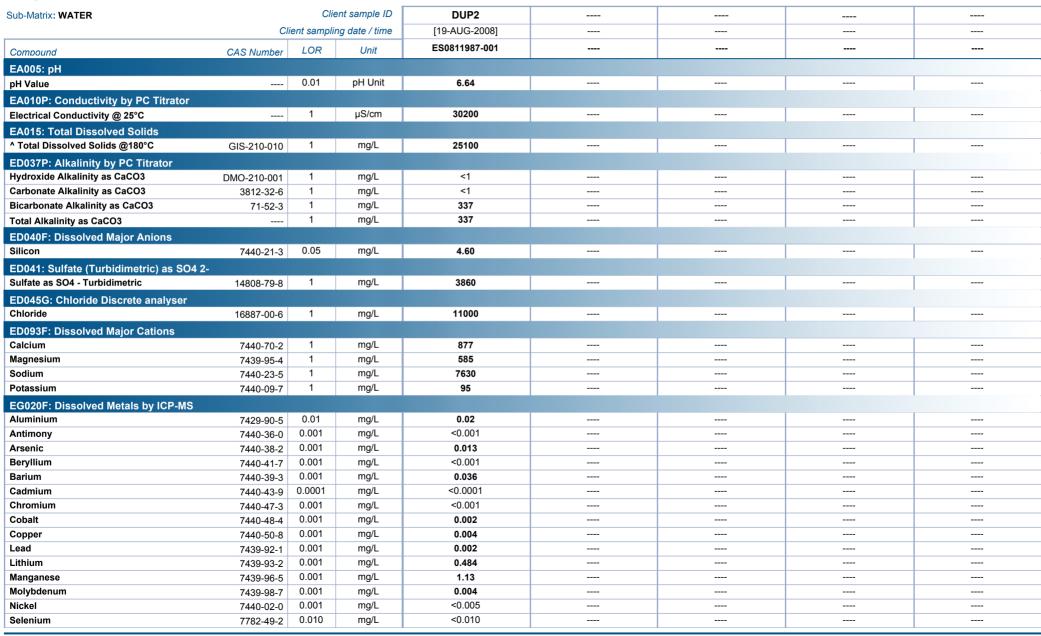
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

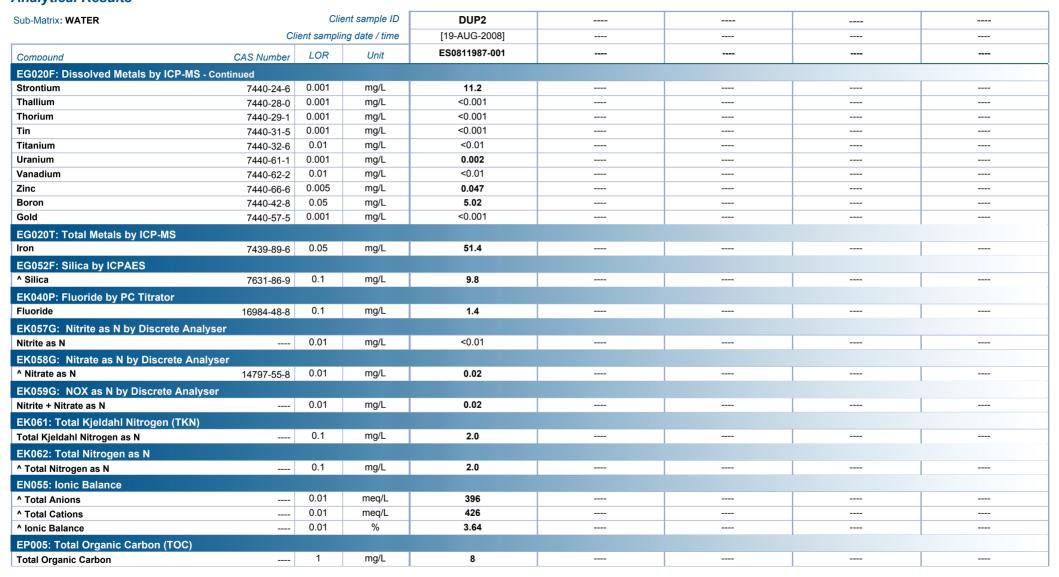

- LOR 's for Nickel for method EGO20A-F raised due to matrix interference.
- TDS by method EA-015 may bias high due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.

Page : 3 of 4 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results


Page : 4 of 4

Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield

ADELAIDE SA, AUSTRALIA 5000 NSW Australia 2164

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 Page : 1 of 2

Order number : ----

C-O-C number : ES2008SINKNI0045 (EN/003/08)

Site : ----

Sampler : AW & MC : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 19-AUG-2008 Issue Date : 19-AUG-2008 13:39

Client Requested Due Date : 27-AUG-2008 Scheduled Reporting Date : 27-AUG-2008

Delivery Details

Mode of Delivery : Carrier Temperature : CHILLED - Ice bricks present

No. of coolers/boxes : 1 HARD No. of samples received : 1
Sercurity Seal : Intact. No. of samples analysed : 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA).
 Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Sample(s) have been received within recommended holding times.
- Appropriately preserved bottle not supplied for TOC. lab will sub sample from Purple plastci bottle supplied
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 19-AUG-2008 13:39

Page : 2 of 2 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG020A-T : Total Metals by ICP-MS - Suite A		
DUP2	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered

Summary of Sample(s) and Requested Analysis

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EK040-P Fluoride(PC)	WATER - EN055 - TS Ionic Balance (TS)	WATER - EP005 Total Organic Carbon (TOC)	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 Major Anions (Cl, SO4, Alkalir	WATER - NT-06 Total Nitrogen + NO2 + NO3	
				13			O4, Alkalinity)	+	

Requested Deliverables

MR DANIEL PIERCE

- *AU Certificate of Analysis - NATA	Email	dpierce@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	dpierce@skm.com.au
- *AU QC Report ¿ DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au
- Default - Chain of Custody	Email	dpierce@skm.com.au
- EDI Format - ENMRG	Email	dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES0811987** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 19-AUG-2008

 Sampler
 : AW & MC
 Issue Date
 : 27-AUG-2008

Order number : ----

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Inorganics
Celine Conceicao	Spectroscopist	Inorganics
Hoa Nguyen	Inorganic Chemist	Inorganics

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 2 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory L	Ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005: pH (QC Lot	: 734235)								
ES0811732-001	Anonymous	EA005: pH Value		0.01	pH Unit	12.3	12.3	0.0	0% - 20%
ES0811987-001	DUP2	EA005: pH Value		0.01	pH Unit	6.64		0.2	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC Lot: 7	34743)							
ES0811988-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	2210		0.0	0% - 20%
EA015: Total Dissol	ved Solids (QC Lot: 735074)								
ES0811985-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	735	700	4.9	0% - 20%
ED037P: Alkalinity I	by PC Titrator (QC Lot: 7347	41)							
ES0811925-002	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	284	281	1.4	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	284		1.4	0% - 20%
ES0811988-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1		0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	86	93	7.8	0% - 20%
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1250		0.3	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1340	1350	0.8	0% - 20%
ED040F: Dissolved	Major Anions (QC Lot: 7357	87)							
ES0811987-001	DUP2	ED040F: Silicon	7440-21-3	0.05	mg/L	4.60		0.0	0% - 20%
ED041: Sulfate (Tur	bidimetric) as SO4 2- (QC Lo	ot: 739819)							
ES0811973-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	36	38	5.9	0% - 20%
ES0812002-008	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	489		0.6	0% - 20%
ED045G: Chloride D	iscrete analyser (QC Lot: 73	34636)							
EN0801505-027	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	2	2	0.0	No Limit
ES0811973-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	8120		0.3	0% - 20%
ED093F: Dissolved	Major Cations (QC Lot: 7357	⁷ 86)							
ES0811987-001	DUP2	ED093F: Calcium	7440-70-2	1	mg/L	877		0.9	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	585	584	0.2	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	7630		0.9	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	95		0.0	0% - 20%
ES0812002-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	597	611	2.4	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	44	45	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	61		0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	14		0.0	0% - 50%
EG020F: Dissolved	Metals by ICP-MS (QC Lot: 7	738488)							
ES0811987-001	DUP2	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit

Page : 4 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%	
G020F: Dissolved	Metals by ICP-MS (QC	Lot: 738488) - continued								
S0811987-001	DUP2	EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.013	0.011	17.9	0% - 50%	
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.036		5.8	0% - 20%	
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001		0.0	No Limit	
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.002	0.002	0.0	No Limit	
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.004	0.004	0.0	No Limit	
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.002	0.003	52.3	No Limit	
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.484	0.502	3.5	0% - 20%	
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	1.13	1.14	1.4	0% - 20%	
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.004		0.0	No Limit	
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.005		0.0	No Limit	
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit	
		EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001		0.0	No Limit	
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.047	0.076	46.7	0% - 50%	
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.0	No Limit	
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01		0.0	No Limit	
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.010		0.0	No Limit	
		EG020A-F: Boron	7440-42-8	0.05	mg/L	5.02	5.05	0.5	0% - 20%	
G020F: Dissolved	Metals by ICP-MS (QC	Lot: 738489)								
S0811987-001	DUP2	EG020B-F: Strontium	7440-24-6	0.001	mg/L	11.2	11.1	0.7	0% - 20%	
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001		0.0	No Limit	
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.002	0.001	0.0	No Limit	
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01		0.0	No Limit	
G020F: Dissolved	Metals by ICP-MS (QC	Lot: 738490)								
S0811987-001	DUP2	EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001		0.0	No Limit	
G020T: Total Metal	Is by ICP-MS (QC Lot:									
S0811918-004	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	14.5	14.1	2.9	0% - 20%	
S0811974-007	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	0.86		4.9	0% - 50%	
	y PC Titrator (QC Lot: 7		7 100 00 0	0.00	9/_	0.00			0,0 00,0	
S0811988-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.6	0.6	0.0	No Limit	
			10904-40-0	0.1	IIIg/L	0.6	0.0	0.0	NO LITTIL	
	N by Discrete Analyser	· /		0.04		0.40		44.0	00/ 500/	
S0811950-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.10		11.8	0% - 50%	
	by Discrete Analyser (
S0811973-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.06	1.00	5.9	0% - 20%	
	hl Nitrogen (TKN) (QC	Lot: 737488)								
S0811918-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.5		7.5	0% - 20%	
S0811930-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.1	2.8	9.7	0% - 20%	
DOOF: Total Organi	ic Carbon (TOC) (QC Lo	ot: 738688)								

Page : 5 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP005: Total Organic	Carbon (TOC) (QC Lot: 738	3688) - continued							
ES0811985-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	76		12.0	0% - 20%
ES0812052-003	Anonymous	EP005: Total Organic Carbon		1	mg/L	5		0.0	No Limit

Page : 6 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

			Labourdon: Conduct Spiles / CS) Banous					
Sub-Matrix: WATER				Method Blank (MB) Report		Laboratory Control Spike (LC	· · ·	
				·	Spike	Spike Recovery (%)	-	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA010P: Conductivity by PC Titrator (QCLot: 7347								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 μS/cm	99.5	86.3	112
EA015: Total Dissolved Solids (QCLot: 735074)								
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	104	77.9	122
ED037P: Alkalinity by PC Titrator (QCLot: 734741)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	92.2	80.2	108
ED040F: Dissolved Major Anions (QCLot: 735787)								
ED040F: Silicon	7440-21-3	0.05	mg/L	<0.05	5 mg/L	96.5	85	121
ED041: Sulfate (Turbidimetric) as SO4 2- (QCLot:	739819)							
ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	20 mg/L	97.9	76.1	126
ED045G: Chloride Discrete analyser (QCLot: 7346)	36)							
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	96.2	83.7	124
ED093F: Dissolved Major Cations (QCLot: 735786)								
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	101	82.9	121
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	98.7	82.7	114
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	103	77.4	113
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	104	84.3	118
EG020F: Dissolved Metals by ICP-MS (QCLot: 738	488)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	99.8	88.1	116
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001				
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	98.6	79.2	117
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	94.7	79.2	117
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	94.8	82	113
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	94.2	85.1	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	87	117
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	101	86.6	117
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	102	80.6	115
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	100	84.1	114
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	98.1	78.1	118
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	103	84	116
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	102	79.7	119
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	101	83	115
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.1 mg/L	99.8	73.5	124
		0.010	mg/L	<0.010				

Page : 7 of 8
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 73848	8) - continued								
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	100	82.5	118	
EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	93.4	77.7	130	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	98.6	86.2	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	81.1	115	
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	87.3	74.7	119	
EG020F: Dissolved Metals by ICP-MS (QCLot: 73848)	9)								
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	98.3	85.3	110	
EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001					
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	98.9	87.8	109	
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001					
EG020F: Dissolved Metals by ICP-MS (QCLot: 73849)	0)								
EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001					
EG020T: Total Metals by ICP-MS (QCLot: 734557)									
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	110	75.3	113	
EK040P: Fluoride by PC Titrator (QCLot: 734742)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	98.8	64.8	115	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 7	34396)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.96 mg/L	107	65.1	129	
EK059G: NOX as N by Discrete Analyser (QCLot: 73	3972)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.96 mg/L	108	76.9	122	
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 73748	3)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	1.0 mg/L	118	62.4	140	
EP005: Total Organic Carbon (TOC) (QCLot: 738688)									
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	99.1	86.9	125	

Page : 8 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER					Matrix Spike (MS) Repo	ort	
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride D	iscrete analyser (QCLot: 734636)						
EN0801505-027	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	95.9	70	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 738488)						
ES0811987-001	DUP2	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	98.4	70	130
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	83.6	70	130
		EG020A-F: Barium	7440-39-3	0.2 mg/L	112	70	130
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	90.4	70	130
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	101	70	130
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	101	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	84.0	70	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	96.3	70	130
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	# Not Determined	70	130
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	87.8	70	130
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	108	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	71.5	70	130
EK040P: Fluoride b	y PC Titrator (QCLot: 734742)						
ES0811988-006	Anonymous	EK040P: Fluoride	16984-48-8	5.0 mg/L	100	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 734396)						
ES0811950-001	Anonymous	EK057G: Nitrite as N		0.60 mg/L	108	70	130
EK059G: NOX as N	by Discrete Analyser (QCLot: 733972)						
ES0811973-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.60 mg/L	115	70	130
EK061: Total Kjelda	hl Nitrogen (TKN) (QCLot: 737488)						
ES0811918-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	82.8	70	130
EP005: Total Organ	ic Carbon (TOC) (QCLot: 738688)						
ES0811987-001	DUP2	EP005: Total Organic Carbon		100 mg/L	105	70	130
	<u> </u>						

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES0811987** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone :+61 08 8424 3800 Telephone :+61-2-8784 8555
Facsimile :+61 08 8424 3810 Facsimile :+61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

Order number

C-O-C number : 19-AUG-2008

Sampler : AW & MC : 27-AUG-2008

No. of samples received : 1

Quote number : EN/003/08

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				19-AUG-2008	19-AUG-2008	✓
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				20-AUG-2008	16-SEP-2008	✓
EA015: Total Dissolved Solids							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				20-AUG-2008	26-AUG-2008	✓
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				20-AUG-2008	02-SEP-2008	✓
ED040F: Dissolved Major Anions							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				21-AUG-2008	16-SEP-2008	✓
ED041: Sulfate (Turbidimetric) as SO4 2-							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				26-AUG-2008	16-SEP-2008	✓
ED045G: Chloride Discrete analyser							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				20-AUG-2008	16-SEP-2008	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				21-AUG-2008	16-SEP-2008	✓
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered							
DUP2	19-AUG-2008				25-AUG-2008	15-FEB-2009	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008	21-AUG-2008	15-FEB-2009	✓	21-AUG-2008	15-FEB-2009	✓

Page : 3 of 8
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				20-AUG-2008	16-SEP-2008	✓
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
DUP2	19-AUG-2008				19-AUG-2008	21-AUG-2008	✓
EK059G: NOX as N by Discrete Analyser							
Clear Plastic Bottle - Sulphuric Acid							
DUP2	19-AUG-2008				19-AUG-2008	16-SEP-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)							
Clear Plastic Bottle - Sulphuric Acid							
DUP2	19-AUG-2008	25-AUG-2008	16-SEP-2008	✓	25-AUG-2008	16-SEP-2008	✓
EP005: Total Organic Carbon (TOC)							
Clear Plastic Bottle - Sulphuric Acid							
DUP2	19-AUG-2008				25-AUG-2008	16-SEP-2008	✓

Page : 4 of 8 Work Order ES0811987

: SINCLAIR KNIGHT MERZ Client

: VE30064 Project

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: × = Quality Control							not within specification; <pre> = Quality Control frequency within specification.</pre>
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	8	12.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
pH	EA005	2	9	22.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	7	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Chloride by Discrete Analyser	ED045G	2	17	11.8	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Conductivity by PC Titrator	EA010-P	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
MARKET MA			17				NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Page : 5 of 8
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation	n: 🗴 = Quality Co	ntrol frequency n	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Conductivity by PC Titrator	EA010-P	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	7	14.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	17	5.9	5.0	✓	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	✓	ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	9	11.1	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	2	50.0	5.0	✓	ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	7	14.3	5.0	✓	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	ALS QCS3 requirement
Total Organic Carbon	EP005	1	20	5.0	5.0	1	ALS QCS3 requirement

Page : 6 of 8 Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated
			measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant
			with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica
			after conversion by gravimetric factor.
Sulfate (Turbidimetric) as SO4 2-	ED041	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are precipitated in an acetic acid medium with barium chloride to form
			barium sulfate crystals. Light absorbance of the BaSO4 suspension is measured by a photometer and the
			SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is
			compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to
			form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured
			ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a
			characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification.
			This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.

Page : 7 of 8
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Silica (Total Dissolved) by ICPAES	EG052	WATER	APHA 21st ed., 4500-SiO2. Silica (Total) determined by calculation from Silicon by ICPAES.
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA Turbidimetric and ICPAES	EN055 - TS	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 8
Work Order : ES0811987

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG020F: Dissolved Metals by ICP-MS	ES0811987-001	DUP2	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

From : SKM Pty Ltd ABN: 37 001 024 095 Level 5, 33 King William St, Adelaide, SA 5000 ph: (08) 8424 3800 fax: (08) 8424 3810 125ml 125ml LAB USE ONLY Type QUOTE NUMBER VF30064 Preserv YES NO veouse : roject Manager: Daniel Pierce Job Code: Due Date: ranions, TDS, pH, EC, F NO2, Total Nitrogen an TKN Cations, Si and Dissol¹ Metals Custody seal intact? ORC Ultra Trace Sample cold? Alistair Walsh / Michael Cowin **T0**C Received for Laboratory by: ALVERTIL WALSH Major : Date Time Matrix Sample Identification H20 H20 H20 H20 Frank 19108108 0845 **Environmental Division** Sydney Work Order ES0811987 TOTAL Notes: Please email awalsh@skm.com.au and dpierce@skm.com.au reults and upon receival of samples See attached spreadsheet for full breakdown of analytes required. Please analyse all dissolved metals using ICP-MS and HOLD on analysis of ORC Ultra-trace metals. Any questions please call Alistair Walsh on 0430288222

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
C-	anala Bátab faa			
Major Cations (mg/L)	mple Batch fee Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L.)	(K) Calcium Carbonate (CaCO ₃) Sulphate (SO ₄) Chloride (CI)	1 mg/L	48 Hrs	
Major	Carbonate (CO ₃) Bicarbonate (HCO ₃)	1 mg/L 1 mg/L		
	TDS (mg/L)	1 mg/L	28 days	
	EC (uS/cm) pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride Silica (Si) Aluminum			
	(AI) Antimony	10 µg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb) Arsenic	0.5 µg/L	6 months	
	(As) Barium	0.5 μg/L 5 μg/L	6 months	
	(Ba) Beryllium	0.1 μg/L	6 months	
	(Be) Boron	100 µg/L	6 months	
	(B) Cadmium	0.2 μg/L	6 months	
	(Cd) Chromium	0.5 μg/L	6 months	
	(Cr) Cobalt (Co)	0.2 μg/L	6 months 6 months	
	Copper (Cu)	5 μg/∟	6 months	
(J)	Gold (Ag)	0.1 µg/L	6 months	
Dissolved Metals (mg/L)	Lead (Pb)	0.2 μg/L	6 months	·
l Meta	Lithlum (Li)	5 µg/L	6 months	
solvec	Manganese (Mn)	0.5 μg/L	6 months	
Diss	Molybdenum (Mo)	0.1 μg/L	6 months	
	Nickel (Ni)	0.5 μg/L	6 months	
	Selenium (Se)	5 μg/L	6 months	
	Strontlum (Sr)	10 μg/L	6 months	
	Thallium (TI)	0.1 μg/L	6 months	
	Thorium (Th)	0.1 μg/L	6 months	
	Tin (Sn)	5 μg/L	6 months	
	Titanium (Ti) Uranium	5 μg/L	6 months	
	(U) Vanadium	0.1 μg/L	6 months	
	(V) Zinc	0.5 μg/L	6 months	
	(Zn)	5 µg/L	6 months	
سند	(Fe)	5 μg/L	6 months	ICP OES
/L)	Nitrite as N (NO ₂) Nitrate as N	0.01 mg/L	48 hrs	measured together
бш) s	(NO ₃)	0.01 mg/L	48 hrs	
Nutrients (mg/L)	Total Nitrogen Total Organic Carbon	0.01 mg/L 1 mg/L	28 days	
Net	(TOC) Total Kjeldahl	0.1 mg/L	28 days	
<u> </u>	Nitrogen (TKN)	Costisample	28 days	

Total Cost

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0812254** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ : Environmental Division Sydney

Contact : MR DANIEL PIERCE : Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : --- Date Samples Received
 : 25-AUG-2008

 Sampler
 : A.W. & M.C.
 Issue Date
 : 02-SEP-2008

Site : ---

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories	Position	Accreditation Category	
Celine Conceicao	Spectroscopist	Inorganics	
Hoa Nguyen	Inorganic Chemist	Inorganics	
Sarah Millington	Senior Inorganic Chemist	Inorganics	

Environmental Division Sydney
Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 2 of 4
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EA-015 TDS result has been confirmed by re-analysis.
- ED045G: LCS recovery for Chloride fall outside ALS dynamic control limits, However they are within the acceptance criteria based on ALS DQO. No further action is required.
- Samples required dilution for method EG020A-T due to matrix interference and LOR's have been raised accordingly.

Page : 3 of 4 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Page : 4 of 4
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

Analytical Results

		O!:			Ī	i e	
Sub-Matrix: WATER			ent sample ID	DUP 5		 	
	Client sampling date / time		20-AUG-2008 15:00		 		
Compound	CAS Number	LOR	Unit	ES0812254-001		 	
EG020F: Dissolved Metals by ICP-MS - Co	ntinued						
Strontium	7440-24-6	0.001	mg/L	16.8		 	
Thallium	7440-28-0	0.001	mg/L	<0.010		 	
Thorium	7440-29-1	0.001	mg/L	<0.010		 	
Tin	7440-31-5	0.001	mg/L	<0.010		 	
Titanium	7440-32-6	0.01	mg/L	<0.10		 	
Uranium	7440-61-1	0.001	mg/L	0.045		 	
Vanadium	7440-62-2	0.01	mg/L	<0.10		 	
Zinc	7440-66-6	0.005	mg/L	0.078		 	
Boron	7440-42-8	0.05	mg/L	5.66		 	
Gold	7440-57-5	0.001	mg/L	<0.010		 	
EG020T: Total Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	5.72		 	
EG052F: Silica by ICPAES							
^ Silica	7631-86-9	0.1	mg/L	14.2		 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.4		 	
EK057G: Nitrite as N by Discrete Analyse	r						
Nitrite as N		0.01	mg/L	<0.01		 	
EK058G: Nitrate as N by Discrete Analyse	er						
^ Nitrate as N	14797-55-8	0.01	mg/L	2.94		 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	2.94		 	
EK061: Total Kjeldahl Nitrogen (TKN)							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1		 	
EK062: Total Nitrogen as N							
^ Total Nitrogen as N		0.1	mg/L	2.9		 	
EN055: Ionic Balance							
Total Anions		0.01	meq/L	550		 	
Total Cations		0.01	meq/L	604		 	
Ionic Balance		0.01	%	4.67		 	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	<1		 	
-							

ALS Laboratory Group

ANALYICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

· ES0812254 Work Order

٠ ____

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact · Charlie Pierce

Address : LEVEL 5. 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield

> ADELAIDE SA, AUSTRALIA 5000 NSW Australia 2164

E-mail : dpierce@skm.com.au E-mail : charlie.pierce@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555 Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 Page : 1 of 2 Order number

C-O-C number Quote number : ES2008SINKNI0045 (EN/003/08) ٠ ____

Sampler QC Level : A.W. & M.C. : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 25-AUG-2008 Issue Date : 25-AUG-2008 16:23 Client Requested Due Date : 01-SEP-2008 Scheduled Reporting Date 01-SEP-2008

Delivery Details

Mode of Delivery Temperature : CHILLED - Ice bricks present : Carrier

No. of coolers/boxes No. of samples received : 1 FOAM : 1 Sercurity Seal No. of samples analysed · Intact : 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- pH analysis should be conducted within 6 hours of sampling.
- NO2 and NO3 should be analysed within 48 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 25-AUG-2008 16:23

Page : 2 of 2 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG020A-T : Total Metals by ICP-MS - Suite A		
DUP 5	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered

Summary of Sample(s) and Requested Analysis

Some items described process neccessary tasks. Packages may the determination tasks, that are included. When date(s) and/of have been assumed by Matrix: WATER Laboratory sample ID	for the execution ay contain addition of moisture contain the package. or time(s) are short	n of client requested al analyses, such as tent and preparation own bracketed, these	WATER - EA005: pH pH	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EG020A-F Dissolved Metals by ICPMS - Suite A	WATER - EG020A-T Total Metals by ICPMS - Suite A	WATER - EG020B-F Dissolved Metals by ICPMS - Suite B	WATER - EG020E-F Dissolved Metals by ICPMS - Suite E	WATER - EG052 Silica (Total Dissolved) by ICPAES
ES0812254-001	20-AUG-2008 15:00	DUP 5	✓	✓	✓	✓	✓	✓	✓	✓

La IE		Client sampling date / time	Client sample ID	WATER - EK040-P Fluoride(PC)	WATER - EN055 - TS Ionic Balance (TS)	WATER - EP005 Total Organic Carbon (TOC)	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 Major Anions (Cl, SO4, Alkalinity)	WATER - NT-06 Total Nitrogen + NO2 + NO3
E	S0812254-001	20-AUG-2008 15:00	DUP 5	✓	✓	✓	✓	✓	✓

Requested Deliverables

MR DANIEL PIERCE

- *AU Certificate of Analysis - NATA	Email	dpierce@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	dpierce@skm.com.au
- *AU QC Report ¿ DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au
- Default - Chain of Custody	Email	dpierce@skm.com.au
- EDI Format - ENMRG	Email	dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES0812254** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : ---- Date Samples Received : 25-AUG-2008
Sampler : A.W. & M.C. Issue Date : 02-SEP-2008

Order number : ----

No. of samples received : 1

Quote number : EN/003/08

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Inorganics
Hoa Nguyen	Inorganic Chemist	Inorganics
Sarah Millington	Senior Inorganic Chemist	Inorganics

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 8 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 8 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A005: pH (QC Lot	: 739390)								
ES0812254-001	DUP 5	EA005: pH Value		0.01	pH Unit	6.56	6.55	0.2	0% - 20%
EA010P: Conductiv	ity by PC Titrator (QC I	Lot: 740075)							
ES0812254-001	DUP 5	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	43400	43200	0.5	0% - 20%
ES0812269-009	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	2080	2070	0.2	0% - 20%
A015: Total Dissol	ved Solids (QC Lot: 73	39212)							
ES0812226-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	1560	1480	5.5	0% - 20%
D037P: Alkalinity b	ov PC Titrator (QC Lot:								
S0812254-001	DUP 5	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	248	252	1.6	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	248	252	1.6	0% - 20%
ES0812269-009	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	144	139	3.5	0% - 20%
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	292	295	1.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	436	434	0.4	0% - 20%
D040F: Dissolved	Major Anions (QC Lot:	739631)							
ES0812254-001	DUP 5	ED040F: Silicon	7440-21-3	0.05	mg/L	6.64	6.09	8.6	0% - 20%
ES0812259-001	Anonymous	ED040F: Silicon	7440-21-3	0.10	mg/L	8.75	8.62	1.5	0% - 20%
D041: Sulfate (Tur	bidimetric) as SO4 2-(QC Lot: 744662)							
ES0812180-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	24	24	0.0	0% - 20%
ES0812310-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	2	mg/L	320	316	1.1	0% - 20%
D045G: Chloride D	Discrete analyser (QC L	ot: 739782)							
ES0812254-001	DUP 5	ED045G: Chloride	16887-00-6	1	mg/L	15500	15500	0.02	0% - 20%
ES0812269-004	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	70	70	0.0	0% - 20%
D093F: Dissolved	Major Cations (QC Lot								
S0812108-009	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	59	60	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	17	17	0.0	0% - 50%
		ED093F: Sodium	7440-23-5	1	mg/L	62	62	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	238	236	1.0	0% - 20%
S0812254-001	DUP 5	ED093F: Calcium	7440-70-2	1	mg/L	1080	1110	2.5	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	922	946	2.6	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	11200	11300	0.8	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	71	72	0.0	0% - 20%

Page : 4 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER									
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
G020F: Dissolved I	Metals by ICP-MS (QC	C Lot: 740924) - continued							
ES0812254-001	DUP 5	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0010	<0.0010	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.022	0.024	10.4	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.020	<0.020	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.325	0.318	2.1	0% - 20%
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.590	0.572	2.9	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.078	<0.050	43.1	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.10	<0.10	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.10	<0.10	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.100	<0.100	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	5.66	5.39	4.8	0% - 20%
G020F: Dissolved I	Metals by ICP-MS (QC	C Lot: 740925)							
ES0812254-001	DUP 5	EG020B-F: Strontium	7440-24-6	0.001	mg/L	16.8	16.7	0.5	0% - 20%
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.010	<0.010	0.0	No Limit
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.045	0.047	4.4	0% - 20%
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.10	<0.10	0.0	No Limit
G020F: Dissolved I	Metals by ICP-MS (QC	C Lot: 740926)							
ES0812254-001	DUP 5	EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.010	<0.010	0.0	No Limit
G020T: Total Metal	s by ICP-MS (QC Lot								
ES0812254-001	DUP 5	EG020A-T: Iron	7439-89-6	0.05	mg/L	5.72	5.61	2.0	0% - 20%
ES0812269-009	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	0.14	0.18	21.0	No Limit
	PC Titrator (QC Lot:				9				
ES0812254-001	DUP 5	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.4	1.4	0.0	0% - 50%
			10004 40 0	0.1	mg/L	1,-7	1.4	0.0	070 0070
EK05/G: Nitrite as I ES0812254-001	N by Discrete Analyse DUP 5			0.01	ma/l	<0.01	~0.01	0.0	No Limit
		EK057G: Nitrite as N		0.01	mg/L	\0.01	<0.01	0.0	No Limit
	by Discrete Analyser			0.01	"	0.01	0.00	0.1	00/ 000/
ES0812254-001	DUP 5	EK059G: Nitrite + Nitrate as N		0.01	mg/L	2.94	2.93	0.4	0% - 20%
ES0812269-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	11.5	11.7	1.8	0% - 20%
	hl Nitrogen (TKN) (QC	•							
ES0812217-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.0	No Limit

Page : 5 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER		Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP005: Total Organi	c Carbon (TOC) (QC Lot: 73	9702)							
ES0812213-009	Anonymous	EP005: Total Organic Carbon		1	mg/L	3	3	0.0	No Limit

Page : 6 of 8 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA010P: Conductivity by PC Titrator (QCLot: 740075)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 μS/cm	99.4	86.3	112
EA015: Total Dissolved Solids (QCLot: 739212)								
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	106	77.9	122
ED037P: Alkalinity by PC Titrator (QCLot: 740074)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	91.5	80.2	108
ED040F: Dissolved Major Anions (QCLot: 739631)								
ED040F: Silicon	7440-21-3	0.05	mg/L	<0.05	5 mg/L	102	85	121
ED041: Sulfate (Turbidimetric) as SO4 2- (QCLot: 744662)					_			
ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	20 mg/L	98.2	76.1	126
ED045G: Chloride Discrete analyser (QCLot: 739782)								
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	83.2	83.7	124
ED093F: Dissolved Major Cations (QCLot: 739630)					or mg			
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	103	82.9	121
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	100	82.7	114
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	92.2	77.4	113
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	96.2	84.3	118
EG020F: Dissolved Metals by ICP-MS (QCLot: 740924)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.6	88.1	116
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001				
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.6	79.2	117
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	92.8	79.2	117
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	95.2	82	113
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	93.2	85.1	110
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	101	87	117
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	97.4	86.6	117
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.8	80.6	115
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.2	84.1	114
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	87.6	78.1	118
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	102	84	116
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	101	79.7	119
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.8	83	115
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.1 mg/L	100	73.5	124
		0.010	mg/L	<0.010				

Page : 7 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
) - continued								
7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	105	82.5	118	
7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	90.1	77.7	130	
7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	100	86.2	112	
7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.6	81.1	115	
7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	76.0	74.7	119	
)								
7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	96.0	85.3	110	
7440-29-1	0.001	mg/L	<0.001					
7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	98.0	87.8	109	
7440-61-1	0.001	mg/L	<0.001					
)								
7440-57-5	0.001	mg/L	<0.001					
7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	99.8	75.3	113	
16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	99.0	64.8	115	
39377)								
	0.01	mg/L	<0.01	0.96 mg/L	98.0	65.1	129	
741)								
	0.01	mg/L	<0.01	0.96 mg/L	107	76.9	122	
	0.1	mg/L	<0.1	10 mg/L	91.8	62.4	140	
							1	
	1	mg/L	<1	10 mg/L	97.5	86.9	125	
) - continued 7440-28-0 7440-31-5 7440-62-2 7440-66-6 7440-42-8)) 7440-24-6 7440-29-1 7440-32-6 7440-61-1)) 7440-57-5 7439-89-6 16984-48-8 39377) 1741)	7440-28-0 0.001 7440-31-5 0.001 7440-62-2 0.01 7440-66-6 0.005 7440-42-8 0.05 7440-24-6 0.001 7440-29-1 0.001 7440-32-6 0.01 7440-61-1 0.001 7440-57-5 0.001 7439-89-6 0.05 16984-48-8 0.1 39377) 0.01	7440-28-0 0.001 mg/L 7440-31-5 0.001 mg/L 7440-62-2 0.01 mg/L 7440-66-6 0.005 mg/L 7440-42-8 0.05 mg/L 7440-24-6 0.001 mg/L 7440-29-1 0.001 mg/L 7440-32-6 0.01 mg/L 7440-61-1 0.001 mg/L 7440-57-5 0.001 mg/L 16984-48-8 0.1 mg/L 16984-48-8 0.1 mg/L 17441) 0.01 mg/L	Report CAS Number LOR Unit Result	Report Spike CAS Number LOR Unit Result Concentration	CAS Number LOR Unit Result Concentration LCS	Report Spike Spike Recovery (%) Recovery Concentration LCS Low	

Page : 8 of 8 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Repo	rt			
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride D	iscrete analyser (QCLot: 739782)						
ES0812254-001	DUP 5	ED045G: Chloride	16887-00-6	250 mg/L	# Not Determined	70	130
EG020F: Dissolved	Metals by ICP-MS (QCLot: 740924)						
ES0812254-001	DUP 5	EG020A-F: Arsenic	7440-38-2	2 mg/L	102	70	130
		EG020A-F: Beryllium	7440-41-7	2 mg/L	96.3	70	130
		EG020A-F: Barium	7440-39-3	2 mg/L	107	70	130
		EG020A-F: Cadmium	7440-43-9	0.5 mg/L	94.7	70	130
		EG020A-F: Chromium	7440-47-3	2 mg/L	105	70	130
		EG020A-F: Cobalt	7440-48-4	2 mg/L	102	70	130
		EG020A-F: Copper	7440-50-8	2 mg/L	91.8	70	130
		EG020A-F: Lead	7439-92-1	2 mg/L	100	70	130
		EG020A-F: Manganese	7439-96-5	2 mg/L	92.0	70	130
		EG020A-F: Nickel	7440-02-0	2 mg/L	99.7	70	130
		EG020A-F: Vanadium	7440-62-2	2 mg/L	106	70	130
		EG020A-F: Zinc	7440-66-6	2 mg/L	89.6	70	130
EK040P: Fluoride by	PC Titrator (QCLot: 740076)						
ES0812254-001	DUP 5	EK040P: Fluoride	16984-48-8	5.0 mg/L	70.8	70	130
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 739377)						
ES0812254-001	DUP 5	EK057G: Nitrite as N		0.60 mg/L	107	70	130
EK059G: NOX as N	by Discrete Analyser (QCLot: 739741)						
ES0812254-001	DUP 5	EK059G: Nitrite + Nitrate as N		0.60 mg/L	# Not Determined	70	130
EK061: Total Kjelda	hl Nitrogen (TKN) (QCLot: 741021)						
ES0812217-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	94.0	70	130
EP005: Total Organ	c Carbon (TOC) (QCLot: 739702)						
ES0812213-010	Anonymous	EP005: Total Organic Carbon		100 mg/L	104	70	130
	<u> </u>				1		

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES0812254** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

C-O-C number : ---- Date Samples Received : 25-AUG-2008

Sampler : A.W. & M.C. Issue Date : 02-SEP-2008
Order number : ----

No. of samples received : 1

Quote number : EN/003/08

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER				Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding tim
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				25-AUG-2008	20-AUG-2008	×
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	✓
EA015: Total Dissolved Solids							
Clear Plastic Bottle - Natural						07 4110 0000	
DUP 5	20-AUG-2008				25-AUG-2008	27-AUG-2008	✓
ED037P: Alkalinity by PC Titrator							
Clear Plastic Bottle - Natural DUP 5	20-AUG-2008				26-AUG-2008	03-SEP-2008	
	20-AUG-2008				26-AUG-2008	03-SEP-2006	√
ED040F: Dissolved Major Anions		T					
Clear Plastic Bottle - Natural DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	1
ED041: Sulfate (Turbidimetric) as SO4 2-	20-A00-2000				20-A0G-2000	17 021 2000	
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				01-SEP-2008	17-SEP-2008	1
ED045G: Chloride Discrete analyser						I .	
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	1
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	✓
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered							
DUP 5	20-AUG-2008				27-AUG-2008	16-FEB-2009	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008	26-AUG-2008	16-FEB-2009	✓	26-AUG-2008	16-FEB-2009	✓

Page : 3 of 8 : ES0812254 Work Order

: SINCLAIR KNIGHT MERZ Client

Matrix: WATER				Evaluation	: x = Holding time	breach; ✓ = Withir	n holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	✓
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
DUP 5	20-AUG-2008				25-AUG-2008	22-AUG-2008	×
EK059G: NOX as N by Discrete Analyser							
Clear Plastic Bottle - Sulphuric Acid							
DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)							
Clear Plastic Bottle - Sulphuric Acid							
DUP 5	20-AUG-2008	27-AUG-2008	17-SEP-2008	✓	27-AUG-2008	17-SEP-2008	✓
EP005: Total Organic Carbon (TOC)							
Clear Plastic Bottle - Sulphuric Acid							
DUP 5	20-AUG-2008				26-AUG-2008	17-SEP-2008	✓

Page : 4 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Evaluation: × = Quality Control frequency not within specification : √ = Quality Control frequency within specification

Matrix: WATER	atrix: WATER Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.								
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Fluoride by PC Titrator	EK040P	1	6	16.7	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Anions - Filtered	ED040F	2	14	14.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Cations - Filtered	ED093F	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	4	25.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
pH	EA005	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Organic Carbon	EP005	1	10	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Laboratory Control Samples (LCS)									
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Fluoride by PC Titrator	EK040P	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Anions - Filtered	ED040F	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Cations - Filtered	ED093F	1	19	5.3	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	4	25.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	1	3	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	3	33.3	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Organic Carbon	EP005	1	10	10.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
Chloride by Discrete Analyser	ED045G	1	18	5.6	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
<u>, </u>	230100					<u>*</u>			

Page : 5 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation	n: × = Quality Cor	ntrol frequency n	ot within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Conductivity by PC Titrator	EA010-P	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	6	16.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Anions - Filtered	ED040F	1	14	7.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Major Cations - Filtered	ED093F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	4	25.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Dissolved Solids	EA015	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Total Organic Carbon	EP005	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Chloride by Discrete Analyser	ED045G	1	18	5.6	5.0	✓	ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	√	ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	6	16.7	5.0	✓	ALS QCS3 requirement
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	ALS QCS3 requirement
Nitrite as N by Discrete Analyser	EK057G	1	4	25.0	5.0	✓	ALS QCS3 requirement
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	3	33.3	5.0	✓	ALS QCS3 requirement
Total Metals by ICP-MS - Suite A	EG020A-T	1	13	7.7	5.0	✓	ALS QCS3 requirement
Total Organic Carbon	EP005	1	10	10.0	5.0	1	ALS QCS3 requirement

Page : 6 of 8 Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated
			measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant
			with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica
			after conversion by gravimetric factor.
Sulfate (Turbidimetric) as SO4 2-	ED041	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are precipitated in an acetic acid medium with barium chloride to form
			barium sulfate crystals. Light absorbance of the BaSO4 suspension is measured by a photometer and the
			SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is
			compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to
			form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured
			ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a
			characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification.
			This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
Di L IM L I IOD MO O II D		MATER	measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.

Page : 7 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Silica (Total Dissolved) by ICPAES	EG052	WATER	APHA 21st ed., 4500-SiO2. Silica (Total) determined by calculation from Silicon by ICPAES.
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA Turbidimetric and ICPAES	EN055 - TS	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 8
Work Order : ES0812254

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Laboratory Control Spike (LCS) Recoveries							
ED045G: Chloride Discrete analyser	834007-003		Chloride	16887-00-6	83.2 %	83.7-124%	Recovery less than lower control limit
Matrix Spike (MS) Recoveries							
ED045G: Chloride Discrete analyser	ES0812254-001	DUP 5	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK059G: NOX as N by Discrete Analyser	ES0812254-001	DUP 5	Nitrite + Nitrate as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

		dua atia a 1 Dua a a antia a			A t t-		
Method	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	
EA005: pH							
Clear Plastic Bottle - Natural							
DUP 5				25-AUG-2008	20-AUG-2008	5	
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
DUP 5				25-AUG-2008	22-AUG-2008	3	

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

ALS.

rom : SKM Pty Li				CHAIN OF CUST	TODY FORM						2	KN
BN: 37 001 024 0	095											
ovel 5, 33 King W n: (08) 8424 3800			5000				<u> </u>	Conta ZSO	iner Identi	fication 125		
						Size	1000ml	+9ml	125ml	-190ml		
AB USE ONLY VOTE NUMBER			Project N	o: VE30064		Type Preserv	plastic NO	YES	plastic YES	plastic		-
b Code:			Project M			Freserv		IES		NO.		 -
e Date:	_			Daniel Pierce		1	Major anions, TDS, pH, EC, FI, NO3, NO2, Total Nitrogen and TKN		Major Cations, Si and Dissolved Metals			
ustody seal intact	7		Sampler(Analytes	H g		ğ	ORC Ultra Trace		i
ample cold? sceived for Labora	ator. h.e		Checked	Alistair Walsh / Michael Cowin		1	Z Is Z	200	Sian	ta T		- 1
eceived for Labors	atory by:		Спескеа				2 - 2 - 1 - 1 - 1 - 1 - 1	ř	s ¥	, <u>T</u>		i
			L	- 1-1			N N		Cati	₽		
ate:			Date:	21 (8 108			Page S S		Aajor			
me:		1		,		 -						
ab Id	Date	Time	Matrix	Sample Identification	Comments	┼	Tick require	ed analytes		1		
	20 8		H20	DUPS			> <					
				NIDE					*			
	}	-	H20	DES	- 	ļ	 	\sim		_		
			H20	DUPS	Field Filter	ed			X			
$\overline{}$	V			NI IDE	FidelFiltered		-			\searrow	† [
	•		H20	1701-2	tricket there	- HOM	zawbr	2			-	
											1	1
												i
		-	*HZU			-						
		ļ	1120			-	I	I I	I	I		
			<u> </u>		1			=				
		T						Envir	ronm	ienta	u Div	usion
		1							S	ydne	ey .	
			 20	· Language						rk Oı		
. 1						 						
		-	_H30_			—		F	らり	81	22	51
			Hao	 				-		U I	~ ~ .	J7
							10.10		# # Dec 1			
			-1120	-		-	- 10 10					
							- 111 111					
							- 111 111					
			~+H20-			<u> </u>	#H #H)					
-			- 1120 -				T	elepho	ma ·	1617	2 0 7 0 4	0555
			eser-EU			_		Siepine	ль,	T U 1-2	2-0/04	8555
			 - 28			↓						
			_H20					-		1		1
				· · · · · · · · · · · · · · · · · · ·								
										-		
					1							
											-	
		-										
						-						
Ţ				- "								
-		-			1							_
												T
						+						-
-												
		_										T
						_				—	-	
		_										
										1 '		
											-	
											-	
											-	
					TOTAL							

	Analytes ·	Limits of Reporting (LOR)	Maximum holding time	Comments
0	unia Batab foo			
	nple Batch fee Calcium			
Major Cations (mg/L)	(Ca)			
x B	Magnesium (Mg)			
(\$ 50 (\$ 00)	Sodium	1 mg/L	7 days	
- 8	(Na)			
U	Potassium (K)			
T/	Calcium Carbonate			
<u>.</u>	(CaCO ₃)			
/Bu	Sulphate (SO ₄)	1 mg/L		
Major Anions (<i>mg/</i> L.)	Chloride		40 Um	
ë	(CI)		48 Hrs	
<u>5</u>	Carbonate (CO ₃)	1 mg/L		
<u>.</u>	Bicarbonate			
	(HCO ₃)	1 mg/L		
	TDS (mg/L)	1 mg/L	28 days	ļ <u>- · · · · · · · </u>
	EC (uS/cm) pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride			
	Silica (Si)			
-	Aluminum	10 μg/L		
	(AI)	10 ру/с	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Antimony (Sb)	0.5 μg/L	6 months	
	Arsenic	0.5 μg/L	_	
	(As) Barium		6 months	
	(Ba)	5 μg/L	6 months	
	Beryllium	0.1 μg/L	6 months	
	(Be) Boron	400 4	6 months	
	(B)	100 μg/L	6 months	
	Cadmlum (Cd)	0.2 μg/L	6 months	
	Chromium	0.5 μg/L		
	(Cr) Cobalt		6 months	
	(Co)	0.2 μg/L	6 months	
	Copper (Cu)	5 µg/L	6 months	
_	Gold	0.1 μg/L	Omonus	
76 1	(Ag) Lead	0.1 pg/L	6 months	
lls (r	(Pb)	0.2 μg/L	6 months	
Dissolved Metals (mg/L)	Lithium	5 μg/L	6 months	
Đ.	(Li) Manganese	0.5=#	- 6 months	
os	(Mn)	0.5 μg/L	6 months	· · · · · · · · · · · · · · · · · · ·
ä	Molybdenum (Mo)	0.1 μg/L	6 months	
	Nickel	0.5 μg/L		
	(Ni) Selenium		6 months	
	(Se)	5 μg/L	6 months	
	Strontium (Sr)	10 μg/L	6 months	
. 1	Thallium	0.1 μg/L		
	(TI) Thorium		6 months	
	(Th)	0.1 μg/L	6 months	
- 1	Tin (Sn)	· 5 μg/L	6 months	
	Titanium	5 μg/L		
	(TI) Uranium		6 months	-
	(U)	0.1 μg/L	6 months	
	Vanadium (V)	0.5 μg/L	6 months	
	Zinc	5 μg/L		
	(Zn) Iron - total		6 months	
	(Fe)	5 μg/L	6 months	ICP OES
	Nitrite as N (NO ₂)	0.01 mg/L	40.1	
7/(F)	Nitrate as N		48 hrs	measured together
(m)	(NO ₃)	0.01 mg/L	48 hrs	
ents	Total Nitrogen	0.01 mg/L	28 days	
Nutrients (mg/L)	Total Organic Carbon (TOC)	1 mg/L	28 days	
2	Total Kjeldahl	0.1 mg/L		
	Nitrogen (TKN)		28 days	Î.

Total Cost

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0813041** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

C-O-C number : ---- Date Samples Received : 08-SEP-2008
Sampler : AW Issue Date : 17-SEP-2008

No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Inorganics
Hoa Nguyen	Inorganic Chemist	Inorganics
Sarah Millington	Senior Inorganic Chemist	Inorganics

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 2 of 4

Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

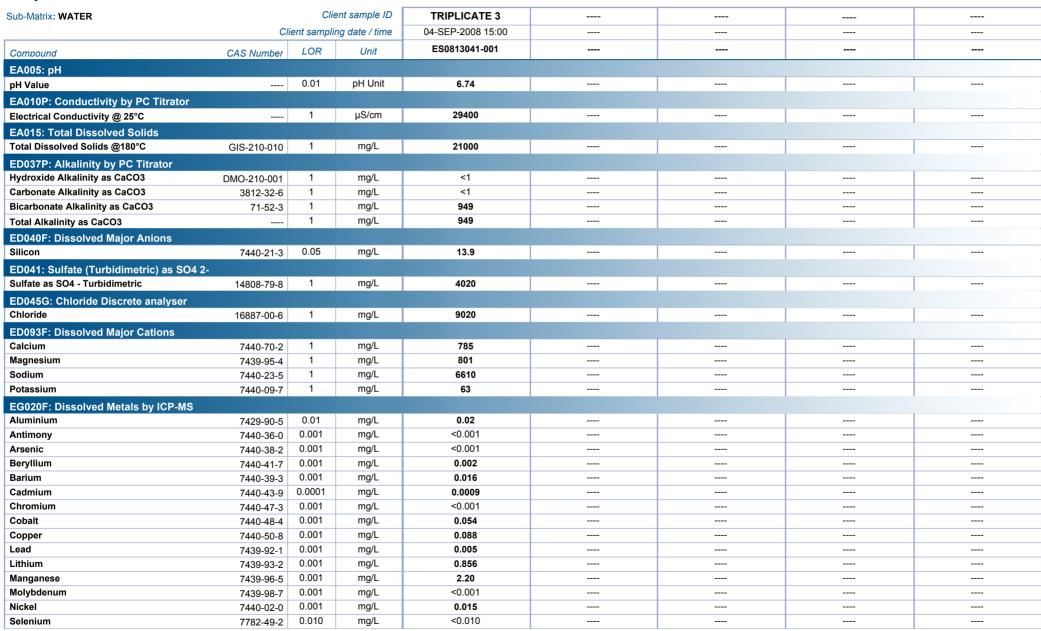
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting


• Poor matrix spike recovery was obtained for Zinc for method EG020A-F due to matrix interference. Results have been confirmed by reanalysis

Page : 3 of 4 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Page : 4 of 4 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Sub-Matrix: WATER		Clie	ent sample ID	TRIPLICATE 3	 	
	Cli	ent sampli	ng date / time	04-SEP-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0813041-001	 	
EG020F: Dissolved Metals by ICP-MS - Con	tinued					
Strontium	7440-24-6	0.001	mg/L	13.2	 	
Thallium	7440-28-0	0.001	mg/L	<0.001	 	
Thorium	7440-29-1	0.001	mg/L	<0.001	 	
Tin	7440-31-5	0.001	mg/L	0.001	 	
Titanium	7440-32-6	0.01	mg/L	<0.01	 	
Uranium	7440-61-1	0.001	mg/L	0.103	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.046	 	
Boron	7440-42-8	0.05	mg/L	6.47	 	
Iron	7439-89-6	0.05	mg/L	14.2	 	
Gold	7440-57-5	0.001	mg/L	0.001	 	
EG052F: Silica by ICPAES						
^ Silica	7631-86-9	0.1	mg/L	29.8	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	2.2	 	
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N		0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r					
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: NOX as N by Discrete Analyser	11101 00 0					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
		0.01	mg/L	-0.01		
EK061: Total Kjeldahl Nitrogen (TKN)		0.1	mg/L	4.4	 	
Total Kjeldahl Nitrogen as N		0.1	mg/L	4.4		
EK062: Total Nitrogen as N		0.4				I
^ Total Nitrogen as N		0.1	mg/L	4.4	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	357	 	
^ Total Cations		0.01	meq/L	394	 	
^ Ionic Balance		0.01	%	4.92	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	4	 	

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

· ES0813041 Work Order

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact · Charlie Pierce

Address : LEVEL 5. 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield

> ADELAIDE SA, AUSTRALIA 5000 NSW Australia 2164

E-mail : awalsh@skm.com.au E-mail : charlie.pierce@alsenviro.com

Telephone Telephone : +61 08 8424 3800 : +61-2-8784 8555

Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 Page : 1 of 2

Order number ٠ ____

C-O-C number Quote number : ES2008SINKNI0045 (EN/003/08) ٠ ____

Sampler QC Level : AW : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 09-SEP-2008 09:35 : 08-SEP-2008 Issue Date Client Requested Due Date : 15-SEP-2008 Scheduled Reporting Date 15-SEP-2008

Delivery Details

Mode of Delivery Temperature : 8.1'C - Ice bricks present : Carrier

No. of coolers/boxes : 1 FOAM No. of samples received : 1 Sercurity Seal No. of samples analysed · Intact : 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Samples received in appropriately pretreated and preserved containers.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- Appropriately preserved bottle not supplied for TOC analysis, Lab will sub sample from purple bottle provided.
- pH analysis should be conducted within 6 hours of sampling.
- NO2, NO3, should be analysed within 48 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 09-SEP-2008 09:35

Page : 2 of 2 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exist.

Summary of Sample(s) and Requested Analysis

the determination tasks, that are include When date(s) and have been assumed Matrix: WATER	y for the execution may contain addition of moisture con ed in the package. d/or time(s) are sh by the laboratory for pr	n of client requested all analyses, such as tent and preparation	ER - EA005: pH	TER - EA010P iductivity (PC)	ER - EA015 Dissolved Solids	ER - EG020A-F olved Metals by ICPMS - Suite A	ER - EG020B-F alved Metals by ICPMS - Suite B	ER - EG020E-F alved Metals by ICPMS - Suite E	ER - EG052 (Total Dissolved) by ICPAES	ATER - EK040-P uoride(PC)
Laboratory sample ID	Client sampling date / time	Client sample ID	WATE	WATE	WATE	WATER	WATER -	WATER	WATEI Silica (WATER Fluoride(
ES0813041-001	04-SEP-2008 15:00	TRIPLICATE 3	✓	✓	✓	✓	✓	✓	✓	✓

Matrix: WATER Laboratory sample	Client sampling date / time	Client sample ID	WATER - EK057G Nitrite as N by Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete Analyser	R - EKO Nitroger te Analv	<u> </u>	WATER - EP005 Total Organic Carbon (TOC)	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-02 Major Anions (Cl, SO4, Alkalinity)
ES0813041-001	04-SEP-2008 15:00	TRIPLICATE 3	✓	✓	1	✓	✓	✓	✓	✓

Email

awalsh@skm.com.au

Requested Deliverables

- *AU Certificate of Analysis - NATA

mr ALISTAIR WALSH

 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) 	Email	awalsh@skm.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA	Email	awalsh@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	awalsh@skm.com.au
- Default - Chain of Custody	Email	awalsh@skm.com.au
- EDI Format - ENMRG	Email	awalsh@skm.com.au
MR DANIEL PIERCE		
 *AU Certificate of Analysis - NATA 	Email	dpierce@skm.com.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) 	Email	dpierce@skm.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au
- Default - Chain of Custody	Email	dpierce@skm.com.au
- EDI Format - ENMRG	Email	dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES0813041** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : --- Date Samples Received
 : 08-SEP-2008

 Sampler
 : AW
 Issue Date
 : 17-SEP-2008

Order number : ---No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Celine Conceicao	Spectroscopist	Inorganics	
Hoa Nguyen	Inorganic Chemist	Inorganics	
Sarah Millington	Senior Inorganic Chemist	Inorganics	

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%	
A005: pH (QC Lot	: 751860)									
ES0813018-001	Anonymous	EA005: pH Value		0.01	pH Unit	7.97	7.96	0.1	0% - 20%	
EA010P: Conductiv	ity by PC Titrator (QC	Lot: 754078)								
ES0813057-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	20200	20200	0.0	0% - 20%	
ES0813089-007	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	1870	1880	1.0	0% - 20%	
EA015: Total Dissol	lved Solids (QC Lot: 7									
ES0812841-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	4180	4460	6.5	0% - 20%	
ES0813049-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	6460	6390	1.0	0% - 20%	
-D037P: Alkalinity I	by PC Titrator (QC Lot									
ES0813057-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	9	10	11.2	0% - 50%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	9	10	11.2	0% - 50%	
ES0813089-007	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit	
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	1020	1020	0.6	0% - 20%	
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	1020	1020	0.6	0% - 20%	
ED040F: Dissolved	Major Anions (QC Lot	: 752533)								
EB0812124-001	Anonymous	ED040F: Silicon	7440-21-3	0.05	mg/L	9.58	9.63	0.5	0% - 20%	
EB0812127-001	Anonymous	ED040F: Silicon	7440-21-3	0.05	mg/L	6.14	6.41	4.3	0% - 20%	
ED041: Sulfate (Tur	bidimetric) as SO4 2-	(QC Lot: 755489)								
ES0812910-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	2	mg/L	142	144	1.6	0% - 20%	
ES0813018-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	2	mg/L	164	175	6.5	0% - 20%	
ED045G: Chloride D	Discrete analyser (QC	Lot: 752964)								
ES0813041-001	TRIPLICATE 3	ED045G: Chloride	16887-00-6	1	mg/L	8510	8530	0.2	0% - 20%	
ES0813089-008	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	41	40	0.0	0% - 20%	
ED093F: Dissolved	Major Cations (QC Lo	t: 752534)								
EB0812124-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	581	583	0.3	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	158	159	0.0	0% - 20%	
		ED093F: Sodium	7440-23-5	1	mg/L	263	264	0.0	0% - 20%	
		ED093F: Potassium	7440-09-7	1	mg/L	119	120	0.0	0% - 20%	
EB0812127-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	37	38	3.3	0% - 20%	
		ED093F: Magnesium	7439-95-4	1	mg/L	5	5	0.0	No Limit	
		ED093F: Sodium	7440-23-5	1	mg/L	3	3	0.0	No Limit	
		ED093F: Potassium	7440-09-7	1	mg/L	3	3	0.0	No Limit	

Page : 4 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 755234)										
ES0813041-001	TRIPLICATE 3	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0009	0.0002	141	No Limit			
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	0.002	0.002	0.0	No Limit			
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.016	0.016	0.0	0% - 50%			
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.054	0.054	0.0	0% - 20%			
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.088	0.088	0.0	0% - 20%			
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.005	0.005	0.0	No Limit			
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.856	0.900	5.1	0% - 20%			
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	2.20	2.08	5.3	0% - 20%			
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.015	0.016	9.0	0% - 50%			
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020A-F: Tin	7440-31-5	0.001	mg/L	0.001	<0.001	0.0	No Limit			
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.048	0.048	0.0	No Limit			
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.01	0.0	No Limit			
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit			
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	0.0	No Limit			
		EG020A-F: Boron	7440-42-8	0.05	mg/L	6.47	6.45	0.3	0% - 20%			
		EG020A-F: Iron	7439-89-6	0.05	mg/L	14.2	13.2	6.8	0% - 20%			
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 755237)										
ES0813041-001	TRIPLICATE 3	EG020B-F: Strontium	7440-24-6	0.001	mg/L	13.2	13.3	8.0	0% - 20%			
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit			
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.103	0.102	0.0	0% - 20%			
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.0	No Limit			
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 755239)										
ES0813041-001	TRIPLICATE 3	EG020E-F: Gold	7440-57-5	0.001	mg/L	0.001	<0.001	0.0	No Limit			
EK040P: Fluoride by	PC Titrator (QC Lot: 7	754077)										
ES0813057-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.5	0.5	0.0	No Limit			
ES0813089-007	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.3	0.3	0.0	No Limit			
EK057G: Nitrite as	N by Discrete Analyser	(QC Lot: 752327)										
ES0813041-001	TRIPLICATE 3	EK057G: Nitrite as N		0.01	mg/L	<0.01	0.01	0.0	No Limit			
EK059G: NOX.as N	by Discrete Analyser(
EB0812108-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	0.0	No Limit			
EB0812108-010	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	3.41	3.46	1.6	0% - 20%			
	hl Nitrogen (TKN) (QC											
EB0812062-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	1.2	1.1	0.0	0% - 50%			
EB0812108-008	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	3.9	3.8	2.6	0% - 20%			
	, alonymous	ENOUTO. Total Injerdanii Miliogeni as M		V. I	g/L	J.0	0.0	2.0	0,0 20,0			

Page : 5 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP005: Total Organic	Carbon (TOC) (QC Lot: 753	3931)								
ES0813041-001	TRIPLICATE 3	EP005: Total Organic Carbon		1	mg/L	4	4	0.0	No Limit	
ES0813119-004	Anonymous	EP005: Total Organic Carbon		1	mg/L	1	<1	0.0	No Limit	

Page : 6 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

	•									
Sub-Matrix: WATER			Method Blank (MB)		Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)		Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EA010P: Conductivity by PC Titrator (QCLot: 754	078)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 μS/cm	102	86.3	112		
EA015: Total Dissolved Solids (QCLot: 751800)										
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	119	77.9	122		
ED037P: Alkalinity by PC Titrator (QCLot: 754076										
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	91.6	80.2	108		
ED040F: Dissolved Major Anions (QCLot: 752533)									
ED040F: Silicon	7440-21-3	0.05	mg/L	<0.05	5 mg/L	101	85	121		
ED041: Sulfate (Turbidimetric) as SO4 2- (QCLot:	755489)									
ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	20 mg/L	93.6	76.1	126		
ED045G: Chloride Discrete analyser (QCLot: 7529	964)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	98.5	83.7	124		
ED093F: Dissolved Major Cations (QCLot: 752534	1)									
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	102	82.9	121		
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	101	82.7	114		
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	96.0	77.4	113		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	98.2	84.3	118		
EG020F: Dissolved Metals by ICP-MS (QCLot: 75	5234)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	101	88.1	116		
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001						
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	91.4	79.2	117		
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	98.7	79.2	117		
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	94.0	82	113		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	97.0	85.1	110		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	104	87	117		
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	98.6	86.6	117		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.9	80.6	115		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.9	84.1	114		
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	87.8	78.1	118		
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	106	84	116		
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	94.3	79.7	119		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	98.7	83	115		
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.1 mg/L	89.6	73.5	124		
		0.010	mg/L	<0.010						

Page : 7 of 8
Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020F: Dissolved Metals by ICP-MS (QCLot: 755	234) - continued							
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	103	82.5	118
EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	89.9	77.7	130
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	103	86.2	112
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.7	81.1	115
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	78.7	74.7	119
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	107	79.2	116
EG020F: Dissolved Metals by ICP-MS (QCLot: 755	237)							
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	94.4	85.3	110
EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001				
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	102	87.8	109
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001				
EG020F: Dissolved Metals by ICP-MS (QCLot: 755	239)							
EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001				
EK040P: Fluoride by PC Titrator (QCLot: 754077)								
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	96.8	64.8	115
EK057G: Nitrite as N by Discrete Analyser (QCLo	t: 752327)							
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.96 mg/L	94.2	65.1	129
EK059G: NOX as N by Discrete Analyser (QCLot:	751775)							
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.96 mg/L	108	76.9	122
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 753	855)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	78.5	62.4	140
EP005: Total Organic Carbon (TOC) (QCLot: 7539	31)							
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	89.9	86.9	125

Page : 8 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Report						
	about the country of the Client country ID				Spike Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
ED045G: Chloride D	iscrete analyser (QCLot: 752964)								
ES0813041-001	TRIPLICATE 3	ED045G: Chloride	16887-00-6	250 mg/L	# Not Determined	70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLot: 755234)								
ES0813041-001	TRIPLICATE 3	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	92.3	70	130		
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	87.2	70	130		
		EG020A-F: Barium	7440-39-3	0.2 mg/L	114	70	130		
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	88.9	70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	94.0	70	130		
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	88.6	70	130		
		EG020A-F: Copper	7440-50-8	0.2 mg/L	75.5	70	130		
		EG020A-F: Lead	7439-92-1	0.2 mg/L	91.5	70	130		
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	# Not Determined	70	130		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	82.4	70	130		
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	99.0	70	130		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	# 68.4	70	130		
EK040P: Fluoride b	y PC Titrator (QCLot: 754077)								
ES0813057-001	Anonymous	EK040P: Fluoride	16984-48-8	5.0 mg/L	79.4	70	130		
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 752327)								
ES0813041-001	TRIPLICATE 3	EK057G: Nitrite as N		0.60 mg/L	94.2	70	130		
EK059G: NOX as N	by Discrete Analyser (QCLot: 751775)								
EB0812108-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.60 mg/L	70.8	70	130		
EK061: Total Kjelda	hl Nitrogen (TKN) (QCLot: 753855)								
EB0812062-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	93.6	70	130		
EP005: Total Organ	ic Carbon (TOC) (QCLot: 753931)								
ES0813071-001	Anonymous	EP005: Total Organic Carbon		100 mg/L	95.0	70	130		
	<u> </u>								

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES0813041** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 08-SEP-2008

 Sampler
 : AW
 Issue Date
 : 17-SEP-2008

Order number : ----

No. of samples received : 1

Quote number : EN/003/08

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER				Evaluation:	× = Holding time	breach ; ✓ = Withir	n holding time
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural							
TRIPLICATE 3	04-SEP-2008				08-SEP-2008	04-SEP-2008	*
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural							
TRIPLICATE 3	04-SEP-2008				11-SEP-2008	02-OCT-2008	✓
EA015: Total Dissolved Solids							
Clear Plastic Bottle - Natural						44.050.000	
TRIPLICATE 3	04-SEP-2008				09-SEP-2008	11-SEP-2008	✓
ED037P: Alkalinity by PC Titrator		T			ı		
Clear Plastic Bottle - Natural	0.4.0FB 0000				44.050.000	18-SEP-2008	
TRIPLICATE 3	04-SEP-2008				11-SEP-2008	18-SEP-2008	✓
ED040F: Dissolved Major Anions		<u> </u>	l				
Clear Plastic Bottle - Natural TRIPLICATE 3	04-SEP-2008				10-SEP-2008	02-OCT-2008	1
	04-3E1 -2000				10-321 -2000	02 001 2000	
ED041: Sulfate (Turbidimetric) as SO4 2- Clear Plastic Bottle - Natural							
TRIPLICATE 3	04-SEP-2008				12-SEP-2008	02-OCT-2008	1
ED045G: Chloride Discrete analyser							<u> </u>
Clear Plastic Bottle - Natural							
TRIPLICATE 3	04-SEP-2008				10-SEP-2008	02-OCT-2008	✓
ED093F: Dissolved Major Cations							
Clear Plastic Bottle - Natural							
TRIPLICATE 3	04-SEP-2008				10-SEP-2008	02-OCT-2008	✓
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered							
TRIPLICATE 3	04-SEP-2008				12-SEP-2008	03-MAR-2009	✓
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural							
TRIPLICATE 3	04-SEP-2008				11-SEP-2008	02-OCT-2008	✓

Page : 3 of 8
Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation:	: × = Holding time	breach ; ✓ = Withir	1 holding time
Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural	04-SEP-2008				09-SEP-2008	06-SEP-2008	4-
TRIPLICATE 3	04-SEP-2008				09-3EP-2008	00-SEP-2006	*
EK059G: NOX as N by Discrete Analyser Clear Plastic Bottle - Sulphuric Acid							
TRIPLICATE 3	04-SEP-2008				09-SEP-2008	02-OCT-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)							
Clear Plastic Bottle - Sulphuric Acid TRIPLICATE 3	04-SEP-2008	11-SEP-2008	02-OCT-2008	✓	11-SEP-2008	02-OCT-2008	✓
EP005: Total Organic Carbon (TOC)							
Clear Plastic Bottle - Sulphuric Acid							
TRIPLICATE 3	04-SEP-2008				11-SEP-2008	02-OCT-2008	

Page : 4 of 8 Work Order ES0813041

: SINCLAIR KNIGHT MERZ Client

Project : VE30064

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Cor	ntrol frequency r	not within specification; ✓ = Quality Control frequency within specification		
Quality Control Sample Type			Count		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation			
aboratory Duplicates (DUP)									
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	2	18	11.1	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	1	100.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
luoride by PC Titrator	EK040P	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Najor Anions - Filtered	ED040F	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Najor Cations - Filtered	ED093F	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Н	EA005	1	2	50.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	2	13	15.4	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Dissolved Solids	EA015	2	9	22.2	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Organic Carbon	EP005	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
aboratory Control Samples (LCS)									
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	<u>√</u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	18	5.6	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
issolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
luoride by PC Titrator	EK040P	1	11	9.1	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Najor Anions - Filtered	ED040F	1	19	5.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Najor Cations - Filtered	ED093F	1	20	5.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
litrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	1	13	7.7	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Dissolved Solids	EA015	1	9	11.1	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Organic Carbon	EP005	1	20	5.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Conductivity by PC Titrator	EA010-P	1	18	5.6	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0		NEPM 1999 Schedule B(3) and ALS QCS3 requirement		

Page : 5 of 8
Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Quality Control Sample Type		C	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Regular	Actual	Actual Expected				
Method Blanks (MB) - Continued									
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	1	100.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Fluoride by PC Titrator	EK040P	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Anions - Filtered	ED040F	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Cations - Filtered	ED093F	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	1	9	11.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Organic Carbon	EP005	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Matrix Spikes (MS)									
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	1	100.0	5.0	✓	ALS QCS3 requirement		
Fluoride by PC Titrator	EK040P	1	11	9.1	5.0	✓	ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.3	5.0	✓	ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	5	20.0	5.0	✓	ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
Total Organic Carbon	EP005	1	20	5.0	5.0	1	ALS QCS3 requirement		

Page : 6 of 8 Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated
			measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant
			with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica
			after conversion by gravimetric factor.
Sulfate (Turbidimetric) as SO4 2-	ED041	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are precipitated in an acetic acid medium with barium chloride to form
			barium sulfate crystals. Light absorbance of the BaSO4 suspension is measured by a photometer and the
			SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is
			compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to
			form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured
			ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a
			characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification.
			This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
Di la la la la la la la la la la la la la		\A/A TED	measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
Disable d Matala by IOD MO. Ovita E		\\\\ \TED	measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
Olliss (Tatal Dissaluss) bu IODAEC	F0050	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	measurement by a discrete dynode ion detector.
Silica (Total Dissolved) by ICPAES	EG052	WATER	APHA 21st ed., 4500-SiO2. Silica (Total) determined by calculation from Silicon by ICPAES.

Page : 7 of 8
Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Analytical Methods	Method	Matrix	Method Descriptions
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA Turbidimetric and ICPAES	EN055 - TS	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 8
Work Order : ES0813041

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED045G: Chloride Discrete analyser	ES0813041-001	TRIPLICATE 3	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG020F: Dissolved Metals by ICP-MS	ES0813041-001	TRIPLICATE 3	Manganese	7439-96-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG020F: Dissolved Metals by ICP-MS	ES0813041-001	TRIPLICATE 3	Zinc	7440-66-6	68.4 %	70-130%	Recovery less than lower data quality
							objective

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

E)	xtraction / Preparation		Analysis			
Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
		overdue			overdue	
			08-SEP-2008	04-SEP-2008	4	
			09-SEP-2008	06-SEP-2008	3	
	Date extracted	Date extracted	overdue	Date extracted Due for extraction Days overdue 08-SEP-2008	Date extracted Due for extraction Days overdue Date analysed Due for analysis 08-SEP-2008 04-SEP-2008	

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

No Quality Control Sample Frequency Outliers exist.

m : SKM Pty L N: 37 001 024	95										9	5		
vel 5, 33 King V (08) 8424 380								Contai	ner identif	ication				
B USE ONLY			Project N	lo:		Size Type	1000ml plastic	250ml plastic	125ml plastic	-				
JOTE NUMBER				VE30064		Preserv	NO	YES	YES					
b Code: ue Date:			Project N	Manager: Daniel Pierce			r anions, TDS, pH, EC, FI, S, NO2, Total Nitrogen and TKN	1	Major Cations, Si and Dissolved Metals					
ustody seal intact	?		Sampler((s):		Analytes	PH. E	77	d Dis					
ample cold? sceived for Labor	atory by		Checked	Alistair Walsh			Z al N	0 4 7	Siar	-				
	, ,						Jons, T	% 7. ×	ations					,
ate:			Date:	•			Major al NO3, N		ajor C.					
me:		1	ļ	4/09/2008		+-			ž					1
ab ld	Date	Time	Matrix	Sample Identification	Comments		Tick require	ed analytes						
(1)	4/09/2008	-	H20	Triplicate 3			X				_		\vdash	
$\underline{}$	4/09/2008		H20	Triplicate 3				х						
	4/09/2008		H20	Triplicate 3	Field Filtered				x					
		†												
		 				1							\vdash	
		-				-								
		1				1	_						Ш	
							-						\vdash	
					-	+	-						-	
			<u> </u>										 	i L
					-									ļ
					-		_							l .
		-				1							 	
		ļ .				1	1	ı					\vdash	
						Eı	iviror	ımen	tal D	ivisi	on			
								Sydi	ney		011			
							M	ork (r				1
						1	ES	UB'	13(<i>)4</i>	7	_	-	İ
												-		
														Į
· ·						Tele	phone	: ±61	1-2-87	8/1 95	:			
	_								. 2 0,	0-7 00	,,,,	-		
						1	ı					<u> </u>	-	
]	
													П	I
		-												ĺ
													$\vdash \!$	
							_						\sqcup	I
<u> </u>														l
					_									I
								-						
					-	+							$\vdash \vdash$	1
		İ									-		ļ——	
					TOTAL			.						
tes:												·	\dashv	
										4	,			
				1.1						6	ly			2
	waish@skr	n.com	.au and	dpierce@skm.com.au reults	and upon receival of	samples							-	200
	_								-		_			17-11
														()
	-									7				2

 $\ell \gtrsim$

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
Sam	ple Batch fee			
	Calcium			
94	(Ca) Magnesium			
Major Cations (mg/L)	(Mg)	1 mg/L	7 days	·
# S	Sodium	Tingr	/ days	
3	(Na) Potassium			
	(10)			
_	Calcium Carbonate (CaCO ₃)			
. (Z	Sulphate	1 mg/L		
Major Anions (mg/L)	(SO ₄)	I mg/L		
Ē	Chloride (CI)		48 Hrs	
Ž.	Carbonate	1 mg/L		
oje M	(CO ³)	1 IIIg/L		
-	Bicarbonate (HCO ₃)	1 mg/L		
	TDS (mg/L)	1 mg/L	28 days	
	EC (uS/cm)	0.04 -11 14	28 days	M
	pH (units) Fluoride	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Silica			
	(Si) Aluminum			
	(AI)	10 μg/L	6 months	
	Antimony (Sb)	0.5 μg/L	6 months	
	(Sb) Arsenic	0.5	6 months	
	(As)	0.5 μg/L	6 months	
	Barlum (Ba)	5 µg/L	6 months	
	Beryllium	0.1 µg/L		
	(Be) Boron	0 pg/2	6 months	
	(B)	100 μg/L	6 months	
	Cadmium	0.2 μg/L		
	_(Cd) Chromium		6 months	
	(Cr)	0.5 μg/L	6 months	
	Cobalt (Co)	0.2 μg/L	6 months	
	Copper	5 μg/L		
1	(Cu) Gold		6 months	
Dissolved Metals (mg/L)	(Ag)	0.1 μg/L	6 months	
m)s	Lead (Pb)	0.2 μg/L	6 months	
eta	Lithium	E uall	Omonus	
20	(Li)	5 μg/L	6 months	
Š	Manganese (Mn)	0.5 μg/L	6 months	
SS	Molybdenum	0.1 μg/L		
_	(Mo) Nickel		6 months	
- 1	(Ni)	0.5 μg/L	6 months	
	Selenium (Se)	5 μg/L	6 months	
1	Strontlum	10 μg/L		
-	(Sr) Thallium		6 months	
	(TI)	0.1 μg/L	6 months	
	Thorium	0.1 μg/L		
}	(Th) Tin		6 months	
l	(Sn)	5 μg/L	6 months	
I	Titanium (Ti)	5 μg/L	6 months	
ŀ	Uranium	0.1 μg/L		
	(U) Vanadium	V-1 μg/L	6 months	
	Vanadium (V)	0.5 μg/L	6 months	·
	Zinc	5 μg/L		
	(Zn) Iron - total		6 months	
	(Fe)	5 μg/L	6 months	ICP OES
	Nitrite as N (NO ₂)	0.01 mg/L	40	
3/1/2	Nitrate as N		48 hrs	measured together
(m)	(NO ₃)	0.01 mg/L	48 hrs	
Nutrients (mg/L)	Total Organic Carbon	0.01 mg/L	28 days	
uth	Total Organic Carbon (TOC)	1 mg/L	28 days	
2	Total Kjeldahl	0.1 mg/L		
	Nitrogen (TKN)	- 1	28 days	

Total Cost

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **ES0813178** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 10-SEP-2008

 Sampler
 : AW
 Issue Date
 : 23-SEP-2008

No. of samples received : 2

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Celine Conceicao	Spectroscopist	Inorganics	
Hoa Nguyen	Inorganic Chemist	Inorganics	
Sarah Millington	Senior Inorganic Chemist	Inorganics	

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 **Tel. +61-2-8784 8555** Fax. +61-2-8784 8500 **www.alsglobal.com**

A Campbell Brothers Limited Company

Page : 2 of 4

Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EA010-P: Electrical Conductivity may bias low due to matrix interference.

Page : 3 of 4 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Page : 4 of 4 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Sub-Matrix: WATER		Cli	ent sample ID	TRIPLICATE4	TRIPLICATE5	 	
	Cli	ient sampli	ng date / time	10-SEP-2008 09:00	10-SEP-2008 09:00	 	
Compound	CAS Number	LOR	Unit	ES0813178-001	ES0813178-002	 	
EG020F: Dissolved Metals by ICP-MS - Cor							
Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	 	
Strontium	7440-24-6	0.001	mg/L	14.5	13.0	 	
Thallium	7440-28-0	0.001	mg/L	0.001	<0.001	 	
Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	 	
Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	 	
Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	 	
Uranium	7440-61-1	0.001	mg/L	0.022	0.026	 	
Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.010	0.018	 	
Boron	7440-42-8	0.05	mg/L	3.64	3.92	 	
Gold	7440-57-5	0.001	mg/L	0.001	<0.001	 	
EG020T: Total Metals by ICP-MS							
Iron	7439-89-6	0.05	mg/L	27.5	5.69	 	
EG052F: Silica by ICPAES							
^ Silica	7631-86-9	0.1	mg/L	16.1	15.2	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.5	1.0	 	
EK057G: Nitrite as N by Discrete Analyse							
Nitrite as N		0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse			J. Company				
^ Nitrate as N	14797-55-8	0.01	mg/L	0.03	0.01	 	
EK059G: NOX as N by Discrete Analyser	14797-55-0	0.01	9-2		U.U.		
Nitrite + Nitrate as N		0.01	mg/L	0.03	0.01	 	
		0.01	IIIg/L	0.03	0.01		
EK061: Total Kjeldahl Nitrogen (TKN)		0.1	ma/l	34.7	4.2		
Total Kjeldahl Nitrogen as N		0.1	mg/L	34.7	1.2	 	
EK062: Total Nitrogen as N		0.4					
^ Total Nitrogen as N		0.1	mg/L	34.7	1.3	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	407	424	 	
^ Total Cations		0.01	meq/L	406	418	 	
^ Ionic Balance		0.01	%	0.21	0.81	 	
EP005: Total Organic Carbon (TOC)							
Total Organic Carbon		1	mg/L	9	4	 	

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

· ES0813178 Work Order

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : MR DANIEL PIERCE Contact · Charlie Pierce

Address : LEVEL 5. 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield

> ADELAIDE SA, AUSTRALIA 5000 NSW Australia 2164

E-mail : dpierce@skm.com.au E-mail : charlie.pierce@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555 Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 Page : 1 of 3

Order number ٠ ____

C-O-C number Quote number : ES2008SINKNI0045 (EN/003/08) ٠ ____

Sampler QC Level : AW : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 10-SEP-2008 Issue Date : 10-SEP-2008 16:56 Client Requested Due Date : 17-SEP-2008 Scheduled Reporting Date 17-SEP-2008

Delivery Details

Mode of Delivery Temperature : 4.1'C - Ice present : Carrier

No. of coolers/boxes No. of samples received : 1 HARD : 2 Sercurity Seal No. of samples analysed : 2 · Intact

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- Incorrect sampling container has been supplied for TOC analysis therefore sample will be subsampled into the correct 40mL vial from the unpreserved container provided. Please contact a member of our client services team if information is required on the correct containers to use.
- Incorrect sampling container has been supplied for Total Fe nalysis therefore sample will be subsampled from the unpreserved container provided. Please contact a member of our client services team if information is required on the correct containers to use.
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 10-SEP-2008 16:56

Page : 2 of 3 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG020A-T : Total Metals by ICP-MS - Suite A		
TRIPLICATE4	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered
TRIPLICATE5	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered

Summary of Sample(s) and Requested Analysis

1 1 1 1	the determination tasks, that are include When date(s) and have been assumed Matrix: WATER Laboratory sample	y for the execution nay contain addition of moisture content of the package. If or time(s) are ship the laboratory for proceed the package. Client sampling date / time	n of client requested all analyses, such as tent and preparation own bracketed, these ocessing Client sample ID	WATER - EA005: рН . рН	WATER - EA010P Conductivity (PC)	WATER - EA015 Total Dissolved Solids	WATER - EG020A-F Dissolved Metals by ICPMS - Suite A	WATER - EG020A-T Total Metals by ICPMS - Suite A	WATER - EG020B-F Dissolved Metals by ICPMS - Suite B	WATER - EG020E-F Dissolved Metals by ICPMS - Suite E	WATER - EG052 Silica (Total Dissolved) by ICPAES	
	ES0813178-001	10-SEP-2008 09:00	TRIPLICATE4	✓	✓	✓	✓	✓	✓	✓	✓	
	ES0813178-002	10-SEP-2008 09:00	TRIPLICATE5	✓	✓	✓	✓	✓	✓	✓	✓	

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EK040-P Fluoride(PC)	WATER - EK057G Nitrite as N by Discrete Analyser	WATER - EK058G Nitrate as N by Discrete Analyser	WATER - EK061G Total Kjeldahl Nitrogen as N (TKN) By Discrete Analyser	'	. 10	WATER - EP005 Total Organic Carbon (TOC)	WATER - NT-01 Major Cations (Ca, Mg, Na, K)
ES0813178-001	10-SEP-2008 09:00	TRIPLICATE4	✓	✓	✓	✓	✓	✓	✓	✓
ES0813178-002	10-SEP-2008 09:00	TRIPLICATE5	✓	✓	✓	✓	✓	✓	✓	✓

Issue Date : 10-SEP-2008 16:56

Page : 3 of 3 Work Order : ES0813178

Matrix: **WATER**Laboratory sample | Client sampling | Client sample ID | MATER - NI-05 |

ES0813178-001 | 10-SEP-2008 09:00 | TRIPLICATE4 |

ES0813178-002 | 10-SEP-2008 09:00 | TRIPLICATE5 | ✓

Requested Deliverables

MR DANIEL PIERCE

- *AU Certificate of Analysis - NATA	Email	dpierce@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	dpierce@skm.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au
- Default - Chain of Custody	Email	dpierce@skm.com.au
- EDI Format - ENMRG	Email	dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

: ES0813178 **Work Order** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

: mr ALISTAIR WALSH : Charlie Pierce Contact Contact

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 5, 33 KING WILLIAM ST

ADELAIDE SA, AUSTRALIA 5000

E-mail E-mail : awalsh@skm.com.au : charlie.pierce@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555 Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Proiect QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement VF30064

Site

C-O-C number **Date Samples Received** : 10-SEP-2008 Sampler Issue Date · 23-SFP-2008 : AW

Order number No. of samples received : 2

No. of samples analysed This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Quality Control Report contains the following information:

· FN/003/08

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Quote number

release.

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

. 2

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Inorganics
Hoa Nguyen	Inorganic Chemist	Inorganics
Sarah Millington	Senior Inorganic Chemist	Inorganics

Environmental Division Sydney Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164 Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%		
EA005: pH (QC Lot	: 753475)										
ES0813152-014	Anonymous	EA005: pH Value		0.01	pH Unit	7.77	7.78	0.1	0% - 20%		
ES0813152-023	Anonymous	EA005: pH Value		0.01	pH Unit	7.43	7.42	0.1	0% - 20%		
EA010P: Conductiv	ity by PC Titrator (QC	Lot: 755582)									
ES0813178-001	TRIPLICATE4	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	30900	30800	0.3	0% - 20%		
ES0813306-008	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	417	421	1.0	0% - 20%		
EA015: Total Dissol	lved Solids (QC Lot: 75	56728)									
ES0813178-001	TRIPLICATE4	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	22700	21700	4.6	0% - 20%		
ES0813231-001	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	256	260	1.6	0% - 20%		
ED037P: Alkalinity I	by PC Titrator (QC Lot	: 755581)									
ES0813178-001	TRIPLICATE4	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	320	319	0.0	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	320	319	0.0	0% - 20%		
ES0813293-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit		
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	26	24	7.6	0% - 20%		
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	213	216	1.2	0% - 20%		
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	239	240	0.6	0% - 20%		
ED040F: Dissolved	Major Anions (QC Lot	: 758301)									
ES0813178-001	TRIPLICATE4	ED040F: Silicon	7440-21-3	0.05	mg/L	7.52	7.59	1.0	0% - 20%		
ES0813249-010	Anonymous	ED040F: Silicon	7440-21-3	0.05	mg/L	6.21	6.31	1.6	0% - 20%		
ED041: Sulfate (Tur	bidimetric) as SO4 2- ((QC Lot: 758270)									
ES0813147-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	2	mg/L	2800	2420	14.3	0% - 20%		
ES0813201-001	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	2	mg/L	102	99	3.0	0% - 20%		
D045G: Chloride D	Discrete analyser (QC I	Lot: 754005)									
ES0813116-003	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	1820	1840	0.9	0% - 20%		
ES0813162-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	7	7	0.0	No Limit		
ED093F: Dissolved	Major Cations (QC Lot	t: 758302)									
ES0813178-001	TRIPLICATE4	ED093F: Calcium	7440-70-2	1	mg/L	1110	1110	0.0	0% - 20%		
		ED093F: Magnesium	7439-95-4	1	mg/L	721	710	1.5	0% - 20%		
		ED093F: Sodium	7440-23-5	1	mg/L	6640	6730	1.4	0% - 20%		
		ED093F: Potassium	7440-09-7	1	mg/L	67	68	2.0	0% - 20%		
ES0813249-010	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit		
		ED093F: Magnesium	7439-95-4	1	mg/L	1	1	0.0	No Limit		
		ED093F: Sodium	7440-23-5	1	mg/L	690	688	0.3	0% - 20%		

Page : 4 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
ED093F: Dissolved M	Major Cations (QC Lot: 7	758302) - continued									
ES0813249-010	Anonymous	ED093F: Potassium	7440-09-7	1	mg/L	6	6	0.0	No Limit		
EG020F: Dissolved I	Metals by ICP-MS (QC L	ot: 757095)									
ES0813178-001	TRIPLICATE4	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit		
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	0.006	0.006	0.0	No Limit		
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.009	0.007	23.0	No Limit		
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.072	0.070	2.2	0% - 20%		
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.008	0.008	0.0	No Limit		
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.005	0.006	0.0	No Limit		
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.306	0.326	6.3	0% - 20%		
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.433	0.447	3.0	0% - 20%		
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.118	0.118	0.0	0% - 20%		
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.012	0.013	12.9	0% - 50%		
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	0.001	<0.001	0.0	No Limit		
		EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.011	15.5	No Limit		
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	0.0	No Limit		
		EG020A-F: Boron	7440-42-8	0.05	mg/L	3.64	3.67	0.6	0% - 20%		
EG020F: Dissolved	Metals by ICP-MS (QC L	ot: 757096)									
ES0813178-001	TRIPLICATE4	EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020B-F: Strontium	7440-24-6	0.001	mg/L	14.5	14.5	0.5	0% - 20%		
		EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit		
		EG020B-F: Uranium	7440-61-1	0.001	mg/L	0.022	0.022	0.0	0% - 20%		
		EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	<0.01	0.0	No Limit		
EG020F: Dissolved I	Metals by ICP-MS (QC L	ot: 757097)									
ES0813178-001	TRIPLICATE4	EG020E-F: Gold	7440-57-5	0.001	mg/L	0.001	<0.001	0.0	No Limit		
EG020T: Total Metal	s by ICP-MS (QC Lot: 75										
ES0813165-009	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.0	No Limit		
ES0813213-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	12.6	12.0	4.6	0% - 20%		
			55 55 5	2.30					2 20,0		
ES0813178-001	PC Titrator (QC Lot: 75 TRIPLICATE4		16984-48-8	0.1	mg/L	1.5	1.5	0.0	0% - 50%		
		EK040P: Fluoride	10904-40-0	0.1	my/L	1.0	1.5	0.0	0 /0 - 30 /0		
	N by Discrete Analyser (·		0.04	m = /l	ZO 04	-0.04	0.0	Ne Limit		
ES0813211-001 ES0813140-001	Anonymous	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01 0.11	0.0 25.6	No Limit 0% - 50%		
	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.00	0.11	20.0	070 - 50%		
EK059G: NOX as N	by Discrete Analyser (Q	QC Lot: 754010)									

Page : 5 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER	b-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EK059G: NOX as N	oy Discrete Analyser (QC Lo	ot: 754010) - continued								
ES0813140-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	1.89	1.88	0.6	0% - 20%	
ES0813211-006	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.12	0.13	0.0	0% - 50%	
EK061: Total Kjeldah	l Nitrogen (TKN) (QC Lot: 7	58527)								
ES0813193-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	99.1	98.2	0.9	0% - 20%	
ES0813219-004	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	0.5	0.0	No Limit	
EP005: Total Organic	Carbon (TOC) (QC Lot: 758	3607)								
ES0813173-001	Anonymous	EP005: Total Organic Carbon		1	mg/L	4	4	0.0	No Limit	
ES0813178-002	TRIPLICATE5	EP005: Total Organic Carbon		1	mg/L	4	4	0.0	No Limit	

Page : 6 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

					I showstow: Control Spike (I CS) Bonout					
Sub-Matrix: WATER				Method Blank (MB) Report	- "	Laboratory Control Spike (LC	· · ·			
		LOR		·	Spike	Spike Recovery (%)		Limits (%)		
Method: Compound			Unit	Result	Concentration	LCS	Low	High		
EA010P: Conductivity by PC Titrator (QCLot: 75558										
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 μS/cm	99.5	86.3	112		
EA015: Total Dissolved Solids (QCLot: 756728)										
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	105	77.9	122		
ED037P: Alkalinity by PC Titrator (QCLot: 755581)										
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	92.7	80.2	108		
ED040F: Dissolved Major Anions (QCLot: 758301)										
ED040F: Silicon	7440-21-3	0.05	mg/L	<0.05	5 mg/L	95.8	85	121		
ED041: Sulfate (Turbidimetric) as SO4 2- (QCLot: 7	58270)									
ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	<1	20 mg/L	105	76.1	126		
ED045G: Chloride Discrete analyser (QCLot: 75400)5)									
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	99.2	83.7	124		
ED093F: Dissolved Major Cations (QCLot: 758302)										
ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	97.1	82.9	121		
ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	94.9	82.7	114		
ED093F: Sodium	7440-23-5	1	mg/L	<1	50 mg/L	97.3	77.4	113		
ED093F: Potassium	7440-09-7	1	mg/L	<1	50 mg/L	102	84.3	118		
EG020F: Dissolved Metals by ICP-MS (QCLot: 7570	95)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	101	88.1	116		
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001						
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	96.9	79.2	117		
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	90.6	79.2	117		
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	91.7	82	113		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.4	85.1	110		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	98.1	87	117		
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	97.1	86.6	117		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.0	80.6	115		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.4	84.1	114		
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	88.3	78.1	118		
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	101	84	116		
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	95.0	79.7	119		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.7	83	115		
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.1 mg/L	100	73.5	124		
		0.010	mg/L	<0.010						

Page : 7 of 8
Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 7570	95) - continued								
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	111	82.5	118	
EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	99.1	77.7	130	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	97.0	86.2	112	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	90.7	81.1	115	
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	95.6	74.7	119	
EG020F: Dissolved Metals by ICP-MS (QCLot: 7570	96)								
EG020B-F: Silver	7440-22-4	0.001	mg/L	<0.001					
EG020B-F: Strontium	7440-24-6	0.001	mg/L	<0.001	0.1 mg/L	98.1	85.3	110	
EG020B-F: Thorium	7440-29-1	0.001	mg/L	<0.001					
EG020B-F: Titanium	7440-32-6	0.01	mg/L	<0.01	0.1 mg/L	97.2	87.8	109	
EG020B-F: Uranium	7440-61-1	0.001	mg/L	<0.001					
EG020F: Dissolved Metals by ICP-MS (QCLot: 7570	97)								
EG020E-F: Gold	7440-57-5	0.001	mg/L	<0.001					
EG020T: Total Metals by ICP-MS (QCLot: 755204)									
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	108	75.3	113	
EK040P: Fluoride by PC Titrator (QCLot: 755583)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	97.2	64.8	115	
EK057G: Nitrite as N by Discrete Analyser (QCLot:	753625)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.96 mg/L	94.2	65.1	129	
EK059G: NOX as N by Discrete Analyser (QCLot: 7	754010)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.96 mg/L	111	76.9	122	
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 7585	27)								
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	85.0	62.4	140	
EP005: Total Organic Carbon (TOC) (QCLot: 75860	7)								
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	93.2	86.9	125	

Page : 8 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Sub-Matrix: WATER		Matrix Spike (MS) Report						
				Spike	Spike Recovery (%)	Recovery	Limits (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
ED045G: Chloride D	iscrete analyser (QCLot: 754005)								
ES0813116-003	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	# Not Determined	70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLot: 757095)								
ES0813178-001	TRIPLICATE4	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	94.3	70	130		
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	74.3	70	130		
		EG020A-F: Barium	7440-39-3	0.2 mg/L	106	70	130		
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	87.5	70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	96.2	70	130		
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	94.1	70	130		
		EG020A-F: Copper	7440-50-8	0.2 mg/L	81.0	70	130		
		EG020A-F: Lead	7439-92-1	0.2 mg/L	98.6	70	130		
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	85.8	70	130		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	87.1	70	130		
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	98.9	70	130		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	70.0	70	130		
EK040P: Fluoride by	PC Titrator (QCLot: 755583)								
ES0813293-002	Anonymous	EK040P: Fluoride	16984-48-8	5.0 mg/L	99.0	70	130		
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 753625)								
ES0813211-001	Anonymous	EK057G: Nitrite as N		0.60 mg/L	89.0	70	130		
EK059G: NOX as N	by Discrete Analyser (QCLot: 754010)								
ES0813140-001	Anonymous	EK059G: Nitrite + Nitrate as N		6 mg/L	75.7	70	130		
EK061: Total Kielda	hl Nitrogen (TKN) (QCLot: 758527)								
ES0813193-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	# Not Determined	70	130		
FP005: Total Organ	c Carbon (TOC) (QCLot: 758607)								
ES0813173-002	Anonymous	EP005: Total Organic Carbon		100 mg/L	100	70	130		
=======================================	· ················	Li 000. Total Organio Odiboli			. 50				

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES0813178** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

No. of samples received

: 2

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 10-SEP-2008

 Sampler
 : AW
 Issue Date
 : 23-SEP-2008

Order number : ----

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8
Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER Evaluation: × = Holding time breach; ✓ = Within holding time

Method		Sample	e Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		•		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH								-	ı
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				10-SEP-2008	10-SEP-2008	√
EA010P: Conductivity by PC Titrator									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				12-SEP-2008	08-OCT-2008	✓
EA015: Total Dissolved Solids									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				14-SEP-2008	17-SEP-2008	✓
ED037P: Alkalinity by PC Titrator									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				12-SEP-2008	24-SEP-2008	✓
ED040F: Dissolved Major Anions									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				16-SEP-2008	08-OCT-2008	✓
ED041: Sulfate (Turbidimetric) as SO4 2-									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				17-SEP-2008	08-OCT-2008	✓
ED045G: Chloride Discrete analyser									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				11-SEP-2008	08-OCT-2008	✓
ED093F: Dissolved Major Cations									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				16-SEP-2008	08-OCT-2008	✓
EG020F: Dissolved Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Filtered TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008				15-SEP-2008	09-MAR-2009	✓
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Natural TRIPLICATE4,	TRIPLICATE5	10-SEF	P-2008	12-SEP-2008	09-MAR-2009	✓	12-SEP-2008	09-MAR-2009	✓

Page : 3 of 8
Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER					Evaluation	: x = Holding time	breach ; ✓ = Within	n holding time
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator								
Clear Plastic Bottle - Natural								
TRIPLICATE4,	TRIPLICATE5	10-SEP-2008				12-SEP-2008	08-OCT-2008	✓
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural								
TRIPLICATE4,	TRIPLICATE5	10-SEP-2008				10-SEP-2008	12-SEP-2008	✓
EK059G: NOX as N by Discrete Analyser								
Clear Plastic Bottle - Sulphuric Acid								
TRIPLICATE4,	TRIPLICATE5	10-SEP-2008				11-SEP-2008	08-OCT-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)								
Clear Plastic Bottle - Sulphuric Acid								
TRIPLICATE4,	TRIPLICATE5	10-SEP-2008	16-SEP-2008	08-OCT-2008	✓	16-SEP-2008	08-OCT-2008	✓
EP005: Total Organic Carbon (TOC)								
Amber TOC Vial - Sulphuric Acid								
TRIPLICATE4,	TRIPLICATE5	10-SEP-2008				16-SEP-2008	08-OCT-2008	✓

Page : 4 of 8
Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Oddiers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
_aboratory Duplicates (DUP)								
Alkalinity by PC Titrator	ED037-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fluoride by PC Titrator	EK040P	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Anions - Filtered	ED040F	2	8	25.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Cations - Filtered	ED093F	2	17	11.8	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite as N by Discrete Analyser	EK057G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
pH	EA005	2	15	13.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2-	ED041	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids	EA015	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Metals by ICP-MS - Suite A	EG020A-T	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Organic Carbon	EP005	2	19	10.5	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
_aboratory Control Samples (LCS)								
Alkalinity by PC Titrator	ED037-P	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fluoride by PC Titrator	EK040P	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Anions - Filtered	ED040F	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Cations - Filtered	ED093F	1	17	5.9	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
litrite as N by Discrete Analyser	EK057G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Dissolved Solids	EA015	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
otal Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Organic Carbon	EP005	1	19	5.3	5.0	<u> </u>	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Method Blanks (MB)								
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	1	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
<u> </u>							1	

Page : 5 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency n	ot within specification; ✓ = Quality Control frequency within specification		
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual	Actual Expected				
Method Blanks (MB) - Continued									
Conductivity by PC Titrator	EA010-P	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Fluoride by PC Titrator	EK040P	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Anions - Filtered	ED040F	1	8	12.5	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Major Cations - Filtered	ED093F	1	17	5.9	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Dissolved Solids	EA015	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Total Organic Carbon	EP005	1	19	5.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Matrix Spikes (MS)									
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	5.0	✓	ALS QCS3 requirement		
Fluoride by PC Titrator	EK040P	1	5	20.0	5.0	✓	ALS QCS3 requirement		
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	13	7.7	5.0	✓	ALS QCS3 requirement		
Nitrite as N by Discrete Analyser	EK057G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
Total Metals by ICP-MS - Suite A	EG020A-T	1	19	5.3	5.0	✓	ALS QCS3 requirement		
Total Organic Carbon	EP005	1	19	5.3	5.0	✓	ALS QCS3 requirement		

Page : 6 of 8 Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH
			meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with
			NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of 'filterable' residue in an aqueous
			sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness
			and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated
			measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant
			with NEPM (1999) Schedule B(3) (Appdx. 2)
Major Anions - Filtered	ED040F	WATER	APHA 21st ed., 3120 Sulfur and/or Silcon content is determined by ICP/AES and reported as Sulfate and/or Silica
			after conversion by gravimetric factor.
Sulfate (Turbidimetric) as SO4 2-	ED041	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are precipitated in an acetic acid medium with barium chloride to form
			barium sulfate crystals. Light absorbance of the BaSO4 suspension is measured by a photometer and the
			SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is
			compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to
			form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured
M : 0 :: 5''!		\\\\ATED	ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a
			characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification.
Disaskas d Matala ku IOD MO. Ovita A	50000A 5	NA/ATED	This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
Total Metals by ICP-MS - Suite A	FC000A T	WATER	measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
			efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	measurement by a discrete dynode ion detector. (APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly
Disserved Mictals by for -Mio - Gaile B	LG020D-1°	VVAILI	efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
			measurement by a discrete dyffold for detector.

Page : 7 of 8
Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Silica (Total Dissolved) by ICPAES	EG052	WATER	APHA 21st ed., 4500-SiO2. Silica (Total) determined by calculation from Silicon by ICPAES.
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA Turbidimetric and ICPAES	EN055 - TS	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 8
Work Order : ES0813178

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
ED045G: Chloride Discrete analyser	ES0813116-003	Anonymous	Chloride	16887-00-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK061: Total Kjeldahl Nitrogen (TKN)	ES0813193-001	Anonymous	Total Kjeldahl Nitrogen as N		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

tainer Identification	
125ml	
plastic YES	
lved	
Disse	
Si and	
Me.	
Major Cations. Si and Dissolved Metals	<u> </u>
Majo	
8	
 	-
X	
 	-
X	- -
	\longrightarrow
.	<u> </u>
	-
+	++
+ + +	
1	
+ + +	
 	
vironment	al Division
Sydn	iev
Work C	
ES081	13178
. 201 11 11 11 10 100 1	1 0 0704 055
ephone: +6	1-2-8784 855
1 1 1	
 - - 	

rom:SKM Pty Lt				CHAIN C	OF CUSTO	DY FORM						S	K	И
BN: 37 001 024 0	/illiam St, Adel		5000	MA	- 2				Conta	iner Identi	fication			
i: (08) 8424 3800	fax: (08) 842	4 3810					Size	1000ml	250ml	125ml				<u> </u>
B USE ONLY JOTE NUMBER			Project N	VE30064			Type Preserv	plastic NO	plastic YES	plastic YES				
b-Code: . e Date:			Project N	fanager: Daniel Pierce				C. Fi		Major Cattons, Si and Dissolved Metals				
stody seal intact?	۲۰۱' ۱		Sampler(Analytes	PH, E	ached	ad Dis				
naminal for Labora	story by		Checked	Alistair Walsh Jack Ashby ;			1	TDS.	seeat	S. Siar			}	
ate:	- 1-			•			1	Major anions, TDS, pH, EC, Fl, NO3, NO2, Total Nitrogen and TKN	TOC + see attached	Cation				
ate: . (014 9300		Date:	9/09/2008				Major NO3.		Major				
ıb ld	Date	Time	Matrix	Sample Identification		Comments		Tick requir	ed analytes		-		1	
	8/09/2008		H20	Triplicate 4				х				7		
	8/09/2008		H20	Triplicate 4					x					
						F:-14 Fm	<u> </u>		<u> </u>					
	8/09/2008	-	H20	Triplicate 4		Field Filtered			 	x				
(S)	·						 							-
	9/09/2008		H20	Triplicate 5	· · · · · · · · · · · · · · · · · · ·		 	X					├	-
	9/09/2008		H20	Triplicate 5					x					
	9/09/2008		H20	Triplicate 5		Field Filtered			<u> </u>	х				<u> </u>
										,				
							 -							
							-							
													394	
				1.				_					•	
														Ι.
						-		_	· 				vi. doi	an
								-	En	viron	men Sydı	iai L	nvisi	OH
		_						-			ork (
							 	_	_					_
								<u> </u>	E	ES	08	13	7/	8
							ļ	L	·					
	2													
	ga Sh													
									Tele	phone	e: +6	31-2-8	3784 8	3555
		,												
_	***							 	I					
							 						_	
														
						-	1		 -					-
									l	,				
						TOTAL								
ites: ease email a	iwalsh@skr	n.com	.au and	dpierce@skm.com.a	u reults and	upon receival of	samples							

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
San	nple Batch fee			
Major Cations (mg/L)	Calcium (Ca) Magnesium (Mg) Sodium (Na) Potassium	1 mg/L	7 days	
Major Anions (mg/L.)	(K) Calclum Carbonate (CaCO ₃) Sulphate (SO ₄) Chloride (Cl) Carbonate	1 mg/L	48 Hrs	
Major	(CO ₃) Bicarbonate	1 mg/L		
	(HCO ₃)	1 mg/L		
	TDS (mg/L) EC (uS/cm)	1 mg/L	28 days 28 days	
	pH (units) Fluoride	0.01 pH unit	6-12 hrs	Measure+G39 in field
	Silica			
	(Si) Aluminum	10 μg/L		
	(Ai) Antimony		6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	(Sb)	0.5 μg/L	6 months	
	Arsenic (As)	0.5 μg/L	6 months	
	Barium (Ba)	5 μg/L	6 months	
	Beryllium	0.1 μg/L		
-	(Be) Boron	100 μg/L	6 months	
	(B) Cadmium		6 months	
	(Cd) Chromium	0.2 μg/L	6 months	
	(Cr)	0.5 μg/L	6 months	
	Cobalt (Co)	0.2 μg/L	6 months	
,	Copper (Cu)	5 μg/L	6 months	The state of the s
¬	Gold	0.1 µg/L		
/mg/J	(Ag) Lead		6 months	
Dissolved Metals (mg/L)	(Pb) Lithium	0.2 μg/L	6 months	
D A	(Li)	5 μg/L	6 months	
olve	Manganese (Mn)	0.5 μg/L	6 months	
Diss	Molybdenum (Mo)	0.1 μg/L	6 months	
	Nickel	0.5 μg/L		
	(NI) Selenium	5 μg/L	6 months	
	(Se) Strontium		6 months	
	(Sr)	10 μg/L	6 months	
	Thallium (Ti)	0.1 µg/L	6 months	
	Thorlum (Th)	0.1 μg/L	6 months	<u> </u>
	Tin (Sn)	5 μg/L	6 months	
	Titanlum	5 μg/L		
	(Ti) Uranlum	0.1 μg/L	6 months	
-	(U) Vanadium	-	6 months	
	(V)	0.5 μg/L	6 months	
	(Zn)	5 µg/L	6 months	
	Iron - total (Fe)	5 μg/L	6 months	ICP OES
	Nitrite as N (NO ₂)	0.01 mg/L	48 hrs	
mg/L	Nitrate as N (NO₃)	0.01 mg/L		measured together
Nutrients (mg/L)	Total Nitrogen	0.01 mg/L	48 hrs 28 days	
uttrie	Total Organic Carbon (TOC)	1 mg/L	28 days	
Z	Total Kjeldahl	0.1 mg/L		
	Nitrogen (TKN)	Cost/sample	28 days	

Total Cost

Note: If highly saline, samples may require a 1.5 x dilution therfore LORs raised by a factor of 5 times 1 in every 10 sample required for laboratory duplicate to comply with QA/QC 1 in every 20 samples required for inter laboratory testing for QA/QC

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Contact

Work Order : **ES0813421** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Address : LEVEL 5. 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA. AUSTRALIA 5000

: mr ALISTAIR WALSH

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

Contact

Site

 C-O-C number
 : -- Date Samples Received
 : 12-SEP-2008

 Sampler
 : -- Issue Date
 : 23-SEP-2008

No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: Charlie Pierce

Signatories	Position	Accreditation Category	
Celine Conceicao	Spectroscopist	Inorganics	
Sarah Millington	Senior Inorganic Chemist	Inorganics	
Victor Kedicioglu	Business Manager - NSW	Inorganics	

Environmental Division Sydney
Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 4

Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

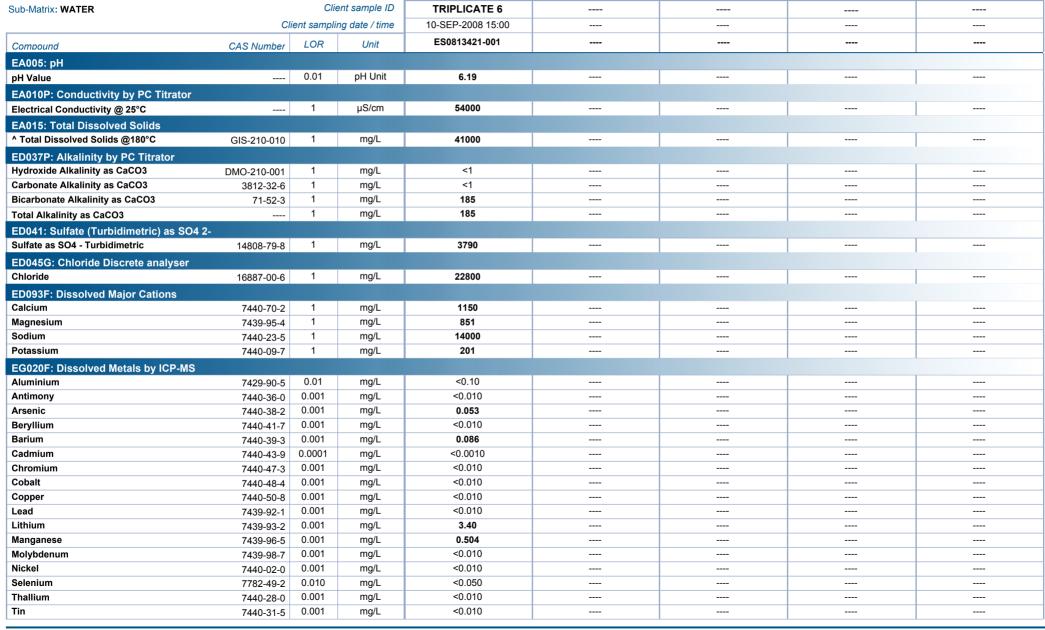
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting


• EG020A-F & T: LOR's have been raised due to saline sample.

Page : 3 of 4 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Results

Page : 4 of 4 : ES0813421 Work Order

: SINCLAIR KNIGHT MERZ Client

Project

: VE30064 Analytical Results

Analytical Results						
Sub-Matrix: WATER		Clie	ent sample ID	TRIPLICATE 6	 	
	Cli	ent sampli	ing date / time	10-SEP-2008 15:00	 	
Compound	CAS Number	LOR	Unit	ES0813421-001	 	
EG020F: Dissolved Metals by ICP-MS - Cont	tinued					
Vanadium	7440-62-2	0.01	mg/L	<0.10	 	
Zinc	7440-66-6	0.005	mg/L	<0.050	 	
Boron	7440-42-8	0.05	mg/L	7.42	 	
EG020T: Total Metals by ICP-MS						
Iron	7439-89-6	0.05	mg/L	7.35	 	
EG052G: Silica by Discete Analyser						
Silica	7631-86-9	0.10	mg/L	19.7	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	0.6	 	
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N		0.01	mg/L	<0.01	 	
EK058G: Nitrate as N by Discrete Analyser	r					
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	 	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N		0.01	mg/L	<0.01	 	
EK061: Total Kjeldahl Nitrogen (TKN)						
Total Kjeldahl Nitrogen as N		0.1	mg/L	5.8	 	
EK062: Total Nitrogen as N						
^ Total Nitrogen as N		0.1	mg/L	5.8	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	725	 	
^ Total Cations		0.01	meq/L	744	 	
^ Ionic Balance		0.01	%	1.25	 	
EP005: Total Organic Carbon (TOC)						
Total Organic Carbon		1	mg/L	15	 	

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

SAMPLE RECEIPT NOTIFICATION (SRN)

Comprehensive Report

· ES0813421 Work Order

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact · Charlie Pierce

Address : LEVEL 5. 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield

> ADELAIDE SA, AUSTRALIA 5000 NSW Australia 2164

E-mail : awalsh@skm.com.au E-mail : charlie.pierce@alsenviro.com

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555 Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 Page : 1 of 3

Order number

C-O-C number Quote number : ES2008SINKNI0045 (EN/003/08)

Sampler QC Level : NEPM 1999 Schedule B(3) and ALS

QCS3 requirement

Dates

Date Samples Received : 12-SEP-2008 Issue Date : 15-SEP-2008 08:30 Client Requested Due Date : 22-SEP-2008 Scheduled Reporting Date 22-SEP-2008

Delivery Details

Mode of Delivery Temperature : 19.1' C - Ice bricks present : Carrier

No. of coolers/boxes : 1 FOAM No. of samples received : 1 Sercurity Seal No. of samples analysed · Intact : 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Requested Deliverables
- Sample containers do not comply to pretreatment / preservation standards (AS, APHA, USEPA). Please refer to the Sample Container(s)/Preservation Non-Compliance Log at the end of this report for details.
- Breaches in recommended extraction / analysis holding times may occur. Please contact ALS for further information (Nanthini Coilparampil).
- Due to inappropriate preseved container supplied for total Iron, the analysis to be conducted from the natural bottle.
- pH analysis should be conducted within 6 hours of sampling.
- Please direct any turn around / technical queries to the laboratory contact designated above.
- Please direct any queries related to sample condition / numbering / breakages to Nanthini Coilparampil
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (14 days), Solid (90 days) from date of completion of work order.

Issue Date : 15-SEP-2008 08:30

Page : 2 of 3 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
EG020A-T : Total Metals by ICP-MS - Suite A		
TRIPLICATE 6	- Clear Plastic Bottle - Natural	- Clear Plastic Bottle - Nitric Acid; Unfiltered

Summary of Sample(s) and Requested Analysis

Some items describ process neccessary tasks. Packages mathematical tasks, that are included When date(s) and/have been assumed both Matrix: WATER	for the execution ay contain addition of moisture cond in the package.	n of client requested all analyses, such as tent and preparation own bracketed, these	TER - EA005: pH	rTER - EA010P nductivity (PC)	TER - EA015 Il Dissolved Solids	WATER - EG020A-F Dissolved Metals by ICPMS - Suite A	TER - EG020A-T Il Metals by ICPMS - Suite A	WATER - EG020B-F Dissolved Metals by ICPMS - Suite B	.TER - EG020E-F solved Metals by ICPMS - Suite E	TER - EG052G a by Discrete Analyser
ID	date / time	Chem dampio 15	WAT	WAT	WATE	WAT	WATE	WAT	WATER	WATE
ES0813421-001	10-SEP-2008 15:00	TRIPLICATE 6	✓	✓	✓	✓	✓	✓	✓	✓

40-P 40-P 655 - TS (TS) 05 Carbon (TOC) 05 Carbon (TOC) 05 Carbon (TOC) 05 Carbon (TOC) 05 Carbon (TOC)
--

Issue Date : 15-SEP-2008 08:30

Page : 3 of 3 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Requested Deliverables

mr ALISTAIR WALSH

- *AU Certificate of Analysis - NATA	Email	awalsh@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	awalsh@skm.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA	Email	awalsh@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	awalsh@skm.com.au
- Default - Chain of Custody	Email	awalsh@skm.com.au
- EDI Format - ENMRG	Email	awalsh@skm.com.au

MR DANIEL PIERCE

IR DANIEL FIERCE		
- *AU Certificate of Analysis - NATA	Email	dpierce@skm.com.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep)	Email	dpierce@skm.com.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA	Email	dpierce@skm.com.au
- A4 - AU Sample Receipt Notification - Environmental	Email	dpierce@skm.com.au
- A4 - AU Tax Invoice	Email	dpierce@skm.com.au
- Default - Chain of Custody	Email	dpierce@skm.com.au
- EDI Format - ENMRG	Email	dpierce@skm.com.au

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

QUALITY CONTROL REPORT

Work Order : **ES0813421** Page : 1 of 7

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-2-8784 8555

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-2-8784 8500

Project : VE30064 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 : -- Date Samples Received
 : 12-SEP-2008

 Sampler
 : -- Issue Date
 : 23-SFP-2008

Order number : ---No. of samples received

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 1

Signatories	Position	Accreditation Category
Celine Conceicao	Spectroscopist	Inorganics
Sarah Millington	Senior Inorganic Chemist	Inorganics
Victor Kedicioglu	Business Manager - NSW	Inorganics

Part of the ALS Laboratory Group

277-289 Woodpark Road Smithfield NSW Australia 2164

Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 7 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Page : 3 of 7
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

ub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
A005: pH (QC Lot:	: 757637)								
ES0813248-001	Anonymous	EA005: pH Value		0.01	pH Unit	6.66	6.69	0.4	0% - 20%
S0813435-006	Anonymous	EA005: pH Value		0.01	pH Unit	7.45	7.49	0.5	0% - 20%
A010P: Conductivi	ity by PC Titrator (QC	Lot: 758653)							
ES0813408-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	232	233	0.4	0% - 20%
ES0813408-010	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	432	435	0.7	0% - 20%
A015: Total Dissol	ved Solids (QC Lot: 7	58479)							
S0813262-023	Anonymous	EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	6440	6820	5.7	0% - 20%
D037P: Alkalinity b	by PC Titrator (QC Lot	: 758655)							
S0813408-001	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	111	110	0.0	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	111	110	0.0	0% - 20%
S0813408-010	Anonymous	ED037-P: Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	0.0	No Limit
		ED037-P: Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	174	171	1.7	0% - 20%
		ED037-P: Total Alkalinity as CaCO3		1	mg/L	174	171	1.7	0% - 20%
D041: Sulfate (Turl	bidimetric) as SO4 2-	(QC Lot: 760763)							
S0813408-007	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	85	87	2.3	0% - 20%
S0813446-003	Anonymous	ED041: Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	12	12	0.0	0% - 50%
D045G: Chloride D	Discrete analyser (QC	Lot: 757295)							
S0813319-001	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	69	68	0.0	0% - 20%
S0813408-002	Anonymous	ED045G: Chloride	16887-00-6	1	mg/L	5	5	0.0	No Limit
D093F: Dissolved I	Major Cations (QC Lo	t: 759608)							
S0813408-003	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	182	181	0.0	0% - 20%
		ED093F: Magnesium	7439-95-4	1	mg/L	101	102	0.0	0% - 20%
		ED093F: Sodium	7440-23-5	1	mg/L	81	80	0.0	0% - 20%
		ED093F: Potassium	7440-09-7	1	mg/L	7	7	0.0	No Limit
S0813419-001	Anonymous	ED093F: Calcium	7440-70-2	1	mg/L	2	2	0.0	No Limit
		ED093F: Magnesium	7439-95-4	1	mg/L	2	2	0.0	No Limit
		ED093F: Sodium	7440-23-5	1	mg/L	6	6	0.0	No Limit
		ED093F: Potassium	7440-09-7	1	mg/L	4	4	0.0	No Limit
G020F: Dissolved	Metals by ICP-MS (QC	C Lot: 757095)							
S0813178-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Antimony	7440-36-0	0.001	mg/L	0.006	0.006	0.0	No Limit

Page : 4 of 7
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
G020F: Dissolved	Metals by ICP-MS (QC	Lot: 757095) - continued							
ES0813178-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.009	0.007	23.0	No Limit
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.072	0.070	2.2	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.008	0.008	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.005	0.006	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Lithium	7439-93-2	0.001	mg/L	0.306	0.326	6.3	0% - 20%
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.433	0.447	3.0	0% - 20%
		EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	0.118	0.118	0.0	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.012	0.013	12.9	0% - 50%
		EG020A-F: Thallium	7440-28-0	0.001	mg/L	0.001	<0.001	0.0	No Limit
		EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.011	15.5	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.0	No Limit
		EG020A-F: Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	0.0	No Limit
		EG020A-F: Boron	7440-42-8	0.05	mg/L	3.64	3.67	0.6	0% - 20%
EG020T: Total Metal	s by ICP-MS (QC Lot:	759601)							
ES0813319-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	0.20	0.19	6.1	No Limit
ES0813396-001	Anonymous	EG020A-T: Iron	7439-89-6	0.05	mg/L	3.13	3.17	1.2	0% - 20%
EG052G: Silica by D	iscete Analyser (QC Lo	ot: 758062)							
EM0807542-001	Anonymous	EG052G: Silica	7631-86-9	0.10	mg/L	<0.10	0.13	26.1	No Limit
ES0813374-011	Anonymous	EG052G: Silica	7631-86-9	0.10	mg/L	1.05	1.05	0.0	0% - 50%
K040P: Fluoride by	PC Titrator (QC Lot: 7	758654)							
ES0813408-001	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit
ES0813408-010	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	0.2	0.2	0.0	No Limit
K057G: Nitrito as I	N by Discrete Analyser				, and the second				
ES0813421-001	TRIPLICATE 6	EK057G: Nitrite as N		0.01	mg/L	<0.01	<0.01	0.0	No Limit
ES0813446-018	Anonymous	EK057G: Nitrite as N		0.01	mg/L	0.01	<0.01	0.0	No Limit
	by Discrete Analyser (0.01	9/_	0.0.	0.0.	0.0	110 2
ES0813338-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	0.0	No Limit
ES0813408-007	Anonymous	EK059G: Nitrite + Nitrate as N EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.02	0.02	0.0	No Limit
				0.01	mg/L	0.01	0.01	0.0	140 Lillit
EK061: Total Kjelda ES0813399-001	nl Nitrogen (TKN) (QC			0.1	ma/l	2.4	2.0	1F 4	00/ 200/
	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.4	2.8	15.4	0% - 20%
	c Carbon (TOC) (QC Lo	·					0.7	0.0	00/ 000/
ES0813408-008	Anonymous	EP005: Total Organic Carbon		1	mg/L	36	35	3.0	0% - 20%

Page : 5 of 7 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
Out Mathe William				Report	Spike	Spike Recovery (%)		Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA010P: Conductivity by PC Titrator (QCLot: 75	8653)								
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	2000 μS/cm	100	86.3	112	
EA015: Total Dissolved Solids (QCLot: 758479)									
EA015: Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	<1	293 mg/L	100	77.9	122	
ED037P: Alkalinity by PC Titrator (QCLot: 75865	5)								
ED037-P: Total Alkalinity as CaCO3		1	mg/L		200 mg/L	95.8	80.2	108	
ED041: Sulfate (Turbidimetric) as SO4 2- (QCLot	+ 760763)				, and the second				
ED041: Sulfate (Turbidimetric) as 304 2- (QCEO)	14808-79-8	1	mg/L	<1	20 mg/L	99.3	76.1	126	
ED045G: Chloride Discrete analyser (QCLot: 757			3		. 5				
ED045G: Chloride	16887-00-6	1	mg/L	<1	50 mg/L	94.8	83.7	124	
			9/2		00 mg/2	00	00		
ED093F: Dissolved Major Cations (QCLot: 75960 ED093F: Calcium	7440-70-2	1	mg/L	<1	50 mg/L	98.5	82.9	121	
ED093F: Calcium ED093F: Magnesium	7439-95-4	1	mg/L	<1	50 mg/L	96.6	82.7	114	
ED093F: Magnesium	7440-23-5	1	mg/L	<1	50 mg/L	92.4	77.4	113	
ED093F: Potassium	7440-09-7	<u>.</u> 1	mg/L	<1	50 mg/L	97.5	84.3	118	
EG020F: Dissolved Metals by ICP-MS (QCLot: 75			9.						
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	101	88.1	116	
EG020A-F: Antimony	7440-36-0	0.001	mg/L	<0.001					
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	96.9	79.2	117	
EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	90.6	79.2	117	
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	91.7	82	113	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.4	85.1	110	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	98.1	87	117	
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	97.1	86.6	117	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.0	80.6	115	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	99.4	84.1	114	
EG020A-F: Lithium	7439-93-2	0.001	mg/L	<0.001	0.1 mg/L	88.3	78.1	118	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	101	84	116	
EG020A-F: Molybdenum	7439-98-7	0.001	mg/L	<0.001	0.1 mg/L	95.0	79.7	119	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.7	83	115	
EG020A-F: Selenium	7782-49-2	0.01	mg/L		0.1 mg/L	100	73.5	124	
		0.010	mg/L	<0.010					
EG020A-F: Thallium	7440-28-0	0.001	mg/L	<0.001	0.1 mg/L	111	82.5	118	
EG020A-F: Tin	7440-31-5	0.001	mg/L	<0.001	0.1 mg/L	99.1	77.7	130	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	97.0	86.2	112	

Page : 6 of 7
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 757095) - co	ontinued								
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	90.7	81.1	115	
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.1 mg/L	95.6	74.7	119	
EG020T: Total Metals by ICP-MS (QCLot: 759601)									
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	92.0	75.3	113	
EG052G: Silica by Discete Analyser (QCLot: 758062)									
EG052G: Silica	7631-86-9	0.1	mg/L		21.4 mg/L	76.4	70	130	
		0.10	mg/L	<0.10					
EK040P: Fluoride by PC Titrator (QCLot: 758654)									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	99.4	64.8	115	
EK057G: Nitrite as N by Discrete Analyser (QCLot: 757936	5)								
EK057G: Nitrite as N		0.01	mg/L	<0.01	0.96 mg/L	101	65.1	129	
EK059G: NOX as N by Discrete Analyser (QCLot: 757291)									
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.96 mg/L	107	76.9	122	
EK061: Total Kjeldahl Nitrogen (TKN) (QCLot: 762131)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	101	62.4	140	
EP005: Total Organic Carbon (TOC) (QCLot: 762202)									
EP005: Total Organic Carbon		1	mg/L	<1	10 mg/L	91.4	86.9	125	

Page : 7 of 7
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Matrix Spike (MS) Repo	rt			
				Spike	Spike Recovery (%)	Recovery	Limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
ED045G: Chloride Di	screte analyser (QCLot: 757295)						
ES0813319-001	Anonymous	ED045G: Chloride	16887-00-6	250 mg/L	91.0	70	130
EG020F: Dissolved N	Metals by ICP-MS (QCLot: 757095)						
ES0813178-001	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	94.3	70	130
		EG020A-F: Beryllium	7440-41-7	0.2 mg/L	74.3	70	130
		EG020A-F: Barium	7440-39-3	0.2 mg/L	106	70	130
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	87.5	70	130
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	96.2	70	130
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	94.1	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	81.0	70	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	98.6	70	130
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	85.8	70	130
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	87.1	70	130
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	98.9	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	70.0	70	130
EG052G: Silica by Di	scete Analyser (QCLot: 758062)						
EM0807542-001	Anonymous	EG052G: Silica	7631-86-9	5.0 mg/L	79.4	70	130
EK040P: Fluoride by	PC Titrator (QCLot: 758654)						
ES0813408-006	Anonymous	EK040P: Fluoride	16984-48-8	5.0 mg/L	104	70	130
EK057G: Nitrite as N	by Discrete Analyser (QCLot: 757936)						
ES0813421-001	TRIPLICATE 6	EK057G: Nitrite as N		0.60 mg/L	116	70	130
EK059G: NOX as N	by Discrete Analyser (QCLot: 757291)						
ES0813338-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.60 mg/L	94.5	70	130
EK061: Total Kjeldah	ıl Nitrogen (TKN) (QCLot: 762131)						
ES0813399-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	98.0	70	130
EP005: Total Organic	Carbon (TOC) (QCLot: 762202)						
ES0813408-009	Anonymous	EP005: Total Organic Carbon		100 mg/L	95.0	70	130

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

INTERPRETIVE QUALITY CONTROL REPORT

Work Order : **ES0813421** Page : 1 of 8

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Sydney

Contact : mr ALISTAIR WALSH Contact : Charlie Pierce

Address : LEVEL 5, 33 KING WILLIAM ST Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-2-8784 8555
Facsimile : +61 08 8424 3810 Facsimile : +61-2-8784 8500

Project : VE30064 : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Site : ----

 C-O-C number
 :-- Date Samples Received
 : 12-SEP-2008

 Sampler
 !-- Issue Date
 : 23-SEP-2008

Order number : ----

No. of samples received : 1

Quote number : EN/003/08

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Page : 2 of 8 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analysis Holding Time Compliance

The following report summarises extraction / preparation and analysis times and compares with recommended holding times. Dates reported represent first date of extraction or analysis and precludes subsequent dilutions and reruns. Information is also provided re the sample container (preservative) from which the analysis aliquot was taken. Elapsed period to analysis represents number of days from sampling where no extraction / digestion is involved or period from extraction / digestion where this is present. For composite samples, sampling date is assumed to be that of the oldest sample contributing to the composite. Sample date for laboratory produced leachates is assumed as the completion date of the leaching process. Outliers for holding time are based on USEPA SW 846, APHA, AS and NEPM (1999). A listing of breaches is provided in the Summary of Outliers.

Holding times for leachate methods (excluding elutriates) vary according to the analytes being determined on the resulting solution. For non-volatile analytes, the holding time compliance assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These soil holding times are: Organics (14 days); Mercury (28 days) & other metals (180 days). A recorded breach therefore does not quarantee a breach for all non-volatile parameters.

Matrix: WATER				Evaluation:	x = Holding time	breach ; ✓ = Withir	ո holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005: pH							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				15-SEP-2008	10-SEP-2008	×
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				16-SEP-2008	08-OCT-2008	✓
EA015: Total Dissolved Solids							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				16-SEP-2008	17-SEP-2008	✓
ED037P: Alkalinity by PC Titrator		I					
Clear Plastic Bottle - Natural						04.050.0000	
TRIPLICATE 6	10-SEP-2008				16-SEP-2008	24-SEP-2008	✓
ED041: Sulfate (Turbidimetric) as SO4 2-		l			ı		
Clear Plastic Bottle - Natural TRIPLICATE 6	10-SEP-2008				18-SEP-2008	08-OCT-2008	
	10-SEP-2008				10-SEP-2006	06-001-2006	√
ED045G: Chloride Discrete analyser Clear Plastic Bottle - Natural		l			l e	 	
TRIPLICATE 6	10-SEP-2008				15-SEP-2008	08-OCT-2008	1
	10-021 -2000				10-021 -2000	00 001 2000	
ED093F: Dissolved Major Cations Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				17-SEP-2008	08-OCT-2008	1
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered							
TRIPLICATE 6	10-SEP-2008				15-SEP-2008	09-MAR-2009	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008	17-SEP-2008	09-MAR-2009	✓	18-SEP-2008	09-MAR-2009	✓
EG052G: Silica by Discete Analyser							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				15-SEP-2008	08-OCT-2008	✓

Page : 3 of 8
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Matrix: WATER				Evaluation:	x = Holding time	breach ; ✓ = Within	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				16-SEP-2008	08-OCT-2008	✓
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
TRIPLICATE 6	10-SEP-2008				15-SEP-2008	12-SEP-2008	*
EK059G: NOX as N by Discrete Analyser							
Clear Plastic Bottle - Sulphuric Acid							
TRIPLICATE 6	10-SEP-2008				15-SEP-2008	08-OCT-2008	✓
EK061: Total Kjeldahl Nitrogen (TKN)							
Clear Plastic Bottle - Sulphuric Acid							
TRIPLICATE 6	10-SEP-2008	19-SEP-2008	08-OCT-2008	✓	19-SEP-2008	08-OCT-2008	✓
EP005: Total Organic Carbon (TOC)							
Clear Plastic Bottle - Sulphuric Acid							
TRIPLICATE 6	10-SEP-2008				19-SEP-2008	08-OCT-2008	✓

Page : 4 of 8 Work Order : ES0813421

: SINCLAIR KNIGHT MERZ Client

Project : VE30064

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ot within specification ; ✓ = Quality Control frequency within specification		
Quality Control Sample Type		C	Count		Rate (%)		Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Alkalinity by PC Titrator	ED037-P	2	10	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	2	50.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fluoride by PC Titrator	EK040P	2	11	18.2	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Cations - Filtered	ED093F	2	13	15.4	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite as N by Discrete Analyser	EK057G	2	10	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
рН	EA005	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Silica (Reactive) by Discrete Analyser	EG052G	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2-	ED041	2	20	10.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids	EA015	1	5	20.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	4	25.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Organic Carbon	EP005	1	4	25.0	10.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Laboratory Control Samples (LCS)								
Alkalinity by PC Titrator	ED037-P	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Chloride by Discrete Analyser	ED045G	2	20	10.0	10.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Conductivity by PC Titrator	EA010-P	1	11	9.1	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Fluoride by PC Titrator	EK040P	1	11	9.1	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Major Cations - Filtered	ED093F	1	13	7.7	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Nitrite as N by Discrete Analyser	EK057G	1	10	10.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Silica (Reactive) by Discrete Analyser	EG052G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Dissolved Solids	EA015	1	5	20.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	4	25.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Total Organic Carbon	EP005	1	4	25.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	
Method Blanks (MB)								
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	√	NEPM 1999 Schedule B(3) and ALS QCS3 requirement	

Page : 5 of 8
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

atrix: WATER						na or noquono, i	not within specification; ✓ = Quality Control frequency within specific		
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification		
Analytical Methods	Method	QC	Reaular	Actual Expected		Evaluation			
Method Blanks (MB) - Continued									
Conductivity by PC Titrator	EA010-P	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite B	EG020B-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite E	EG020E-F	1	2	50.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
luoride by PC Titrator	EK040P	1	11	9.1	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Najor Cations - Filtered	ED093F	1	13	7.7	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
litrite as N by Discrete Analyser	EK057G	1	10	10.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Silica (Reactive) by Discrete Analyser	EG052G	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Sulfate (Turbidimetric) as SO4 2-	ED041	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Dissolved Solids	EA015	1	5	20.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	4	25.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
otal Organic Carbon	EP005	1	4	25.0	5.0	✓	NEPM 1999 Schedule B(3) and ALS QCS3 requirement		
Matrix Spikes (MS)									
Chloride by Discrete Analyser	ED045G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	3	33.3	5.0	✓	ALS QCS3 requirement		
luoride by PC Titrator	EK040P	1	11	9.1	5.0	✓	ALS QCS3 requirement		
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
litrite as N by Discrete Analyser	EK057G	1	10	10.0	5.0	✓	ALS QCS3 requirement		
ilica (Reactive) by Discrete Analyser	EG052G	1	20	5.0	5.0	✓	ALS QCS3 requirement		
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	4	25.0	5.0	1	ALS QCS3 requirement		
otal Metals by ICP-MS - Suite A	EG020A-T	1	20	5.0	5.0	✓	ALS QCS3 requirement		
otal Organic Carbon	EP005	1	4	25.0	5.0	1	ALS QCS3 requirement		

Page : 6 of 8 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
рН	EA005	WATER	APHA 21st ed. 4500 H+ B. pH of water samples is determined by ISE either manually or by automated pH meter. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Conductivity by PC Titrator	EA010-P	WATER	APHA 21st ed., 2510 This procedure determines conductivity by automated ISE. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Dissolved Solids	EA015	WATER	APHA 21st ed., 2540C A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+5C. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Alkalinity by PC Titrator	ED037-P	WATER	APHA 21st ed., 2320 B This procedure determines alkalinity by both manual measurement and automated measurement (e.g. PC Titrate) using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Sulfate (Turbidimetric) as SO4 2-	ED041	WATER	APHA 21st ed., 4500-SO4 Sulfate ions are precipitated in an acetic acid medium with barium chloride to form barium sulfate crystals. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Chloride by Discrete Analyser	ED045G	WATER	The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride.in the presence of ferric ions the librated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm APHA 21st edition seal method 2 017-1-L april 2003
Major Cations - Filtered	ED093F	WATER	APHA 21st ed., 3120; USEPA SW 846 - 6010 The ICPAES technique ionises filtered sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite B	EG020B-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Metals by ICP-MS - Suite E	EG020E-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Page : 7 of 8
Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Analytical Methods	Method	Matrix	Method Descriptions
Silica (Reactive) by Discrete Analyser	EG052G	WATER	APHA 21st ed. 4500-SiO2 D: Under Acdic conditions reactive silicon combines with ammonium molybdate to form a yellow molybdosilicic acid complex. This is reduced by 1-amino-2-naphthol-4-sulfonic acid to a silicomolybdenum blue complex which is measured by seal at 670 nm. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite as N by Discrete Analyser	EK057G	WATER	APHA 21st ed., 4500 NO3- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrate as N by Discrete Analyser	EK058G	WATER	APHA 21st ed., 4500 NO3F. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	APHA 21st ed., 4500 NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	APHA 21st ed., 4500-Norg-D25mL water samples are digested using a traditional Kjeldahl digestion followed by determination by Discrete Analyser. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	APHA 21st ed., 4500 N org / NO3. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Ionic Balance by PCT DA Turbidimetric and ICPAES	EN055 - TS	WATER	APHA 21st Ed. 1030F. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Total Organic Carbon	EP005	WATER	APHA 21st ed., 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	APHA 21st ed., 4500 Norg - D; APHA 21st ed., 4500 P - H. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)
Digestion for Total Recoverable Metals	EN25	WATER	USEPA SW846-3005 Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (1999) Schedule B(3) (Appdx. 2)

Page : 8 of 8 Work Order : ES0813421

Client : SINCLAIR KNIGHT MERZ

Project : VE30064

Summary of Outliers

Outliers: Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Matrix: WATER

MATER							
Method	E	xtraction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days	
			overdue			overdue	
EA005: pH							
Clear Plastic Bottle - Natural							
TRIPLICATE 6				15-SEP-2008	10-SEP-2008	5	
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural							
TRIPLICATE 6				15-SEP-2008	12-SEP-2008	3	

Outliers: Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

: SKM Pty Lt 37 001 024 0	95											2	N.	AI
	Villiam St, Adel 7 fax: (08) 84:		A 5000						Conta	iner Identi	fication			
USE ONLY			Dhote -4 *	lo.		·····	Size	1000ml	250ml	125ml				=
OTE NUMBER			Project N	VE30064			Type Preserv	plastic NO	plastic YES	plastic YES				
Code: Date:			Project N	lanager: Daniel Pierce				C, FI,	_	Dissolved				
tody seal intact	?		Sampler(s):			Analytes	pH, E	ached	4 Dis				
nple cold? eived for Labora	atory by:		Checked	Allstair Walsh / Tom Kelly				Major anions, TDS, pH, EC, FI, NO3, NO2, Total Nitrogen and TKN	TOC + see attached	Major Cations, Si and Metals				
· . e:		•	Date:					ajor anior 03, NO2,	100	jor Catio				
e:		1		11/09/2008			<u> </u>							
o ld	Date	Time	Matrix	Sample Identification		Comments		Tick require	ed analytes					
	10/09/2008		H20	Triplicate 6				x						
(1)	10/09/2008		H20	Triplicate 6	Í				х					
	10/09/2008		H20	Triplicate 6		Field Filtered				×				
							+-	<u> </u>						
		ļ												
					-								\vdash	
							+							
_							1							
										ļ				
							+						\vdash	
									<u> </u>	-				
											<u> </u>		\sqcup	
							1							
												ļ <u>.</u>	 	
							!		ļ		<u> </u>		\vdash	
	*													
į														ı
			1.1						Γ	Ër	iviro	nme	ntal l	Divisi
						,			H			Svo	lney	211101
			ļ		-				_		v		Ord	or
					.					- 1	ΞS	08	113	42
										_				
							1		F 11					
									- ∦					
•									∟ ∥					
									_ #					
										Tele	ephon	e:+	61-2-8	3784 8
									_					
													İ	
		,					ļ							
				·		<u> </u>					-		<u> </u>	
														$\neg \neg$
	•					· · · · · · · · · · · · · · · · · · ·					ļ			
			1	100 AV 1 - 341 -3										
						TOTAL								
tes:					سسب	, <i>U</i>								
			Rea	emed by:	رودل :	> THE	1	12/9	y i	1:70	c-			
ase email a	walsh@skr		-	dpierce@skm.com.au				-	•					
	- "			<u>-</u> ,		•	•							
e attache	d spread:	shee	t for fu	II breakdown of ar	nalytes red	quired. Pleas	e analy	se all o	lissolv	ed me	etals ı	ısing l	CP-MS	s.
y questio	ns pleas	e call	Alista	ir Walsh on 04302	88222		•					-		
				•										

	Analytes	Limits of Reporting (LOR)	Maximum holding time	Comments
Sar	nple Batch fee			
	Calcium			
Major Cations (mg/L)	(Ca) Magneslum			
Major ns:(A	(Mg) Sodium	1 mg/L	7 days	
- 2	(Na) Potassium			
	, (K)			
_	Calcium Carbonate (CaCO ₃)			
√g/L	Sulphate	1 mg/L		
sic ((SO ₄) Chloride		48 Hrs	
Anic	(CI) Carbonate		401113	
Major Anlons (mg/L)	(CO ₃)	1 mg/L		
*	Bicarbonate (HCO ₃)	1 mg/L		
	TD\$ (mg/L)	1 mg/L	28 days	
	EC (uS/cm) pH (units)	0.01 pH unit	28 days 6-12 hrs	Measure+G39 in field
	Fluoride Silica			
	(Si) Aluminum			
	(AI)	10 μg/L	6 months	Ultra trace metals dissolved in saline water by ORC/ICP/MS
	Antimony (Sb)	0.5 µg/L	6 months	
	Arsenic (As)	0.5 μg/L	6 months	
	Barium	5 μg/L		-
	(Ba) Beryllium		6 months	
	(Be) Boron	0.1 μg/L	6 months	_
	(B)	100 μg/L	6 months	
	Cadmium (Cd)	0.2 μg/L	6 months	
	Chromium (Cr)	0.5 μg/L	6 months	
	Cobalt	0.2 μg/L		
	(Co) Copper		6 months	
	(Cu) Gold	5 μg/L	6 months	
Dissolved Metals (mg/L)	(Ag)	0.1 μg/L	6 months	
als (n	Lead (Pb)	0.2 μg/L	6 months	
Met	Lithium (Li)	5 μg/L	6 months	
oved	Manganese (Mn)	0.5 μg/L	6 months	
)iss	Molybdenum	0.1 μg/L		
-	(Mo) Nickel		6 months	
	(Ni) Selenlum	0.5 μg/L	6 months_	
	(Se)	5 μg/L	6 months	
	Strontium (Sr)	10 μg/L	6 months	
	Thallium (TI)	0.1 μg/L	6 months	
	Thorium	0.1 μg/L		
	(Th) Tin	5 μg/L	6 months	
	(Sn) Titanium		6 months	
	(Ti)	5 µg/l	6 months	
	Uranlum (U)	0.1 μg/L	6 months	
	Vanadium (V)	0.5 µg/L	6 months	
	Zinc	5 μg/L		
	(Zn) Iron - total	5 µg/L	6 months	
	(Fe)		6 months	ICP OES
(7	Nitrite as N (NO ₂)	0.01 mg/L	48 hrs	measured together
(mg/	Nitrate as N (NO₃)	0.01 mg/L	48 hrs	
Nutrients (mg/L)	Total Nitrogen	0.01 mg/L	28 days	
Nutri	Total Organic Carbon (TOC)	1 mg/L	28 days	
1 - T	Total Kjeldahl Nitrogen (TKN)	0.1 mg/L	28 days	
		Cost/sample		

Total Cost

Note: If highly saline, samples may require a 1:5 x dilution therfore LORs raised by a factor of 5 times 1 in every 10 sample required for laboratory duplicate to comply with QA/QC 1 in every 20 samples required for inter laboratory testing for QA/QC

Australian Radiation Services Pty Ltd

PO Box 3103, Nunawading, Victoria, 3131 22 King Street, Blackburn, Victoria, 3130

Telephone +61 3 9877 4898 Facsimile +61 3 9877 8272

Email: info@australian-radiation-services.com.au Web Site: www.australian-radiation-services.com.au

ABN 66 006 528 267

Keeping people safe.

Radioactivity Analysis Report

To:

Sinclair Knight Merz

Level 6/33 King William Street

Adelaide SA 5000

Contact:

Mr. Daniel Pierce

Sample description:

Liquid

Number of samples:

Five

Submission date:

17th June 2008

Analysis required:

Determination of the activity of radium-226 (Ra-226) by liquid scintillation

Report No.:

Date:

08-7079-R1

8th August 2008

counting.

Analytical method:

Filtration of heavy sediments followed by determination of radium-226 carried out

by liquid scintillation counting after preliminary radiochemical separation to

isolate radium isotopes.

Analysis performed by: Ms. Genelle Jones

Results:

Client Sample ID (ARS ID)	Radium-226 Activity Concentration (Bq·L ⁻¹) ^{a,b,c}
H1-1 (08-7079-01)	0.44 ± 0.05
H3-1 (08-7079-02)	0.03 ± 0.02
H3-2 (08-7079-03)	0.35 ± 0.04
Duplicate (08-7079-04)	0.36 ± 0.04
LT02/ LP2 (08-7079-05)	0.71 ± 0.08

NB:

- Activities are in becquerel (Bq) per Litre. One becquerel equals one nuclear transformation per second.
- Less than (<) values indicate the limit of detection for each isotope for the measurement system.
- The reported uncertainty in each result is the expanded uncertainty calculated using a coverage factor of 2.

Australian Radiation Services Pty Ltd

Telephone +61 3 9877 4898 Facsimile +61 3 9877 8272

PO Box 3103, Nunawading, Victoria, 3131

22 King Street, Blackburn, Victoria, 3130

Email: info@australian-radiation-services.com.au
Web Site: www.australian-radiation-services.com.au

ABN 66 006 528 267

Keeping people safe.

Radioactivity Analysis Report

To: Sinclair Knight Merz

Level 6/33 King William Street

Adelaide SA 5000

Contact: Mr. Daniel Pierce

Sample description: Liquid

Number of samples: Ten

Submission date: 1st August 2008

Analysis required: Determination of the activity of radium-226 (Ra-226) by liquid scintillation

counting.

Analytical method: Filtration of heavy sediments followed by determination of radium-226 carried out

by liquid scintillation counting after preliminary radiochemical separation to

Report No.:

Date:

09-1-069-R1

18th September 2008

isolate radium isotopes.

Analysis performed by: Ms. Genelle Jones

Results:

Client Sample ID (ARS ID)	Radium-226 Activity Concentration (Bq·L ⁻¹) ^{a,b,c}
LR1 Monitoring Well (09-1-069-01)	0.21 ± 0.03
LR2 Monitoring Well (09-1-069-02)	0.08 ± 0.01
LR8 Monitoring Well (09-1-069-03)	0.22 ± 0.03
LR9 Monitoring Well (09-1-069-04)	0.21 ± 0.03
LT19 Monitoring Well (09-1-069-05)	0.50 ± 0.05
LT41 Monitoring Well (09-1-069-06)	0.75 ± 0.08
PT24a Monitoring Well (09-1-069-07)	< 0.02
RT16a Monitoring Well (09-1-069-08)	0.66 ± 0.07
RT17a Monitoring Well (09-1-069-09)	0.03 ± 0.01
Duplicate Monitoring Well (09-1-069-10)	0.64 ± 0.07

a. Activities are in becquerel (Bq) per Litre. One becquerel equals one nuclear transformation per second.
b. Less than (<) values indicate the limit of detection for each isotope for the measurement system. NB:

- c. The reported uncertainty in each result is the expanded uncertainty calculated using a coverage factor of 2.

AUSTRALIAN RADIATION SERVICES PTY. LTD.

Report prepared by: Ms. Genelle Jones Signed:

Radiochemist

Reviewed by: Dr. Malcolm Cooper Signed:

Consultant Environmental Scientist

18th September 2008 Date:

Project No: VE30064

Site: BHP-B Olympic Dam Matrix: GROUNDWATER

Primary Laboratory: Labmark (Batch No's. E0388250, E038825, E038811, 08ENME002073, 08ENME0021986, 08ENME0021703,

08ENME0021863, 08ENME0022217, 08ENME0022255, 08ENME0021268, 08ENME0021450, 08ENME0023416,

08ENME0023714, 08ENME0024196 & 08ENME0024479)

Secondary Laboratory: ALS (Batch No's. EM0806112, ES0810866001, ES0811987, ES0812254, ES0813041,)

No. of Tests Requested/ Reported: 54 for Dissolved metals, pH, EC, TDS, Silica, Major Cations (Ca, Mg, Na, K), Major Anions (Cl, SO4, HCO3, CO3),

Nutrients (NO2, NO3, Total Nitrogen, TOC, TKN), Acidity (as CaCO3), and Alkalinity (OH, HCO3, CO3).

Frequency of QA/QC undertaken: 6 in 54 samples duplicated (inter and intra laboratory)

Frequency of QA/QC Required: 1 in 10 samples are required to be duplicated

Data Quality Issue Assessed	Issue Reviewed	Results Acceptable	Comments
	,		
Sampling Technique	√	√	
Sample Holding Times	✓	✓	
Analytical Procedures	✓	✓	
Laboratory Limits of Reporting	✓	✓	See Note 1
(below relevant guideline value)			
Field Duplicate Agreement (RPD%)	✓	✓	See Note 2
Blank Sample Analysis			
Method Blank	✓	✓	
Rinsate Blank	✓	✓	
Equipment Blank	NA	NA	
Laboratory Duplicate Agreement (RPD%)	✓	✓	
Matrix Spikes/Matrix Spike Duplicates			
Recovery Percentages	✓	✓	
Duplicate Agreement (RPD%)	✓	✓	
Surrogate Recoveries	✓	✓	
Other Issues (i.e Trip Blank)	✓	✓	

Other Observations:

Note:1 LOR for certain metal species were not low enough to encompass guideline value, particularly chromium, but also arsenic

however it is unlikely that this signficantly affects the outcome of the investigation due to the exceedances noted elsewhere.

Note 2: Field duplicate agreement was generally sound although the cation / anion equilibria may have caused some differences within individual samples.

Summary Comments:

Groundwater analytical data can be used as a basis of interpretation subject to the limitations outlined above.

Recommended Corrective Action:

None

			Sample	PT60	DUP2		DUP2		LR10	DUP 5		DUP 5		LP2	DUP 6		TRIPLICATE 3	1
			Date	17/08/2008	17/08/2008	DDD0/	17/08/2008	RPD%	20/08/2008	20/08/2008	RPD%	20/08/2008	RPD%	4/09/2008	4/09/2008	RPD%	4/09/2008	RPD%
			Lab Report	08ENME0021863	08ENME0021863	RPD%	ES0811987	RPD%	08ENME0022255	08ENME0022255	RPD%	ES0812254	RPD%	08ENME0023714	08ENME0023714	RPD%	ES0813041	RPD%
			Laboratory	Labmark	Labmark		ALS		Labmark	Labmark		ALS		Labmark	Labmark		ALS	
Analyte	Units	Labmark LOR	ALS LOR															
pH Value and Total Disso		1			1		1					1			I		ı	
pH	pH Unit	0.1	0.01	6.9	6.9	0	6.64	3.84	7.1	7.1	0	6.56	7.91	6.7	6.8	1.48	6.74	0.60
TDS Electrical conductivity	mg/L uS/cm	20	1 1	24000 29300	24000 29500	0.68	25100 30200	4.48 3.03	37000 37500	37000 37200	0.80	37500 43400	1.34 14.59	22000 25200	23000 25400	0.79	21000 29400	4.65 15.38
Alkalinity												1						
Hydroxide as CaCO3	mg/L	5	1	-	-	-	<1	-	-	-	-	<1	•	-	-	-	<1	-
Carbonate as CACO3	mg/L	5	1	<1 259.4	<1	-	<1 337	26.02	0	0	-	<1	- 4.70	<1	<1 940	- 0.45	<1 949	-
Bicarbonate as CACO3 Total Alkalinity as CACO3	mg/L mg/L	5	1 1	259.4	280.1 280.08	7.67	337	26.02	260 260	250 250	3.92	248 248	4.72 4.72	920 920	940	2.15	949	3.10 3.10
Acidity	19-	•					, ,,,			-44		,		,				
Calcium	mg/L	0.1	1	880	900	2.25	877	0.34	1080	1130	4.52	1080	0	800	799	0.13	785	1.89
Iron	mg/L	0.1	1	63.4	50.8	22.07	-	-	3.23	3.41	5.42	-	- 4.70	15.6	15.6	0	14.2	9.40
Magnesium Sodium	mg/L mg/L	0.1	1	600 7600	595 7600	0.84	585 7630	2.53 0.39	938 11100	992 11600	5.60 4.41	922 10900	1.72 1.82	850 6510	852 6330	2.80	801 6610	5.94 1.52
Potassium	mg/L	0.1	1	96	82	15.73	95	1.05	100	100	0	71	33.92	61	62	1.63	63	3.23
Total Metals	1				1		1					1			I		ı	
Iron Dissolved Metals	mg/L	0.1	0.01	-	-	-	51.4	-		-	-	5.72	-	1		-		-
Aluminium	mg/L	0.001	0.01	0.019	0.036	61.82	0.02	5.13	0.0028	<0.001	-	<0.10	-	0.024	0.018	28.57	0.02	18.18
Antimony	mg/L	0.001	0.001	<0.001	<0.001	-	<0.001	-	<0.001	<0.001	-	<0.010	-	<0.001	<0.001	-	<0.001	-
Arsenic	mg/L	0.001	0.001	<0.005	<0.005	-	0.013	-	<0.001	<0.001	-	<0.010	-	<0.001	<0.001	-	<0.001	-
Barium	mg/L	0.001	0.001	0.044 <0.005	0.04 <0.005	9.52	0.036 <0.001	20	0.034 <0.001	0.035 <0.001	2.90	0.022 <0.010	42.86	0.018 <0.001	0.019 <0.001	5.41	0.016 0.002	11.76
Beryllium Boron	mg/L mg/L	0.001	0.001	<0.005 6	6.6	9.52	5.02	17.79	6.7	6.9	2.94	5.66	16.83	12	12	0	6.47	59.88
Cadmium	mg/L	0.0002	0.0001	<0.002	<0.002	-	<0.0001	-	<0.0002	<0.0002	-	<0.0010	-	<0.0002	<0.0002	-	0.0009	-
Chromium	mg/L	0.001	0.001	0.0063	0.0072	13.33	<0.001	-	<0.001	<0.001	-	<0.010	-	0.0068	0.0087	24.52	<0.001	-
Copper	mg/L mg/L	0.001	0.001 0.001	<0.005 0.008	<0.005 0.0072	10.53	0.002 0.004	66.67	0.0055 0.01	0.005 0.011	9.52 9.52	<0.010 <0.020	-	0.067 0.084	0.066 0.093	1.50	0.054 0.088	21.49 4.65
Copper Lead	mg/L	0.001	0.001	<0.005	<0.005	-	0.004	-	<0.001	<0.001	9.52	<0.020	-	<0.001	<0.001	-	0.005	4.65
Lithium	mg/L	0.001	0.001	0.66	0.69	4.44	0.484	30.77	0.37	0.34	8.45	0.325	12.95	0.88	0.87	1.14	0.856	2.76
Manganese	mg/L	0.001	0.001	1.4	1.4	0	1.13	21.34	0.55	0.53	3.70	0.59	7.02	2.8	2.7	3.64	2.2	24.00
Molybdenum Nickel	mg/L	0.001	0.001	<0.005 0.013	<0.005 0.013	0	0.004 <0.005	-	<0.001 0.012	<0.001 0.014	15.38	<0.010 <0.010	-	<0.001 0.031	<0.001 0.029	6.67	<0.001 0.015	69.57
Selenium	mg/L mg/L	0.001	0.001	0.013	0.013	4.26	<0.005		0.012	0.014	1.90	<0.010	-	0.031	0.029	5.41	<0.015	- 69.57
Strontium	mg/L	0.001	0.001	11	11	0	11.2	1.80	20	19	5.13	16.8	17.39	14	13	7.41	13.2	5.88
Thallium	mg/L	0.001	0.001	<0.005	<0.005	-	<0.001	-	<0.001	<0.001	-	<0.010	-	<0.001	<0.001	-	<0.001	-
Thorium Tin	mg/L	0.001	0.001	<0.005 <0.005	<0.005 <0.005	-	<0.001 <0.001	-	<0.001	<0.001	-	<0.010 <0.010	-	<0.001	- <0.001	-	<0.001 0.001	-
Titanium	mg/L mg/L	0.001	0.001	0.013	0.0093	33.18	<0.01	-	0.024	0.025	-	<0.10	-	0.0038	0.0029	26.87	<0.01	-
Uranium	mg/L	0.001	0.001	<0.005	<0.005	-	0.002	-	0.057	0.058	1.74	0.045	23.53	0.074	0.077	3.97	0.103	32.77
Vanadium	mg/L	0.001	0.01	<0.005	<0.005	-	<0.01	-	<0.001	<0.001	-	<0.10	-	0.0014	0.0017	19.35	<0.01	-
Zinc Gold	mg/L mg/L	0.001	0.005 0.001	0.11	0.096	13.59	0.047 <0.001	80.25	0.096	0.11	13.59	0.078 <0.010	20.69	0.079	0.076	3.87	0.046 0.001	52.80
Silica	g/∟	0.01	0.001	<u> </u>		<u> </u>	Q0.001					30.010		1	1		0.001	
Silica	mg/L	1		15.2	15.5	1.95	9.8	43.20	15	14.9	0.67	14.2	5.48	29.5	29.3	0.68	29.8	1.01
Sulphate	1		_	0000	I 0000 I		I 0000 I	25.07				1	50.40	4000			T 4000 T	0.70
Sulphate Chloride	mg/L	2	1	3000	3000	0	3860	25.07	3000	2900	3.39	5190	53.48	4300	4100	4.76	4020	6.73
Chloride	mg/L	1		11000	11000	0	11000	0	13000	12000	8.00	15500	17.54	5700	5500	3.57	9020	45.11
Fluoride																		
Fluoride	mg/L	0.1		<0.5	<0.5	-	1.4	-	<0.5	<0.5	-	1.4	-	1.5	1.5	0	2.2	37.84
Total Kjeldahl Nitrogen as TKN as N	mg/L	1	0.1	<1	<1		2		<1	<1		<0.1	_	9.4	11	15.69	4.4	72.46
Ionic Balance	9/2	•	0						1. 1	7.		10.1				10.00		12.10
Total Anions	meq/L		0.01	-	-	-	396	-	-	-	-	550	-	-	-	-	357	-
Total Cations	meq/L		0.01	-	-	-	426	-	-	-	-	604	-	-	-	-	394	-
Ionic Balance Total Organic Carbon (TO	% OC)		0.01	-	-	-	3.64	-	-	-	-	4.67	-	 	-	-	4.92	-
Total Organic Carbon	mg/L	1	1	2.9	<1	-	8	93.58	<1	<1	-	<1	-	3.4	3.4	0	4	16.22
Nitrite as N												1						
NO2-N	mg/L	0.5	0.01	<0.5	<0.5	-	<0.01	-	<0.5	<0.5	-	<0.01	-	<0.5	<0.5	-	<0.01	-
Nitrate as N NO3-N	mg/L	0.5	0.01	2.4	2.4	0	0.02	196.69	2.5	2	22.22	2.94	16.18	<0.5	<0.5	-	<0.01	-
Total Nitrogen (as N)	mg/∟	0.0	0.01	2.7	4.7	<u> </u>	0.02	.00.00	2.0	-		2.07	10.10	10.0			30.01	
Total Nitrogen (as N)	mg/L	2	0.1	2	2	0	2	0	3	2	40.00	2.9	3.39	9	11	20.00	4.4	68.66
																		

RPD exceeds allowable duplicate difference (50%)

If the primary and duplicate samples were report <LOR (identical LOR), then RPD is assumed to be 0.

			Sample	MAR 7	DUP 7		TRIPLICATE 4		QT2	DUP 8		TRIPLICATE 5		RT41	DUP 9		TRIPLICATE 6	
			Date	8/09/2008	8/09/2008	RPD%	10/09/2008	RPD%	4/09/2008	9/09/2008	RPD%	10/09/2008	RPD%	10/09/2008	10/09/2008	RPD%	10/09/2008	RPD%
			Lab Report	08ENME0024196	08ENME0024196	KFD%	ES0813178001	KPD%	08ENME0023714	08ENME0024196	KPD%	ES0813178001	KPD%	08ENME0024479	08ENME0024479	KPD%	ES0813421001	RFD%
			Laboratory	Labmark	Labmark		ALS		Labmark	Labmark		ALS		Labmark	Labmark		ALS	
Analyte	Units	Labmark LOR	ALS LOR															
pH Value and Total Dissolv							1			· · · · · · · · · · · · · · · · · · ·		1					1	
pH	pH Unit	0.1	0.01	7.2	7.2	0	6.91	4.11	8.3	7	16.99	6.77	20.31	7.1	7.1 41000	0	6.19	13.69
TDS Electrical conductivity	mg/L uS/cm	20	1	23000 28900	23000 29000	0.35	22700 30900	1.31 6.69	38000 39200	25000 31200	41.27 22.73	23600 33000	46.75 17.17	41000 52500	52600	0.19	41000 54000	0 2.82
Alkalinity											-							
Hydroxide as CaCO3	mg/L	5	1	-	-	-	<1	-	-	-	-	<1	-	-	-	-	<1	-
Carbonate as CACO3 Bicarbonate as CACO3	mg/L mg/L	5 5	1	<1 100	<1 342	109.50	<1 320	104.76	<1 140	<1 340	83.33	<1 258	59.30	<1 150	<1 150	0	<1 185	20.90
Total Alkalinity as CACO3	mg/L	5	1	100	340	109.09	320	104.76	140	260	60	258	59.30	150	150	0	185	20.90
Acidity																		
Calcium	mg/L	0.1	1	1110 0.621	1120 0.589	0.90 5.29	1110	0	469	791 5.12	51.11 191.21	769	48.47	1250 6.65	1260 6.95	0.80 4.41	1150	8.33 200
Iron Magnesium	mg/L mg/L	0.1	1	742	736	0.81	721	2.87	0.115 877	5.12	41.27	552	45.49	653	6.95	0.61	851	26.33
Sodium	mg/L	0.1	1	6230	6260	0.48	6640	6.37	14400	7620	61.58	7620	61.58	12900	13400	3.80	14000	8.18
Potassium	mg/L	0.1	1	77	78	1.29	67	13.89	86	110	24.49	98	13.04	210	220	4.65	201	4.38
Total Metals Iron	mg/L	0.1	0.01	1	Γ		27.5	_	1	ı	_	5.69	_	1	ı	_	7.35	_
Dissolved Metals	g, ∟	3.1	0.01				27.0			<u> </u>		0.00			<u> </u>		7.00	
Aluminium	mg/L	0.001	0.01	0.018	0.016	11.76	<0.01	-	0.039	0.0034	167.92	<0.01	-	0.0036	<0.001	-	<0.10	-
Antimony	mg/L	0.001	0.001 0.001	<0.001 0.017	<0.001 0.018	5.71	0.006 0.009	61.54	<0.001 <0.001	<0.001 0.024	-	0.004 0.016	-	<0.001 <0.1	<0.001 <0.1	-	<0.010 0.053	-
Arsenic Barium	mg/L mg/L	0.001	0.001	0.017	0.018	1.29	0.009	8	0.029	0.024	49.35	0.016	38.89	<0.1 0.12	0.12	0	0.053	33.01
Beryllium	mg/L	0.001	0.001	<0.001	<0.001	-	<0.001	-	<0.001	<0.001	-	<0.001	-	<0.001	<0.001	-	<0.010	-
Boron	mg/L	0.001	0.05	6.3	6.2	1.6	3.64	53.52	6	7.1	16.79	3.92	41.94	9	9	0	7.42	19.24
Cadmium Chromium	mg/L mg/L	0.0002	0.0001 0.001	<0.0002 0.0042	<0.0002	70.97	<0.0001 <0.001	-	<0.0002 0.0027	<0.0002 0.0016	51.16	<0.0001 <0.001	-	<0.0002 0.0033	<0.0002 0.0032	3.08	<0.0010 <0.010	-
Cobalt	mg/L	0.001	0.001	0.011	0.0093	16.75	0.008	31.58	<0.001	0.0047	-	0.004	-	<0.001	<0.001	-	<0.010	-
Copper	mg/L	0.001	0.001	0.0064	0.0061	4.8	0.005	24.56	0.0067	0.0053	23.33	0.006	11.02	0.008	0.0075	6.45	<0.010	-
Lead	mg/L	0.001	0.001	<0.001	<0.001	- 274	<0.001	-	<0.001	<0.001	47.62	<0.001	- 64.40	<0.001	<0.001	- 0	<0.010 3.4	-
Lithium Manganese	mg/L mg/L	0.001	0.001 0.001	0.37 0.5	0.36 0.46	2.74 8.33	0.306 0.433	18.93 14.36	0.91 1.6	0.56 0.86	60.16	0.484 0.818	61.12	3.6 0.49	3.6 0.5	2.02	0.504	5.71 2.82
Molybdenum	mg/L	0.001	0.001	0.085	0.085	0	0.118	32.51	0.0024	0.0019	23.26	0.006	85.71	<0.001	<0.001	-	<0.010	-
Nickel	mg/L	0.001	0.001	0.03	0.027	10.53	0.012	85.71	0.0059	0.02	108.88	0.01	51.57	0.013	0.013	0	<0.010	-
Selenium Strontium	mg/L mg/L	0.001	0.01	0.042 17	0.041 17	2.41 0	<0.010 14.5	15.87	0.07 9.4	0.044 15	45.61 45.90	0.01	150 32.14	0.026 34	0.025 32	3.92 6.060606061	<0.050	-
Thallium	mg/L	0.001	0.001	<0.001	<0.001	-	0.001	-	<0.001	<0.001	-	<0.001	-	<0.001	<0.001	-	<0.010	-
Thorium	mg/L	0.001	0.001	-	-	-	<0.001	-	-	-	-	<0.001	-	-	-	-	-	-
Tin Titanium	mg/L	0.001	0.001	<0.001 0.0023	<0.001 0.0031	29.63	<0.001 <0.01	-	<0.001 0.0068	<0.001 0.0025	92.47	<0.001 <0.01	-	<0.001 0.012	<0.001 0.013	- 8	<0.010	-
Uranium	mg/L mg/L	0.001	0.001	0.0023	0.019	0	0.022	14.63	<0.001	0.0023	-	0.026		<0.001	<0.001	-	-	-
Vanadium	mg/L	0.001	0.01	0.003	0.002	40	<0.01	-	<0.001	<0.001	-	<0.01	-	<0.001	<0.001	-	<0.10	-
Zinc	mg/L	0.001	0.005	0.019	0.022	14.63	0.01	62.07	0.019	0.024	23.26	0.018	5.41	0.015	0.017	12.5	<0.050	-
Gold Silica	mg/L	0.01	0.001	-	-	-	0.001	-	-	-	-	<0.001	-	-	-	-	-	-
Silica	mg/L	1		18	18.3	1.65	16.1	11.14	6.9	18.6	91.76	15.2	75.11	25	25	0	19.7	23.71
Sulphate				2705		7.00		40.46	1505		F0.F0		4 =0	1505	2.00			CO. E.C.
Sulphate Chloride	mg/L	2		2700	2500	7.69	4460	49.16	4500	2600	53.52	4420	1.79	1500	3400	77.55	3790	86.58
Chloride	mg/L	1		9000	9200	2.20	10900	19.10	13000	10000	26.09	11600	11.38	9400	24000	87.43	22800	83.23
Fluoride							1						•					
Fluoride Total Kjeldahl Nitrogen as	mg/L	0.1		1	1	0	1.5	40	<0.5	<0.5	-	1	-	<0.5	<0.5	-	0.6	-
TKN as N	mg/L	1	0.1	24	22	8.70	34.7	36.46	2.9	<1	-	1.2	82.93	3.6	<1	-	5.8	-
Ionic Balance																		
Total Anions	meq/L		0.01	-	-	-	407	-	-	-	-	424	-			-	725	-
Total Cations Ionic Balance	meq/L %		0.01	-	-	-	406 0.21	-	-	-	-	418 0.81	-			-	744 1.25	-
Total Organic Carbon (TOC			0.01				5.E1											
Total Organic Carbon	mg/L	1	1	6.7	5.8	14.4	9	29.30	2.7	3.4	22.95	4	38.81	15	14	6.90	15	0
Nitrite as N NO2-N	mg/L	0.5	0.04	<0.5	<0.5		<0.01		<0.5	<0.5		<0.01	_	<0.5	<0.5	-	<0.01	-
NO2-N Nitrate as N	IIIg/L	0.5	0.01	C.U>	<0.0	-	<0.01	-	C.U>	C.U>	-	<0.01	-	<∪.5	<0.0	-	<0.01	
NO3-N	mg/L	0.5	0.01	<0.5	<0.5	-	0.03	-	<0.5	<0.5	-	<0.01	-	<0.5	<0.5	-	<0.01	-
Total Nitrogen (as N)														ļ				
Total Nitrogen (as N)	mg/L	2	0.1	24	22	8.70	34.7	36.46	3	<2	-	1.3	79.07	4	<2	-	5.8	-

RPD exceeds allowable duplicate difference (50%)

If the primary and duplicate samples were report <LOR (identical LOR

Sample	RB1	RB2	RB3	RB4
Date	4/09/2008	4/09/2008	9/09/2008	10/09/2008
Lab Report	08ENME0023714	08ENME0023714	08ENME0024196	08ENME0024479
Laboratory	Labmark	Labmark	Labmark	Labmark

	1	I alessado		т			
Analyte	Units	Labmark LOR	ALS LOR				
pH Value and Total Dissolv	ed Solids			1			
pН	pH Unit	0.1	0.01	-		8	6.3
TDS	mg/L	1	1	-	-	<20	<20
Electrical conductivity	uS/cm	20	1	-	-	<20	<20
Alkalinity				1			
Hydroxide as CaCO3	mg/L	5	11	-	-	-	
Carbonate as CACO3	mg/L	5	1	-	-	<1	<1
Bicarbonate as CACO3	mg/L	5	1	-	-	20	10
Total Alkalinity as CACO3	mg/L	5	1	-	-	20	10
Acidity Acidity as CACO3	m a/l			_	_	_	
Dissolved Major Cations	mg/L			-	-	-	
Calcium	mg/L	0.1	1	0.225	0.201	0.167	0.535
Iron	mg/L	0.1		<0.1	<0.1	<0.1	0.264
Magnesium	mg/L	0.1	1	<0.1	<0.1	<0.1	0.171
Sodium	mg/L	0.1	1	<0.1	<0.1	0.33	1.79
Potassium	mg/L	0.1	1	<1	<1	<1	<1
Total Metals							
Iron	mg/L	0.1	0.01	-	-	-	
Dissolved Metals				•	-	-	
Aluminium	mg/L	0.001	0.01	0.0095	0.02	0.0067	<0.001
Antimony	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Arsenic	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Barium	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Beryllium	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Boron	mg/L	0.001	0.05	<0.001	<0.001	0.0064	0.0012
Cadmium	mg/L	0.0002	0.0001	<0.0002	<0.0002	<0.0002	<0.0002
Chromium	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Cobalt	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Copper	mg/L	0.001	0.001	0.0023	0.0014	0.0016	0.0025
Lead	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Manganese	mg/L	0.001	0.001	<0.001	<0.001	<0.001	0.0011
Molybdenum Nickel	mg/L	0.001	0.001	<0.001	<0.001	<0.001 <0.001	<0.001
Selenium	mg/L mg/L	0.001	0.001	<0.001 <0.001	<0.001 <0.001	<0.001	0.0032 <0.001
Strontium	mg/L	0.001	0.001	<0.001	<0.001	0.0011	0.011
Thallium	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Thorium	mg/L	0.001	0.001	-	-	-	-
Tin	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Titanium	mg/L	0.001	0.01	<0.001	<0.001	<0.001	<0.001
Uranium	mg/L	0.001	0.001	<0.001	<0.001	<0.001	<0.001
Vanadium	mg/L	0.001	0.01	<0.001	<0.001	<0.001	<0.001
Zinc	mg/L	0.001	0.005	0.055	0.029	0.012	0.14
Gold	mg/L	0.01	0.001	-	-	-	-
Silica							
Silica	mg/L	1		<1	<1	<1	<1
Sulphate							
Sulphate	mg/L	2		-	-	0.9	1.1
Chloride		1		1			
Chloride	mg/L	1		-	-	1.3	2.2
Fluoride				1			
Fluoride	mg/L	0.1		-	-	<0.5	<0.5
Total Kjeldahl Nitrogen as I		, ,	0.1				
TKN as N	mg/L	1	0.1	-	-	<1	<1
Ionic Balance	mca/l		0.04	_	-	-	
Total Anions	meq/L		0.01	-	-	-	
Total Cations Ionic Balance	meq/L %		0.01	-	-	-	
Total Organic Carbon (TOC			0.01	<u> </u>	· -	-	
Total Organic Carbon	mg/L	1	1	1.4	1.2	<1	2.1
Nitrite as N	mg/L	' '		1.7	1.4	51	٤.١
NO2-N	mg/L	0.5	0.01	-	-	<0.5	<0.5
Nitrate as N	. 3-				1	, .	
NO3-N	mg/L	0.5	0.01	-	-	<0.5	<0.5
Total Nitrogen (as N)						- I	
Total Nitrogen (as N)	mg/L	2	0.1	-	-	<2	<2

Notes LOR - Limit of reporting - Not Analysed * Raised LOR

Olympic Dam EIS Project – Hydrogeological data and information collation report FINAL

Attachment D Hydrogeological investigations of the Andamooka Limestone aquifer

Olympic Dam EIS Project – Hydrogeological data and information collation report FINAL

D.1 Motherwell investigations

Motherwell drilling program summary

Produc	tion / injection wells		Pilot / obse	ervation wells	
Well ID	Testing completed	Well ID	Testing completed	Well ID	Testing completed
MAR-1	not constructed	MAR1-10	Δ	PT-44	Δ
MAR-2	\triangle \blacktriangle \blacktriangledown	MAR1-20	Δ	PT-45	Δ
MAR-3	\triangle \blacktriangle \blacktriangledown	MAR2-10a&b	Δ	PT-48	Δ
MAR-4	△ ▲ ▼	MAR2-50a&b	Δ	PT-50	Δ
Notes:		MAR3-20	Δ	PT-51	Δ
△ airlift pu	mping test	MAR4-20	Δ	PT-60	Δ
▲ pumping	g test	MAR4-50	Δ	PT-61	Δ
▼ injection	test	PT-40	Δ	PT-66	Δ
'a' top of Al	LA (nested)	PT-42	Δ		
'b' base of	ALA (nested)		₽		

Drilling locality data

MAR investigation	15						
Production well ID	Co-ordinates [1]	Observation	well ID	Co-ordina	ates ^[1]	_	istance from luction well (m)
MAR-1	Not constructed	MAR1-10 MAR1-20		686082E 686050E		-	-
MAR-2	694180E 6660885N	MAR2-10 (a& MAR2-50 (a&		694195E 694230E			17.5 51.0
MAR-3	691905E 6656770N	MAR3-20		691880E	6656790	V	
MAR-4	689955E 6650870N	MAR4-20 MAR4-50		689985E 689910E		4000	35.0 65.0
Motherwell invest	igations						
Pilot well ID	Co-ordinates	[1]	Pilot wel	I ID		Co-ordina	ites ^[1])
PT-40	699595E 667	2970N	PT-50	4		680065E	6665665N
PT-42	690625N 666	3910N	PT-51	Dan.		679080E	6659710N
PT-44	684970E 665	7515N	PT-60		- A	680105E	6665600N
PT-45	681920E 665	3390N	PT-61	N.F		683385E	6649660N
PT-48	685470E 667	3025N	PT-66	A.		696950E	6666420N

Notes: 1. GDA 1994, Zone 53 projection

MAR investigation well completion summary [1]

Well ID	Drilled		Pre-collar			Well ca	asing		Annular c	ompletion
	depth ^[1]	Depth setting	Diameter (mm)	Material	Production casing setting	Screen setting	Diameter (mm)	Material	Gravel pack	Seal ^[2]
MAR1-10	120.0	84.0	150	steel	-	84.0-120.0	150	open hole	-	^[3] 82-84
MAR1-20	120.0	84.0	150	steel	-	84.0-120.0	150	open hole	-	^[3] 82-84
MAR-2	204.5	124.0	250	steel	-	124.0-205.5	250	open hole	-	^[3] 121-124
MAR2-10 <u>a</u>	198.0	124.0	200	steel	130.0	130.0-136.0	50	PVC	126-136	112-126
MAR2-10 <u>b</u>	198.0	124.0	200	steel	192.0	192.0-198.0	50	PVC	182-198	180-182
MAR2-50 <u>a</u>	198.0	124.0	200	steel	130.0	130.0-136.0	50	PVC	126-136	112-126
MAR2-50 <u>b</u>						192.0-198.0	50	PVC	182-198	180-182
MAR-3	228.0	90.0	250	steel		90.0-228.0	250	open hole	-	^[3] 78-88
MAR3-20	228.0	88.0	200	steel	222.0	222.0-228.0	200	open hole	211-228	200-211
MAR-4	186.0	84.0	250	steel		84.0-186.0	250	open hole	-	^[3] 82-84
MAR4-20 <u>a</u>	186.0	82.0	200	steel	100.0	100.0-106.0	50	PVC	91-106	89-91
MAR4-20 <u>b</u>	'				180.0	180.0-186.0	50	PVC	168-186	166-168
MAR4-50 <u>a</u>	186.0	82.0	200	steel	88.0	88.0-94.0	50	PVC	84-94	82-84
MAR4-50 <u>b</u>			M	7	192.0	192.0-198.0	50	PVC	168-186	166-168

- Notes: 1. All as metres below ground level (m bgl), except where noted
 - 2. All wells completed with surface casing cemented into place at ground surface
 - 3. Pre-collar seated in fresh limestone and cemented in place

Motherwell investigation well completion summary [1]

Well ID	Drilled		Pre-collar			Well c	asing		Annular co	mpletion
	depth ^[1]	Depth setting	Diameter (mm)	Material	Production casing setting	Screen setting	Diameter (mm)	Material	Gravel pack	Seal ^[2]
PT-40	264.0	82.0	200	steel	264.0	258.0-264.0	100	PVC	180-264	140-180
PT-42	258.0	124.0	200	steel	126.0	126.0-258.0	100	PVC	_[3]	122-126
PT-44	192.0	88.0	200	steel	88.0	88.0-192.0	100	PVC	_[3]	190-192
PT-45	168.0	52.0	200	steel	52.0	52.0-168.0	100	PVC	_[3]	_[4]
PT-48	270.0	120.0	200	steel	126.0	126.0-270.0	100	PVC	_[3]	118-120
PT-50	248.0	112.0	200	steel	114.0	114.0-246.0	100	PVC	_[3]	170-175
PT-51	192.0	64.0	200	steel	64.0	64.0-192.0	100	PVC	_[3]	62-64
PT-60	204.0	8.0	200	steel	90.0	^[5] 90.0-108.0	100	PVC	-	-
PT-61	138.0	70.0	200	steel	70.0	70.0-132.0	100	PVC	_[3]	68-70
PT-66	312.0	152.5	200	steel	300.0	300.0-306.0	50	PVC	_[3]	230-250

- Notes: 1. All as metres below ground level (m bgl), except where noted
 - 2. All wells completed with surface casing cemented into place at ground surface
 - 3. Cement-bentonite slurry seal set above cement basket

MAR investigations field measured parameters

Hole ID	Airlift yield (L/s)	EC (mS/cm)	Standing water level (m bgl)
MAR1-10 Upper Andamooka Limestone	<1	[1]	
Lower Andamooka Limestone/ Upper Arcoona Quartzite	2.4	[1]	~58
MAR1-20 Upper Andamooka Limestone	0.2 – 0.7	12.72	
Lower Andamooka Limestone/ Upper Arcoona Quartzite	2.5 – 3.3	30.0	58.14
MAR2 Upper Andamooka Limestone	<1	23.4	
Lower Andamooka Limestone	35	181.6	69.36
Lower Andamooka Limestone/ Upper Arcoona Quartzite	47	208.6	05.50
MAR2-10 Upper Andamooka Limestone	3	46.5 (MAR2-10a)	70.04 (MAR2-10a)
Lower Andamooka Limestone/ Upper Arcoona Quartzite	14	303.6 (MAR2-10b)	82.81 (MAR2-10b)
MAR2-50 Upper Andamooka Limestone	3	36.2 (MAR2-50a)	70.43 (MAR2-50a)
Lower Andamooka Limestone/ Upper Arcoona Quartzite	15	285.4 (MAR2-50b)	83.27 (MAR2-50b)
MAR3 Andamooka Limestone	~40	202.3	~57
MAR3-20 Andamooka Limestone	~20	208.7	57.175
MAR4 Upper Andamooka Limestone		40.0	
Lower Andamooka Limestone/ Upper Arcoona Quartzite	17	78.3	70.26
MAR4-20 Upper Andamooka Limestone	<1	45.0 (MAR4-20a)	69.77 (MAR4-20a)
Lower Andamooka Limestone/ Upper Arcoona Quartzite	>15	99.6 (MAR4-20b)	71.88 (MAR4-20b)
MAR4-50 Upper Andamooka Limestone	1	44.7 (MAR4-50a)	68.93 (MAR4-50a)
Lower Andamooka Limestone/ Upper Arcoona Quartzite	7	111.6 (MAR4-50b)	69.07 (MAR4-50b)

Notes: 1. out of range for EC meter

MAR investigations field measured parameters (cont.)

Hole ID	Airlift yield	EC	Standing water level
	(L/s)	(mS/cm)	(m bgl)
PT-40	<10 above 168 m,	<40 above 168 m,	68.34
Andamooka Limestone	then >25	then >180	
PT-42 Andamooka Limestone	at bottom >20	at bottom >300	58.96
PT-44	<20 above 144 m,	<100 above 144 m,	36.16
Andamooka Limestone	then >30	then >125	
PT-45	<5 above 100 m	<50 above 100 m,	36.93
Andamooka Limestone	then ~10	then ~70	
PT-48	<15 above 222 m,	<100 above 216 m,	55.8
Andamooka Limestone	then >20	then >120	
PT-50	<5 above 192 m,	<100 above 180 m,	53.0
Andamooka Limestone	then >10	then >120	
PT-51	<10 above 144 m,	<100 above 168 m,	40.5
Andamooka Limestone	then >40	then >100	
PT-60 Andamooka Limestone	<10 above 102 m, then >10	<60	76.2
PT-61	<5 above 100 m,	<30 above 100 m,	42.42
Andamooka Limestone	then up to 15	then up to 44	
PT66 Andamooka Limestone	>15	211.4	76.15

Airlift pumping test details

Production well	Observation well	r (m) ^[1]	Test type	Q (m³/day) ^[2]					
		Site MAR-1							
MAR1-10	MAR1-20	33	Constant rate / recovery	173					
Site MAR-2									
MAR-2	MAR1-10a	17	Constant rate / recovery	2,705					
	MAR1-10b	17	Constant rate	2,705					
	MAR2-50a	51	Constant rate / recovery	2,705					
		Site MAR-4							
MAR-4	MAR4-20a	34	Constant rate / recovery	1,132					
	MAR4-20b	34	Constant rate / recovery	1,132					
	MAR4-50a	64	Constant rate / recovery	1,132					
	MAR4-50b	64	Constant rate / recovery	1,132					

Notes: 1. Distance from pumping well

2. Pumping rate

Airlift pumping tests – estimates of aquifer parameters [1]

T (m²/day)	s	S' ^[2]
60 to 75	5.0x10 ⁻⁵	7.1x10 ⁻⁸
	$\langle L \rangle$	

Notes: 1. Geometric means of data presented in Appendix F.1

2. Storativity during recovery

Pumping test details

Production well	Observation well	r (m) ^[1]	Test type	Q (m³/day) [2]						
		Site N	/IAR-2							
MAR-2	MAR-2	0	Multi-rate / constant rate / recovery	2,592						
	MAR1-20a	17	Constant rate / recovery							
	MAR1-20b	17	Constant rate / recovery							
	MAR1-50a	51	Constant rate							
	Site MAR-3									
MAR-3	MAR-3	0	Multi-rate / constant rate / recovery	3,024						
	MAR3-20	20	Constant rate / recovery							
	RT-2a ^[3]	34	Constant rate / recovery							
	RT-2b ^[3]	34	Constant rate	-						
		Site N	/IAR-4							
MAR-4	MAR-4	0	Multi-rate / constant rate / recovery	2,592						
	MAR4-20a	34	Constant rate / recovery							
	MAR4-20b	34	Constant rate / recovery							
	MAR4-50a	64	Constant rate / recovery							
	MAR4-50b	64	Constant rate / recovery							

Notes: 1. Distance from pumping well

2. Pumping rate

3. Reported in REM (2007b)

Pumping tests – estimates of aquifer parameters [1]

Test site	T (m²/day)	s	S' ^[2]
MAR-2	440 to 4,395	1.1x10 ⁻³	1.1x10 ⁻⁴
MAR-3 ^[3]	3,000 to 3,870	1.6x10 ⁻⁵	1.1x10 ⁻⁵
MAR-4 [3]	3,320 to 4,160	1.2x10 ⁻⁷	8.0x10 ⁻⁸

Notes: 1. Geometric means of data presented in Appendix F.2

2. Storativity during recovery

3. Storativity data indicative only as observation wells do not all fully screen the ALA

Injection test details

Injection well	Observation well	r (m) ^[1]	Test type	Q (m³/day) ^[2]
		Site N	/IAR-2	
MAR-2	MAR-2	0	Multi-rate / constant rate / recovery	1,941
	MAR1-20a	17	Constant rate / recovery	
	MAR1-20b	17	Constant rate / recovery	
		Site N	MAR-3	
MAR-3	MAR-3	0	Multi-rate / constant rate / recovery	1,584
	MAR3-20	20	Constant rate / recovery	
	RT-2a ^[3]	34	Constant rate / recovery	
		Site N	/IAR-4	
MAR-4	MAR-4	0	Multi-rate / constant rate / recovery	1,632
	MAR4-20a	34	Constant rate / recovery	
	MAR4-20b	34	Constant rate / recovery	
	MAR4-50a	64	Constant rate / recovery	
	MAR4-50b	64	Constant rate / recovery	

Notes: 1. Distance from pumping well

2. Pumping rate

3. Reported in REM (2007b)

Water quality data for the Motherwell and MAR investigation sites

	Well Number		PT-61	PT-45	PT-44	MAR-2	PT-48	PT-42	PT-51	PT-60	MAR4*	MAR-3
			€a	€a	€a	€a	€a	€a	€a	€a	€a	€a
	Target Aquifer											
Date Sampled			15-Feb-08	1B-Feb-08	22-Feb-08	19-Feb-08	05-Mar-0B	2B-Feb-0B	16-Mar-0B	11-Mar-DB	27-Jan-08	23-Jan-B
General Laboratory Analysis	pН		7.39	7.64	7.38	6.95	7	7.88	7.85	7.56	6.99	7.16
	Electrical Conductivity	µS/cm	85200	5450D	9660D	295000	188000	6920D	93300	72200	61000	240000
	Total Dissolved Solids @180°	C mg/L	49300	3750D	7140D	192000	171000	4870D	694DD	50200	33500	179000
	Conversion factor		D.5B	0.69	0.74	0.85	0.91	0.70	0.74	0.70	0.55	0.75
	Suspended Solids (SS)	mg/L	66	136	108	310	526	170	144	60	107	445
	Turbidity	NTU	6.8	12	4.7	17.4	5.3	D.7	1.1	2.4	66	32.8
	Total Alkalinity as CaCO3	mg/L	215	270	200	105	125	180	210	200	281	140
Dissolved Anions	Carbonate (as CACO₃)		<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	Bicarbonate (as CaCO ₃)	mg/L	215	270	200	105	125	180	210	200	281	14D
	Sulfate as SO ₄ 2	mg/L	3600	5180	2860	5380	9810	4970	5610	5060	5470	11500
	Chloride	mg/L	12100	1770D	3930D	104000	105000	26200	38400	32800	19500	86300
issolved Cations	Calcium	mg/L	912	976	408	465	959	1060	81B	97B	1060	1000
	Magnesium	mg/L	570	1020	694	1870	3240	898	1250	935	1110	3660
	Sodium	mo/L	7270	12100	23600	64 60 D	6400D	147DD	22100	19400	12700	58600
	Potassium	mg/L	79	112	90	174	270	127	15B	147	106	3D4
issolved Metals	Aluminium	mo/L	0.03	0.02	0.08	0.25	0.13	0.05	0.02	0.01	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	Arsenic	mg/L	0.003	0.005	0.22	<lor< td=""><td><lor< td=""><td>0.006</td><td>0.003</td><td>0.004</td><td><lor< td=""><td><lor.< td=""></lor.<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.006</td><td>0.003</td><td>0.004</td><td><lor< td=""><td><lor.< td=""></lor.<></td></lor<></td></lor<>	0.006	0.003	0.004	<lor< td=""><td><lor.< td=""></lor.<></td></lor<>	<lor.< td=""></lor.<>
	Barium	mg/L	0.029	0.026	0.035	0.038	0.065	0.033	0.036	0.04B	0.026	0.034
	Cobalt	mg/L	0.062	0.015	0.049	<lor< td=""><td>0.11</td><td>0.015</td><td>0.011</td><td>0.01</td><td>0.001</td><td><lor< td=""></lor<></td></lor<>	0.11	0.015	0.011	0.01	0.001	<lor< td=""></lor<>
	Copper	mg/L	0.007	0.012	0.027	0.035	0.028	0.015	0.017	0.014	0.009	0.032
	Lead	mg/L	≺LOR	<lor< td=""><td>0.011</td><td><lor< td=""><td>0.251</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>≺LOR</td><td>0.021</td></lor<></td></lor<></td></lor<></td></lor<>	0.011	<lor< td=""><td>0.251</td><td><lor< td=""><td>0.002</td><td><lor< td=""><td>≺LOR</td><td>0.021</td></lor<></td></lor<></td></lor<>	0.251	<lor< td=""><td>0.002</td><td><lor< td=""><td>≺LOR</td><td>0.021</td></lor<></td></lor<>	0.002	<lor< td=""><td>≺LOR</td><td>0.021</td></lor<>	≺LOR	0.021
	Manganese	mg/L	1.9	0.613	0.31	0.587	0.518	0.131	0.15B	0.445	D.684	D.864
	Selenium	mg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.045</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.045</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<>	0.045	<lor< td=""><td>-</td><td>-</td></lor<>	-	-
	Strontium	mg/L	11.4	15.9	14	12	12.5	16.6	14.4	16.3	16	13.9
	Uranium	mg/L	0.03	0.015	0.008	<lor< td=""><td><lor< td=""><td>0.008</td><td>0.006</td><td>0.005</td><td>0.013</td><td>0.01</td></lor<></td></lor<>	<lor< td=""><td>0.008</td><td>0.006</td><td>0.005</td><td>0.013</td><td>0.01</td></lor<>	0.008	0.006	0.005	0.013	0.01
	Zinc	mg/L	0.008	0.019	0.027	D.2	0.188	0.051	0.051	0.67	D.264	0.063
	Boron	mg/L	4.3	5.38	4.44	2.85	2.59	4.67	4.67	5.31	4.56	3.2
ron	iron (dissolved)	mg/L	<lor< td=""><td><lor< td=""><td>0.44</td><td>2.89</td><td><lor< td=""><td>0.17</td><td>0.06</td><td><lor< td=""><td>1.45</td><td>2</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.44</td><td>2.89</td><td><lor< td=""><td>0.17</td><td>0.06</td><td><lor< td=""><td>1.45</td><td>2</td></lor<></td></lor<></td></lor<>	0.44	2.89	<lor< td=""><td>0.17</td><td>0.06</td><td><lor< td=""><td>1.45</td><td>2</td></lor<></td></lor<>	0.17	0.06	<lor< td=""><td>1.45</td><td>2</td></lor<>	1.45	2
	iron (total)	mg/L	D.5B	3.6	1.94	2.26	6.78	2.52	0.39	D.1	3.88	5.03
	iron (ferrous)	mg/L	≺LOR	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.11</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.11</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.11</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.11</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.11</td><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<>	0.11	<lor< td=""><td>-</td><td>-</td></lor<>	-	-
	iron (ferric)	mg/L	<lor< td=""><td><lor< td=""><td>0.44</td><td>4.19</td><td>1.72</td><td>0.17</td><td><lor< td=""><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.44</td><td>4.19</td><td>1.72</td><td>0.17</td><td><lor< td=""><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<></td></lor<>	0.44	4.19	1.72	0.17	<lor< td=""><td><lor< td=""><td>-</td><td>-</td></lor<></td></lor<>	<lor< td=""><td>-</td><td>-</td></lor<>	-	-
Other analytes	Silica	mg/L	106	104	61.9	63.6	57.4	6.5	87.9	58.1	9.1	
	Fluoride	mg/L	1.2	1.5	1.1	D.4	D.5	1.8	1.3	1.3	1.6	
lutrients	Nitrite as N	mg/L	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""></lor<></th></lor<>	<lor< th=""></lor<>
	Nitrate as N	mg/L	<lor< th=""><th>0.308</th><th>0.012</th><th>0.053</th><th>3.81</th><th><lor< th=""><th><lor< th=""><th>0.027</th><th>D.015</th><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<>	0.308	0.012	0.053	3.81	<lor< th=""><th><lor< th=""><th>0.027</th><th>D.015</th><th><lor< th=""></lor<></th></lor<></th></lor<>	<lor< th=""><th>0.027</th><th>D.015</th><th><lor< th=""></lor<></th></lor<>	0.027	D.015	<lor< th=""></lor<>
	Nitrite + Nitrate as N	mg/L	≺LOR	0.308	0.012	0.053	4.64	<lor< th=""><th>≺LOR</th><th>0.027</th><th>0.015</th><th></th></lor<>	≺LOR	0.027	0.015	
onic Balance	Total Anions	meq/L	421	612	1170	3040	3160	846	1200	1030	670	2680
	Total Cations	meq/L	411	662	1100	3000	3100	76B	1110	972	699	2910
	Ionic Balance	%	1.24	3.95	2.07	0.76	0.88	4.8	4.23	3.06	2.08	4.13
			* pumped s	sample	- not analy	sed						

Water quality data for the Motherwell and MAR investigation sites (cont.)

	Well Number		MAR4	PT-66	MAR2-50b	MAR2-10b	MAR2.10a	MAR-2	MAR3-20	MAR2-50	MAR_3*	PT-40
	Target Aquifer		€a	€a	€a	€a	€a	€a	€a	€a	€a	€a
Date Sampled			12-Dec-07	31-Jan-08	05-Dec-07	06-Dec-07	06-Dec-07	07-Dec-07	22-Jan-08	05-Dec-07	05-Feb-08	D7-Feb-0
General Laboratory Analysis	pН		7.81	7.67	7.36	7.31	7.53	7.31	6.94	7.69	6.57	7.B2
, ,	Electrical Conductivity	μS/cm	72000	464000	417000	431000	52000	334000	420000	53000	210000	220000
	Total Dissolved Solids @180°C		43200	261000	237000	230000	31700	182000	221000	32100	13500D	111000
	Conversion factor	•	0.60	0.56	0.57	0.53	0.61	0.54	0.53	0.61	0.64	0.50
	Suspended Solids (SS)	mg/L	90	420	704	563	134	379	614	90	318	4690
	Turbidity	NTU	10.3	5.8	4.7	6.6	1.3	17.1	29.2	0.5	58	1830
	Total Alkalinity as CaCO3	mg/L	259	87	79	80	202	119	62	220	151	187
issolved Anions	Carbonate (as CACO ₃)		<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	Bicarbonate (as CaCO ₃)	mg/L	259	87	79	80	202	119	62	220	151	187
	Sulfate as SO ₄ 2	mg/L	5560	16400	16300	14100	5340	13500	1600D	5700	11100	8760
	Chloride	mg/L	22500	149000	139000	139000	14000	113000	142000	15200	87000	75100
issolved Cations	Calcium	mg/L	957	906	943	878	1140	1100	946	1170	995	1170
	Magnesium	mg/L	1110	5970	5440	5400	880	4450	5820	866	3640	2530
	Sodium	mg/L	13900	98900	87200	85000	10200	72200	93900	10500	58500	46700
	Potassium	mg/L	133	436	461	446	113	354	495	107	315	207
issolved Metals	Aluminium	mg/L	0.02	≼LOR	_ <lor< td=""><td><lor< td=""><td>≺LOR</td><td><l0r< td=""><td><lor< td=""><td>0.03</td><td>≺LOR</td><td>≺LOF</td></lor<></td></l0r<></td></lor<></td></lor<>	<lor< td=""><td>≺LOR</td><td><l0r< td=""><td><lor< td=""><td>0.03</td><td>≺LOR</td><td>≺LOF</td></lor<></td></l0r<></td></lor<>	≺LOR	<l0r< td=""><td><lor< td=""><td>0.03</td><td>≺LOR</td><td>≺LOF</td></lor<></td></l0r<>	<lor< td=""><td>0.03</td><td>≺LOR</td><td>≺LOF</td></lor<>	0.03	≺LOR	≺LOF
	Arsenic	mg/L	≺LOR	0.026	₹L OR	<lor< td=""><td>0.01</td><td><lor< td=""><td><lor< td=""><td>0.016</td><td>0.011</td><td>0.259</td></lor<></td></lor<></td></lor<>	0.01	<lor< td=""><td><lor< td=""><td>0.016</td><td>0.011</td><td>0.259</td></lor<></td></lor<>	<lor< td=""><td>0.016</td><td>0.011</td><td>0.259</td></lor<>	0.016	0.011	0.259
	Barium	mg/L	0.029	0.043	0.033	0.035	0.043	0.035	D.039	0.03	0.032	0.069
	Cobalt	mg/L	0.006	0.021	4ĽOR	<lor_< td=""><td>0.003</td><td><lor< td=""><td>0.091</td><td>0.006</td><td><lor< td=""><td>0.584</td></lor<></td></lor<></td></lor_<>	0.003	<lor< td=""><td>0.091</td><td>0.006</td><td><lor< td=""><td>0.584</td></lor<></td></lor<>	0.091	0.006	<lor< td=""><td>0.584</td></lor<>	0.584
	Copper	mg/L	0.01	0,106	0.05	0.D49	0.01	0.036	0.08	0.009	0.3	0.39
	Lead	mg/L	<lor< td=""><td>1.74</td><td>0.022</td><td>0.033</td><td><lor< td=""><td><lor< td=""><td>D.322</td><td><lor< td=""><td>0.028</td><td>0.037</td></lor<></td></lor<></td></lor<></td></lor<>	1.74	0.022	0.033	<lor< td=""><td><lor< td=""><td>D.322</td><td><lor< td=""><td>0.028</td><td>0.037</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>D.322</td><td><lor< td=""><td>0.028</td><td>0.037</td></lor<></td></lor<>	D.322	<lor< td=""><td>0.028</td><td>0.037</td></lor<>	0.028	0.037
	Manganese	mg/L	0.75	0.537	D.966	0.976	0.283	0.675	1.27	0.222	0.818	0.526
	Selenium	mg/L	-	-	-	-	-	-	-	-	-	-
	Strontium	mg/L	16.4	13.2	13.8	14	13.9	15.1	16	14.9	13.6	16.9
	Uranium	mg/L	0.015	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.004</td><td>0.01</td><td><lor< td=""><td>0.004</td><td>0.01</td><td>0.03</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.004</td><td>0.01</td><td><lor< td=""><td>0.004</td><td>0.01</td><td>0.03</td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.004</td><td>0.01</td><td><lor< td=""><td>0.004</td><td>0.01</td><td>0.03</td></lor<></td></lor<>	0.004	0.01	<lor< td=""><td>0.004</td><td>0.01</td><td>0.03</td></lor<>	0.004	0.01	0.03
	Zinc	mg/L	0.005	0.08B	<lor< td=""><td>0.052</td><td>0.01</td><td>0.071</td><td>D.113</td><td>0.01</td><td>0.504</td><td>0.24</td></lor<>	0.052	0.01	0.071	D.113	0.01	0.504	0.24
	Boron	mg/L	4.39	1.2	1.86	1.9	4.73	2.62	2.04	5.18	3.21	5.8
on	Iron (dissolved)	mg/L		<u> </u>	0.5	<lor< td=""><td><lor< td=""><td><lor< td=""><td>1.9</td><td><lor< td=""><td>2.45</td><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>1.9</td><td><lor< td=""><td>2.45</td><td><lof< td=""></lof<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>1.9</td><td><lor< td=""><td>2.45</td><td><lof< td=""></lof<></td></lor<></td></lor<>	1.9	<lor< td=""><td>2.45</td><td><lof< td=""></lof<></td></lor<>	2.45	<lof< td=""></lof<>
	iron (total)	mg/L	2.5	0.9	2.33	2.39	0.72	3.72	4.74	0.04	3.54	13.8
	iron (ferrous)	mg/L	-	-	-	-	-	-	-	-	-	<u> </u>
	Iron (ferric)	mg/L	- 10.0	-		-	-	-		- 45.4	-	<u> </u>
ther analytes	Silica	mg/L	10.3		41.3	34.2	24.1	42.8	≺LOR	13.4	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
	Fluoride	mg/L	12.3	100	1.7	1.8	16.9	2.5	2	17	5.2	10.8
utrients	Nitrite as N	mg/L	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>≺LOR</td><td><lor< td=""><td><lor< td=""><td>0.577</td><td>≺LOR -tLOR</td><td>0.11</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>≺LOR</td><td><lor< td=""><td><lor< td=""><td>0.577</td><td>≺LOR -tLOR</td><td>0.11</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>≺LOR</td><td><lor< td=""><td><lor< td=""><td>0.577</td><td>≺LOR -tLOR</td><td>0.11</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>≺LOR</td><td><lor< td=""><td><lor< td=""><td>0.577</td><td>≺LOR -tLOR</td><td>0.11</td></lor<></td></lor<></td></lor<>	≺LOR	<lor< td=""><td><lor< td=""><td>0.577</td><td>≺LOR -tLOR</td><td>0.11</td></lor<></td></lor<>	<lor< td=""><td>0.577</td><td>≺LOR -tLOR</td><td>0.11</td></lor<>	0.577	≺LOR -tLOR	0.11
	Nitrate as N	mg/L ··· ·· 4	0.01B	<lor< td=""><td>0.079 0.079</td><td>0.15 0.15</td><td>1.81 1.81</td><td>0.057 0.057</td><td>0.081 0.081</td><td>0.506 1.08</td><td>≺LOR 4LOR</td><td>0.765</td></lor<>	0.079 0.079	0.15 0.15	1.81 1.81	0.057 0.057	0.081 0.081	0.506 1.08	≺LOR 4LOR	0.765
or to Bolomor	Nitrite + Nitrate as N	mg/L	0.01B	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>≺LOR acco</td><td>).776</td></lor<>							≺LOR acco).776
onic Balance	Total Anions	meq/L	755	4540	4260	4210	510	3460 3570	4330	551 500	2690	2300
	Total Cations	meq/L	747	4850	4300	4200	577	3570	4620	589	2900	2300
	Ionic Balance	%	0.54 * pumped s	3.31	0.5 - not analy	0.13	0.08	1.5	3.29	3.33	3.8	0.02

Adopted aquifer parameters for analytical simulations

Site	Parameter	Pumping	Injection [1]
MAR-1	T (m²/day)	1.4x10 ²	1.4x10 ²
	S (unitless)	5.0x10 ⁻⁵	5.0x10 ⁻⁶
MAR-2	T (m²/day)	4.2x10 ³	4.2x10 ³
	S (unitless)	1.0x10 ⁻⁴	1.0x10 ⁵
MAR-3	T (m²/day)	4.0x10 ³	4.0x10 ³
	S (unitless)	2.0x10 ⁻²	2.0x10 ⁻³
MAR-4	T (m²/day)	5.0x10 ³	5.0x10 ³
	S (unitless)	1.0x10 ⁻³	1.0x10 ⁻⁶

Notes: 1. S_{injection} ranges from 1 to 3 orders of magnitude less than S_{pumping} for consistency between sites and to allow for conservative modeling outcomes

Estimated sustainable injection rates for ALA (ML/day)

Site	Availab	le	Analysis	Adopted [1]
	drawup (m)	Analytical	Multi-rate	
MAR-1	43.5	1.20	n/a	1.20
MAR-2	53.5	3.50	3.40	3.40
MAR-3	42.5	4.25	2.70	2.70
MAR-4	52.5	3.50	4.50	3.50

Notes: 1. Based on the more conservative of the analysis results presented at left

Analytical models of ALA – summary hydraulic parameters

Model	Aquifer-type	T (m²/day)	s	D' (m) ^[1]	Kv (m/day) ^[2]
#1	Confined	1,050	2x10 ⁻⁵	n/a	n/a
#2	Leaky confined	1,050	2x10 ⁻⁵	30	0.001

Notes: 1. Thickness of confining layer (or distance between piezometric head and 1st water cut)

2. Vertical hydraulic conductivity of confining layer (assumes no storage in confining layer)

BOREHOLE / WELL NUMBER

MAR1-10 / RD3460

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 9/11/2007 DATE COMPLETED: 12/11/2007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 120
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 11/11/2007 Depth (m bgl): ~ 58 mbgl

PROJECTION:GDA94 Zone 53

EASTING: **686082** NORTHING: **6645061**

LD	ATE	STA	RTI	ED: 9/11	/200	DATE COMPLETED: 12/11/2007	EAS	IT	NG	: 680	082	N	OR	THIN	G: 6	645061
DR	ILLIN	NG IN	FO.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS/0	CON	STRU	CTIC	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL DESCRIPTION
				0.0 -		OUATERNARY OFRIMENTO, white collection and deliberation		\wedge	1				1		И	Well cover
	10"			-		QUATERNARY SEDIMENTS: white, yellow-tan sandy/silty clay, calcareous with gypsum										
		3.00		10.0 -		QUATERNARY SEDIMENTS: red, purple and white sand, fine grained with some green and grey clay										8" STL casing 0-6m, grouted to surface
		0.75		20.0 -												
		2.00		_		QUATERNARY SEDIMENTS: white and pink, fine-medium grain sands and sandstone	ed \	- G								
		0.86		30.0 -		QUATERNARY SEDIMENTS: brown and grey sandy clay, very plastic, fine-grained sand										
				40.0 -												
	 	0.21		50.0 -		QUATERNARY SEDIMENTS: brown silty clay, very plastic, increasing sandstone and consolidated limestone fragments										
		0.40		30.0	•	QUATERNARY SEDIMENTS: cavity		$\frac{\downarrow}{}$								
Air Hammer		0.46		60.0 -		QUATERNARY SEDIMENTS: brown silty clay, very plastic, with consolidated limestone, minor sandstone and red shale from 600	n	\uparrow								
Ì		0.33		70.0 -		ANDAMOOKA LMST: white and yellow consolidated limestone with grey dolomite										
		0.38		80.0 -		ANDAMOOKA LMST: mainly grey dolomite with some white and tan-yellow consolidated limestone with iron stained shale, voids and precipitate from 78-80m	1									
	Ψ ↑	0.35	100	-	H			ea —				no major fracturing,			2	6" STL pre-collar 0-84m
		0.67		90.0 -		ANDAMOOKA LMST: mainly grey dolomite with some consolidated limestone with minor sandstone, quartz and gypsul from 92.m	n		wc			visible macropores				
		0.75		100.0 -		ANDAMOOKA LMST: grey and pink dolomite with some limesto and increasing quartz/sandstone and minor gypsum and green shale	ne /			1.1						Open hole to 120m
		0.55		110.0 -		ANDAMOOKA LMST: pink and grey dolomite and sandstone wit increasing green shale from 110m and increasing red shale from 114m				2.1						
	$ \downarrow$	0.50		120.0 -		ARCOONA QTZT (RD): white and pink sandstone/quartzite with some red shale		→ iMc		2.4						
		_		_	Ш	EOH at 120m										

LOGGED:	K Furness	DATE: 19/11/2007
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR1-20 / RD3459

PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 7/11/2007 DATE COMPLETED: 9/11/2007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 120
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 12/11/2007 Depth (m bgl): 58.14

PROJECTION:GDA94 Zone 53

EASTING: **686049** NORTHING: **6645060**

D	ATE	TE STARTED:7/11/2007 DATE COMPLETED:9/11/2007					EAS	STI	NG	: 680	6049	N	ORTI	HING:	6645060
DR	DRILLING INFO. MATERIAL PROPERTIES FIELD RECORDS / CONST									TRUCTI	ON INFO.				
МЕТНОВ	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DΕРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION	WELL DESCRIPTION
\uparrow	10			0.0	-	QUATERNARY SEDIMENTS: red and white sandy-clay, minor gypsum minerals	/	\uparrow							Well cover
	\uparrow			10.0 -		QUATERNARY SEDIMENTS: white silty clay	_//						П		8" STL casing 0-6m, grouted to surface
		1.00		-		QUATERNARY SEDIMENTS: red purple and white sandy clay with siltstone									
		0.86		20.0 -		QUATERNARY SEDIMENTS: yellow-tan silty clay									
		1.20		-		QUATERNARY SEDIMENTS: white and tan fine grained sand		و م							
		0.40		30.0 -	:	QUATERNARY SEDIMENTS: light grey white and brown sand with minor purple clay									
		0.29		-		QUATERNARY SEDIMENTS: grey sandy clay with red and yel clay	low								
	.8	0.40		40.0 -		QUATERNARY SEDIMENTS: brown and green clay with silt ar fine sand	nd								
	Ĩ	0.50		50.0 -		ANDAMOOKA LMST: Purple and white limestone, calcareous, vilible macropores		\bigcap							
air		0.38		_	井	ANDAMOOKA LMST: yellow and tan dolomitic limestone	/								
Hammer air		0.32		60.0 -	芸										
ij		0.35		70.0		ANDAMOOKA LMST: grey and light grey dolomite with minor yellow consolidated limestone									
$\ \ $		0.32		70.0 -	Ŧ										
		0.32	150	80.0 -		ANDAMOOKA LMST: dark grey dolomite with light dolomite, yellow consolidated limestone and pink porous limestone		- €а —	wc	0.2		fracture 78- 84m			
	1	0.46	150	-		ANDAMOOKA LMST: dark brown clay-silt, black organic mater	ial /			0.7					6" STL pre-collar 0-84m
$\ \ $		0.67	150	90.0 -		ANDAMOOKA LMST: dolomite with brown siltstone,-clay	/			0.2					
		0.86	150	-		ANDAMOOKA LMST: dark grey dolomite with light dolomite, sandstone with visible macropores	/			1.7		fracture 93m			
	- "9	0.67	150	100.0 -		ANDAMOOKA LMST: light grey dolomite with pink dolomite, m white sandstone/quartz	inor			2.5		fracture 101m			Open hole to 120m
		0.67	150	110.0 -		ANDAMOOKA LMST: light dolomite, pink dolomite wuith red ar green shale bands and minor quartz.sandstone	nd		wc	3.3		fracture 108m			
	\downarrow	0.60		120.0 -		ARCOONA QTZT (RD): pink, white and green sandstone, quarfused with red and green shale	tzite	Pws		3.3					
		0.50	150			EOH at 120m				2.5					

LOGGED:	K Furness	DATE: 9/11/2007
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR2/ RD3458

n/a

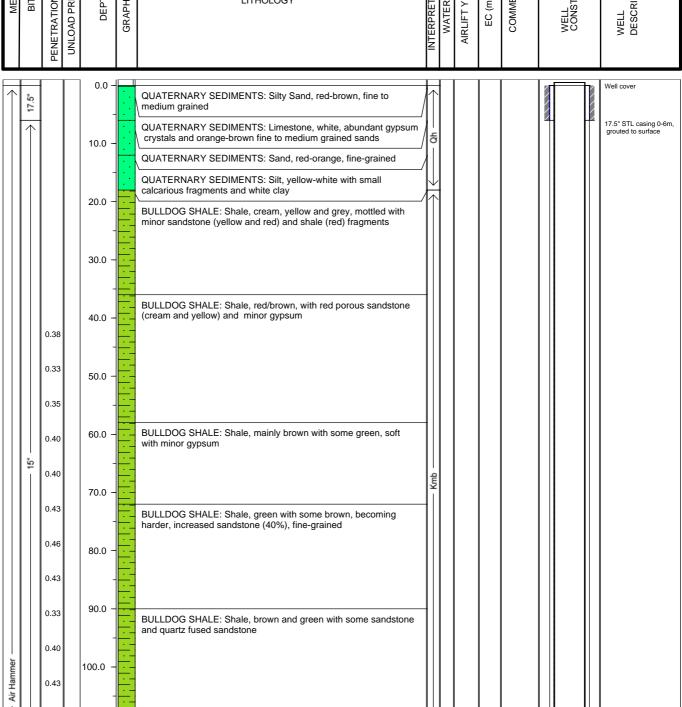
PROJECT NUMBER: **EV-07**

BHPB Motherwell MAR PROJECT NAME: Olympic Dam, South Australia LOCATION:

Gorey & Cole DRILLING CO: Air Hammer DRILLING METHOD:

BOREHOLE DIAMETER: 10 inches

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 204.5

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 08/12/2007 Depth (m bgl): 69.38

PROJECTION:GDA94 Zone 53 EASTING: **694182**

DATE STARTED: 02/12/2007 DATE COMPLETED: 07/122007							ING:	: 694	182	N	ORTHING: 6	660886
D	DRILLING INFO. MATERIAL PROPERTIES						F	IELD	REC	ORDS/0	CONSTRUCTIO	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness DATE: 07/12/2007 CHECKED: DATE:

BOREHOLE / WELL NUMBER

MAR2/ RD3458

PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 10 inches

DATE STARTED: 02/12/2007 DATE COMPLETED: 07/122007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 204.5

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: **08/12/2007** Depth (m bgl): **69.38**

PROJECTION:GDA94 Zone 53

EASTING: **694182** NORTHING: **6660886**

L	ATE	STAF	RTE	D: 02/1	2/20	07 DATE COMPLETED: 07/122007	EAS	STI	NG	i: 694	1182	N	ORTHING: 6	660886
DI	RILLIN	IG INF	О.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS/0	CONSTRUCTIO	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL
	10" > <	0.40 0.35 0.46 1 0.75 1 0.33 1 0.26 1 0.38 1 0.39 1 0.30 1 0.29 1 0.30 1 0.25 2	110 140 140 140 140 140 140 140 140 140	- 130.0 - - 140.0 - - 150.0 -		BULLDOG SHALE: Shale, brown and green with minor limestor fragments ANDAMOOKA LMST: Grey and white limestone with minor red and green shale ANDAMOOKA LMST: Grey crystalline dolomite with white quart or limestone veins ANDAMOOKA LMST: Dolomite, (light grey and with with some pink), mottled, minor quartz ANDAMOOKA LMST: Limestone (white with some grey and pin visible bands with 50% shale (red/brown and some green), soft, some quartz and dark dolomite ANDAMOOKA LMST: Limestone (white and pink), banded, min shale (brown/red) ANDAMOOKA LMST: Limestone (white, pink and green), some minor shale (brown/red) ANDAMOOKA LMST: Limestone, mainly pink with some white, becoming darker ANDAMOOKA LMST: Limestone (green, white and light brown) with shale (brown and green) ANDAMOOKA LMST: Limestone (green, white and light brown, with minor shale (pink and red), some sandstone (red) and quart (light) ANDAMOOKA LMST: Dolomite, (purple, shite and some green) mottled and crystalline, with some quartz (white and red) ANDAMOOKA LMST: Dolomite/Limestone, (purple and green), some mottled and crystalline ANDAMOOKA LMST: Limestone, (green) mottled and highly porous with dissolution features ANDAMOOKA LMST: Limestone (green, pink, white), crystalline and porous	tz k), or tz) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	wc	<0.1 3.3 4 3 3.5 3.5 3.5 3.5 4 9 35 35 35	181.	fracture, increaser increaser and salinity		10" STL pre-collar 0- 124m
		0.15 2 0.04 2	210	200.0 -		EOH at 204.5 m				35 ~47	220	large fracture Sery slow penetration and excessive		
				210.0 -								water		

LOGGED:	K Furness	DATE: 07/12/2007
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR2-10 / RD3456

PROJECT NUMBER: EV-07

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 198

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 04/12/2007 Depth (m bgl): 70.04 (shallow)/82.81 (deep)

PROJECTION:GDA94 Zone 53

DRI	LLIN	IG IN						_	_					6660873
			FO.			MATERIAL PROPERTIES			F	FIELD	REC	ORDS / 0	CONSTRUCTI	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL
\uparrow	17.5"			0.0 -		QUATERNARY SEDIMENTS: Silty Sand, red-brown, fine to medium grained		\uparrow						Well cover
Н				-		QUATERNARY SEDIMENTS: Limestone, white, abundant gyp crystals and orange-brown fine to medium grained sands	sum	\parallel					$oxed{\sqcup}$	16" STL casing 0-6m,
		0.80		10.0 -		QUATERNARY SEDIMENTS: Silty Sand, white-cream, fine grained, abundant gypsum crystals		g 						16" STL casing 0-6m, grouted to surface
		0.80				QUATERNARY SEDIMENTS: Sandy Clay, orange and brown cream mottling, medium grained sands	with							
		0.75		-		QUATERNARY SEDIMENTS: Silty Sand, unconsolidated, oran brown, fine-grained	nge-	\downarrow^{\downarrow}						
				20.0 -	<u>:</u> -	QUATERNARY SEDIMENTS: Clayey Sand, beige, medium grained sands								
		0.43		_	:-] :	QUATERNARY SEDIMENTS: Silty Sand, white-cream, fine grained								
		0.67			<u>:-</u> -	BULLDOG SHALE: Shale, light brown, abundant gypsum crysilow plasticity, soft								
				30.0 -		BULLDOG SHALE: Shale, light brown and grey, low plasticity, BULLDOG SHALE: Shale, dark grey to black with yellow and cream mottling, low plasticity, soft, minor white sandstone	SOTT							
		0.67		-		BULLDOG SHALE: Shale, grey, grading into brown, low plastic soft	city,							
		0.67		40.0 -		BULLDOG SHALE: Shale, brown with some grey mottling from 50m, low plasticity, becoming harder with depth. Minor gypsum crystals from 58m, minor cream shale from 70m.	n 1							
		0.60		-										
		0.40		50.0 -										
		0.55		60.0 -										
	— 12" —	0.60		-				Kmb						

DATE: 30/11/2007 LOGGED: M Ivanova CHECKED: DATE:

BOREHOLE / WELL NUMBER

MAR2-10 / RD3456

PROJECT NUMBER: EV-07

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 27/11/2007 DATE COMPLETED: 03/12/2007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 198

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 04/12/2007 Depth (m bgl): 70.04 (shallow)/82.81 (deep)

PROJECTION:GDA94 Zone 53

EASTING: **694194**

	ATE	STA	RTE	ED: 27/ 1	11/20	007 DATE COMPLETED: 03/12/2007	EAS	STI	NG	6: 69	4194	N	IORTHING:	6660873
DF	RILLIN	IG INI	FO.			MATERIAL PROPERTIES				FIELD	REC	ORDS / (CONSTRUCT	ION INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL
		0.55 0.50 0.40 0.43		70.0 - - 80.0 - - 90.0 -		BULLDOG SHALE: Shale, brown and grey, hard, with minor sandstone and gypsum crystals. Minor grey limestone fragme from 74m. Poor to no returns at 80-82 and 112-117m.	white ents					Poor to no returnsat 80-82m - foam injected to wet hole and recover cuttings		
- Air Hammer		0.38		100.0 - - 110.0 -										8* STL pre-collar 0- 84m, grouted 122- 124m
		0.26		120.0 -		ANDAMOOKA LMST: Limestone and dolomite, grey, with vis dissolution features, ~50% brown and grey shale ANDAMOOKA LMST: Limestone and dolomite, grey and whit minor brown and grey shale						Minor to no returns at 112-117m - foam injected		Cement/bentonite seal 112-126m
		0.26	150	-		ANDAMOOKA LMST: Limestone and Dolomite, white and grecrystalline ANDAMOOKA LMST: Limestone, white and pink, some white grained sandstone, and dark grey and white quartzite ANDAMOOKA LMST: Dolomite, white and pink			wc	3 3 3	37.2			7-15mm gravel pack 126-136m Shallow installation 50mm PVC monitoring casing; blank 0-130m, slotted 130-136m

LOGGED: M Ivanova

DATE: 30/11/2007

CHECKED:

DATE:

BOREHOLE / WELL NUMBER

MAR2-10 / RD3456

PROJECT NUMBER: EV-07

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole Air Hammer

DRILLING METHOD: BOREHOLE DIAMETER: 8 inches

DATE STADTED: 27/44/2007 DATE COMPLETED: 03/12/2007 WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 198

REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 04/12/2007 Depth (m bgl): 70.04 (shallow)/82.81 (deep)

PROJECTION:GDA94 Zone 53

D	ATE	STA	RT	ED: 27/1	1/20	007 DATE COMPLETED: 03/12/2007	EAS	STI	NG	: 694	1194	N	ORTHI	NG: 6	660873
DF	RILLIN	IG IN	FO.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS/0	CONSTR	UCTIO	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL		WELL DESCRIPTION
		0.55	150	140.0 -		ANDAMOOKA LMST: Dolomite, white and pink, interbedded w ~20% brown shale, minor white clay and pyrite ANDAMOOKA LMST: Dolomite, white and pink, interbedded w ~40-50% brown shale ANDAMOOKA LMST: Dolomite, white with minor pink, minor g limestone and pyrite fragments	vith			5	37.6	Fracturing/ broken ground as recorded by driller: 137-138, 139-140, 141-142, 147-148, 151-152, 155-158,			
		0.46	150	150.0 -		ANDAMOOKA LMST: Dolomite and Limestone, white, grey an pink, with visible dissolution features, minor pyrite, minor white pink fine-grained sandstone and minor grey-green shale. Interbedded brown and/ or grey shale at 160-162 (~20% brown and grey), 164-166 (~5% brown), and 166-168 (~5% grey).	and			6		159-160, 161-162, 165-166, 167-168, 170-171, 173-174, 175-176,			
		0.46	150	160.0 -						6	38.6	185-186, and 197- 198 (the latter accompanie by	ed		Cement/bentonite seal
	8	0.46	150	-						7	38.2	noticeable increase in airlift rate).			144-182m
		0.46	150	170.0 -		ANDAMOOKA LMST: Limestone and Sandstone, grey, brown minor white, interbedded with ~20% brown and green shale.	and			7	47.1				
		0.50	150	-		ANDAMOOKA LMST: Sandstone, purple-brown, calcareous, fi grained, with ~30% grey-green and white limestone and minor green shale.				8	49.0				
		0.46	150	180.0 -		ANDAMOOKA LMST: Limestone, grey, white and yellow, minc purple sandstone. ANDAMOOKA LMST: Dolomite, pink, with ~50% grey, white a				9	45.6			S S	
		0.38	150	_	HHHH	yellow limestone, and evidence of dissolution. Minor pink and of fine-grained sandstone from 184m. ANDAMOOKA LMST: Dolomite with ~50% fine-grained sandst	grey	$\downarrow \downarrow \uparrow$ s		10	51.9				7-15mm gravel pack 182-198m
		0.33	150	190.0 -		and quartzite, mostly pink with some grey. Minor grey and whit limestone. ANDAMOOKA LMST: Quartzite, pink with minor grey, ~20% p and grey dolomite, minor grey shale.	/	< €a/Pws		12	103.	8			Deep installation 50mm PVC monitoring
		0.43	150	_		ARCOONA QTZT (RD): Quartzite, grey and pink, with grey and pink sandstone from 196m.	/ d	Pws		14	134.	4			casing; blank 0-192m, slotted 192-198m
		0.40	- 1	200.0		EOH at 198m					1.54.				

DATE: 30/11/2007 LOGGED: M Ivanova CHECKED: DATE:

BOREHOLE / WELL NUMBER

MAR2-50 / RD3457

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 25/11/2007 DATE COMPLETED: 03/12/2007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 198

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 04/12/2007 Depth (m bgl): 70.43 (shallow)/83.27 (deep)

PROJECTION:GDA94 Zone 53

EASTING: **694231** NORTHING: **6660906**

	ATE	STA	RTE	ED: 25/1	1/20	07 DATE COMPLETED: 03/12/2007	EAS	STI	NG	: 69	4231	N	ORTHING:	6660906
DF	RILLIN	IG IN	FO.			MATERIAL PROPERTIES			F	IELD	REC	ORDS / (CONSTRUCT	ION INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL
		0.80		0.0 - - 10.0 - - 20.0 -		QUATERNARY SEDIMENTS: Silty-sand, red-orange, fine to medium grained QUATERNARY SEDIMENTS: White limestone and white, yell and brown consolidated sandstone QUATERNARY SEDIMENTS: Sand, brown and orange, fine t medium grained, minor clay content QUATERNARY SEDIMENTS: Sandy clay, yellow, orange and brown, medium grained sands, some white limestone fragment contents of the sands o	nd nt	^						Well cover 16* STL casing 0-6m, grouted to surface
		0.33 0.55 0.50		30.0 -		BULLDOG SHALE: Shale, purple-brown grading into brown, g mottling, minor white sandstone fragments, low plasticity, becoming harder with depth. Minor gypsum crystals from 58m minor grey limestone fragments from 74m.	-							
		0.55		50.0 -										
	12"	0.50		60.0 -				Kmb —						

 LOGGED:
 M Ivanova
 DATE: 30/11/2007

 CHECKED:
 DATE:

BOREHOLE / WELL NUMBER

MAR2-50 / RD3457

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

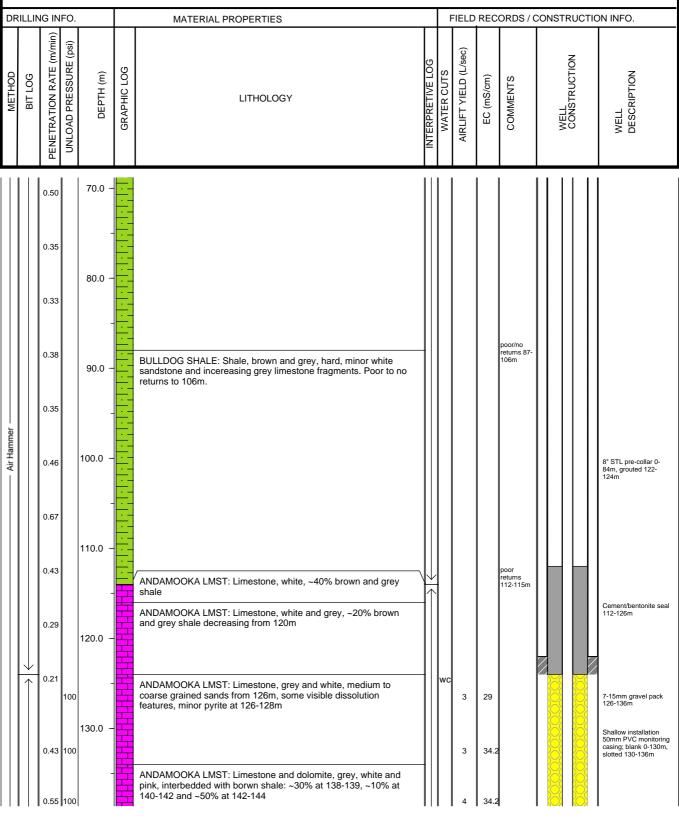
DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches
DATE STARTED: 25/11/2007 DATE

2007 DATE COMPLETED: 03/12/2007

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 198

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 04/12/2007 Depth (m bgl): 70.43 (shallow)/83.27 (deep)

PROJECTION:GDA94 Zone 53

EASTING: **694231** NORTHING: **6660906**

LOGGED: M Ivanova DATE: 30/11/2007 CHECKED: DATE:

BOREHOLE / WELL NUMBER

MAR2-50 / RD3457

PROJECT NUMBER: **EV-07**

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 198

REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 04/12/2007 Depth (m bgl): 70.43 (shallow)/83.27 (deep)

PROJECTION:GDA94 Zone 53

				D: 25/1						: 694		N	ORTHING	: 6660906	
DF	RILLIN	IG INFO).			MATERIAL PROPERTIES			F	IELD	REC	ORDS/0	CONSTRUC	TION INFO.	
METHOD	BIT LOG	PENETRATION RATE (m/min)	ON TOO ON	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		IN ERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	
		0.46 10	00	- - - - -		ANDAMOOKA LMST: Dolomite, white, pink and grey, some visib dissolution features and minor pyrite, ~5% brown shale and minor grey shale at 146-148		— €a		3	35 35.4				
	.8"	0.35 10	,	- 160.0 – -		ANDAMOOKA LMST: Dolomite and limestone, white pink and grey, with some white, pink and grey-green sandstone and very minor green shale. Noticeable fracturing between 156 and 162m.				6	48.4 45.6	fracturing 156-162m		Cement/bentonit 144-182m	te seal
		0.50 12 12 0.43 12 0.30 12	20	170.0 - - 180.0 -		ANDAMOOKA LMST: Sandstone, fine-grained, mostly pink-purple with ~40% grey and green limestone and dolomite and minor brown shale ANDAMOOKA LMST: Limestone and dolomite, grey, with some red-purple sandstone. Fracture at ~171m. ANDAMOOKA LMST: Sandstone, red-purple, with ~5-10% grey dolomite ANDAMOOKA LMST: Sandstone, purple, white and green, calcareous, with ~40% grey dolomite)			7 9 9	51.3 46.5 59.2	fracture 171m			
		0.38 15	,	- 190.0 – -		ANDAMOOKA LMST: Dolomite, pink, white and grey, with pink, grey and minor purple sandstone with increasing yellow dolomite pink and grey quartzite and disolution features from 180m ANDAMOOKA LMST: Quartzite and sandstone, pink and grey, with ~20% pink, grey and yellow dolomite ARCOONA QTZT (RD): Quartzite and sandstone, pink, with som grey-green, white and red quartzite and sandstone from 194m	•	Pws → €a/Pws ←		10	66.4 144.			7-15mm gravel r 182-198m Deep installation PVC monitoring casing; blank 0- slotted 192-198r	n 50mm J 192m,
\downarrow	\downarrow	0.20 18		200.0 –		EOH at 198m		\downarrow		15					

LOGGED:	M Ivanova	DATE: 30/11/2007
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR3/ RD3465

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 10 inches

DATE STARTED: 20/01/2008 DATE COMPLETED: 24/01/2008

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 228
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 29/01/2008 Depth (m bgl): 57 PROJECTION:GDA94 Zone 53

EASTING: **691905** NORTHING: **6656771**

D	ATE	SIA	RII	ED: 20/ 0)1/20	DATE COMPLETED: 24/01/2008	EAS	STI	NG	: 69	1905	N	ORTHI	NG: 6	656771
DR	ILLIN	IG IN	FO.			MATERIAL PROPERTIES			F	IELD	REC	ORDS / 0	CONSTR	RUCTIO	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	CONSTRUCTION	WELL DESCRIPTION
N	2			0.0 -	•	QUATERNARY SEDIMENTS: Sand (red), fine, clay (green), lo	w	个							Well cover
	→ 17.5"			-		plasticity, with small sandstone (red) and shale (dark) QUATERNARY SEDIMENTS: Clay (green) with sandstone (re-	/								17.5" STL casing 0-6 grouted to surface
				10.0 -		quartz, with minor shale (dark)		g							grouted to surface
				=		QUATERNARY SEDIMENTS: Clay (green) medium plasticity, increasing sandstone (red), sitly-clay (yellow) and gypsum	with								
				20.0 -	. ·	QUATERNARY SEDIMENTS: Silt/sandstone (red/brown) with gypsum, sandy-clay (yellow) and clay (green) low-plasticity		$\frac{\downarrow}{\uparrow}$							
				=	:- :-	QUATERNARY SEDIMENTS: Clay (green, yellow and some re	ed)								
				30.0 -	:- :-	QUATERNARY SEDIMENTS: Clay (green, yellow and some rewith some sandstone (yellow and red) and gypsum	ed)								
ı				40.0 -	<u>:-</u> -	BULLDOG SHALE: Shale (red with some green ~20%), gypsul some sandstone (red, yellow) and siltstone (grey)	m,								
	15"			40.0 -	:- :-	BULLDOG SHALE: Shale (mainly red with 30% green) and									
	Ĩ			50.0 -	<u>:</u> -	gypsum BULLDOG SHALE: Shale (brown/red and green/grey), occasion	onal								
				_	Ξ	gypsum		- Kmb							
				60.0 -	\equiv										
ı				-	$\stackrel{\cdot}{=}$	BULLDOG SHALE: Shale (brown/red and green/grey) with min	nor								
ı				70.0 -	$\stackrel{\cdot}{=}$	sandstone	.01								
ı				-	<u>-</u> -	BULLDOG SHALE: Shale (brown/red and green/grey), minor									
				80.0 -		sandstone and 10% limestone (white)									
ł	<u> </u>			-		BULLDOG SHALE: Shale (brown/red and green/grey), minor sandstone and 30% limestone (white)	/	y /qı							10" STL pre-collar 0 88m
		0.29		90.0 -		ANDAMOOKA LMST: Shale (brown/red and green/grey), with limestone (white/tan and some grey) porous			wc	0.5					
		0.31		-		ANDAMOOKA LMST: Limestone (grey and white) mottled, consolidated with some shale (green and red)				0.5					
				100.0 -		ANDAMOOKA LMST: Limestone (light grey and white) mottled dolomitic	l,		wc		42.2				
				-		ANDAMOOKA LMST: Limestone (white with increasing pink)					40				
Air Hammer				110.0 -		ANDAMOOKA LMST: Limestone (white, less pink), visible macropores			wc		44.4				
Ž				120.0 -		ANDAMOOKA LMST: Limestone (white, dark pink and some				0.5	45.6				

 LOGGED:
 K Furness
 DATE: 24/01/2008

 CHECKED:
 DATE:

BOREHOLE / WELL NUMBER

MAR3/RD3465

PROJECT NUMBER: **EV-07**

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 10 inches

WELL PERMIT NUMBER:

n/a TOTAL DEPTH (m bgl): 228 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 29/01/2008 Depth (m bgl): 57 PROJECTION:GDA94 Zone 53

D	ATE	STAR	RTE	D: 20/ 0	1/20	008 DATE COMPLETED: 24/01/2008	EAS	ST	ING	6: 691	905	N	ORTHING:	6656771
DF	RILLIN	IG INF	0.			MATERIAL PROPERTIES				FIELD	REC	ORDS/0	CONSTRUCTI	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION
				-		green), crystalline ANDAMOOKA LMST: Dolomitic limestone (grey, white and son pink and green), mottled	ne			0.5	46.6			
	10"			130.0 -		ANDAMOOKA LMST: Limestone (dark pink with some white), mottled				2.5	46			
		0.46		140.0 -		ANDAMOOKA LMST: Dolomitic limestone (grey-pink) mottled				2.5	47.1			
		0.43		-	 					2.5	48.4			
		0.43		150.0 -		ANDAMOOKA LMST: Limestone (white and pink with some grecrystalline and highty laminated	en)			2.5	48.3			
		0.43	20	- 160.0 –		ANDAMOOKA LMST: Limestone (white) crystalline		(ea		3 ~8	64 65.6			
		0.43 2		_		ANDAMOOKA LMST: Limestone (white, pink and light grey), highly porous and laminated			wc		62.4			
		0.30 2		170.0 - -		ANDAMOOKA LMST: Dolomitic limestone (dark grey) porous				~25	78.8	fracture at 170-172m		
		0.43 2	00	180.0 -						~25	81.3			Open hole to 228m
	\downarrow	0.43 2		400.0		ANDAMOOKA LMST: Dolomitic limestone (dark grey) porous v some sandstone	with			~25	68.3 72.4			
		0.44 2		190.0 -		ANDAMOOKA LMST: Dolomite (dark grey) porous with some limestone (light grey and pink) crystalline and 50% quartz/sandstone				~25				
		0.38 2		200.0 -		ANDAMOOKA LMST: Dolomite (dark grey) porous				~40				
		0.43 2		- 210.0 -		ANDAMOOKA LMST: Dolomite (dark grey) with sandstone ban (pink, yellow and grey) porous	ds			~40				
		0.30 2		_10.0		ANDAMOOKA LMST: Limestone (grey) and sandstone (grey)				~40				
		0.35 2	30	220.0 -		ANDAMOOKA LMST: Limestone (light and dark grey) some porous, platey cleavage, some sandstone				>40				
\downarrow		0.40 2 0.35 2	امد	- 230.0 -		ARCOONA QTZT (RD): Limestone (light and dark grey, pink) platey cleavage, some sandstone and grey and red shale		Ą		>40 >40				
						EOH at 228 m								

LOGGED:	K Furness	DATE: 24/01/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR3-20 / RD3464

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

DATE STARTED: 13/01/2008 DATE COMPLETED: 20/01/2008

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 228
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 22/01/2008 Depth (m bgl): 56.175

PROJECTION:GDA94 Zone 53

EASTING: **691878** NORTHING: **6656788**

DATE STARTED: 13	70 172	008 DATE COMPLETED: 20/01/2008	EAS	911	ING	: 69	0/0	N	ORTHING: 6	0656788
DRILLING INFO.	1	MATERIAL PROPERTIES			F	IELD	REC	ORDS / (CONSTRUCTION	ON INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION
0.00 0.36 10.0 0.67 20.0 0.60 1.00 30.0 0.86 40.0		QUATERNARY SEDIMENTS: Gravelly Sand, orange-brown BULLDOG SHALE: Shale, light brown, some gypsum BULLDOG SHALE: Shale, light brown, light grey-green, red-broyellow and orange, soft, low plasticity	Jown,	Kmb						16' STL casing 0-6m, grouted to surface
70.0 80.0		BULLDOG SHALE: Shale, brown, with ~40% limestone/ dolom white and light grey	ite, \							
0.40 90.0		ANDAMOOKA LMST: Limestone/ dolomite, light grey and white ANDAMOOKA LMST: Limestone/ dolomite, white and light grey crystalline	y, \	\uparrow	wc	<1 3	33.5 37.9			8" STL pre-collar 0- 88m, grouted 80-88m
0.86		ANDAMOOKA LMST: Limestone/ dolomite, light grey and white with minor pink ANDAMOOKA LMST: Dolomitic limestone, pink and minor light grey ANDAMOOKA LMST: Shale, dark brown		\ \ !		3	35 37.1 35 .7			
0.75 110.0 0.75 110.0		ANDAMOOKA LMST: Shale, dark brown ANDAMOOKA LMST: Dolomitic limestone, pink and white, ~30 brown shale)%			3	36 .8			
ig		ANDAMOOKA LMST: Shale, brown	/							

 LOGGED:
 M Ivanova
 DATE: 20/01/2008

 CHECKED:
 DATE:

BOREHOLE / WELL NUMBER

MAR3-20 / RD3464

PROJECT NUMBER: **EV-07**

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 6 inches

WELL PERMIT NUMBER: n/a TOTAL DEPTH (m bgl): 228

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 22/01/2008 Depth (m bgl): 56.175

PROJECTION:GDA94 Zone 53

D	ATE	START	ED: 13/ 0	1/20	DATE COMPLETED: 20/01/2008	ΕA	STI	NG	691	878	N	IORTH	IING: (6656788
DF	RILLIN	IG INFO			MATERIAL PROPERTIES			F	IELD	REC	ORDS / (CONST	RUCTI	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	I I I M	CONSTRUCTION	WELL
		0.75		Ŧ	ANDAMOOKA LMST: Dolomitic limestone, pink and white with minor grey-green				3	3 6.8				
		0.75	-		ANDAMOOKA LMST: Limestone, cream-white and pink, interbedded with ~20-30% brown shale and minor grey shale				3	3 9.4				
		0.67	130.0 -	HH	ANDAMOOKA LMST: Limestone, pink-orange				3	39 .9				
		0.67	140.0 -		ANDAMOOKA LMST: Limestone, pink-purple and cream, mind dark purple sandstone	r			3	39.2				
		0.67	_		ANDAMOOKA LMST: Limestone and dolomite, purple-brown winor crystalline cream, yellow and green (green becoming more abundant with depth). ~10% brown and light grey shale at 136-	re	\parallel		3	39 .1				
		0.86	150.0 -		138m. ANDAMOOKA LMST: Dolomite, pink and white, visible		ea		4	60.5				
	 9	0.46	-		macropores, minor pyrite		9		4	#2 .3				
		0.46	160.0 -		ANDAMOOKA LMST: Dolomitic limestone, white and grey, visi	ble	$\ $		4	4 8.5				
		0.43	170.0 -	Ħ	macropores, minor mica and pyrite				6	86 .6				
		0.23	-						8	58 93.1				
		0.27	180.0 -	芸					8	95 .6				
		0.30	-	喜					10	90.0				
		0.38	190.0 -	Ħ					10	170.	1			
		0.38	-						12	190.				
		0.35	200.0 -		ANDAMOOKA LMST: Dolomite, white and grey, ~30% light gre sandstone	ey .			12	199.				Gemmen Ph/Entropite creat 206:125;Ontank 0-222m, slotted 222-228m
		0.23	210.0 -		ANDAMOOKA LMST: Dolomite, white and grey, numerous macropores, ~30% light grey sandstone, ~20% white and grey quartzite, minor pyrite				14	197.				
		0.06	-		ANDAMOOKA LMST: Dolomite and sandstone, light grey and white, abundant macropores, minor pyrite				16 16	198. 201.	fracture at 214m			7-15mm gravel pack 211-228m
		0.20	220.0 -		ANDAMOOKA LMST: Dolomite, grey, ~30% pink sandstone ar quartzite	nd	Ų.		18	206.	3			
	\	0.20	230.0 -		ARCOONA QTZT (RD): Quartzite, pink, with ~ 20% grey dolon and minor grey shale	nite	/ws/P		20	208.	7			
			_		EOH at 228m									

DATE: 20/01/2008 LOGGED: M Ivanova CHECKED: DATE:

BOREHOLE / WELL NUMBER

MAR4/ RD3463

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 10 inches

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 186
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 14/12/2007 Depth (m bgl): 70.26

PROJECTION:GDA94 Zone 53

D	ATE	STA	07 DATE COMPLETED: 13/122007	EAS	STI	NG	6: 68 :	9954	N	IORTHIN	G: 6	650868			
DR	ILLIN	IG INF	О.			MATERIAL PROPERTIES				FIELD	REC	ORDS /	CONSTRU	JCTIC	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL		WELL
	17.5"			0.0 -		QUATERNARY SEDIMENTS: Silt (white/ tan), with limestone (white) calcareous nodules, and some dark sandstone		\uparrow							Well cover
	\uparrow					QUATERNARY SEDIMENTS: Silty sand (white), with gypsum crystals, sandstone and some white calcareous fragments	 '	ල 							17.5" STL casing 0-6r grouted to surface
				10.0 -	· -	QUATERNARY SEDIMENTS: Sandy clay (red, yellow and wh coarse grained sand and med-plastic clay, some gypsum crys and dark sandstone									
		0.22		20.0 -	<u>.</u> -	QUATERNARY SEDIMENTS: Silt (brown) with 50% gypsum, sandstone (yellow, white, dark red)									
		0.32		-		BULLDOG SHALE: Shale (brown, white, yellow, grey and red some gypsum crystals and sandstone) with								
		0.60		30.0 -	<u>:</u> -	BULLDOG SHALE: Shale, green and brown, very plastic									
				-	:- :-	BULLDOG SHALE: Shale, green/ brown, very soft									
		0.60		40.0 -				Kmb							
	15" —	0.60		_	<u>:-</u> -			ĺ							
		0.50		50.0 -											
		0.32		_	<u>=</u> :-	BULLDOG SHALE: Shale, green-grey and red, very plastic									
		0.21		60.0 -	<u>:-</u>										
		0.35		-	== :-	BULLDOG SHALE: Shale, green and red, with quartz/sandsto fragments	one								
		0.50		70.0 -		ANDAMOOKA LMST: Yellow, white and brown limestone with sandstone and minor clay and shale	1	\uparrow							
		0.30		80.0 -		ANDAMOOKA LMST: Limestone, grey, pink, white and yellow consolidated, with minor white and black quartzite/sandstone	΄,					loss in circulation			
	\uparrow	0.21		-		ANDAMOOKA LMST: White, pink and grey dolomitic limeston with some sandstone	ie \		wc	<0.1					10" STL pre-collar 0- 84m
Air Hammer		0.13	90.0 -		ANDAMOOKA LMST: Limestone, green, white and pink, visib macropores (dissolution features), with siltstone and sandston and minor gypsum	le ie		VVC	<0.1						

BOREHOLE / WELL NUMBER

MAR4/ RD3463

PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 10 inches

DATE STARTED: 08/12/2007 DATE COMPLETED: 13/122007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 186
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: **14/12/2007** Depth (m bgl): **70.26** PROJECTION:**GDA94 Zone 53**

D	DATE STARTED: 08/12/2007 DATE COMPLETED: 13/122007					EAS	STI	NG	6: 689	954	N	IORTHING: 6	650868	
DR	ILLIN	IG IN	FO.			MATERIAL PROPERTIES		_		FIELD	REC	ORDS/0	CONSTRUCTION	ON INFO.
МЕТНОВ	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DΕРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION
		0.46	150	100.0 -		ANDAMOOKA LMST: Limestone, white, light green and pink, porous, with some siltstone			wc	3.3	42.2	fracture/cav	nity	
		0.35	150	-	芸	ANDAMOOKA LMST: Dolomite, grey, with white and tan consolidated limestone				2.5	40	at 101- 102m, slight loss in		
				110.0 -		ANDAMOOKA LMST: Dolomite, grey, porous						circulation, fracture at 103m		
		0.27	150			ANDAMOOKA LMST: Dolomite, grey-pink, hard, some porous grey dolomite	5		wc	2.5	44.4	fracture		
		0.26	150			ANDAMOOKA LMST: Dolomite, grey and white, visible macropores			"	4	45.6			
				120.0 -		ANDAMOOKA LMST: Dolomite, white and light grey								
		0.26	150	-				- ea		5.5	46.6			
		0.32	150	130.0 -	 					6-7	46			
	- 10" -	0.32	150	-						6-7	47.1			
			450	140.0 -										
		0.20	150	-		ANDAMOOKA LMST: Dolomite, grey, with minor grey sandsto	one			8	48.4			
		0.26	150	150.0 -						8	48.3			
		0.29	150	_		ANDAMOOKA LMST: Dolomite, grey, with minor green shale sandstone	and			10	64			
						ANDAMOOKA LMST: Dolomite, grey, with some white/grey sandstone								
		0.21	150	160.0 -					wc	13	65.6	fracture		
		0.27	210	-						17	62.4			
				170.0 -		ANDAMOOKA LMST: Dolomite, pink and green, with sandstoland gypsum	ne							
		0.29	210	_	+					17	78.8			
		0.21	210	180.0 -						17	81.3			Open hole to 186m
	$\left \downarrow\right $	0.17	I I	-	•	ARCOONA QTZT (RD): Shale, green and red, with white and grey quartzite and sandstone and dark grey dolomite	dark \	₹.		17	68.3			
		0.10		190.0 -		EOH at 186 m				17	72.4			

LOGGED:	K Furness	DATE: 13/12/2007
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR4-20 / RD3462

PROJECT NUMBER: EV-07

PROJECT NAME: **BHPB Motherwell MAR**

LOCATION: Olympic Dam, South Australia DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 18/11/2007 DATE COMPLETED: 22/11/2007

WELL PERMIT NUMBER:

n/a TOTAL DEPTH (m bgl): 186

REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 29/11/2007 Depth (m bgl): 69.77 (shallow)/71.77 (deep)

PROJECTION:GDA94 Zone 53

EASTING: 689985 NORTHING: 6650885

DF	(IE	STA	07 DATE COMPLETED: 22/11/2007	EAS	STI	NG	: 689	985	N	ORT	HIN	G: 6	650885			
DRI	LLIN	IG IN	FO.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS / 0	CONS	TRL	JCTIC	ON INFO.
МЕТНОD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL DESCRIPTION
$ \downarrow $	<u></u>			0.0 -		OHATEDNADV CEDIMENTO, Ciltura and a day, too, white		_					H	11	7	Well cover
	47.5">					QUATERNARY SEDIMENTS: Silty sandy clay, tan, white calcareous nodules and black sandstone										
	*			_		QUATERNARY SEDIMENTS: Red silty sandy clay and green clawith white calcareous nodules and black sandstone	ay	– Qh –								16" STL casing 0-6m, grouted to surface
	+			10.0 -		QUATERNARY SEDIMENTS: Red and green clay with gypsum and black and yellow sandstone		\bigvee								
		0.40		-		BULLDOG SHALE: Interbedded layers of grey, green, purple an		\uparrow								
				20.0 -	$\dot{\Xi}$	red shale, very plastic (mainly green)										
		0.86		-	<u>:</u>											
		1.00		00.0	$\stackrel{\cdot}{=}$									Ш		
				30.0 -				- q								
		0.86		-				— Kmb								
		0.75		40.0 -												
		0			<u> </u>											
		0.67			=											
	_ 12"	0.46		50.0 -	<u> </u>	ANDAMOOKA LMST: Yellow and white limestone with some	\neg									
		U.4b		-		sandstone and brown clay		<u>*</u>								
		0.55		60.0 -		ANDAMOOKA LMST: Grey, yellow and white consolidated limestone with some sandstone, quartz and gypsum										
		0														
		0.50		-		ANDAMOOKA LMST: White/light grey and yellow consolidated										
		0.46		70.0 -		limestone										
		0.00		-		ANDAMOOKA LMST: Pink, grey, yellow/tan and white limestone with some shale	,									
		0.30		80.0 -		ANDAMOOKA LMST: Pink and grey (some tan) limestone with										
				50.0	H	some pink and white sandstone and minor pyrite fragments, increasing to 20% white sandstone from 88m						fracture 80m/broken ground,		Ш		Cement/bentonite seal 80-91m
		1.33		-	Ħ							poor returns		Ш		
mer –		0.46		90.0 -	Ħ											7-15mm gravel pack
Air Hammer	$\frac{\downarrow}{\uparrow}$	0.15		-		ANDAMOOKA LMST: Limestone, pink, minor sandstone and pyr fragments	rite \		wc		35.6	fracture 92- 93m			<u> </u>	91-120m 8" STL pre-collar 0- 94m, grouted 92-94m
\ 				100.0	Ŧ	ANDAMOOKA LMST: Dolomite, light grey and pink, some limestone with visible dissolution features						broken ground 97-				
				100.0 -			/				I	98m		8		Shallow installation

DATE: 22/11/2007 LOGGED: M Ivanova CHECKED: DATE:

BOREHOLE / WELL NUMBER

MAR4-20 / RD3462

PROJECT NUMBER: **EV-07**

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 186 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 29/11/2007 Depth (m bgl): 69.77 (shallow)/71.77 (deep)

PROJECTION:GDA94 Zone 53

	DATE STARTED: 18/11/2007 DATE COMPLETED: 22/11/2007							STI	NG	: 689	985	N	IORTHI	NG: 6	650885
D	RILLI	NG IN	FO.			MATERIAL PROPERTIES			ı	FIELD	REC	ORDS / (CONSTR	UCTIO	ON INFO.
COTFUN	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	CONSTRUCTION	WELL DESCRIPTION
		0.26 0.26 0.19 0.15	300 300 300 300 300 300 300 300	110.0 - 120.0 - 130.0 - 140.0 - 150.0 - 170.0 - 180.0 -		ANDAMOOKA LMST: Dolomite, light grey, tan, pink and white, some limestone with green tinge, minor pink sandstone and pyr fragments. Visible dissolution features and iron oxide stained dodules 120-124m. Minor white silty clay at 148-150. Minor gre shale at 154-158. Approx. 20% tan dolomite between 160 and 162m. ANDAMOOKA LMST: Dolomite, light grey with a green tinge ar with increasing pink, increasing amount of light grey to white sandstone. ARCOONA QTZT (RD): Dolomite, light grey and pink, interbedd with ~40% red-brown shale and minor grey shale, increasing in grey white and red sandstone from 180m	en nd	⟨Pws → €a		3 3 4 3 5 6 7 9 9	39.6 44.4 43.8 44.7 48.3 45.6 48.6 48.9 48.6 53.7 56.1				50mm PVC monitoring casing; blank 0-100m, slotted 100-106m Cement/bentonite seal 120-168m 7-15mm gravel pack 168-186m Deep installation 50mm PVC monitoring casing; blank 0-180m,
			300	- 190.0 –		ARCOONA QTZT (RD): Sandstone, pink with some light grey, ~10% red-brown shale and minor light grey dolomite		*		10	70.4				casing; blank 0-180m, slotted 180-186m

LOGGED:	M Ivanova	DATE: 22/11/2007
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

MAR4-50 / RD3461

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 8 inches

DATE STARTED: 13/11/2007 DATE COMPLETED: 18/11/2007

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 186

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 21/11/2007 Depth (m bgl): 68.93 (shallow)/69.07 (deep)

PROJECTION.GDA94 Zone 53

D	ATE	STA	RTE	D: 13/1	1/20	07 DATE COMPLETED: 18/11/2007	EAS	STI	ING	: 689	909	N	ORTI	IING:	6650915
DF	RILLIN	NG IN	FO.			MATERIAL PROPERTIES			F	IELD	REC	ORDS / (CONS	TRUC	TION INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		CONSTRUCTION	WELL
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			0.0 -		QUATERNARY SEDIMENTS: Tan silty sandy clay with white calcareous nodules and black sandstone QUATERNARY SEDIMENTS: Red silty sandy clay and green of with white calcareous nodules and black sandstone QUATERNARY SEDIMENTS: Red and green clay with gypsum and black and yellow sandstone		↑							Hell cover 16° STL casing 0-6m, grouted to surface
		0.43		20.0 -		QUATERNARY SEDIMENTS: Yellow and red clay with gypsum and black sandstone BULLDOG SHALE: Green-grey and red shale becoming yellow from 58m, very plastic									
		0.21		30.0 -											
	12"	0.50		40.0 -				- Kmb							
		1.00		50.0 -											
		0.67		60.0 -											
		0.33		-		BULLDOG SHALE: Green and red shale with quartz/sandstone fragments									
		0.50		70.0 -		ANDAMOOKA LMST: Yellow, white and brown limestone with sandstone and minor clay and sthale									Cement/bentonite seal 70-84m
		0.46		80.0 -		ANDAMOOKA LMST: Grey, pink, white and yellow consolidated limestone with minor white and black quartzite/sandstone	t		wc			fracture 80m	2		2
1		0.50		90.0 -		ANDAMOOKA LMST: White, pink and grey dolomitic limestone with some sandstone				1	33.5				8* STL pre-collar 0- 82m, grouted 80-82m 7-15mm gravel pack 84-120m Shallow installation 50mm PVC monitoring
Air Hammer		0.38		-		ANDAMOOKA LMST: Green, white and pink limestone, visible macropores (dissolution features), with siltstone and sandstone and minor gypsum	/		wc	0 >4	35				casing; blank 0-88m, slotted 88-94m
				100.0 -		ANDAMOOKA LMST: White, light green and pink porous limestone with some siltstone	/						Š		

BOREHOLE / WELL NUMBER

MAR4-50 / RD3461

PROJECT NUMBER: EV-07

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole

DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 186

REFERENCE POINT (m AHD): STATIC WATER LEVEL

Date: 21/11/2007 Depth (m bgl): 68.93 (shallow)/69.07 (deep)

PROJECTION:GDA94 Zone 53

DATE STARTED:13/11/2007 DATE COMPLETED: 18/11/2007 EASTING: 689909 NORTHING: 6650915 DRILLING INFO. MATERIAL PROPERTIES FIELD RECORDS / CONSTRUCTION INFO.														ING: 6	6650915
DF	RILLIN	IG INF	О.			MATERIAL PROPERTIES				FIELD	REC	ORDS/0	ONST	RUCTI	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	CONSTRUCTION	WELL
		0.25 0.21 0.24		110.0 -		ANDAMOOKA LMST: Grey dolomite with white and tan consolidated limestone, porous from 100m ANDAMOOKA LMST: Hard, grey-pink and white dolomite, som porous grey dolomite	/ e			>4 5	35 36 35	fracture 110m, loss of circulation, poor			
		0.27		120.0 -		ANDAMOOKA LMST: White and light grey dolomite				6	36.5	returns	8		Cement/bentonite seal 120-168m
	8	0.33		130.0 -				Ea		>6 >6	39				
		0.29		140.0 -						>6	39.5				
		0.27		150.0 -		ANDAMOOKA LMST: Grey dolomite with minor grey sandstone ANDAMOOKA LMST: Grey dolomite with minor green shale ar				~7 7	39				
		0.27		160.0 -		standstone				7	42				
		0.25		470.0		ANDAMOOKA I MST: Pink and groop delemits with conductors	and			7	45.5 50				7-15mm gravel pack
		0.21		170.0 - - 180.0 -		ANDAMOOKA LMST: Pink and green dolomite with sandstone gypsum ARCOONA QTZT (RD): Green and red shale with white and da quartzite and sandstone. Dark grey dolomite decreasing by 184	ark	> sm _c		7	58 74				Deep installation 50mm PVC monitoring casing; blank 0-180m, slotted 180-186m
	Ť	0.35		190.0 -		EOH at 186m		ď		7	76.0				

DATE: 18/11/2007 LOGGED: K Furness CHECKED: DATE:

BOREHOLE / WELL NUMBER

PT-40/RD3467

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

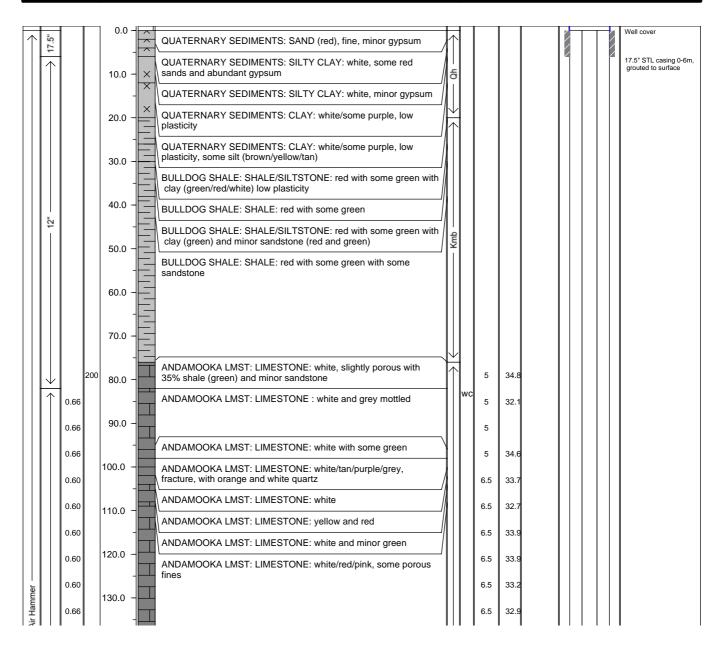
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 01/02/2008 DATE COMPLETED: 07/02/2008

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 264
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 68.19

PROJECTION:GDA94 Zone 53

EASTING: **699594** NORTHING: **6672970**

					-							011111110.	
D	RILLIN	IG INFO	Э.			MATERIAL PROPERTIES			FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
OCHTAN	BIT LOG	PENETRATION RATE (m/min)	OAD TRESSORE	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE I OG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED:	K Furness	DATE: 07/02/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-40/RD3467

PROJECT NUMBER: **EV-07**

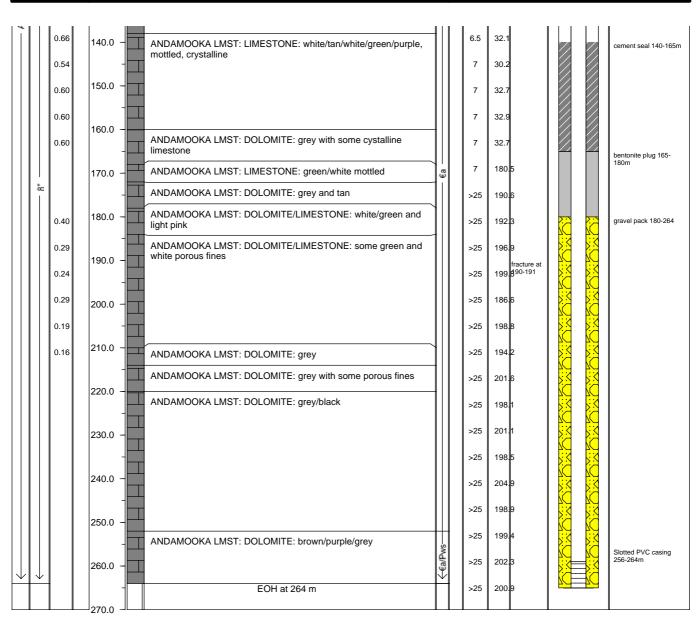
BHPB Motherwell MAR PROJECT NAME: Olympic Dam, South Australia LOCATION:

Gorey & Cole **DRILLING CO:** Air Hammer DRILLING METHOD:

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 01/02/2008 DATE COMPLETED: 07/02/2008 WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 264 REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 68.19

PROJECTION:GDA94 Zone 53

EASTING: 699594 NORTHING: 6672970

L													VV. V
	ORILLIN	IG INFO	Э.			MATERIAL PROPERTIES			FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
	METHOD BIT LOG	PENETRATION RATE (m/min)		H 1	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE I OG	WATER CUT	ELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL

LOGGED:	K Furness	DATE: 07/02/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT- 42/ RD3498

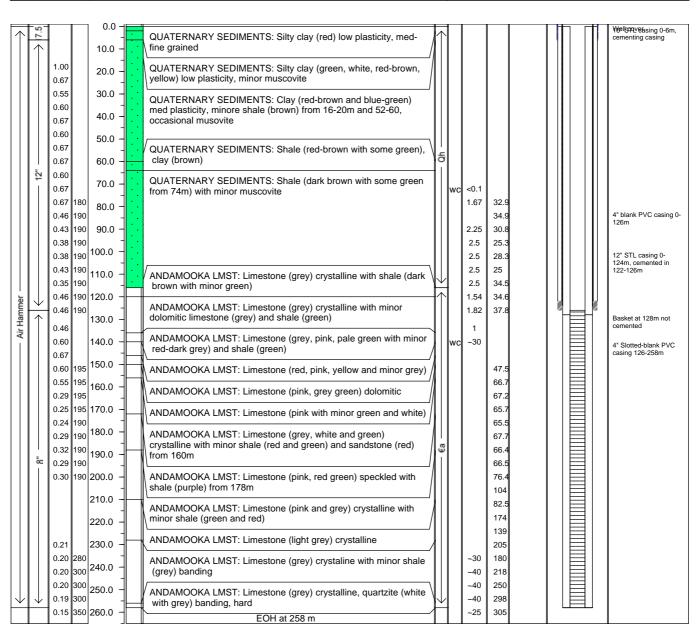
PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 23/03/08 DATE COMPLETED: 28/03/08


WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 258
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: **28/03/08** Depth (m bgl): **58.96** PROJECTION:**GDA94 Zone 53**

EASTING: **690624** NORTHING: **6663910**

			,		27.11 2 3 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	2710	•	o. 00		11	OKTIIIVO. U	003310
D	RILLIN	IG INFO.			MATERIAL PROPERTIES			FIELD	REC	ORDS/0	CONSTRUCTIO	ON INFO.
METHOD	:	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	(E) T	GRAPHIC LOG	LITHOLOGY	la	WATER CUT	IELD .	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED:	K Furness	DATE: 07/02/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-44/RD9497

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

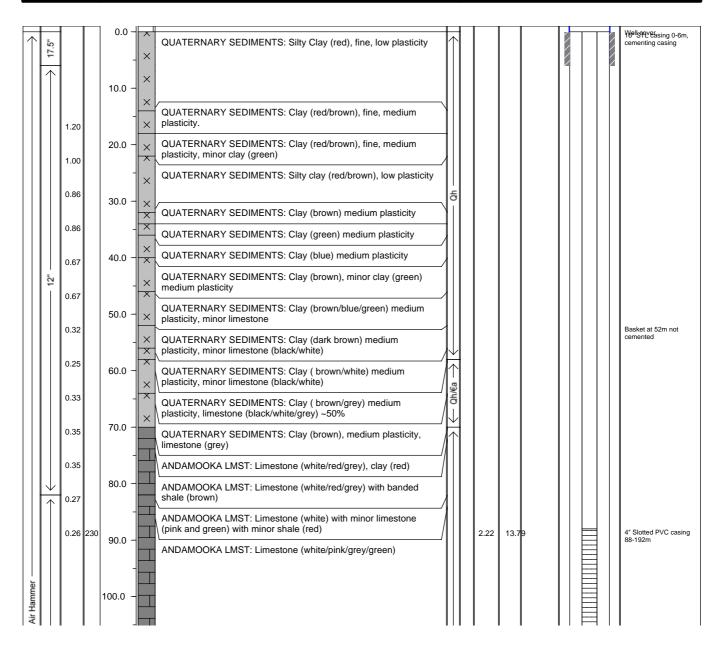
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 19/02/2008 DATE COMPLETED: 23/02/2008

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 192
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 58.55

PROJECTION:GDA94 Zone 53

EASTING: **684970** NORTHING: **6657514**

L											• • • • • • • • • • • • • • • • • • • •	
D	RILLIN	IG INFO.			MATERIAL PROPERTIES			FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
COHTAIN	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	COLLUNCTION	WATER C	IFT YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED:	J. Richards	DATE: 23/02/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-44/RD9497 n/a

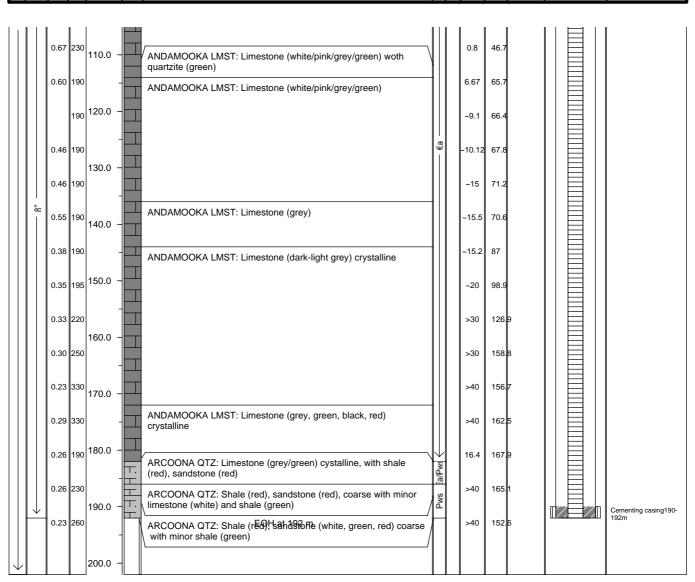
PROJECT NUMBER: **EV-07**

BHPB Motherwell MAR PROJECT NAME: Olympic Dam, South Australia LOCATION:

Gorey & Cole DRILLING CO: Air Hammer DRILLING METHOD:

BOREHOLE DIAMETER: 8 inches DATE STARTED: 19/02/2008 DATE COMPLETED: 23/02/2008

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 192 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 58.55 PROJECTION:GDA94 Zone 53

EASTING: **684970** NORTHING: 6657514

D	RILLIN	G INFO	Э.			MATERIAL PROPERTIES			FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
METHOD		RATION RATE (I	F	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUT	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

DATE: 23/02/2008 LOGGED: J. Richards CHECKED: DATE:

BOREHOLE / WELL NUMBER

PT-45

PROJECT NUMBER: **EV-07**

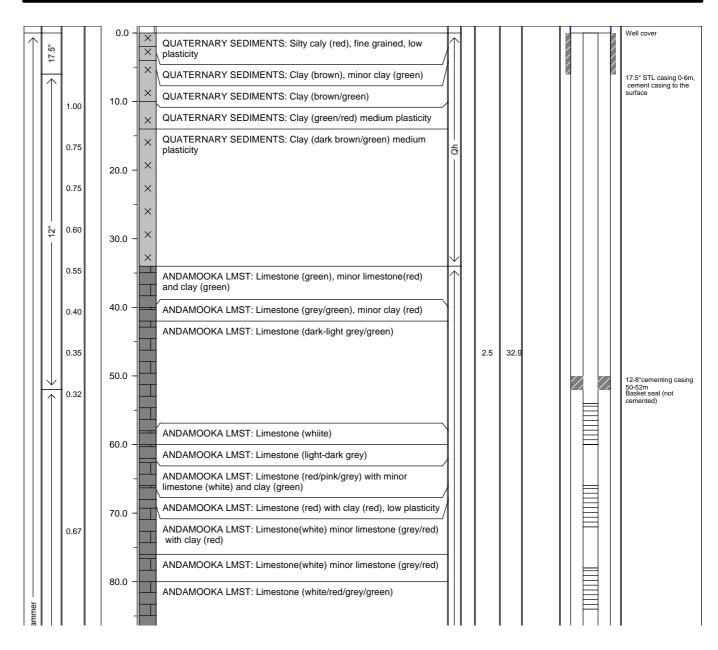
PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 15/02/2008 DATE COMPLETED: 17/02/2008

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 168
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 36.83 PROJECTION:GDA94 Zone 53

EASTING: **681922** NORTHING: **6653391**

										•	
DI	RILLIN	IG INFO.			MATERIAL PROPERTIES		FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	WATER	IFT YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED:	J. Richards	DATE: 17/02/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT- 45

PROJECT NUMBER: **EV-07**

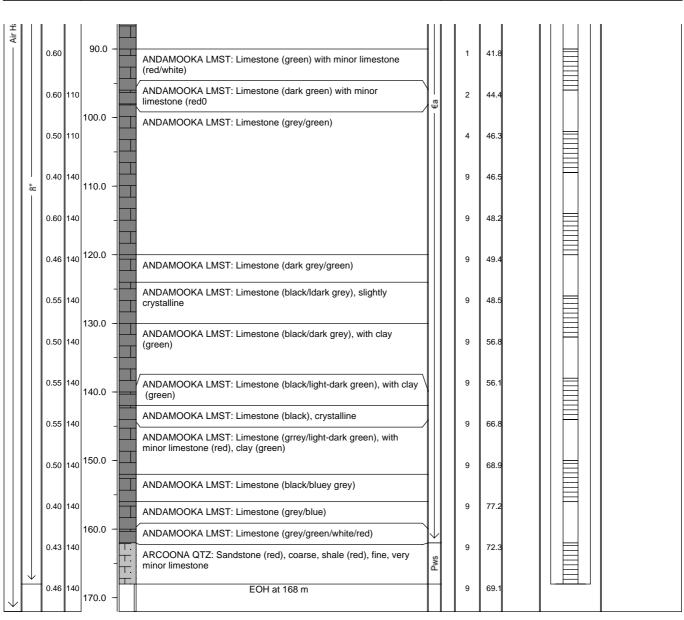
PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 15/02/2008 DATE COMPLETED: 17/02/2008

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 168
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 36.83 PROJECTION:GDA94 Zone 53

EASTING: **681922** NORTHING: **6653391**

DRILLING INFO.	MATE	RIAL PROPERTIES		FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	GRAPHIC LOG	LITHOLOGY	RPRETIV	WATER COTS AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL

LOGGED:	J. Richards	DATE: 17/02/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-48/RD3510

n/a

PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

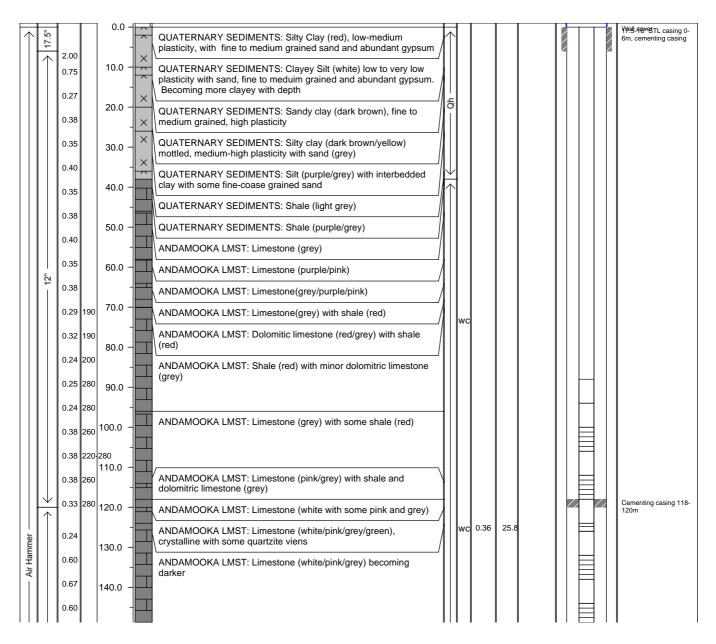
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 1/03/2008 DATE COMPLETED: 06/03/2008

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl): 270
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 54.62

PROJECTION:GDA94 Zone 53

EASTING: **683385** NORTHING: **6649659**

DI	RILLIN	IG INFO	Э.			MATERIAL PROPERTIES		F	FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
METHOD	1 - 1	PENETRATION RATE (m/min)	년 자	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: V. Stroeher DATE: 06/03/08
CHECKED: ______ DATE:

BOREHOLE / WELL NUMBER

PT-48/RD3510

PROJECT NUMBER: **EV-07**

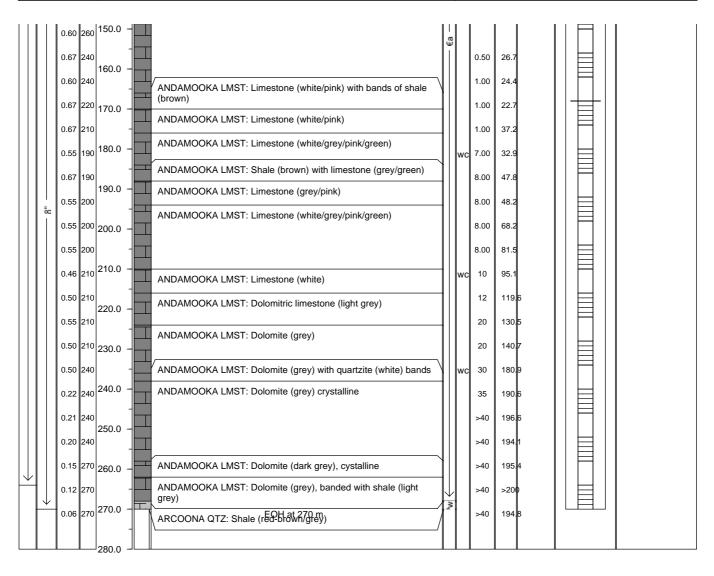
PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 1/03/2008 DATE COMPLETED: 06/03/2008

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 270
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 54.62

PROJECTION:GDA94 Zone 53

EASTING: **683385** NORTHING: **6649659**

DRILLING INFO).		MATERIAL PROPERTIES		FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	ENTRE I IVE L	WAIER CUIS AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

BOREHOLE / WELL NUMBER

PT-50/RD3511

n/a

PROJECT NUMBER: EV-07

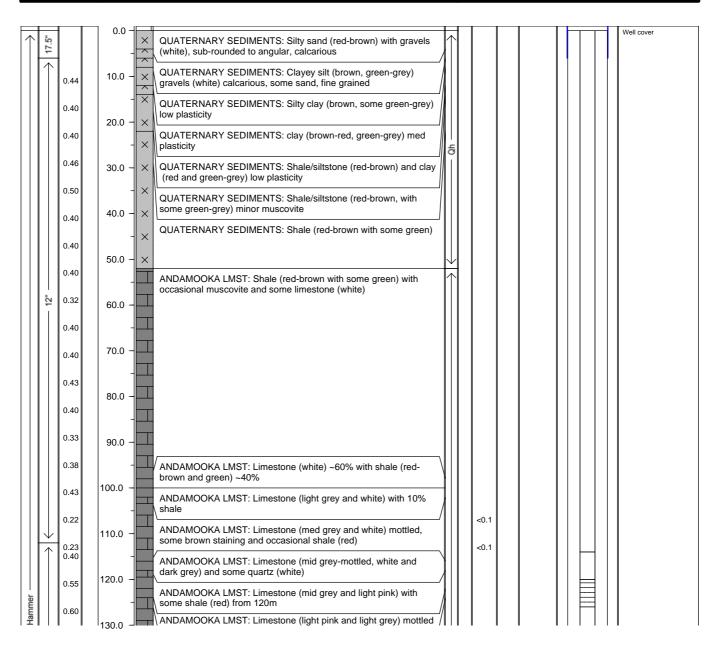
PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED:16/03/2008 DATE COMPLETED: 20/03/2008

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 246
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 47.58 PROJECTION:GDA94 Zone 53

EASTING: 680065 NORTHING: 6665665

L								TOTAL MICE.					
DRILLING INFO.					MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.					
	METHOD BIT LOG	PENETRATION RATE (m/min)		EPIH	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE I OG	WATER CUT	ELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED:	K Furness	DATE: 20/03/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-50/RD3511

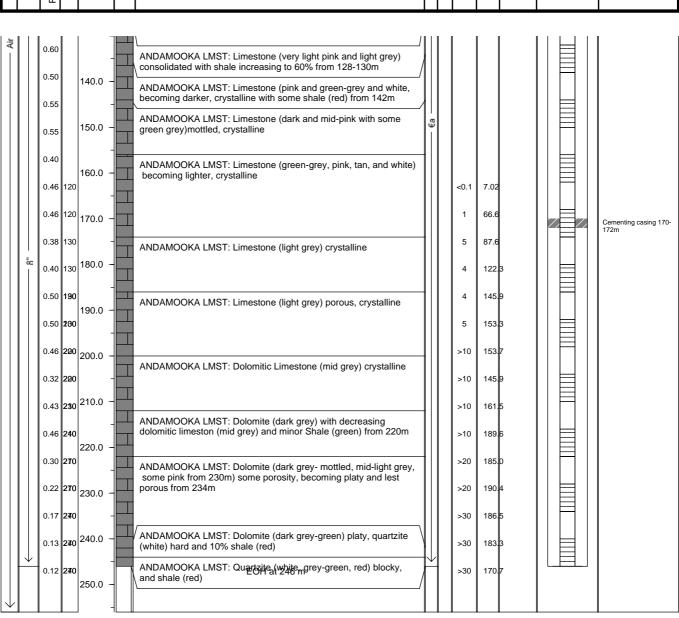
PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 16/03/2008 DATE COMPLETED: 20/03/2008

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 246
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 47.58 PROJECTION:GDA94 Zone 53

EASTING: 680065 NORTHING: 6665665

DRILLING INFO.	MATER	MATERIAL PROPERTIES		FIELD RECORDS / CONSTRUCTION INFO.					
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	GRAPHIC LOG	LITHOLOGY	PRETIVE I	WATER CUTS AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL	

LOGGED: K Furness DATE: 20/03/2008
CHECKED: _____ DATE:

BOREHOLE / WELL NUMBER

PT-51/RD3512

n/a

PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

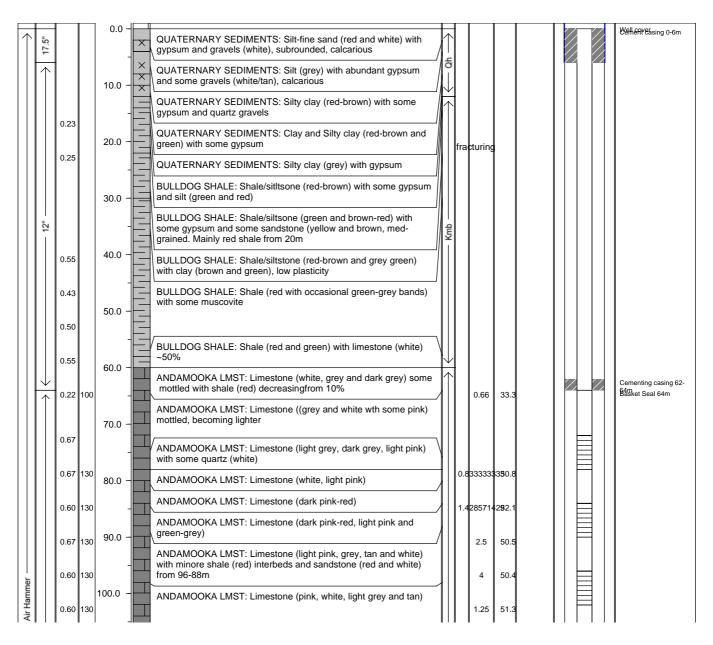
DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 12/03/2008 DATE COMPLETED: 16/03/2008

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl): 192
REFERENCE POINT (m AHD):


STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 40.36

PROJECTION:GDA94 Zone 53

EASTING: **679082** NORTHING: **6659712**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG TITHOLOGY	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL WELL WELL DESCRIPTION

LOGGED:	K Furness	DATE: 16/03/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-51/RD3512

n/a

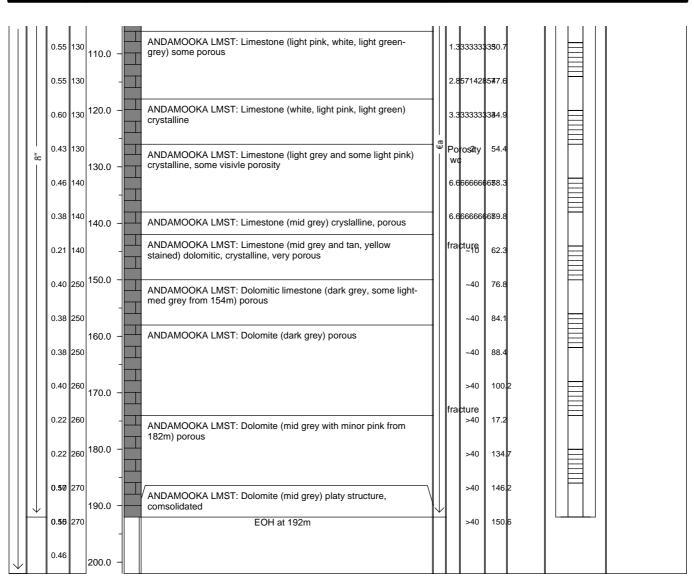
PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 12/03/2008 DATE COMPLETED: 16/03/2008

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 192
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: **15/04/2008** Depth (m bgl): **40.36** PROJECTION:**GDA94** Zone **53**

EASTING: 679082 NORTHING: 6659712

											•			
D	DRILLING INFO. MATERIAL PROPERTIES						FIELD RECORDS / CONSTRUCTION INFO.							
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		WATER	IFT YIELD	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION		

LOGGED:	K Furness	DATE: 16/03/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

NORTHING: 6665601

PT-60/RD3509

n/a

PROJECT NUMBER: EV-07

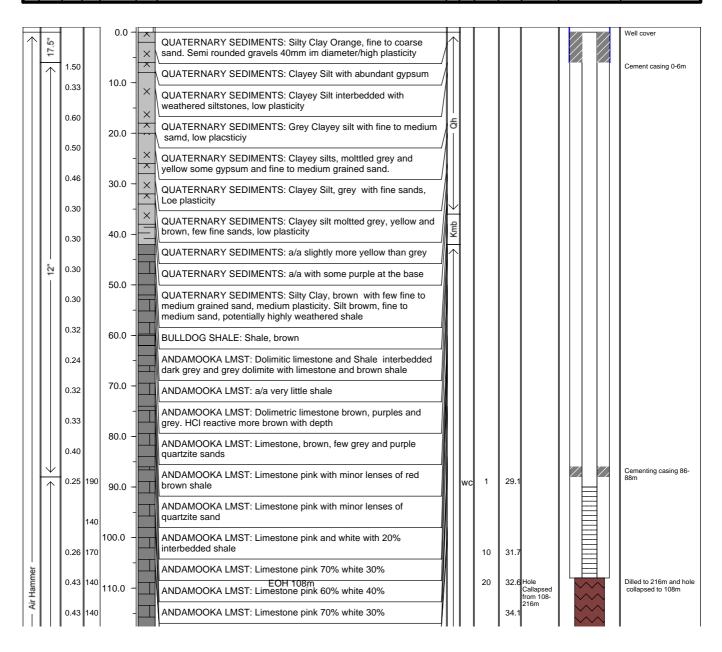
PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches

DATE STARTED: 07/03/2008 DATE COMPLETED: 11/03/2008

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 204
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 76.08

PROJECTION:GDA94 Zone 53
EASTING: 680104 NORTHING:

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ADOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

BOREHOLE / WELL NUMBER

PT-60/RD3509

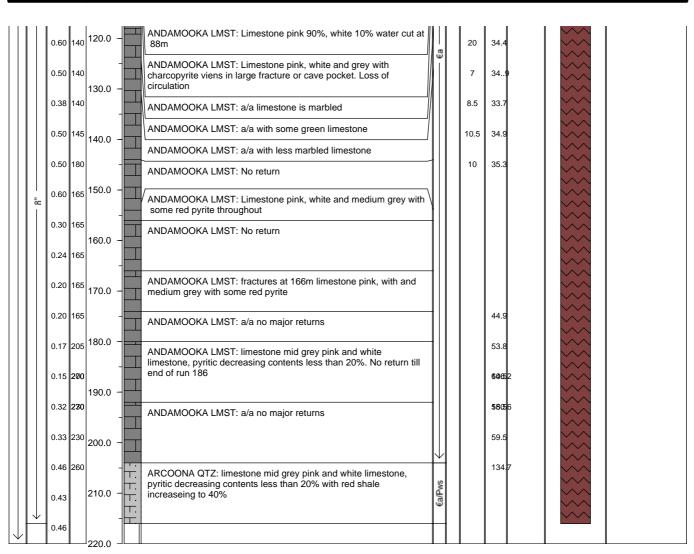
PROJECT NUMBER: EV-07

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 07/03/2008 DATE COMPLETED: 11/03/2008

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 204
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/04/2008 Depth (m bgl): 76.08 PROJECTION:GDA94 Zone 53

EASTING: **680104** NORTHING: **6665601**

L												
	DRILLIN	IG INFO			MATERIAL PROPERTIES		F	FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.
	METHOD BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED:	V. Stroeher	DATE: 11/03/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT-61/RD3468

n/a

PROJECT NUMBER: EV-07

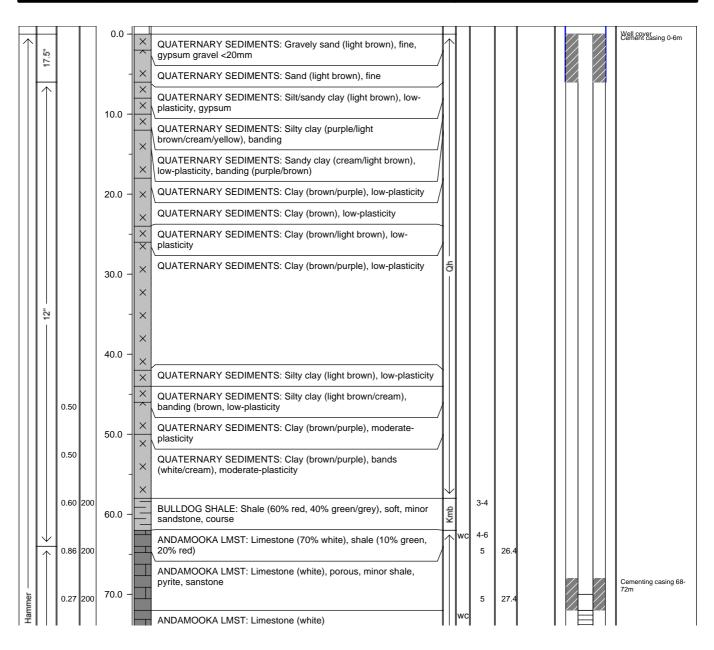
BHPB Motherwell MAR PROJECT NAME: LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer

BOREHOLE DIAMETER: 8 inches DATE STARTED: 09/01/08

DATE COMPLETED: 04/01/08

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 138 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/03/2008 Depth (m bgl): 42.29 PROJECTION:GDA94 Zone 53

EASTING: **683385** NORTHING: 6649659

											11011111110: 00 10000		
DRILLING INFO. MATERIAL PROPERTIES								FIELD	REC	ORDS/0	CONSTRUCTIO	N INFO.	
METHON	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	EPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

DATE: 04/01/2008 LOGGED: K Furness CHECKED: DATE:

BOREHOLE / WELL NUMBER

PT-61/RD3468

n/a

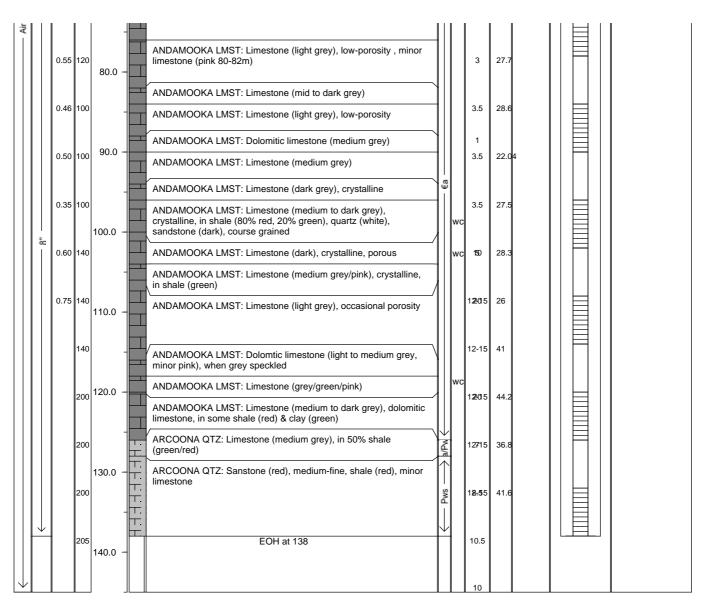
PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 8 inches

DATE STARTED: 09/01/08 DATE COMPLETED: 04/01/08

WELL PERMIT NUMBER:


TOTAL DEPTH (m bgl): 138
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: 15/03/2008 Depth (m bgl): 42.29 PROJECTION:GDA94 Zone 53

EASTING: **683385** NORTHING: **6649659**

DF	DRILLING INFO.					MATERIAL PROPERTIES		FIELD RECORDS / CONSTRUCTION INFO.								
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)		DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION			

LOGGED:	K Furness	DATE: 04/01/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT66 / RD3466

PROJECT NUMBER: **EV-07**

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 6 inches

WELL PERMIT NUMBER:

n/a TOTAL DEPTH (m bgl): 312 REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: Depth (m bgl): PROJECTION:GDA94 Zone 53

	ATE	STAR	TED: 250	1/20	08 DATE COMPLETED: 28/01/2008	EAS	STI	NG:	696	951	N	ORTHING: 6	6666422
DF	RILLIN	NG INFO).		MATERIAL PROPERTIES			FI	IELD	REC	ORDS / (CONSTRUCTION	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION
		0.43 0.75 0.60 0.67 0.60 0.55 0.75 0.67 0.67 0.60 0.55 0.67	0.0 - 10.0 - 10.0 - 20.0 - 30.0 - 30.0 - 50.0 - 60.0 - 70.0 - 90.0 -		QUATERNARY SEDIMENTS: Silty-sand, fine (red) with white calcareous nodules and dark minerals QUATERNARY SEDIMENTS: Sand, fine (red) with some white calcareous nodules, porous QUATERNARY SEDIMENTS: Silty clay, calcareous (white) wis some sand (pink/red) and gypsum minerals and white calcared nodules QUATERNARY SEDIMENTS: Sandy-silt (yellow/tan) with silty (white) and gypsum minerals QUATERNARY SEDIMENTS: Silt (grey, tan and pink) with sor gypsum QUATERNARY SEDIMENTS: Clay (grey, tan, gellow and gree with some sandstone (red) and increasing shale fragments and minor gypsum BULLDOG SHALE: Shale (brown) with some siltstone/shale (green), some clay (brown) and minor sandstone BULLDOG SHALE: Shale (mainly brown with interbedded gree layers)	clay me	- Kmb - Cm - On - On - On - On - On - On - On - O			33.5			16* STL casing 0-6m, grouted to surface

DATE: 28/01/2008 LOGGED: K Furness CHECKED: DATE:

BOREHOLE / WELL NUMBER

PT66 / RD3466

n/a

PROJECT NUMBER: **EV-07**

PROJECT NAME: BHPB Motherwell MAR
LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole
DRILLING METHOD: Air Hammer
BOREHOLE DIAMETER: 6 inches

DATE STARTED: 2501/2008 DATE COMPLETED: 28/01/2008

WELL PERMIT NUMBER:

TOTAL DEPTH (m bgl): 312
REFERENCE POINT (m AHD):

STATIC WATER LEVEL

Date: Depth (m bgl): PROJECTION:**GDA94 Zone 53**

EASTING: 696951 NORTHING: 6666422

			_D. 230	1,20	DATE CONFECTED. 20/01/2000	EAC	ווכ	ING	. 090	1331	N	UKI		G: 0	000422
DRILLI		=O.			MATERIAL PROPERTIES		FIELD RECORDS / CONSTI				STRU	RUCTION INFO.			
METHOD BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSURE (psi)	DEРТН (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS		WELL CONSTRUCTION		WELL DESCRIPTION
_ 	0.60			<u> </u>								 			
			110.0 -	$\stackrel{\cdot}{=}$						36					
	0.60		_	$\dot{\Xi}$						35					
	0.55		120.0 -												
			120.0	<u>:</u> -						36.5					
	0.60		-							39					
	0.55		130.0 -	<u>-</u> -						20	fracture at				
	0.60		-	<u>:</u> -						39	132-133m				
	0.43		140.0 -		ANDAMOOKA LMST: Limestone (white) with decreasing brown shale	ı ¬	(mb/€a <			39.5					8" STL pre-collar 0-
		43	=		ANDAMOOKA LMST: Limestone (white and grey) mottled		1			39					8" STL pre-collar 0- 152.5m, grouted 140- 152.5m
	0.23		_												
			150.0 -					wc		39			\coprod		
Air Hammer			-		ANDAMOOKA LMST: Limestone (white, grey, pink and tan) mottled, with some minor green and red shale				~0.5	56.7 42					
Air	0.75		160.0 -		mouted, with some millor green and red shale				0.0						
			-	H						45.5					
	0.75		170.0	Ħ	ANDAMOOKA LMST: Limestone (green, white, pink) with some	<u> </u>			0.0	50					
			170.0 -		green and brown shale and minor sandstone					58					
	0.67		-	H	ANDAMOOKA LMST: Limestone (light pink and white)				0.6	82.3					
	1.00		180.0 -						1.7	74 3.	4				
			-	H	ANDAMOOKA LMST: Limestone (light pink and white), crystalli	ne									
	0.86		190.0 -		ANDAMOOKA LMST: Limestone (white/grey, pink and purple) mottled with some sandstone (red)				1.7	7680	b				
	0.67		- *		ANDAMOOKA LMST: Limestone (white, light pink, light green)				~1	119.	5				
	0.75		_		crystalline with some sandstone (green and red) fine grained				~1	125.	4				
	0.73		200.0 -	Ŧ						123.					
	0.67		-		ANDAMOOKA LMST: Limestone (white, pink with some green, yellow), mottled and crystalline, with minor sandstone, fine gra	ned			0.8	133.	4				
	0.75		210.0 -						1.2	125.	4				
							m 1				"	. 1	' '	'	ıı I

LOGGED:	K Furness	DATE: 28/01/2008
CHECKED:		DATE:

BOREHOLE / WELL NUMBER

PT66 / RD3466

PROJECT NUMBER: **EV-07**

PROJECT NAME: **BHPB Motherwell MAR** LOCATION: Olympic Dam, South Australia

DRILLING CO: Gorey & Cole DRILLING METHOD: Air Hammer BOREHOLE DIAMETER: 6 inches

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 312 REFERENCE POINT (m AHD):

STATIC WATER LEVEL Date: Depth (m bgl):

PROJECTION:GDA94 Zone 53

D	DATE STARTED: 2501/2008 DATE COMPLETED: 28/01/2008								6951	N	ORTHING: 6	666422
DR	ILLIN	IG INFO	Э.		MATERIAL PROPERTIES			FIELI	REC	ORDS/	CONSTRUCTION	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min)	UNLOAD PRESSORE (psi) DEPTH (m)	GRAPHIC LOG	LITHOLOGY		INTERPRETIVE LOG	WATER CUTS AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL
		0.75	220.0	-	ANDAMOOKA LMST: Limestone (white and pink) motteld and crystalline, with 50% sandstone (red) fine grained			1.5	121	9		
		0.86			ANDAMOOKA LMST: Limestone (green and white with mottle pink) with 2% sandstone	ı 		1.2	109	5		
		0.67			ANDAMOOKA LMST: Limestone (green and white) crystalline	/	(a	2	140	6		
	- 6"		230.0		ANDAMOOKA LMST: Limestone (pink and white) crystalline a porous, with some sandstone (white)	nd						
		0.60			ANDAMOOKA LMST: Limestone (white, light pink), porous an crystalline	d		4	206	7		
		0.40	240.0					4	211	9		Cement/bentonite seal 230-250m
		0.46						4	207	7		
		0.46	250.0		ANDAMOOKA LMST: Dolomitic limestone (light grey) crystallin	ne		4	209	В		Basket set at 250m, open hole beneath
		0.38	260.0					5	200	9		
			200.0					15	207	8		
			270.0					>15	209			
					ANDAMOOKA LMST: Dolomitic limestone (dark grey) with mir limestone (white)	or			209			
		0.18	280.0					>15	205	6		50mm PVC monitoring
		0.15			ANDAMOOKA LMST: Dolomitic limestone (grey with some pir increasing platy cleavage	k)		>15	211	6		casing; blank 0-300m, slotted 300-306m
		0.11	290.0					>15	209	4		
		0.10		-	ANDAMOOKA LMST: Dolomite (dark grey) platy cleavage			>15				
		0.11	300.0		. 3 3/1 3			>15	206	0		
		0.08			ANDAMOOKA LMST: Dolomite (dark grey) platy cleavage with			>15	209	6		
		0.08	310.0	-	some grey shale		→ šwc	>15	209			
		0.05			ARCOONA QTZT (RD): Shale (red with some grey) and minor dolomite EOH at 312m			>15	211	4		

LOGGED:	K Furness	DATE: 28/01/2008
CHECKED:		DATE:

MAR Pumping Test Solutions (geometric means)

Constant Rate Pumping Test

SITE	KD (m2/day)	S
MAR-1 ^[1]	77	5.0E-05
MAR-2	4394	1.1E-03
MAR-3 ^[1]	3870	1.6E-05
MAR-4	3322	1.2E-07

Recovery Pumping Test

SITE	KD (m2/day)	S'
MAR-1 ^[1]	61	7.1E-06
MAR-2	438	1.1E-04
MAR-3 ^[1]	2996	1.1E-05
MAR-4	4159	8.0E-08

^{*} reliable data as obs. wells are fully penetrating

Stats ^[2]	KD (m2/day)	S	S'
Geomean	1048	2.E-05	5.E-06
Maximum	4394	1.14E-03	1.14E-04
Minimum	61	1.17E-07	7.97E-08

Notes:

- 1. reliable data as obs. wells are fully penetrating
- 2. for data presented on this summary sheet

MAR Pumping Test Solutions

Constant Rate Pumping Test

Production Well:

MAR1-10 Jacob not monitored

Solution:

 $KD = \underline{2.3Q}$ $(4\pi\delta s)$

Solve for transmissivity

 $Q = \frac{173}{\delta s} \text{ m}^3/\text{day}$ $\frac{1}{\delta s} = \frac{173}{s} \text{ m}^3/\text{day}$

KD = #DIV/0! m²/day

Observation Well: Solution:

MAR1-20 Jacob

 $KD = \underline{2.3Q}$ $(4\pi\delta s)$

Solve for transmissivity

 $Q = \frac{173}{\delta s} \text{ m}^3/\text{day}$ $\delta s = \frac{0.41}{\delta s} \text{ m}$

 $KD = 77 \text{ m}^2/\text{day}$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

 $r = \frac{33}{7} \text{ m}$ $KD = \frac{77}{100} \text{ m}^2/\text{day}$ $t = \frac{3.1E-04}{100} \text{ days}$

S = 4.99E-05

$$u = r^2S/4KDt$$

Check for validity of solution

u = 4.2E-02

Valid ✓ if u<0.1

Constant Rate Pumping Test (RECOVERY)

Production Well:

not monitored

Solution:

Theis Recovery

 $KD = \underline{2.3Q}$ $(4\pi\delta s')$

Solve for transmissivity

 $Q = \frac{173}{\delta s} = \frac{m^3}{m}$

KD = #DIV/0! m²/day

Observation Well:

Solution:

Theis Recovery

 $KD = \frac{2.3Q}{(4\pi\delta s')}$

Solve for transmissivity

 $Q = \frac{173}{\delta s} = \frac{m^3}{day}$

 $KD = 61 \text{ m}^2/\text{day}$

 $(t/t')_0 = S/S'$

Solve for storativity

S = 4.99E-05 $(t/t')_0 = 7$

S' = 7.12E-06

MAR Pumping Test Solutions

Constant Rate Pumping Test (airlift)

Production Well:

not monitored

Solution:

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = m^3/day$$

$$\delta s = m$$

$$KD = \#DIV/0!$$
 m²/day

Observation Well: Solution:

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

 $\delta s = \frac{0.045}{\delta s} \text{ m}$

KD =
$$12298 \text{ m}^2/\text{day}$$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

$$r = \frac{12}{12} \text{ m}$$
 $KD = \frac{12298}{12298} \text{ m}^2/\text{day}$
 $t = \frac{2.3\text{E}-04}{12298} \text{ days}$

$$u = r^2S/4KDt$$

Check for validity of solution

$$u = 5.6E-04$$

Constant Rate Pumping Test (RECOVERY)

Production Well: Solution:

not monitored

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

$$KD = \#DIV/0!$$
 m²/day

Observation Well:

Solution:

Theis Recovery

$$KD = \frac{2.3Q}{(4\pi\delta s')}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

$$KD = 10062 \text{ m}^2/\text{day}$$

$$(t/t')_0 = S/S'$$

Solve for storativity

$$S = 4.45E-02$$

 $(t/t')_0 = 7$

S' = 6.35E-03

MAR Pumping Test Solutions

Constant Rate Pumping Test

Production Well: Solution:

MAR-2 Jacob

not monitored

KD = 2.3Q $(4\pi\delta s)$

Solve for transmissivity

3024 m³/day Q =0.06 m $\delta s =$

9223 m²/day KD =

Observation Well: Solution:

MAR2-10a <u>Jacob</u>

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} = \frac{30.37}{0.37}$$
 m³/day

KD =
$$1496 \text{ m}^2/\text{day}$$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

$$r = \frac{17.5}{\text{M}} \text{ M}$$
 $KD = \frac{1496}{\text{M}^2/\text{day}}$
 $(t/r^2)_0 = \frac{1.0\text{E}-04}{\text{days}}$

$$u = r^2 S/4 KDt$$

Check for validity of solution

Observation Well: MAR2-10b Solution: <u>Jacob</u>

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} = \frac{30.04}{0.09}$$
 m³/day

KD =
$$6149 \text{ m}^2/\text{day}$$

S = 2.25KDt r_0^2

Solve for storativity

$$r = 17.5 \text{ m}$$

 $KD = 6149 \text{ m}^2/\text{day}$
 $(t/r^2)_0 = 6.9\text{E}-19 \text{ days}$

$$u = r^2S/4KDt$$

Check for validity of solution

Valid if u<0.1

Constant Rate Pumping Test (RECOVERY)

Production Well:

MAR-2

Solution:

Theis Recovery

$$KD = \frac{2.3Q}{(4\pi\delta s')}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

 $\frac{1}{2} \frac{$

KD =
$$1107 \text{ m}^2/\text{day}$$

Observation Well: MAR2-10a

Solution:

Theis Recovery

$$KD = \frac{2.3Q}{(4\pi\delta s')}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

 $\delta s = \frac{4.6}{3024} \text{ m}^3$

KD =
$$120 \text{ m}^2/\text{day}$$

$$(t/t')_0 = S/S'$$

Solve for storativity

$$S = 1.14E-03$$

 $(t/t')_0 = 10$

Observation Well: Solution:

MAR2-10b
Theis Recovery

$$KD = \frac{2.3Q}{(4\pi\delta s')}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

 $\delta s = \frac{0.875}{\delta s} \text{ m}$

KD = 632
$$m^2/day$$

$$(t/t')_0 = S/S'$$

Solve for storativity

$$S = 3.14E-17$$

 $(t/t')_0 = 2$

S' = 1.57E-17

MAR Pumping Test Solutions

Constant Rate Pumping Test

Production Well: Solution:

MAR-3 Jacob not monitored

...

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

 $\frac{1}{2} \frac{$

KD =
$$1107 \text{ m}^2/\text{day}$$

Observation Well: Solution:

MAR3-20 Jacob

$$KD = \underbrace{2.3Q}_{(4\pi\delta s)}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} = \frac{m^3}{day}$$

 $\delta s = \frac{0.13}{m}$

KD =
$$4257 \text{ m}^2/\text{day}$$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

$$r = \frac{25}{\text{M}} \text{ M}$$
 $KD = \frac{4257}{\text{M}^2/\text{day}}$
 $(t/r^2)_0 = \frac{1.5\text{E}-06}{\text{days}}$

$$u = r^2 S/4 KDt$$

Check for validity of solution

Observation Well: RT-2a Solution: Jacob

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} = \frac{3024}{0.045} m^3/day$$

$$KD = 12298 \text{ m}^2/\text{day}$$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

$$r = \frac{36 \text{ m}}{\text{KD}} = \frac{12298 \text{ m}^2/\text{day}}{4.9\text{E}-07 \text{ days}}$$

$$S = 1.04E-05$$

$$u = r^2S/4KDt$$

Check for validity of solution

Constant Rate Pumping Test (RECOVERY)

Production Well:

MAR-3

Solution:

Theis Recovery

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s')$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} = \frac{30.3}{0.3}$$
 m³/day

KD =
$$1845 \text{ m}^2/\text{day}$$

Observation Well: MAR3-20

Solution:

Theis Recovery

$$KD = \frac{2.3Q}{(4\pi\delta s')}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} = \frac{m^3}{day}$$

KD = 2635
$$m^2/day$$

$$(t/t')_0 = S/S'$$

Solve for storativity

$$S = 2.34E-05$$

 $(t/t')_0 = 1.00000$

S' = 2.34E-05

Observation Well: RT-2a Theis Recovery

Solution:

$$KD = \frac{2.3Q}{(4\pi\delta s')}$$

Solve for transmissivity

$$Q = \frac{3024}{\delta s} \text{ m}^3/\text{day}$$

 $\delta s = \frac{0.1}{\delta s} \text{ m}^3$

KD =
$$5534 \text{ m}^2/\text{day}$$

 $(t/t')_0 = S/S'$

Solve for storativity

$$S = 1.04E-05$$

 $(t/t')_0 = 2$

5.19E-06

MAR Pumping Test Solutions

Constant Rate Pumping Test

Production Well: MAR-4 Solution: Jacob

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

$$Q = \frac{2592}{\delta s} \frac{m^3}{day}$$

 $\delta s = \frac{1}{m} m$

KD = **474**
$$m^2/day$$

Observation Well: MAR4-20a Solution: Jacob

$$KD = \underbrace{2.3Q}_{(4\pi\delta s)}$$

Solve for transmissivity

$$Q = \frac{2592}{\delta s} \text{ m}^3/\text{day}$$

 $\delta s = \frac{0.1}{\delta s} \text{ m}$

KD =
$$4743 \text{ m}^2/\text{day}$$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

$$r = 34 \text{ m}$$

 $KD = 4743 \text{ m}^2/\text{day}$
 $(t/r^2)_0 = 6.9\text{E} \cdot 08 \text{ days}$

$$S = 6.41E-07$$

$$u = r^2S/4KDt$$

Check for validity of solution

Observation Well: MAR4-20b Solution: Jacob

$$KD = \underline{2.3Q}$$

$$(4\pi\delta s)$$

Solve for transmissivity

Q =	2592	m ³ /day
$\delta s =$	0.11	m

KD =
$$4312 \text{ m}^2/\text{day}$$

$$S = \frac{2.25KDt}{r_0^2}$$

Solve for storativity

$$r = 34 \text{ m}$$
 $KD = 4312 \text{ m}^2/\text{day}$
 $(t/r^2)_0 = 2.1\text{E}-08 \text{ days}$

$$u = r^2S/4KDt$$

Check for validity of solution

Observation Well:

MAR4-50a Jacob

Solution:

 $KD = \underline{2.3Q}$ $(4\pi\delta s)$

Solve for transmissivity

 $Q = \frac{2592}{\delta s} \frac{m^3}{day}$ $\delta s = \frac{0.06}{m} m$

KD = **7906** m^2/day

 $S = \frac{2.25KDt}{r_0^2}$

Solve for storativity

 $r = \frac{64}{\text{M}} \text{ m}$ $KD = 7906 \text{ m}^2/\text{day}$ $(t/r^2)_0 = \frac{4.9\text{E}-08}{\text{days}} \text{ days}$

S = 2.11E-07

 $u = r^2S/4KDt$

Check for validity of solution

u = 2.4E-05

Valid ✓ if u<0.1

Observation Well: MAR4-50b Solution: Jacob

 $KD = \underbrace{2.3Q}_{(4\pi\delta s)}$

Solve for transmissivity

 $Q = 2592 \text{ m}^3/\text{day}$ $\delta s = 0.09 \text{ m}$

KD = **5271** m^2/day

 $S = \frac{2.25KDt}{r_0^2}$

Solve for storativity

r = 64 m $KD = 5271 \text{ m}^2/\text{day}$ $(t/r^2)_0 = 2.8\text{E}-09 \text{ days}$

S = 8.04E-09

 $u = r^2S/4KDt$

Check for validity of solution

u = 1.0E-07

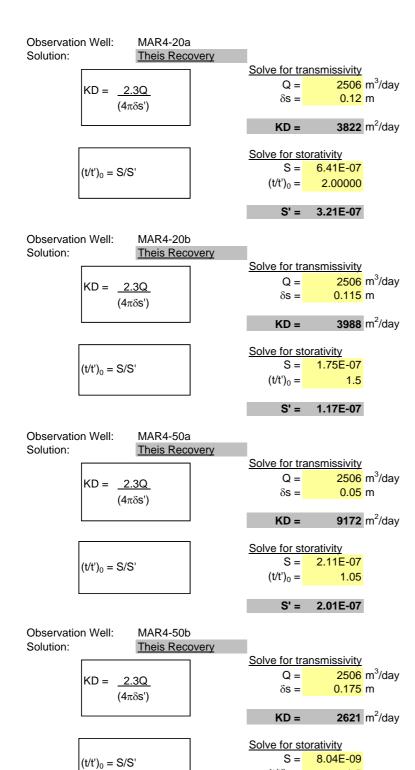
Valid ✓ if u<0.1

Constant Rate Pumping Test (RECOVERY)

Production Well:

MAR-4

Solution:


Theis Recovery

 $KD = \underline{2.3Q}$ $(4\pi\delta s')$

Solve for transmissivity

 $Q = \frac{2506}{\delta s} \text{ m}^3/\text{day}$ $\delta s = \frac{0.135}{\delta s} \text{ m}$

KD = $3397 \text{ m}^2/\text{day}$

 $(t/t')_0 =$

1.5

S' = 5.36E-09

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0800970** Page : 1 of 8

Client : RESOURCE & ENVIRON MANGMNT P/L Laboratory : Environmental Division Melbourne

Contact : MR PAUL HOWE Contact : Paul Loewy

Address : UNIT 9, 15 FULLARTON RD Address : 4 Westall Rd Springvale VIC Australia 3171

KENT TOWN SA, AUSTRALIA 5067

Telephone : +61 08 8363 1777 Telephone : +61-3-8549 9600 Facsimile : +61 08 8363 1477 Facsimile : +61-3-8549 9601

Project : EV-07 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ---C-O-C number : ----

 C-O-C number
 : -- Date Samples Received
 : 08-FEB-2008

 Sampler
 : MI,KF,TM
 Issue Date
 : 18-FEB-2008

Site : ---

No. of samples received : 12

Quote number : ME/122/06 No. of samples analysed : 12

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics
Terrance Hettipathirana Senior ICP/MS Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

A Campbell Brothers Limited Company

Page : 2 of 8

Work Order : EM0800970

Client RESOURCE & ENVIRON MANGMNT P/L

Project : EV-07

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EGO20-F: EMO800970 #002, 004, 005, 006, 008, 009, 011 and 012 have been diluted for analysis by ICP-MS and LORs have been raised accordingly.
- Ionic Balance out of acceptable limits for EM0800970 #7 due to analytes not quantified in this report.

Page : 3 of 8
Work Order : EM0800970

Client : RESOURCE & ENVIRON MANGMNT P/L

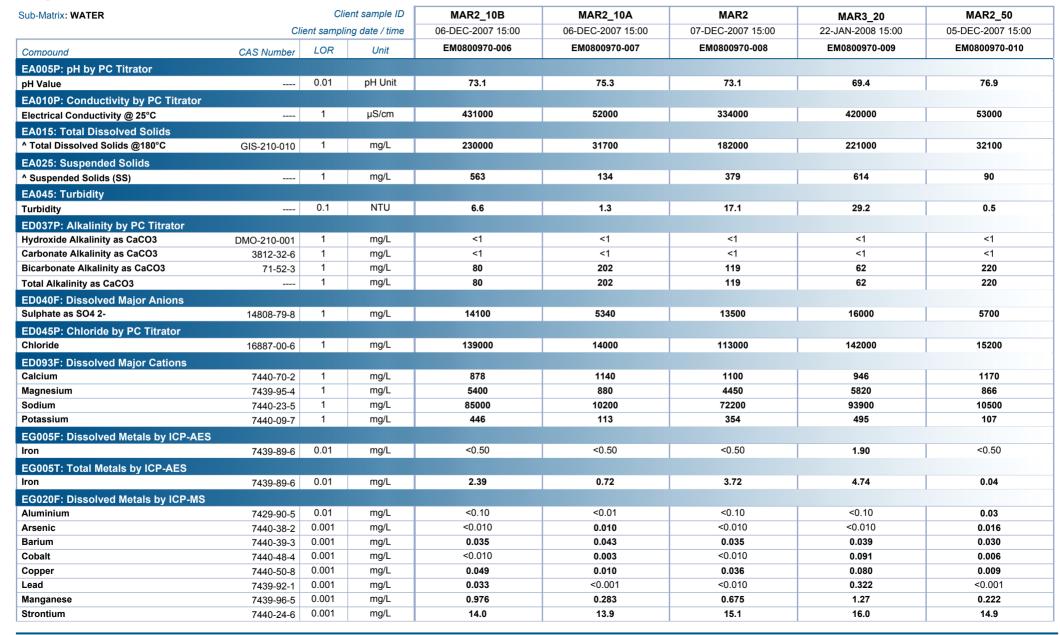
Project : EV-07

Sub-Matrix: WATER	Client sample ID Client sampling date / time			MAR4_PUMPED	MAR3	MAR4	PT_66 31-JAN-2008 15:00	MAR2_50B 05-DEC-2007 15:00
				27-JAN-2008 15:00	23-JAN-2008 15:00	12-DEC-2007 15:00		
Compound	CAS Number	LOR	Unit	EM0800970-001	EM0800970-002	EM0800970-003	EM0800970-004	EM0800970-005
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	69.9	71.6	78.1	76.7	73.6
EA010P: Conductivity by PC Titrator								•
Electrical Conductivity @ 25°C		1	μS/cm	61000	240000	72000	464000	417000
EA015: Total Dissolved Solids								
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	33500	179000	43200	261000	237000
EA025: Suspended Solids								
^ Suspended Solids (SS)		1	mg/L	107	445	90	420	704
EA045: Turbidity								1
Turbidity		0.1	NTU	66.0	32.8	10.3	5.8	4.7
ED037P: Alkalinity by PC Titrator								1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	281	140	259	87	79
Total Alkalinity as CaCO3		1	mg/L	281	140	259	87	79
ED040F: Dissolved Major Anions								•
Sulphate as SO4 2-	14808-79-8	1	mg/L	5470	11500	5560	16400	16300
ED045P: Chloride by PC Titrator								
Chloride	16887-00-6	1	mg/L	19500	86300	22500	149000	139000
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	1	mg/L	1060	1000	957	906	943
Magnesium	7439-95-4	1	mg/L	1110	3660	1110	5970	5440
Sodium	7440-23-5	1	mg/L	12700	58600	13900	98900	87200
Potassium	7440-09-7	1	mg/L	106	304	133	436	461
EG005F: Dissolved Metals by ICP-AES								
Iron	7439-89-6	0.01	mg/L	1.45	2.00	<0.50	<0.50	0.50
EG005T: Total Metals by ICP-AES								
Iron	7439-89-6	0.01	mg/L	3.88	5.03	2.50	0.90	2.33
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.10	0.02	<0.10	<0.10
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.010	<0.001	0.026	<0.010
Barium	7440-39-3	0.001	mg/L	0.026	0.034	0.029	0.043	0.033
Cobalt	7440-48-4	0.001	mg/L	0.001	<0.010	0.006	0.021	<0.010
Copper	7440-50-8	0.001	mg/L	0.009	0.032	0.010	0.106	0.050
Lead	7439-92-1	0.001	mg/L	<0.001	0.021	<0.001	1.74	0.022
Manganese	7439-96-5	0.001	mg/L	0.684	0.864	0.750	0.537	0.966
Strontium	7440-24-6	0.001	mg/L	16.0	13.9	16.4	13.2	13.8

Page : 4 of 8 Work Order : EM0800970

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV-0


ALS

Sub-Matrix: WATER		Clie	ent sample ID	MAR4_PUMPED	MAR3	MAR4	PT_66	MAR2_50B
	Cl	ient sampli	ng date / time	27-JAN-2008 15:00	23-JAN-2008 15:00	12-DEC-2007 15:00	31-JAN-2008 15:00	05-DEC-2007 15:00
Compound	CAS Number	LOR	Unit	EM0800970-001	EM0800970-002	EM0800970-003	EM0800970-004	EM0800970-005
EG020F: Dissolved Metals by ICP-MS - Con	tinued							
Uranium	7440-61-1	0.001	mg/L	0.013	0.010	0.015	<0.001	<0.001
Zinc	7440-66-6	0.005	mg/L	0.264	0.063	0.006	0.088	<0.050
Boron	7440-42-8	0.05	mg/L	4.56	3.20	4.39	1.20	1.86
EG052F: Silica by ICPAES								
^ Silica	7631-86-9	0.1	mg/L	9.1	<0.1	10.3	<0.1	41.3
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.6	<0.1	12.3	<1.0	1.7
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N		0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
EK058G: Nitrate as N by Discrete Analyse	r							
^ Nitrate as N	14797-55-8	0.010	mg/L	0.015	<0.010	0.018	<0.010	0.079
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.010	mg/L	0.015	<0.010	0.018	<0.010	0.079
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	670	2680	755	4540	4260
^ Total Cations		0.01	meq/L	699	2910	747	4850	4300
^ Ionic Balance		0.01	%	2.08	4.13	0.54	3.31	0.50

Page : 5 of 8
Work Order : EM0800970

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV-07

Page : 6 of 8
Work Order : EM0800970

Client : RESOURCE & ENVIRON MANGMNT P/L

Project : EV-0

ALS

Sub-Matrix: WATER		Clie	ent sample ID	MAR2_10B	MAR2_10A	MAR2	MAR3_20	MAR2_50
	CI	ient sampli	ng date / time	06-DEC-2007 15:00	06-DEC-2007 15:00	07-DEC-2007 15:00	22-JAN-2008 15:00	05-DEC-2007 15:00
Compound	CAS Number	LOR	Unit	EM0800970-006	EM0800970-007	EM0800970-008	EM0800970-009	EM0800970-010
EG020F: Dissolved Metals by ICP-MS - Con	ntinued							
Uranium	7440-61-1	0.001	mg/L	<0.001	0.004	0.010	<0.001	0.004
Zinc	7440-66-6	0.005	mg/L	0.052	0.010	0.071	0.113	0.010
Boron	7440-42-8	0.05	mg/L	1.90	4.73	2.62	2.04	5.18
EG052F: Silica by ICPAES								
^ Silica	7631-86-9	0.1	mg/L	34.2	24.1	42.8	<0.1	13.4
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.8	16.9	2.5	2.0	17.0
EK057G: Nitrite as N by Discrete Analyser	r							
Nitrite as N		0.010	mg/L	<0.010	<0.010	<0.010	<0.010	0.577
EK058G: Nitrate as N by Discrete Analyse	r							
^ Nitrate as N	14797-55-8	0.010	mg/L	0.150	1.81	0.057	0.081	0.506
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.010	mg/L	0.150	1.81	0.057	0.081	1.08
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	4210	510	3460	4330	551
^ Total Cations		0.01	meq/L	4200	577	3570	4620	589
^ Ionic Balance		0.01	%	0.13	6.08	1.50	3.29	3.33

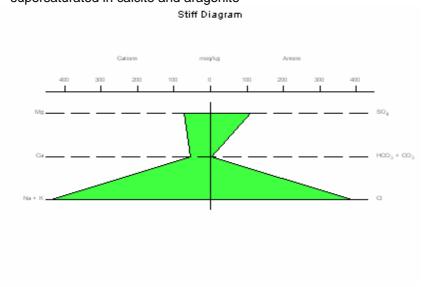
Page : 7 of 8
Work Order : EM0800970

Client : RESOURCE & ENVIRON MANGMNT P/L

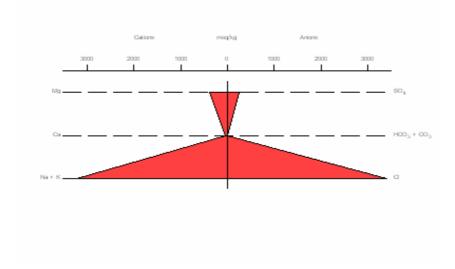
Project : EV-0

Sub-Matrix: WATER	p-Matrix: WATER Client sample ID				PT40	 	
	CI	ient sampli	ng date / time	MAR3_PUMPED 05-FEB-2008 15:00	07-FEB-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0800970-011	EM0800970-012	 	
EA005P: pH by PC Titrator	C) (C) (Valingo)						
pH Value		0.01	pH Unit	65.7	78.2	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	210000	220000	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	135000	111000	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	318	4690	 	
EA045: Turbidity							1
Turbidity		0.1	NTU	58.0	1830	 	
ED037P: Alkalinity by PC Titrator							I .
Hydroxide Alkalinity by FC Titrator	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	151	187	 	
Total Alkalinity as CaCO3		1	mg/L	151	187	 	
ED040F: Dissolved Major Anions							
Sulphate as SO4 2-	14808-79-8	1	mg/L	11100	8760	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	87000	75100	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	995	1170	 	
Magnesium	7439-95-4	1	mg/L	3640	2530	 	
Sodium	7440-23-5	1	mg/L	58500	46700	 	
Potassium	7440-09-7	1	mg/L	315	207	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	2.45	<0.50	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	3.54	13.8	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.10	<0.10	 	
Arsenic	7440-38-2	0.001	mg/L	0.011	0.259	 	
Barium	7440-39-3	0.001	mg/L	0.032	0.069	 	
Cobalt	7440-48-4	0.001	mg/L	<0.010	0.584	 	
Copper	7440-50-8	0.001	mg/L	0.030	0.039	 	
Lead	7439-92-1	0.001	mg/L	0.028	0.037	 	
Manganese	7439-96-5	0.001	mg/L	0.818	0.526	 	
Strontium	7440-24-6	0.001	mg/L	13.6	16.9	 	

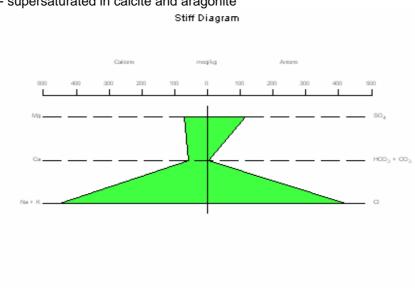
Page : 8 of 8 Work Order : EM0800970

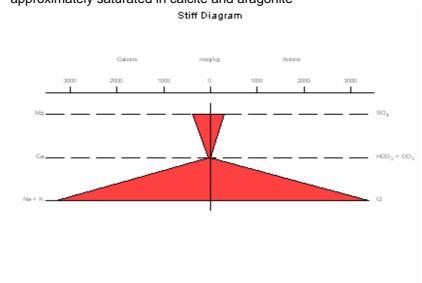

Client : RESOURCE & ENVIRON MANGMNT P/L

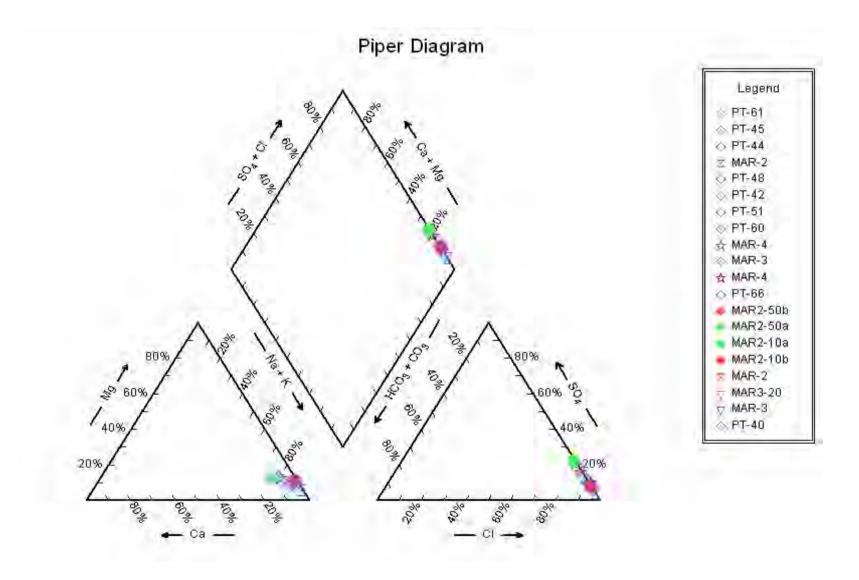
Project : EV-07


ALS

Sub-Matrix: WATER	Client sample ID			MAR3_PUMPED	PT40	 	
	Cl	ient sampli	ng date / time	05-FEB-2008 15:00	07-FEB-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0800970-011	EM0800970-012	 	
EG020F: Dissolved Metals by ICP-MS - Co	ntinued						
Uranium	7440-61-1	0.001	mg/L	0.010	0.030	 	
Zinc	7440-66-6	0.005	mg/L	0.504	0.240	 	
Boron	7440-42-8	0.05	mg/L	3.21	5.80	 	
EG052F: Silica by ICPAES							
^ Silica	7631-86-9	0.1	mg/L	<0.1	<0.1	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	5.2	10.8	 	
EK057G: Nitrite as N by Discrete Analyse	r						
Nitrite as N		0.010	mg/L	<0.010	0.011	 	
EK058G: Nitrate as N by Discrete Analyse	er						
^ Nitrate as N	14797-55-8	0.010	mg/L	<0.010	0.765	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.010	mg/L	<0.010	0.776	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	2690	2300	 	
^ Total Cations		0.01	meq/L	2900	2300	 	
^ Ionic Balance		0.01	%	3.80	0.02	 	

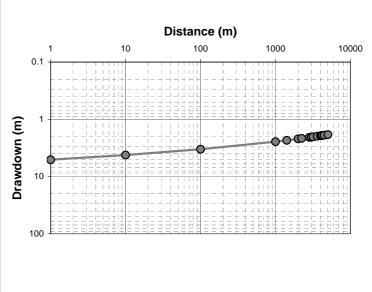

MAR2-10a - supersaturated in calcite and aragonite


MAR2-10b - approximately saturated in calcite and undersaturated in aragonite Stiff Diagram



MAR2-50a - supersaturated in calcite and aragonite

MAR2-50b - approximately saturated in calcite and aragonite


THEIS Analytical Solution (Theis, 1935) Calculate Drawdown (s) for known Discharge (Q) **INPUTS** NOTE 1: Estimating 'T' from specific capacity data use: Pumping rate of well (m3/day): 2500 [log t = -2.31 + 0.81 log (spec cap)]NOTE 2: If using 'T', divide by saturated thickness to give Storage coefficient (s) of aquifer: 2.00E-05 hydraulic conductivity (T=kB) Transmissivity (m2/day): 1050 NOTE 3: Estimates of s (conservative): Unconfined=0.05, Time since pumping started (days): 3650 Semi=0.005, Confined=0.00005

Distance (m)	u	W(u)	Drawdown (m)
1	1.30E-12	2.68E+01	5.07550808
10	1.30E-10	2.22E+01	4.2029657
100	1.30E-08	1.76E+01	3.33042332
1000	1.30E-06	1.30E+01	2.45788119
1414	2.61E-06	1.23E+01	2.32655072
2000	5.22E-06	1.16E+01	2.1952205
2236	6.52E-06	1.14E+01	2.1529417
2828	1.04E-05	1.09E+01	2.06389077
3000	1.17E-05	1.08E+01	2.04157465
3162	1.30E-05	1.07E+01	2.02161222
3606	1.70E-05	1.04E+01	1.97190276
4000	2.09E-05	1.02E+01	1.93256204
4123	2.22E-05	1.01E+01	1.92107573

1.01E+01 1.91024616

9.98E+00 1.89028398

9.75E+00 1.84800617

NOTE 4: To convert Gallons/minute to litres/sec. divide by 13.2 NOTE 5: To convert litres/sec to cubic metres/day, multiply by 86.4

Description:

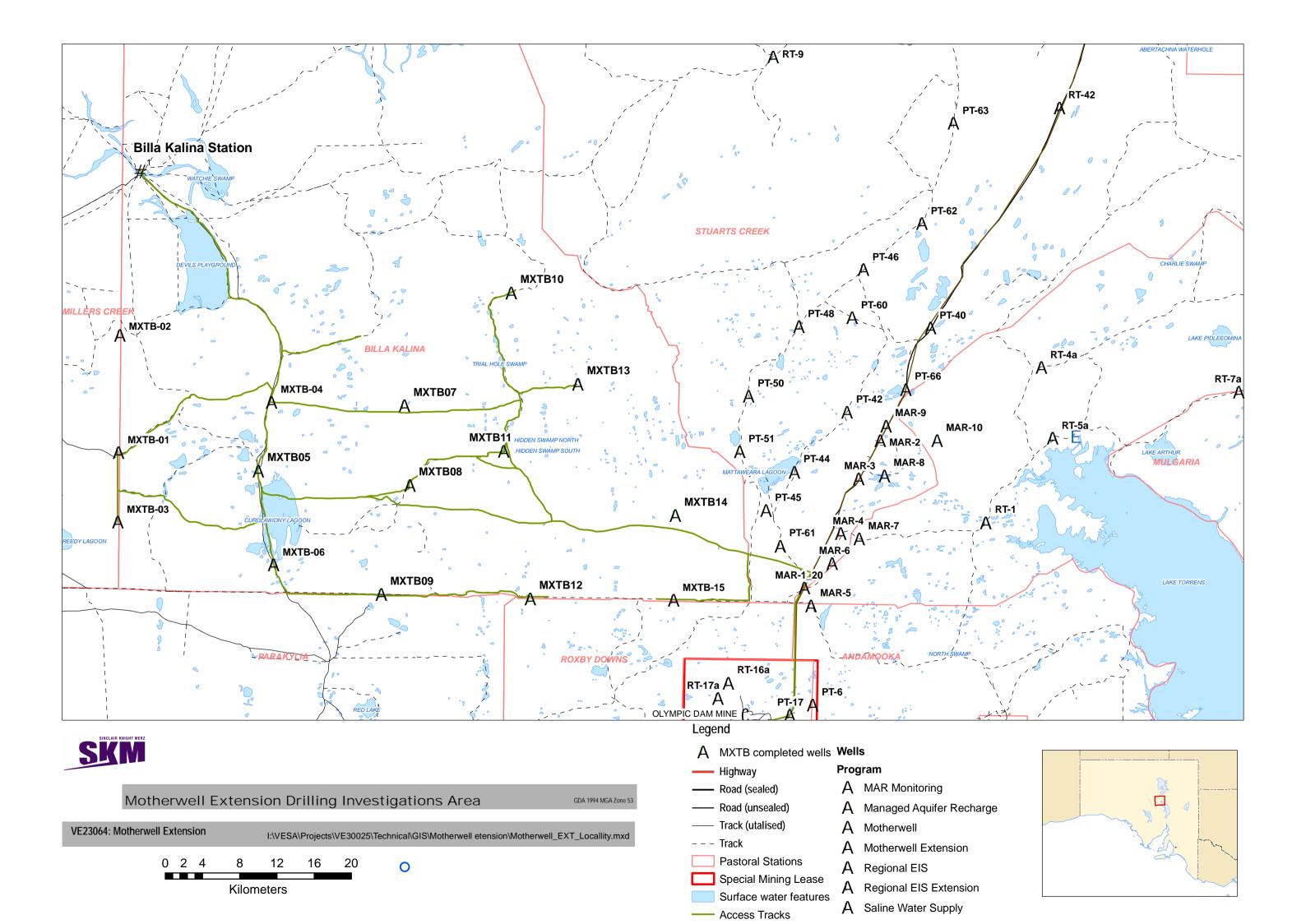
4243

4472

5000

2.35E-05

2.6093E-05


3.2616E-05

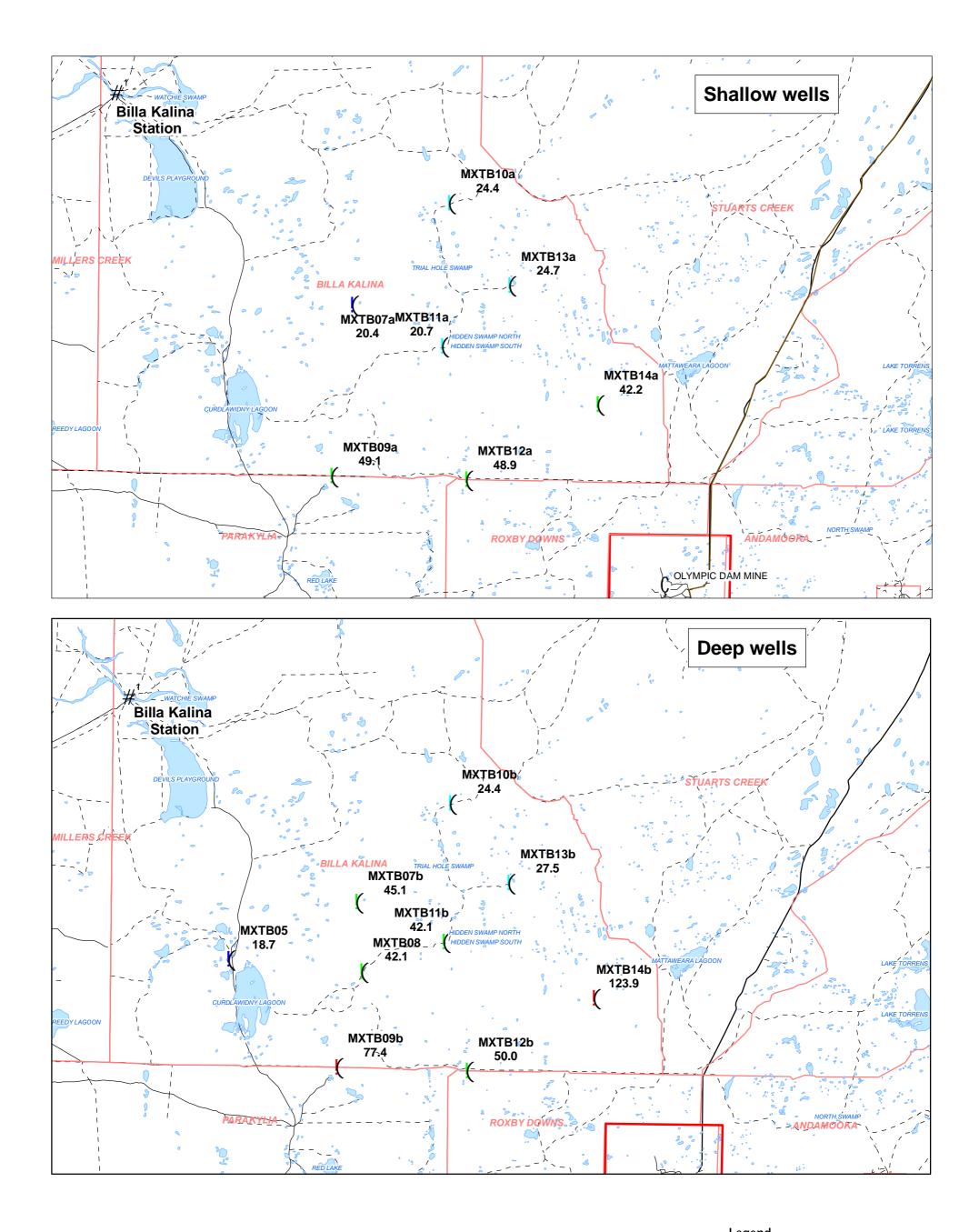
Analytical model developed to assist in assessing sustainable yields from production wells drawing water from the Andamooka Limestone aquifer north of BHP Billitons Olympic Dam mine. Total wellfield yields of up to 29 ML/day are required for up to 10 years. At an assumed 2.5 ML/day/well the adopted wellfield configuration incorporates 14 wells (including back-up supply. Model utilises the geometric mean values for T (1050m2/day) and S (2x10-5).

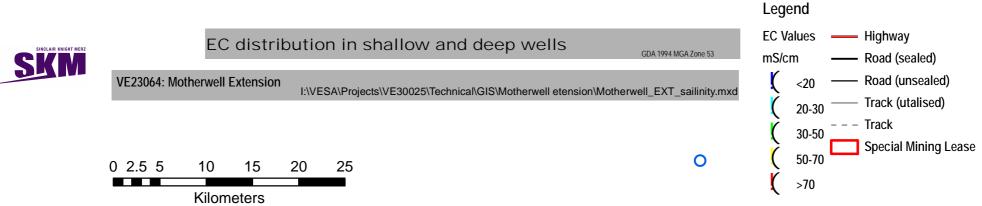
Olympic Dam EIS Project – Hydrogeological data and information collation report FINAL

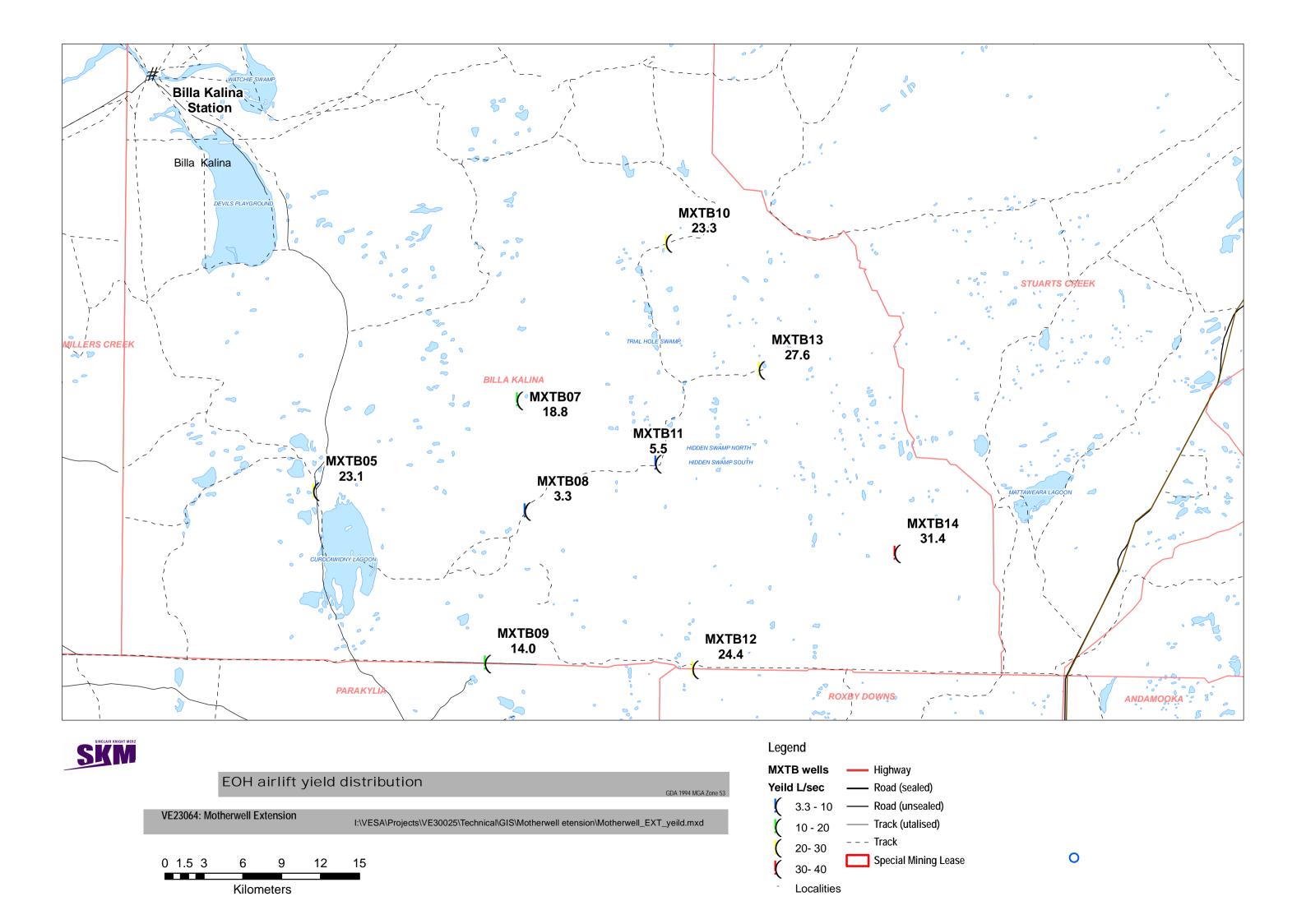
D.2 Motherwell extension investigation

Wells completed in Motherwell Extension drilling program

Well ID	Location (Mo	GA94_Zone53)	DWLBC	DUD	Dates Drilled		
	Easting	Northing	Permit Number	BHP Number	Start	Completed	
MXTB05	627372	6657629	n/a	RD3581	30/09/08	2/10/08	
MXTB07a/b	643063	6664649	n/a	RD3583	1/11/08	9/11/08	
MXTB08	643654	6656106	n/a	RD3584	4/12/08	8/12/08	
MXTB09a/b	640590	6644362	n/a	RD3585	10/11/08	17/11/08	
MXTB10a/b	654543	6676749	n/a	RD3586	22/10/08	31/10/08	
MXTB11a/b	653728	6659749	n/a	RD3587	26/11/08	3/12/08	
MXTB12a/b	656587	6643923	n/a	RD3588	18/11/08	25/11/08	
MXTB13a/b	661709	6666966	n/a	RD3589	12/10/08	21/10/08	
MXTB14a/b	672164	6652846	n/a	RD3590	3/10/08	12/10/08	


Well construction details


			Final Pre-collar Casing		Stick-up		PVC							
Well ID	Drill Method	EOH Depth (m)	Depth Setting (m)	Diameter (mm)	Material	Steel Casing above ground (m)	PVC above ground (m)	Concrete above ground (m)	Slotted/ Production Interval (m)	Diameter (mm)	Material	Gravel pack Interval (m)	Seal Interval (m)	Formation EOH
MXTB05	RC AIR HAMMER	126	42	254	Steel				-	-	-	-	-	Pws
MXTB07a/b	RC AIR HAMMER	186	66	254	Steel	0.45	a: 0.33 b: 0.36	0.15	a: 98-104 b: 166-172	80	PVC	a : 80-110 b :156-186	a : 66-80 b :110-156	Pwx
MXTB08	RC AIR HAMMER	168	60	305	Steel	0.85		0.2		-	-	-	-	Pws
MXTB09a/b	RC AIR HAMMER	144	54	254	Steel	0.4	a : 0.22 b : 0.27	0.11	a: 58-64 b: 120-126	80	PVC	a : 55-83 b :110-145	a : 40-54 b :83-111	Pwx
MXTB10a/b	RC AIR HAMMER	264	120	254	Steel	0.42	a: 0.26 b: 0.33	0.08	a: 136-142 b: 240-246	80	PVC	a : 120-148 b :230-265	a : 110-120 b :148-231	Pwx
MXTB11a/b	RC AIR HAMMER	174	65	305	Steel	0.55	a: b:	0.1	a: 70-76 b: 136-142	203/80	Steel/PV C	a: n/a b :126-174	a : n/a b :78-126	Pws
MXTB12a/b	RC AIR HAMMER	162	72	254	Steel	0.4	a: 0.3 b: 0.34	0.11	a: 86-92 b: 138-144	80	PVC	a: 72-100 b :126-162	a : 64-74 b :100-126	Pws
MXTB13a/b	RC AIR HAMMER	192	78	254	Steel	0.67	a: 0.57 b: 0.61	0.18	a: 90-96 b: 158-164	80	PVC	a: 80-108 b :150-192	a : 60-80 b :105-150	Pws
MXTB14a/b	RC AIR HAMMER	210	85	254	Steel	0.55	a: 0.42 b: 0.44	0.11	a: 93-99 b: 202-208	80	PVC	a: 83-100 b :192-210	a : 80-83 b :100-192	Pws



Summary of drillhole stratigraphy

	Formations Inter	rvals and Descri	ptions				
Well	Quaternary and Tertiary Sediments	Bulldaog Shale	Yarrawarra Shale	Boorthana Shale	Andamooka Limestone	Yarloo Shale	Arcoona Quartzite
MXTB05	0-18 m Sands, clays and silts: red and brown, fine to coarse grained	18-32 m Clay: yellow and white, medium plasticity			32-122 m Limestone, moderately weathered, light coloured non- crystalline followed Dolomite, darker crystalline dolomite		122-126 m Sandstone; white and green, medium- coarse grained
MXTB07	0-22 m Sands and Silts: white, red and tan, fine-medium grained with gravels		? 22-54 m Shale and Claystone: brown, grey and purple		54- 174 m Limestone, moderately weathered, light coloured non- crystalline followed unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite	174-186 m Shale; blue- grey and red, laminated, unweathered	
MXTB08	0-4 m Sandy Clays: Red and brown, fine to medium grained			4-48 m Shale and Claystone: grey and brown, medium plasticity becoming more laminated with depth	48-162 m Limestone, high-moderately weathered, light coloured non- crystalline followed unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite		162-168 m Sandstone: pink and white, medium to coarse grained
MXTB09	0-2 m Sand: red, fine-coarse grained with white gravels		? 2-48 m Shale and Claystone: purple-brown, green-grey		48-136 m Limestone: moderately weathered, light coloured non- crystalline followed by unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite	136-140 m Shale: red and pink, banded, unweathered	140-144 m Sandstone: grey and white, fine to medium grained
MXTB10	0-18 m Sands and Silts: white, red and tan, fine-medium grained with gravels			18-108 m Shale and Claystone: grey and brown, medium plasticity becoming more laminated with depth	108-241 m Limestone: moderately weathered, light coloured non- crystalline followed by unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite	241-246 m Shale: blue- grey and red, unlaminted, unweathered	
MXTB11	0-4 m			4-58 m Shale and Claystone: grey and brown, medium plasticity becoming more laminated with depth	58-168 m Limestone: high-moderately weathered, light coloured non- crystalline followed by unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite		168-174 m Sandstone: grey and red, coarse grained
MXTB12	0-66 m Sands and Silts: white, grey and tan, fine-medium grained with gravels				66-152 Limestone: moderately weathered, light coloured non- crystalline followed by unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite	152-157 m Shale: red and grey, unweathered, platy	157-162 Sandstone: white, fine grained.
MXTB13	0-12 m Sand: red, fine grained		12-60 m Shale and claystone: grey and brown, slightly weathered becoming more laminated with depth		60-186 m Limestone: moderately weathered, light coloured non- crystalline followed by unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite		186-192 Sandstone: pink and white, medium to coarse grained
MXTB14	0-24 m Silty clays: white, red and tan, fine- medium grained with gravels	26-32 m Shale and Claystone: brown and grey, medium plasticity	·		32-206 m Limestone: moderately weathered, light coloured non- crystalline followed by unweathered, white, crystalline Limestone, underlin by Dolomite, darker crystalline dolomite	206-210 m Shale: red and green, unweathered	

. Hydrogeological information collected during drilling

_			
Well ID	Airlift yield (L/s)	Groundwater salinity (mS/cm)	Water level
MXTB05 Andamooka Limestone	Water cut at 40m with gradual increase to 10 L/s at 90m then increase to 18 L/s at 115 m with 23 L/s at EOH	14 at 40m with 16 to 18 until EoH	37.77 m BGL (15/10/2008)
MXTB08 Andamooka Limestone	Water cuts at 80 m, 94 m and 148m. Approximately 1 L/s at 80m and increasing to 35 L/sec at 94 m. Due to lose of circulation final yield were not able to be determined.	31 at 80 m with a gradual increase to 41 by 132 m. There were no water samples from 138-144 m. At 150 m the EC was 51 and remained so until EOH	65.12 mBGL (8/12/08)
MXTB07 Andamooka Limestone	Water cuts at 75 & 93 m. Steady increase to 6 L/s at 150 m and then to 19 L/s by 180 m.	<22 until 132 m, then gradual increase to 37 by 162 m	a: 64.63 mBGL b: 64.57 mBGL (9/11/08)
MXTB09 Andamooka Limestone	Water cut at 50 m. Increases to 8 L/s at ~70 m, 12 L/s at ~120 m, and then to 14 L/s at 186 m.	48 until 76 m, then gradual increase to 62 by 102 m and then to 70 by 132.	a: 43.05 mTOC b: 46.06 mTOC 18/11/2008
MXTB10 Andamooka Limestone	Water cut at 120 m. <2 L/s to 156 m with increase to 4 L/s and then to 12 L/s at 186 m. Gradual increase to 28 L/s between 222 and 252m	20 to 24 until 180, then gradual increase to ~40 at 180 m	a: 77.04 mBGL b: 77.05 mBGL (1/11/08)
MXTB11 Andamooka Limestone	Water cut at 65 m with a yield of 2-3 L/sec with an increase to 8-10 L/sec at 82 m. Due to lost circulation the yield could not be accurately measured past this point but water was cut again at 128 m.	20 to 22 from 76 m until 126 m. At 132 m the EC was 27 and gradually increased to 33 by EOH	a: 58.01 mTOC b: 58.09 m TOC (3/12/08)
MXTB12 Andamooka Limestone	Water cut at 80 m and 83 m with a yield <1L/sec. Water cut at 98 m with increase to 1.25 L/sec and gradually increased to 5.5 L/sec. Water cut at 128 m with a yield of 10 L/sec and water cut at 134 m where yield increased to 20 L/sec where it gradually increased to 25 L/sec by EOH	35 at 82 m and increased to 49 at 100 m remaining 50 until EOH	a: 67.28 m TOC b: 67.36 m TOC (25/11/08)
MXTB13 Andamooka Limestone	Water cuts at 66 & 92 m with <0.2 L/s to 114 m then increase to 10 L/s by 128 m and further increase to 28 L/s between 144 and 156m	<10 until 94m then between 23 and 27 until EoH	a: 62.44 mBGL b: 62.35 mBGL (9/11/08)
MXTB14 Andamooka Limestone	Water cuts at 84 & 90 m with ~2 L/s to 120 m then steady increase to 31 L/s at 168 m	42 to 50 mS/cm with increase to 85 at 180 m, then ~105 to EoH	a: 73.95 mTOC b: 78.14 mTOC (3/12/08)

Table 5. Water quality parameters measured in bailed groundwater samples

Well ID	Electrical Conductivity Bailed	Electrical Conductivity Lab Results	рН	Temperature
	(uS/cm)	(uS/cm)	(pH units)	(°C)
MXTB7a	20.4	20.4	8.02	29.9
MXTB7b	45.1	41.7	7.82	28.8
MXTB9a	49.1	46.3	7.94	28.9
MXTB9b	77.4	75.5	7.66	28.6
MXTB10a	24.4	24.6	8.06	26.3
MXTB10b	24.4	40.3	8.06	26.3
MXTB11b	42.1	n/a	8.04	28.6
MXTB12a	48.9	50.0	7.83	29.5
MXTB12b	50.0	52.9	7.42	30.2
MXTB13a	24.7	25.1	8.10	25.8
MXTB13b	27.5	25.2	7.70	29.5
MXTB14a	42.2	44.8	7.86	26.3
MXTB14b	123.9	139.0	7.42	28.9

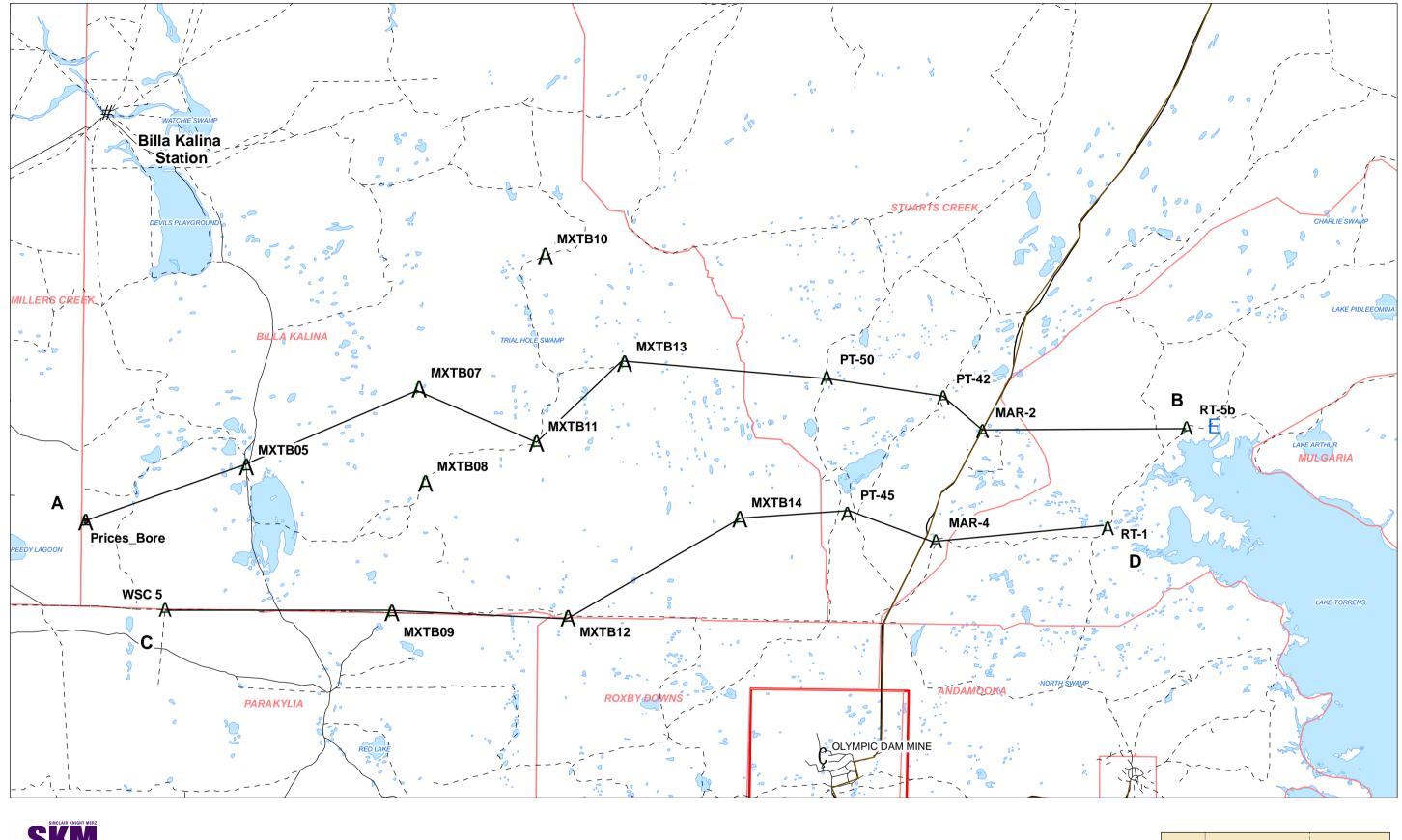
Stabilised groundwater levels

Well ID	Elevation (m)	Date	Time	mTOC	mBGL	mAHD	Notes
MXTB05	85.8	15/10/2008	2:00 PM	48.03		37.77	Pre construction, hammer oil
	85.8	8/12/2008		33.875	33.075	51.925	After 1 month pumping
MXTB07a	115	9/11/2008	8:15	64.96	64.63	50.37	Before airift
	115	28/11/2008	11:30	64.88	64.4	50.6	
MXTB07b	115	9/11/2008	8:15 AM	65.08	64.57	50.43	Before airift
	115	28/11/2008	11:30 AM	65.95	65.44	49.56	
MXTB08	113	8/12/2008	11:00	65.77	65.12	47.88	
MXTB09a	100	18/11/2008	8:00 AM	43.05	42.65	57.35	Before airift
	100	30/11/2008	8:40 AM	46.06	45.66	54.34	*
MXTB09b	100	18/11/2008	8:00 AM	46.04	45.59	54.41	Before airift
	100	30/11/2008	8:50 AM	46.86	46.41	53.59	
MXTB10a	126	1/11/2008	8:00 AM	77.56	77.04	48.96	Before airift
	126	9/11/2008	2:55 PM	76.3	75.78	50.22	
	126	27/11/2008	8:00 AM	77.215	76.695	49.305	
MXTB10b	126	1/11/2008	8:00 AM	77.64	77.05	48.95	Before airift
	126	9/11/2008	2:55 PM	78.55	77.96	48.04	
	126	28/11/2008	12:00	78.5	77.91	48.09	
MXTB11a	105	3/12/2008		58.01	57.56	47.44	
	105	8/12/2008		58.76	58.31	46.69	
MXTB11b	105	3/12/2008		58.09	57.64	47.36	
	105	8/12/2008		58.09	57.64	47.36	
MXTB12a	109	25/11/2008	8:20 AM	67.28	66.81	42.19	Before airift
	109	30/11/2008	9:25 AM	67.41	66.94	42.06	
MXTB12b	109	25/11/2008	8:20 AM	67.36	66.84	42.16	Before airift
	109	30/11/2008	9:25 AM	67.53	67.01	41.99	
MXTB13a	110	9/11/2008	4:30 PM	63.32	62.44	47.56	
	110	28/11/2008	12:35 PM	63.23	62.35	47.65	
MXTB13b	110	9/11/2008	4:30 PM	63.27	62.35	47.65	
	110	28/11/2008	12:35 PM	63.43	62.51	47.49	
MXTB14a	114.8	3/12/2008	4:25 PM	73.95	73.2	41.6	
MXTB14b	114.8	3/12/2008	4:25 PM	78.14	77.37	37.43	

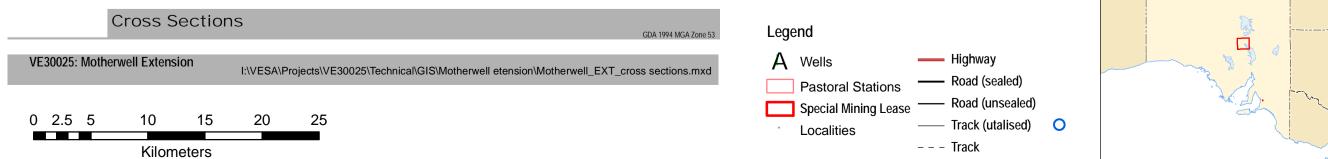
Summary of aquifer testing raw data (from airlift recovery tests)

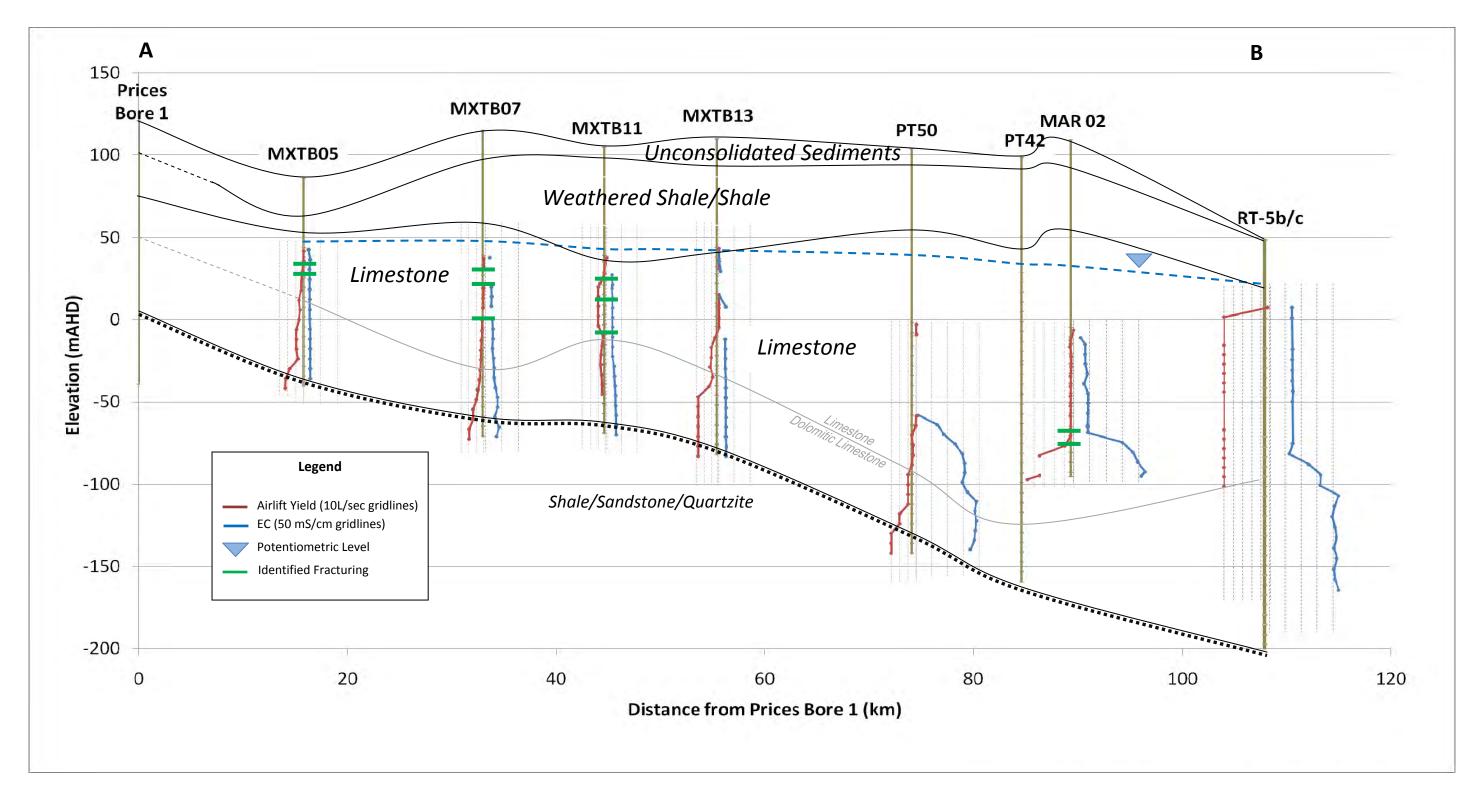
	700000	1000000				
Well ID	Total time of Airlift (mins)	Flow Rate (Q) (m3/day)	First Residual drawdown (m)	First residual drawdown time (mins)	Residual drawdown at 30 minutes (m)	Residual drawdown at 60 minutes (m)
	(IIIIII9)	(IIIS/day)	(111)	(1111115)	(111)	(111)
MXTB07a	120	78.6	0.05	4	0.05	
MXTB07b	120	157.2	0.9	9	0.965	
MXTB09a	120	61.3	2.93	3	2.935	
MXTB09b	120	172.8	0.88	6	0.78	0.765
MXTB11b	120	112.3	0.77	0.775		
MXTB12a	120	14.7	0.25	5	0.065	0.04
MXTB12b	120	172.8	0.06	4	0.075	
MXTB13a	120	57.89	24.53	4	18.78	
MXTB13b	170	216	-0.33	5	0.095	
MXTB14a	60		-0.83	3	-0.54	
MXTB14b	60	216	0.17	7	0.17	

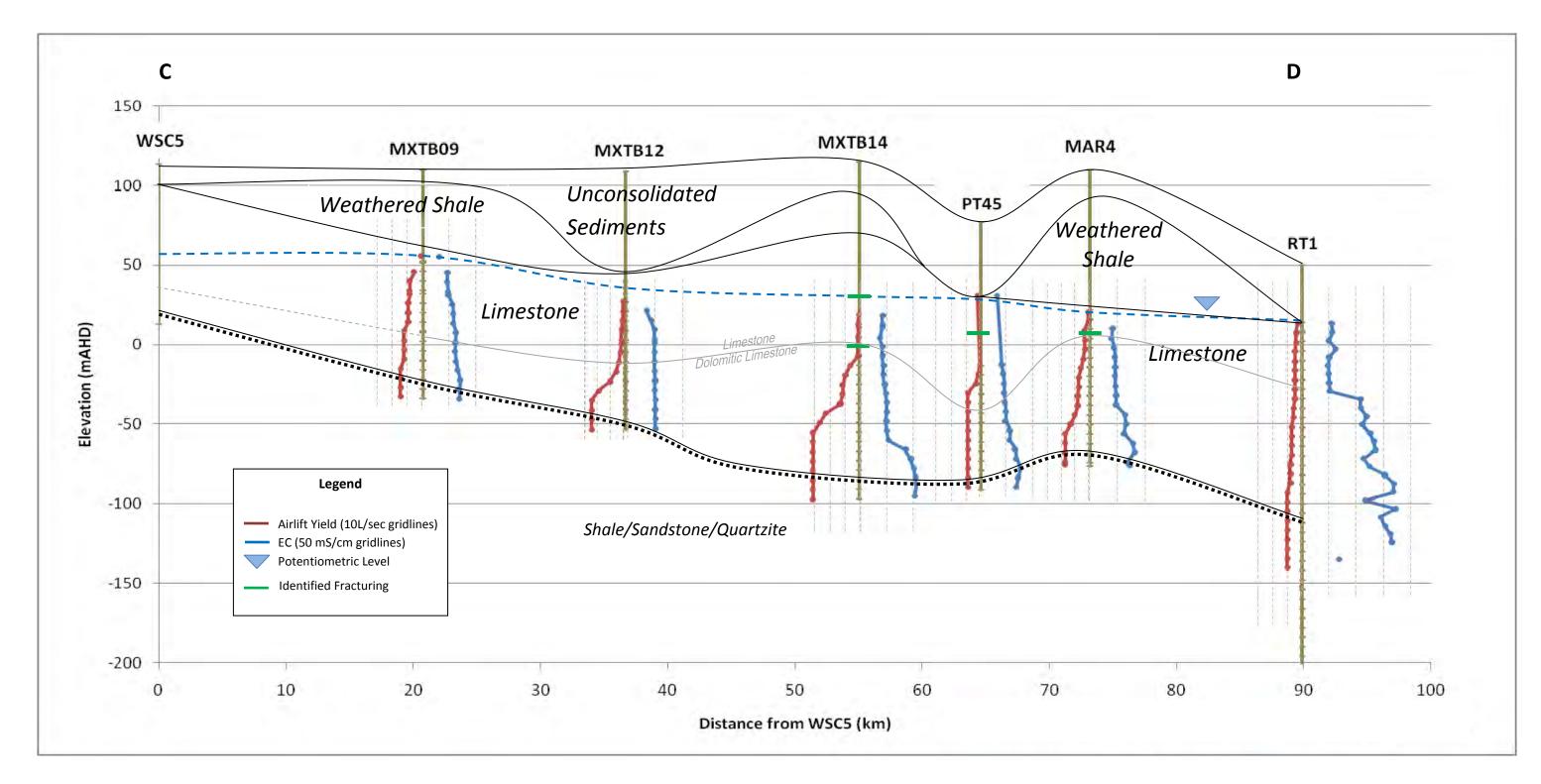
SINCLAIR KNIGHT MERZ

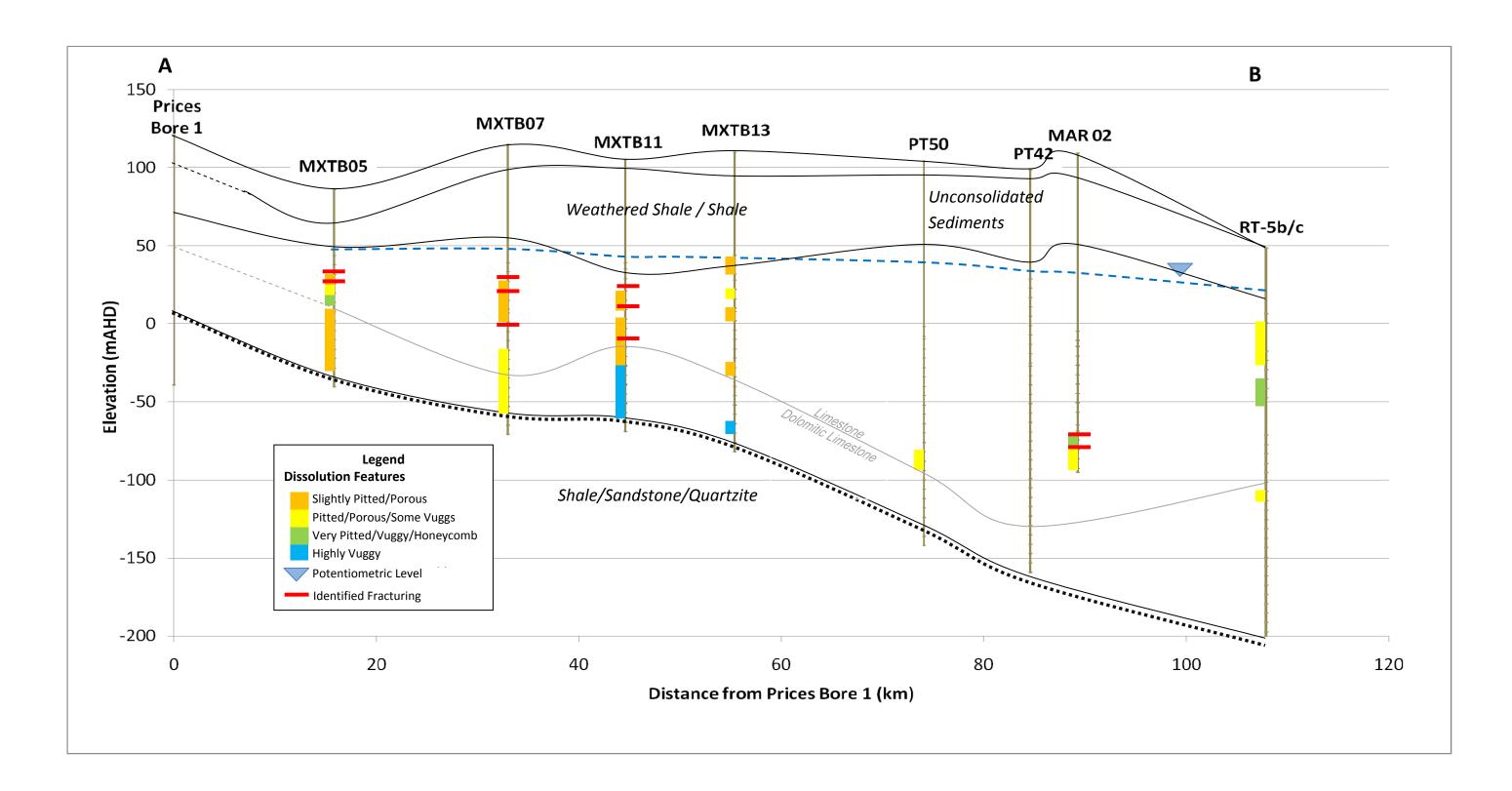


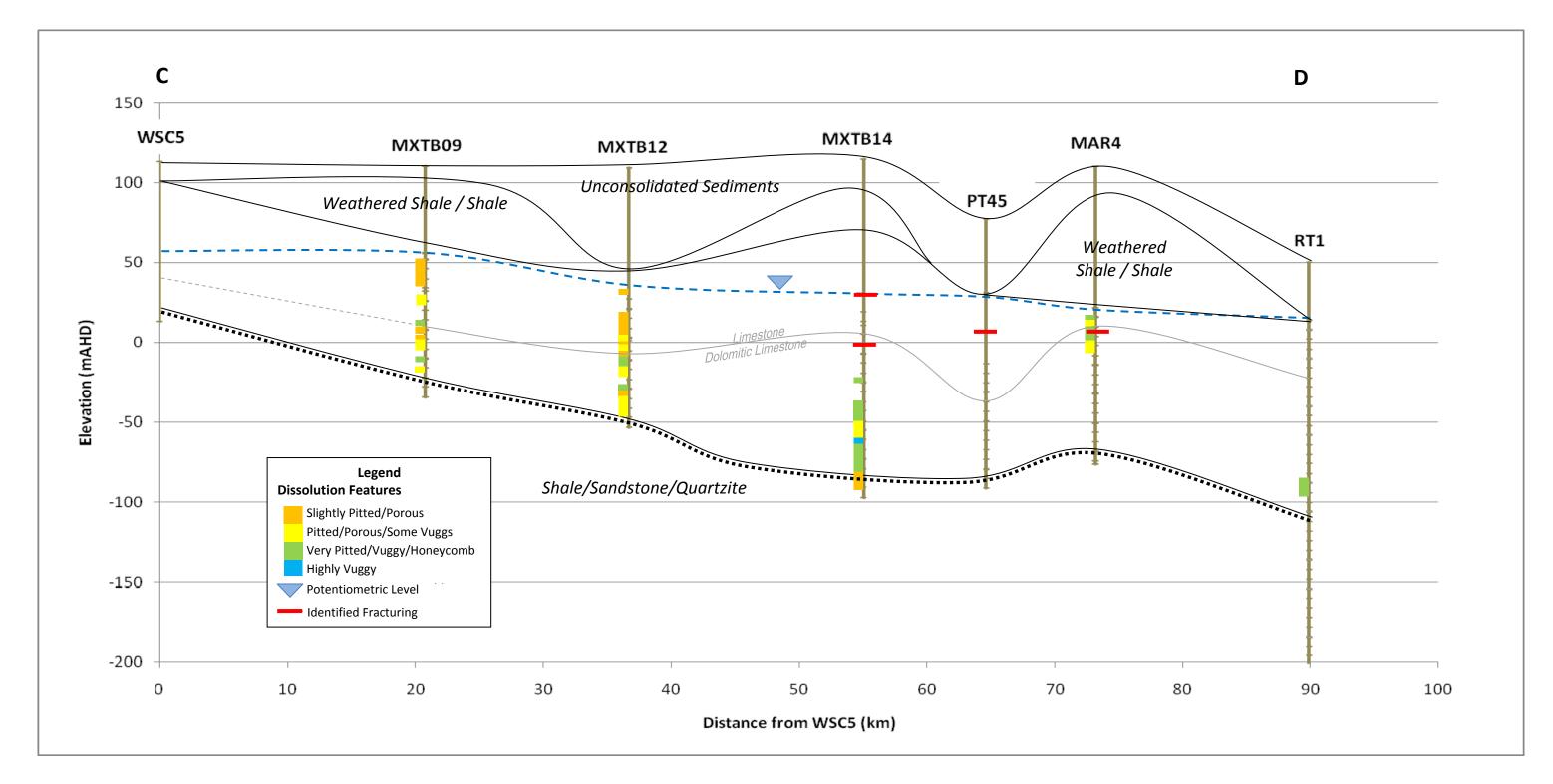
. Laboratory analytical water quality data


		Sample Date Lab Report	MXTB13 17/10/2008 EM0808905001	MXTB13 18/10/2008 EM0808905002	MXTB13A 24/10/2008 2 EM080903500	MXTB13B 24/10/2008 1 EM0809035002	MXTB14a 16/10/2008 EM0808812001	MXTB14b 16/10/2008 EM0808812002	MXTB10 27/10/2008 EM0809252001	MXTB10 27/10/2008 EM0809252002	MXTB10a 1/11/2008 EM080955600	MXBT10b 1/11/2008 1 EM0809556002	MXTB10a 9/11/2008 PM080955000	MXTB10b 9/11/2008 FM0809550002	MXTB9a 20/11/2008 2 EM0810011001	MXTB9b 20/11/2008 1 EM0810011002	MXTB7a 15/11/2008 PEM0810010001	MXTE7b 15/11/2008 EM0810010002	MXTB07a 9/11/2008 EM0809540001	MXTB07b 9/11/2008 EM0809540002	MXTB07 4/11/2008 EM0809552001	MXTB07 4/11/2008 EM0809552002	MXTB12a 30/11/2008 EM0810344001	MXTB12b 30/11/2008 EM0810344002	MXTB11b 8/12/2008 2 EM0810576001
		Sampling Technique Depth/Screened Inverval	Drille Drille	illing d depth	B Screen	ailing led interval	Ba Screene	uling ed interval	Drille Drille	illing d depth	Ai Screen	rlifting led interval	B Screen	ailing ed interval	Ba Screen	ailing ed interval	B: Screen	alling ed interval	Aii Screen	rlifted ed interval	Dri Drilled	lled depth	Ba Screens	iling ed interval	Bailing Screened interv
Analyte	Units	ALS LOR	100m	192m	90-96m	158-164m	93-99m	202-208m	130m	264m	136-142m	240-246m	136-142m	240-246m	58-64m	120-126m	98-104m	166-172m	98-104m	166-172m	106m	186m	86-92m	138-144m	136-142
pH Value and Total Diss														.,,											
рН	pH Unit	0.1	7.72	7.94	6.95	72	7.39	7.34	7,8	7.77	7.94	7.97	6.95	7.25	7.37	7.36	7.46	7.19	8 09	7.99			6.92	7.04	7.21
EC	µS/cm		24500	25900	25100	25200	44800	139000	33100	41700	23600	41100	24600	40300	46300	75500	20400	41700	20500	44700	10700	24200	50000	52900	43500
TDS	mg/L	1	15800	17600	16900	17300	31800	101000	20700	26700	16300	28300	17200	28800	33200	50300	12900	25300	14200	31600			30600	30800	30800
Suspended Solids	mg/L	1	1560	145	18	10	30	31	221	478	12	16	10	30	15	14	10	12	13	4	810	11	40	38	115
Turbidity	NTU	0.1	4320	225	11.9	5.2	20.8	3	102	315	5.7	1.4	9.8	12.6	16.6	8.6	21.1	7.4	17.6	4.6	442	6.2	10.2	24.7	4.5
Alkalinity		•		•	•		•				•		•			•									-
Hydroxide as CaCO3	mg/L	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1	<1	<1
Carbonate as CACOS	mg/L	4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1	<1	<1
Bicarbonate as CACO3	mg/L	t -	190	312	:310	316	339	181	291	341	183	278	163	278	268	236	236	263	233	269	1 11		316	325	269
Total Alkalinity as CACO3	_	1	190 -	312	:310	316	339	181	291	341	183	278	163	278	268	236	236	263	233	269			316	325	269
Dissolved Major Cations					*		•	4												•					
Calcium	mg/L	1	616	672	658	719	953	1360	704	694	780	797	761	774	828	759	621	796	589	837			1020	958	681
Magnesium	mg/L	1	417	532	543	664	997	2120	643	922	394	1030	418	1020	1130	1940	358	928	374	1060			1200	1330	949
Sodium	mg/L	1	5120	5450	5280	6520	9040	32000	7350	9520	5120	10000	5250	9840	9480	14600	3810	9020	4590	11700			10400	10800	7940
Potassium	mg/L	1	87	92	98	122	132	251	100	131	71	140	71	138	156	319	65	150	70	166			138	133	118
Dissolved Major Anions	1				-	-						-		1	-		-	-			-				
Sulfate as SO4 2-	mg/L	1	2680	2780	2990	3700	5150	7570	3590	4380	3670	5050	3840	4950	4740	7720	2280	4660	2510	5490			6430	6620	4180
Sulfur as S	mg/L	1	894	927	997	1230	17.5	15.7	1200	1460	1220	1680	1280	1650	1580	2570	759	1550					2140	2210	1390
Silica	mg/L	0.1	264	29	24.6	47.7		1	20.2	21.6	43.7	35.6	31.5	34.9	16.2	11/1	16.3	13.8	37.1	37.2			133	12.9	11.2
Silicon	mg/L	D1	123	13.5	11.5	22.3			9.41	10/1	204	16.6	14.7	16.3	7.56	5.2	7.61	6.46	17:3	17.4			6.2	6.01	5.23
Chloride	mg/L		7300	8300	7980	8620	12800	45200	11700	16000	7170	15900	7580	15500	16700	25000	6750	13200	7010	16700			16900	16600	13300
Fluoride	ma/L	0.1	1.2	1.1	1.2	1	1.3	1	13	1.1	1.6	1.1	1:5	11	14	1.1	0.7	0.8	0.8	0.8			1.2	1.2	8.5
Ionic Balance	1 mg/m				1						1 100	2.4	1	1 27	4	1	360			1					208
Total Anions	m eq/L	0.01	266	298	294	326	475	1440	410	548	282	558	297	546	574	870	242	474	.255	591		1	618	612	467
Total Cations	m eq/L	0,01	290	317	310	377	526	1640	410	528	296	566	302	554	550	841	228	512	262	641			605	630	461
Ionic Balance	%	0.01	4.33	2.94	2.68	7.23	5.13	6.54	0.04	1.89	2.36	0.65	0.9	0.71	2.15	1.72	3.14	3.83	1.3	4 02			1.07	1.44	0.78
Dissolved Metals	1	1 200	1	f -242	1	1	T 22.	1	1	0 200	1	1 222	1 222	1 22	1	0 22	11 1202	1 22	1 221	1	1		ti sa	1 1252	1
Aluminium	mg/L	0.01	0.01	0.02	0.02	<0.01	0.01	<0.01	0.07	0.06	< 0.01	0.02	0.02	0.03	0.04	0.01	0.03	0.01	<0.01	0.05			0.1	0.09	0.03
Arsenic	mg/L	0.001	<0.001	0.003	0.042	0.021	0.004	0.007	<0.001	<0.001	0.003	0.008	0.003	0.004	<0.001	<0.001	< 0.001	<0.001	0.002	0.006			0.005	<0.001	0.039
Barium	mg/L	0.001	0.043	0.02	0.032	0.022	0.052	0.045	0.025	0.036	0.036	0.029	0.037	0.035	0.049	0.028	0.034	0.027	0.03	0.026	-		0.092	0.039	0.028
Boron	mg/L	0.05	5.42	5.38	5.33	5.49	6.31	4.85	5.53	5.34	7.82	5.51	8.14	5.27	4.12	647	4.08	5.38	4.27	5.85			5.95	6.26	4.46
Cobalt	mg/L	0.001	0.003	0.002	0.035	0.014	0.008	0.009	0.004	0.005	0.008	0.039	0.012	0.036	0.004	0.006	0.004	0.005	0.004	0.005			0.006	0.004	0.033
Copper	mg/L	0,001	0.006	0,004	0.007	0.006	0.012	0.017	0.007	0,009	0.006	0.009	0,006	0.014	0.012	0,018	0.005	0.011	0.004	0.01			0.011	0.014	0.012
Iron	mg/L	0,01	<0.10	<0,10	0.12	<0.10	0.1	< 0.50	<0.10	<0.10	0.3	0.28	0.28	0.23	0.12	0.55	<0.10	<0.10	0.3	0.36	0.74	0.47	0.95	0.15	<0.10
Iron	mg/L	0,01	4.88	3.6	0.68	0.19	1.8	0.97	2.17	8.95	0.38	0.67	0.48	0.76	1.64	1.71	2.58	2.41	0.55	0.67	3.74	0.17	1.07	0.98	1.96
Lead	mg/L	0.001	<0.001	<0.001	0.005	0,007	0.001	0.023	<0.001	<0.001	< 0.001	0.002	0.003	0.006	0.071	0.002	0.031	<0.001	<0.001	0.002	+		0.003	0.002	0.022
Manganese	mg/L	0.001	0.368	0.091	0.096	0.069	0.365	0.689	0.559	0.487	0.187	0.391	0.198	0.402	0.161	0.32	0.145	0,28	0 126	0,274			0.702	0,945	0.146
Strontium Uranium	mg/L	0.001	9,03	10.2	9.96	10.4 0.822	13,4 0.016	32.2 0.006	13.4 0,002	14.7 0.002	12,3	14.2 0.006	12,5 0.005	0.007	14.7 0.029	14.3 0.007	9,88 0,011	16.3	9,49	15.8 0.006			13.2 0.023	12.5	12.7 0.016
Zinc	mg/L mg/L	0.001	1.41	0.011	0.038	0.022	0.053	0.006 0.04	0.042	0.002	0.005	0.035	0.043	0.007	0.029	0.007	0.011	0.016	0.012	0.006			0.023	0.009	0.016
Nitrite as N	mg/L	0.01	0.03	<0.01	<0.01	0.01	0.27	<0.01	<0.01	0.08	0.16	< 0.01	<0.01	<0.01	0.62	0.06	0.02	0.01	0.09	0.02	<0.01	<0.01	<0.01	<0.01	0.03
Nitrate as N Nitrite + Nitrate as N	mg/L	0.01	0.09	<0.01	<0.01 <0.01	<0.01	0.23	<0.01	0.01	<0.01	0.37	0.03	<0.01	<0.01	2.18	0.04	<0.01	<0.01	0.3	0.08	<0.01	0.38	<0.01	<0.01	0.08
vitrite + Nitrate as N	mg/L	0.01	0.13	<0.01	1 <0,01	< 0.01	0.51	<0.01	0.01	0.09	0,53	0.03	<0.01	<0.01	2.8	0.1	<0.01	<0,01	0.4	0,1	<0,01	0.38	<0.01	<0,01	0.12


Notes
LOR - Limit of reporting
- Not Analysed
- Raised LOR
- Guideline is for Hexavalent Chromium (CrVI)
- Guideline is for 90% Protection






Cross section A-B -EC and airlift yield profile

Cross section C-D - EC and airlift yield profile

Cross section A-B – ALS Dissolution Features

Cross section C-D - ALS Dissolution Features

BOREHOLE / WELL NUMBER

MXTB05

PROJECT NUMBER: **VE23064.2**

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

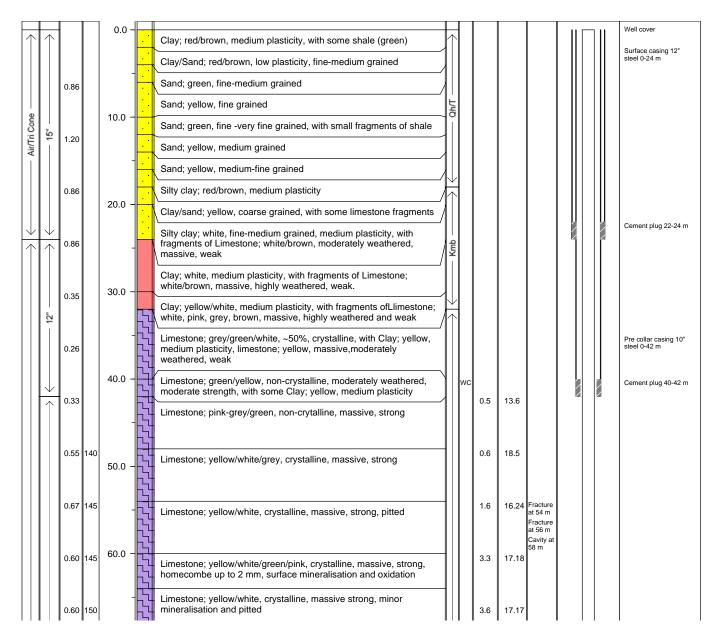
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 30/09/08 DATE COMPLETED: 02/10/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 126
REFERENCE POINT (m AHD):85.8


STATIC WATER LEVEL

Date: 15/10/08 Depth (m TOC)48.03 m (TOC)

PROJECTION:GDA 1994, Zone 53

EASTING: **627372** NORTHING: **6657629**

DI	RILLIN	IG INF	Ο.			MATERIAL PROPERTIES	_	ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 - 1	SATION RATE (r	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: Jasmine Richards DATE: 2/10/08 CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB05

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

AIR ROTARY

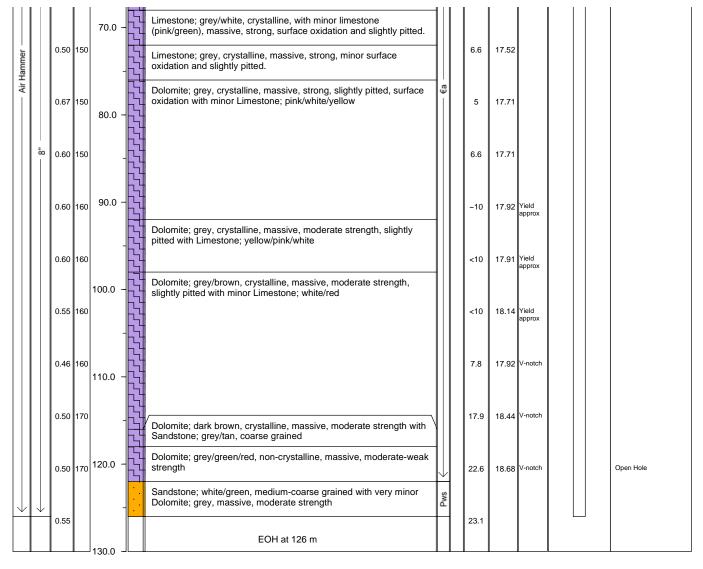
BOREHOLE DIAMETER: 8"

DRILLING METHOD:

DATE STARTED: 30/09/08 DATE COMPLETED: 02/10/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 126
REFERENCE POINT (m AHD):85.8


STATIC WATER LEVEL

Date: 15/10/08 Depth (m TOC)48.03 m (TOC)

PROJECTION:GDA 1994, Zone 53

EASTING: **627372** NORTHING: **6657629**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ABOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: Jasmine Richards DATE: 2/10/08 CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB07a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

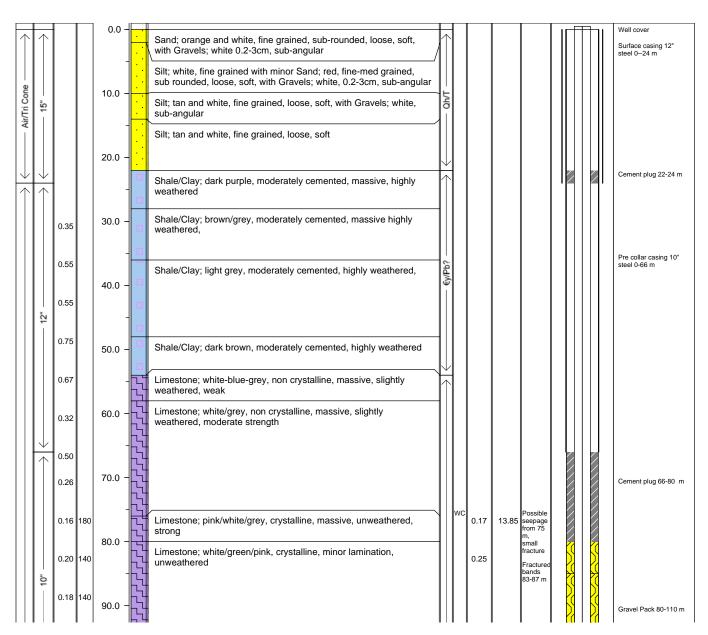
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 01/11/08 DATE COMPLETED: 09/11/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 186
REFERENCE POINT (m AHD):115


STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 64.96, b:65.08

PROJECTION:GDA 1994, Zone 53

EASTING: **643063** NORTHING: **6664649**

DI	RILLIN	IG INFO	0.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
METHOD	1 - 1	SATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION

BOREHOLE / WELL NUMBER

MXTB07a/b

PROJECT NUMBER: VE23064.2

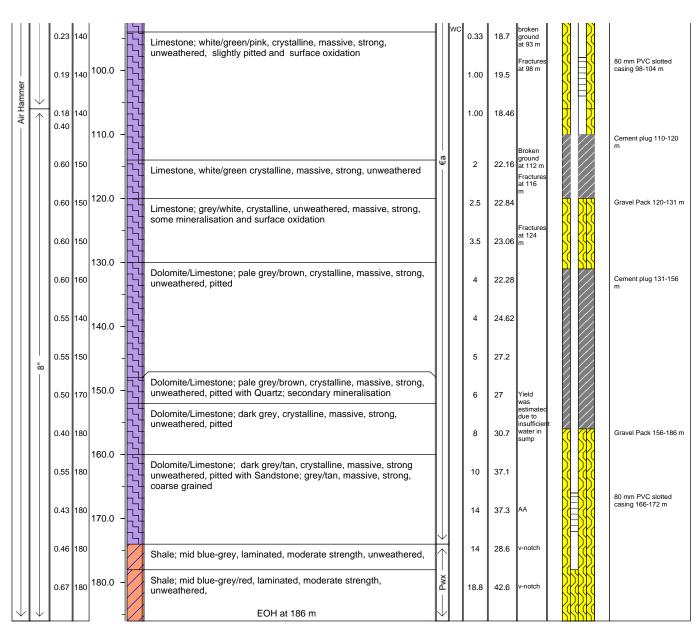
PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 01/11/08 DATE COMPLETED: 09/11/08

WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 186


REFERENCE POINT (m AHD):115 STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 64.96, b:65.08

PROJECTION:GDA 1994, Zone 53

EASTING: **643063** NORTHING: **6664649**

DI	RILLIN	IG INF	O.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 . 1	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

BOREHOLE / WELL NUMBER

MXTB08

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention

LOCATION: Billa Kallina

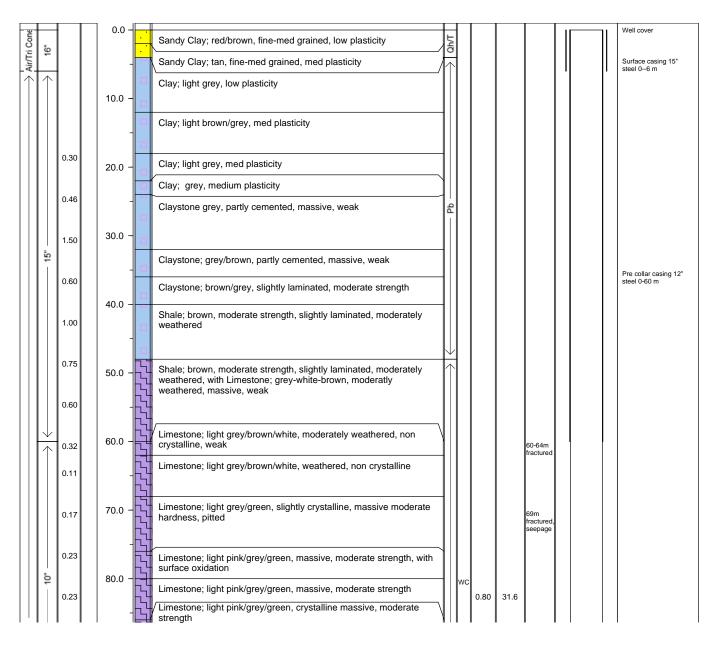
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 04/12/08 DATE COMPLETED: 8/12/08

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 168
REFERENCE POINT (m AHD):113

STATIC WATER LEVEL

Date: **8/12/08** Depth (m TOC)**65.12** PROJECTION:**GDA 1994, Zone 53**

EASTING: **643654** NORTHING: **6656106**

DI	RILLIN	IG INF	O.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 . 1	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

BOREHOLE / WELL NUMBER

MXTB08

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention

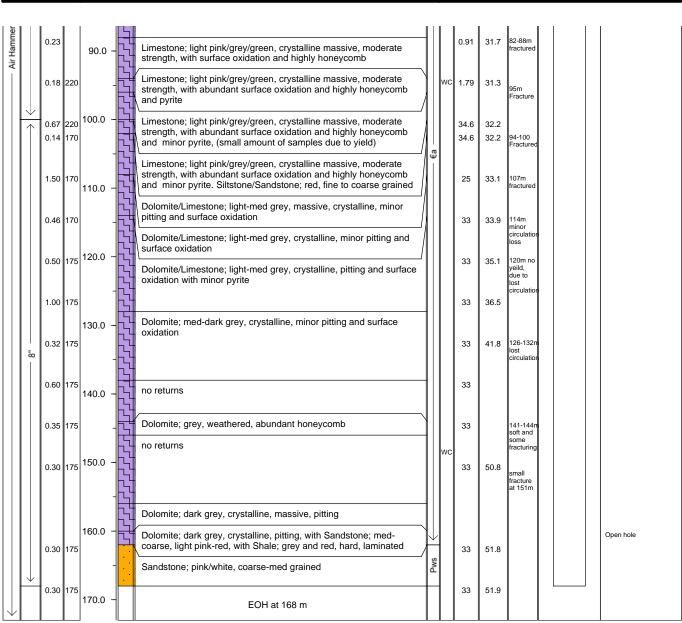
LOCATION: Billa Kallina
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 04/12/08 DATE COMPLETED: 8/12/08

WELL PERMIT NUMBER: n/a


TOTAL DEPTH (m bgl): 168
REFERENCE POINT (m AHD):113

STATIC WATER LEVEL

Date: **8/12/08** Depth (m TOC)**65.12** PROJECTION:**GDA 1994, Zone 53**

EASTING: **643654** NORTHING: **6656106**

ட													
D	RILLIN	IG INFO).			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)		DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

BOREHOLE / WELL NUMBER

MXTB09a/b

PROJECT NUMBER: **VE23064.2**

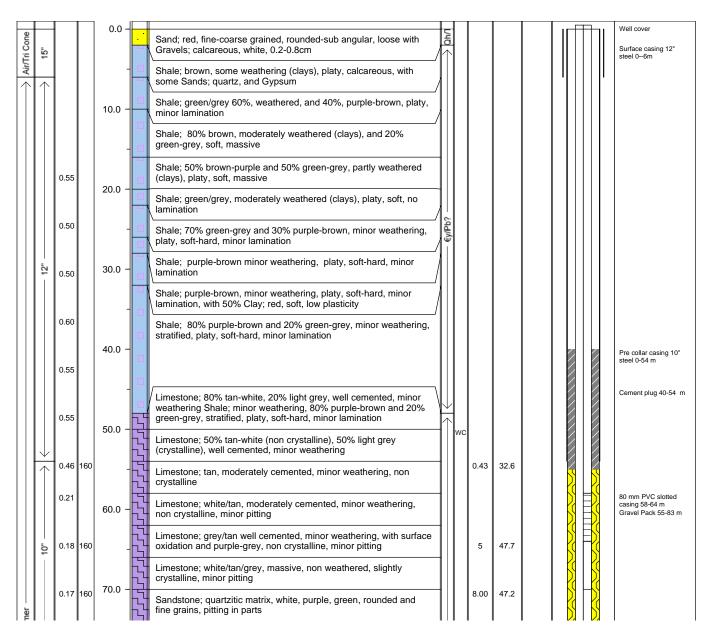
PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 10/11/08 DATE COMPLETED: 17/11/08

WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 144


REFERENCE POINT (m AHD):110 STATIC WATER LEVEL

Date: 18/11/08 Depth (m TOC)a:43.05, b:46.04

PROJECTION:GDA 1994, Zone 53

EASTING: **640589** NORTHING: **6644364**

DF	RILLIN	IG INF	О.			MATERIAL PROPERTIES		ı	FIELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD	1 – 1	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness DATE: 17/11/08
CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB09a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

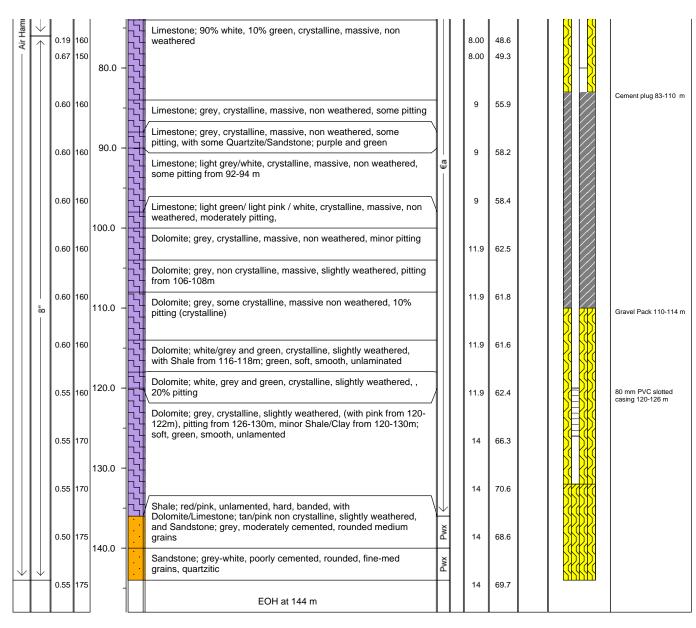
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 10/11/08 DATE COMPLETED: 17/11/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 144
REFERENCE POINT (m AHD):110


STATIC WATER LEVEL

Date: 18/11/08 Depth (m TOC)a:43.05, b:46.04

PROJECTION:GDA 1994, Zone 53

EASTING: **640589** NORTHING: **6644364**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ASOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K Furness DATE: 17/11/08
CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB10a/b

PROJECT NUMBER: **VE23064.2**

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 22/01/08 DATE COMPLETED: 27/10/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 264
REFERENCE POINT (m AHD):132


STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 78.55, b: 76.3

PROJECTION:GDA 1994, Zone 53

EASTING: **654543** NORTHING: **6676749**

L											• • • • • • • • • • • • • • • • • • • •	
	DRILLING INFO. MATERIAL PROPERTIES						ı	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
	METHOD BIT LOG	PENETRATION RATE (m/min) UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: K Furness & K Hyland DATE: 27/10/08 CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB10a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

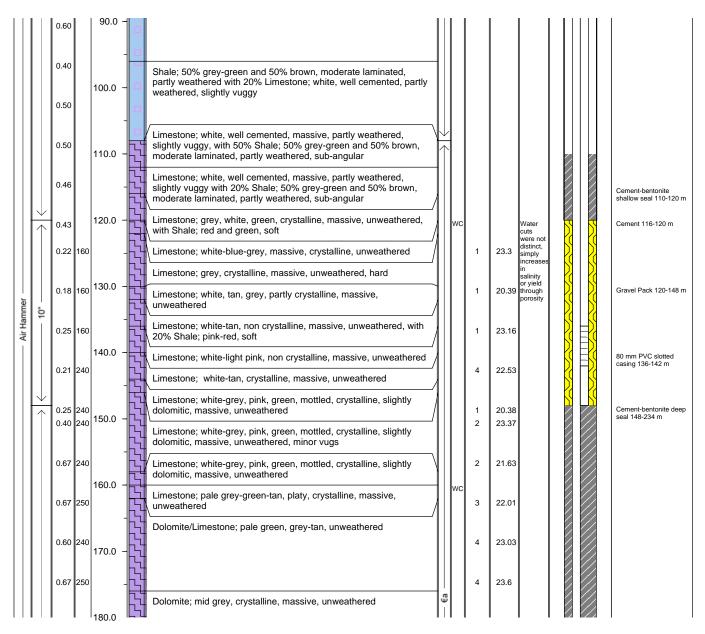
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 22/01/08 DATE COMPLETED: 27/10/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 264
REFERENCE POINT (m AHD):132


STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 78.55, b: 76.3

PROJECTION:GDA 1994, Zone 53

EASTING: **654543** NORTHING: **6676749**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ASOTOHLITI	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K Furness & K Hyland DATE: 27/10/08 CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB10a/b

PROJECT NUMBER: VE23064.2

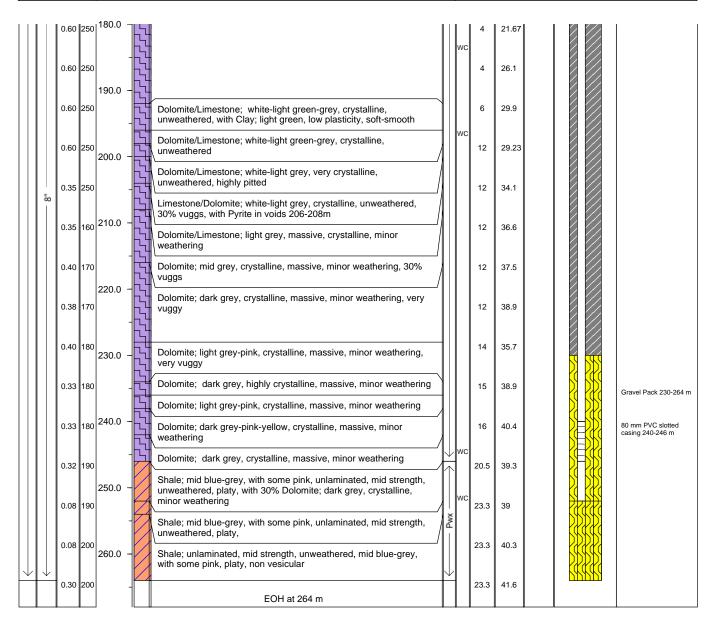
PROJECT NAME: **Motherwell Extention Billa Kallina Station** LOCATION: DRILLING CO: **Gorey and Cole**

AIR ROTARY DRILLING METHOD:

BOREHOLE DIAMETER: 8"

DATE STARTED: 22/01/08 DATE COMPLETED: 27/10/08 WELL PERMIT NUMBER: n/a TOTAL DEPTH (m bgl):

264


REFERENCE POINT (m AHD):132 STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 78.55, b: 76.3

PROJECTION:GDA 1994, Zone 53

EASTING: **654543** NORTHING: 6676749

DF	TI LOG IT LOG IN RATE (m/min) SESSURE (psi) OTH (m)			MATERIAL PROPERTIES				FIELD RECORDS / CONSTRUCTION INFO.							
METHOD	I ∵ I	.ATE (m/ SURE (p	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION			

LOGGED: K Furness & K Hyland DATE: 27/10/08 CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB11a/b

PROJECT NUMBER: VE23064.2

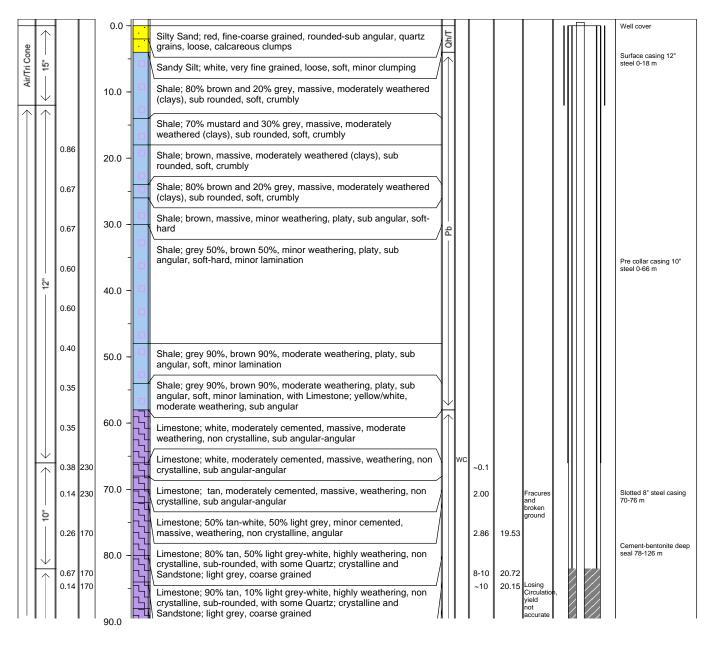
PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 26/11/08 DATE COMPLETED: 3/12/08

WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 174
REFERENCE POINT (m AHD):105


STATIC WATER LEVEL

Date: 3/12/08 Depth (m TOC)a: 58.01, b: 58.09

PROJECTION:GDA 1994, Zone 53

EASTING: **653728** NORTHING: **6659749**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ADOPTITIE	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

BOREHOLE / WELL NUMBER

MXTB11a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

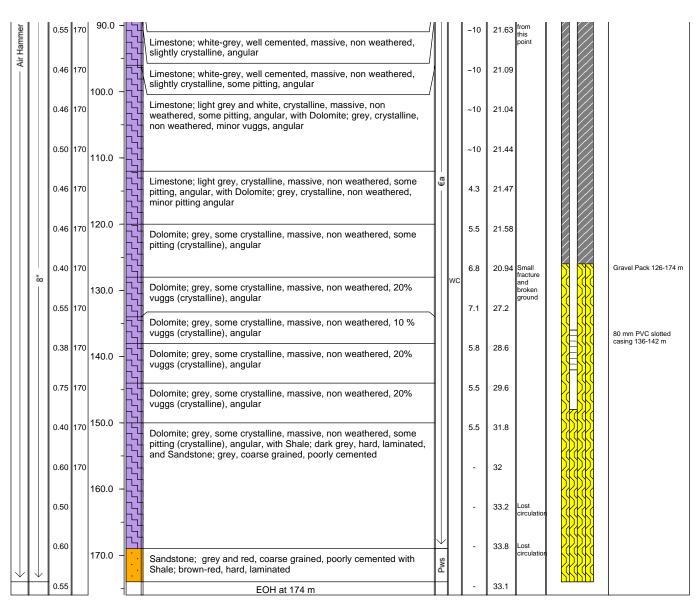
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 26/11/08 DATE COMPLETED: 3/12/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 174
REFERENCE POINT (m AHD):105


STATIC WATER LEVEL

Date: 3/12/08 Depth (m TOC)a: 58.01, b: 58.09

PROJECTION:GDA 1994, Zone 53

EASTING: **653728** NORTHING: **6659749**

DRILLIN	DRILLING INFO.			MATERIAL PROPERTIES		F	IELD	RECO	RDS/0	CONSTRUCTIO	ON INFO.
METHOD BIT LOG	- 1 Ш	DEРТН (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

BOREHOLE / WELL NUMBER

MXTB12a/b

PROJECT NUMBER: **VE23064.2**

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

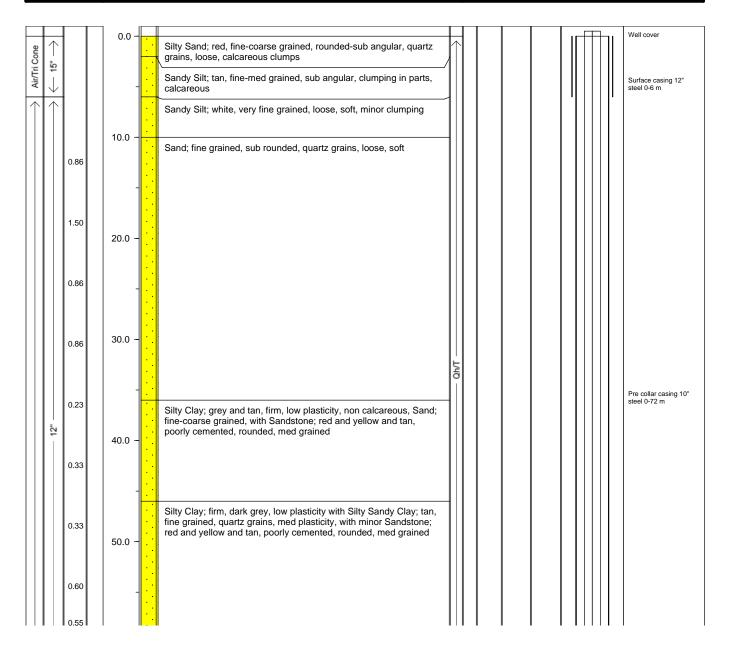
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 25/11/08 DATE COMPLETED: 25/11/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 162
REFERENCE POINT (m AHD):109


STATIC WATER LEVEL

Date: Depth (m TOC)a: 67.28, b: 67.36

PROJECTION:GDA 1994, Zone 53

EASTING: 656587 NORTHING: 6643923

L												·
	DRILLING INFO. MATERIAL PROPERTIES					FIELD RECORDS / CONSTRUCTION INFO.						
	METHOD BIT LOG	PENETRATION RATE (m/min)	DEPTH (m)	일	LITHOLOGY	INTERPRETIVE I OG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION

LOGGED: K Furness DATE: 26/11/08
CHECKED: K Furness DATE: 19/12/2008

BOREHOLE / WELL NUMBER

MXTB12a/b

PROJECT NUMBER: **VE23064.2**

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

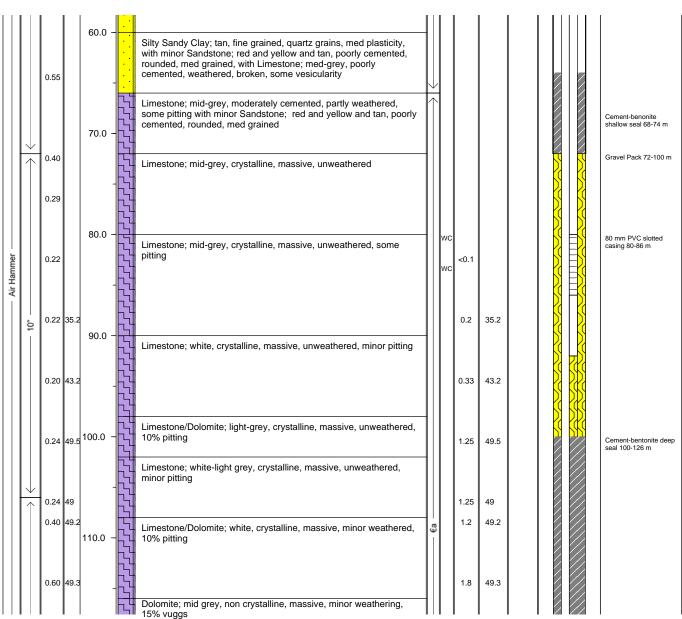
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 25/11/08 DATE COMPLETED: 25/11/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 162
REFERENCE POINT (m AHD):109


STATIC WATER LEVEL

Date: Depth (m TOC)a: 67.28, b: 67.36

PROJECTION:GDA 1994, Zone 53

EASTING: **656587** NORTHING: **6643923**

DRILLING INFO.	MATERIAL PROPERTIES	FIELD RECORDS / CONSTRUCTION INFO.
METHOD BIT LOG PENETRATION RATE (m/min) UNLOAD PRESSURE (psi) DEPTH (m)	GRAPHIC LOG ADOTOHLIT	INTERPRETIVE LOG WATER CUTS AIRLIFT YIELD (L/sec) EC (mS/cm) COMMENTS COMMENTS WELL CONSTRUCTION WELL DESCRIPTION

LOGGED: K Furness DATE: 26/11/08
CHECKED: K Furness DATE: 19/12/2008

BOREHOLE / WELL NUMBER

MXTB12a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

170.0

soft

BOREHOLE DIAMETER: 8"

DRILLING INFO.

DATE STARTED: 25/11/08 DATE COMPLETED: 25/11/08

MATERIAL PROPERTIES

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 162
REFERENCE POINT (m AHD):109

STATIC WATER LEVEL

ate: Depth (m TOC)a: 67.28, b: 67.36

FIELD RECORDS / CONSTRUCTION INFO.

PROJECTION:GDA 1994, Zone 53

EASTING: **656587** NORTHING: **6643923**

	METHOD	BIT LOG	PENETRATION RATE (m/m	UNLOAD PRESSURE (psi	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION
					400.0	몱								
			0.60	49.7	120.0 -	3	Dolomite; mid grey, crystalline, massive, minor weathering, 20% vuggs			3.3	49.7			
					-		Dolomite; mid grey, highly crystalline, massive, unweathered,							
			0.50	49.7	130.0 -		Dolomite; grey-pink, crystalline, massive, minor weathering, 10% pitting		wc	5.5	49.7			Gravel Pack 126-162 m
		8	0.55	50	130.0		Dolomite; dark grey-pink, partly crystalline, massive, minor weathering, minor pitting			10	50			
					-		Dolomite; dark grey-pink, partly crystalline, highly weathered, 30% vuggs	\parallel	wc					
			0.55	49.4	140.0 -		Dolomite; dark grey-pink, partly crystalline, massive, minor weathering, minor pitting			18.8	49.4			80 mm PVC slotted casing 138-144 m
			0.60	50.5	-		Dolomite; mid grey, some crystalline, massive, massive, minor weathering, 20% vesicular			24.4	50.5			
							Dolomite; mid grey and white, partly crystalline, massive, minor weathering, minor vesicularity	\parallel						
			0.46	50.1	150.0 -		Sandstone; light grey, non crystalline, visible sand grains with limestone matrix, well cemented, massive, minor weathering, with minor Pyrite			24.4	50.1			
					-		Dolomite; mid grey-pink and white, crystalline, minor weathering, minor vesicularity	Pb						
			0.46	50.3	160.0 -		Sandstone; grey, some crystalline with minor Limestone; mid grey- pink and white, crystalline, massive, minor weathering, angular, minor vuggs with minor Shale; red, soft, platy, unlaminated	Pws		24.4	50.3			
ŀ	\downarrow	\downarrow	0.60	50.5			Shale; dark grey-white, blue-green-grey, unlaminated, soft-hard, with Sandstone	L		24.4	50.5		<u> </u>	
					-		Sandstone; white, fine-med grained, sub-rounded-angular grains, moderately cemented, quartz matrix							
							Sandstone; white, fine grained, sub-rounded-angular grains,							

moderately cemented, quartz matrix, with Shale; red, unlaminated,

EOH at 162 m

LOGGED: K Furness DATE: 26/11/08
CHECKED: K Furness DATE: 19/12/2008

BOREHOLE / WELL NUMBER

MXTB13a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

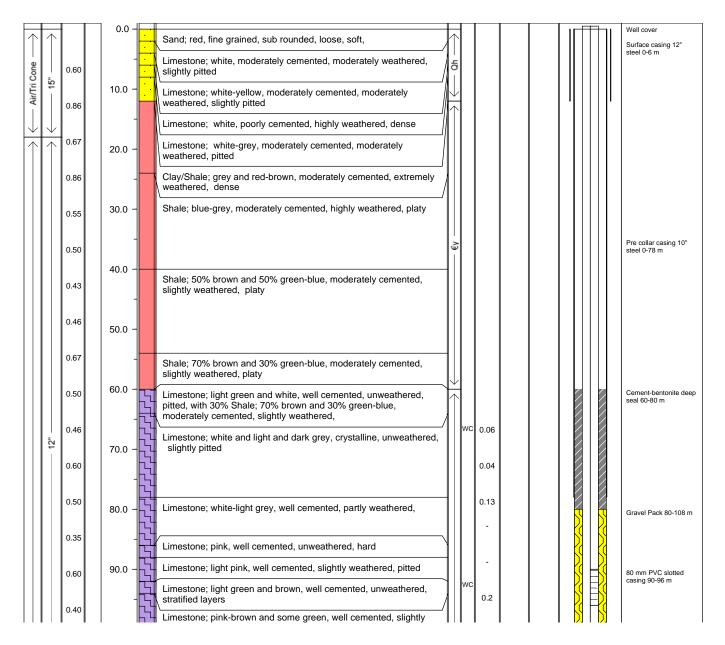
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 12/10/08 DATE COMPLETED: 21/10/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 192
REFERENCE POINT (m AHD):110


STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 63.32, b: 63.27

PROJECTION:GDA 1994, Zone 53

EASTING: **661709** NORTHING: **6666966**

DI	DRILLING INFO.			FO. MATERIAL PROPERTIES						FIELD RECORDS / CONSTRUCTION INFO.							
METHOD	1 . 1	RATION RATE	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION				

LOGGED: K Furness DATE: 21/10/08
CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB13a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

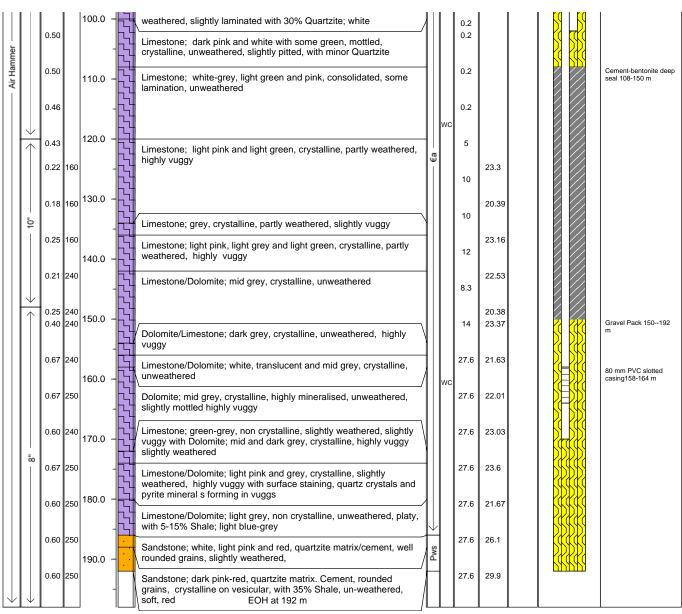
DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 12/10/08 DATE COMPLETED: 21/10/08

WELL PERMIT NUMBER: n/a

TOTAL DEPTH (m bgl): 192 REFERENCE POINT (m AHD):110


STATIC WATER LEVEL

Date: 9/11/08 Depth (m TOC)a: 63.32, b: 63.27

PROJECTION:GDA 1994, Zone 53

EASTING: **661709** NORTHING: **6666966**

DRILL								FIELD RECORDS / CONSTRUCTION INFO.						
METHOD BIT LOG			GRAPHIC LOG	LITHOLOGY	NTERPRETIVE I OG	WATER C	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION			
	1 1	100.0 -		weathered, slightly laminated with 30% Quartzite; white	1		0.2	l						

LOGGED: K Furness DATE: 21/10/08
CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB14a/b

PROJECT NUMBER: **VE23064.2**

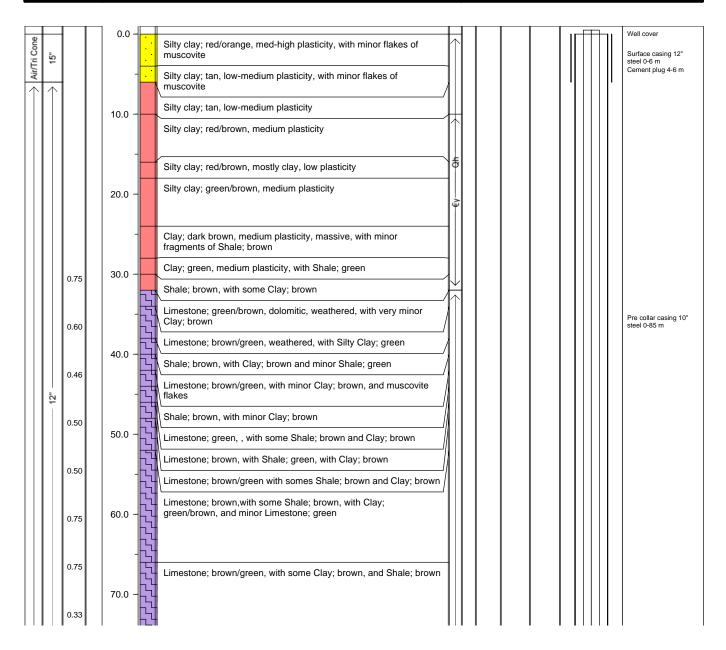
PROJECT NAME: Motherwell Extention
LOCATION: Billa Kallina Station
DRILLING CO: Gorey and Cole

DRILLING METHOD: AIR ROTARY

BOREHOLE DIAMETER: 8"

DATE STARTED: 03/10/08 DATE COMPLETED: 12/10/08

WELL PERMIT NUMBER: n/a
TOTAL DEPTH (m bgl): 210


REFERENCE POINT (m AHD):115 STATIC WATER LEVEL

Date: 16/10/2008 Depth (m TOC)a: 89.34, b: 92.8

PROJECTION:GDA 1994, Zone 53

EASTING: **672164** NORTHING: **6652846**

L											• • • • • • • • • • • • • • • • • • • •	
	DRILLING INFO. MATERIAL PROPERTIES						ı	FIELD	RECO	RDS/0	CONSTRUCTIO	N INFO.
	METHOD BIT LOG	PENETRATION RATE (m/min)	DEPTH (m)	呈	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION

LOGGED: J Richards DATE: 12/10/08 CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB14a/b

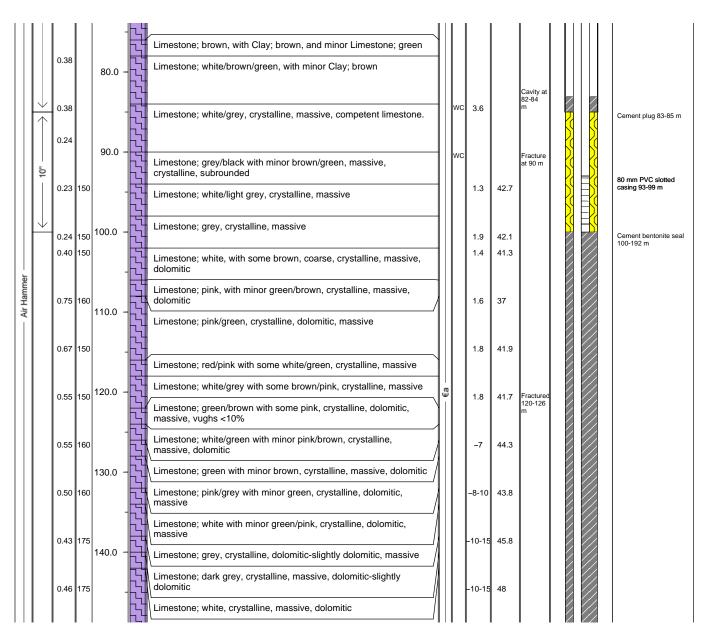
PROJECT NUMBER: VE23064.2

PROJECT NAME: **Motherwell Extention Billa Kallina Station** LOCATION: DRILLING CO: **Gorey and Cole**

AIR ROTARY DRILLING METHOD:

BOREHOLE DIAMETER: 8"

DATE STARTED: 03/10/08 DATE COMPLETED: 12/10/08 WELL PERMIT NUMBER: n/a TOTAL DEPTH (m bgl): 210


REFERENCE POINT (m AHD):115 STATIC WATER LEVEL

Date: 16/10/2008 Depth (m TOC)a: 89.34, b: 92.8

PROJECTION:GDA 1994, Zone 53

EASTING: **672164** NORTHING: 6652846

DI	DRILLING INFO.				MATERIAL PROPERTIES			FIELD RECORDS / CONSTRUCTION INFO.						
METHOD	1 . 1	RATION RATE (I	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL CONSTRUCTION	WELL DESCRIPTION	

DATE: 12/10/08 LOGGED: J Richards CHECKED: K Furness DATE: 19/12/08

BOREHOLE / WELL NUMBER

MXTB14a/b

PROJECT NUMBER: VE23064.2

PROJECT NAME: **Motherwell Extention** LOCATION: **Billa Kallina Station** DRILLING CO: **Gorey and Cole**

AIR ROTARY DRILLING METHOD:

BOREHOLE DIAMETER: 8"

DRILLING INFO.

(i)

DATE STARTED: 03/10/08 DATE COMPLETED: 12/10/08

> Shale; green/red, hard Shale (green/red)

> > EOH at 210 m

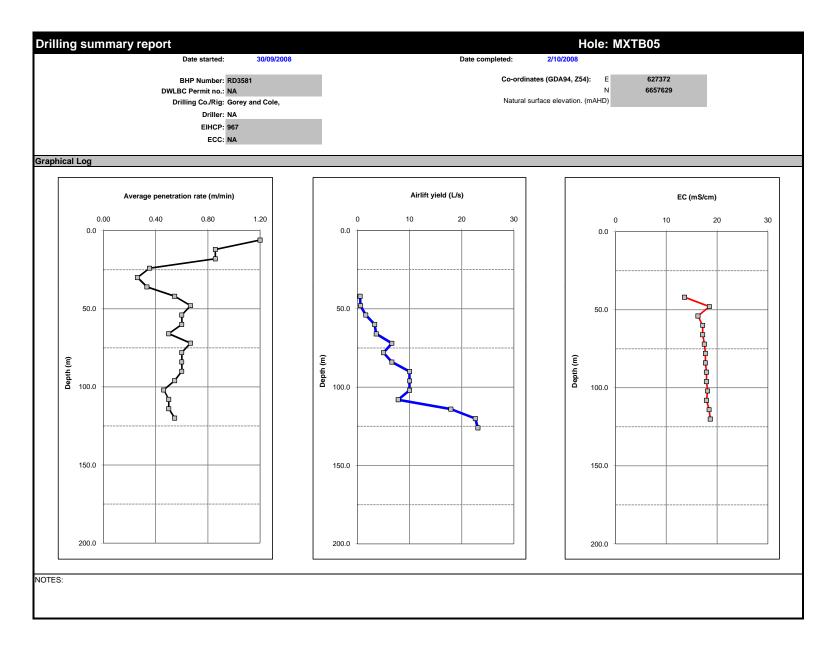
MATERIAL PROPERTIES

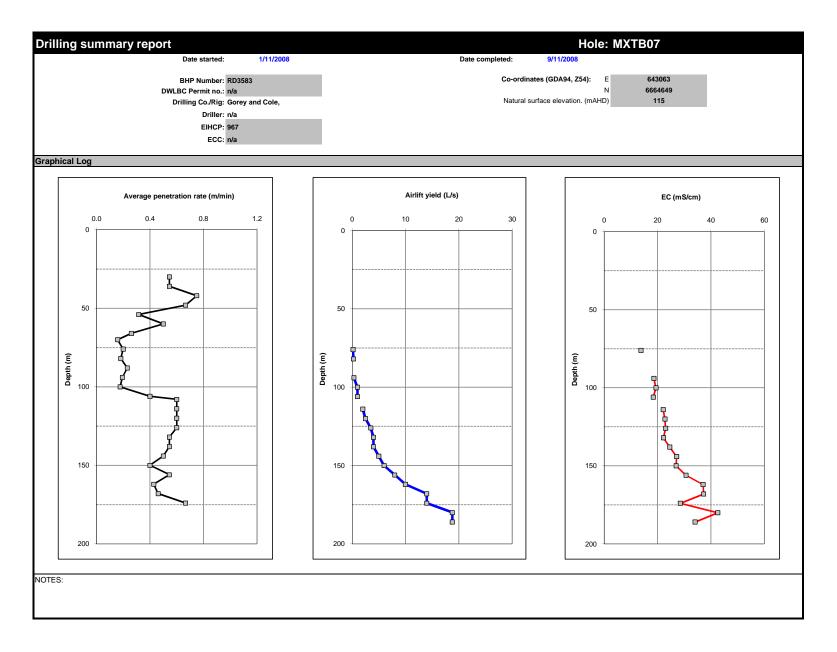
WELL PERMIT NUMBER: n/a

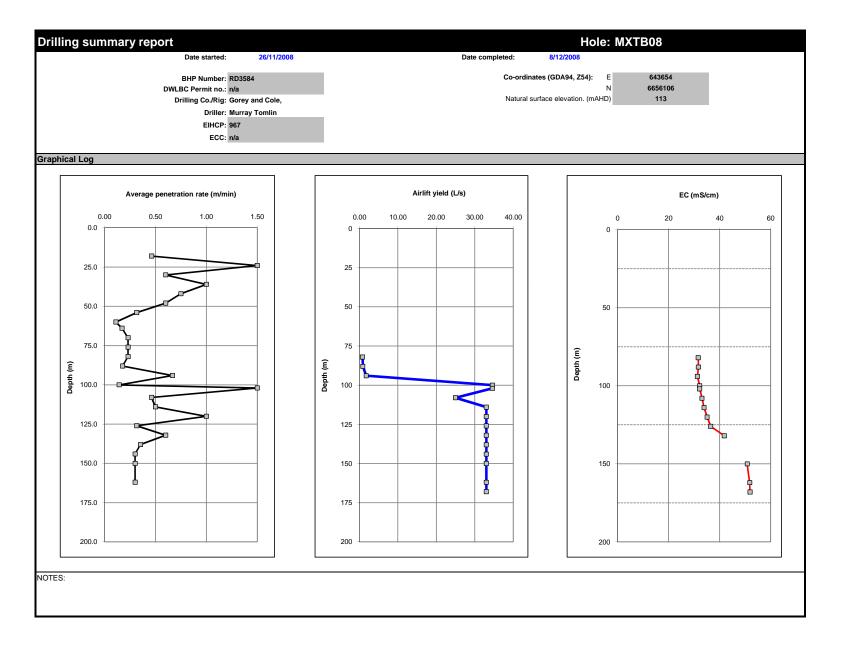
TOTAL DEPTH (m bgl): 210 REFERENCE POINT (m AHD):115

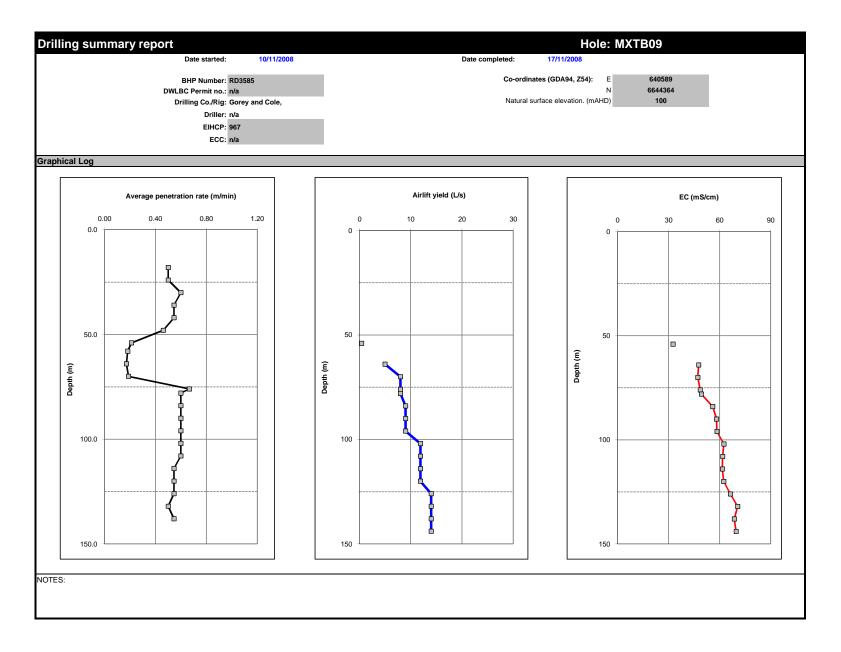
STATIC WATER LEVEL

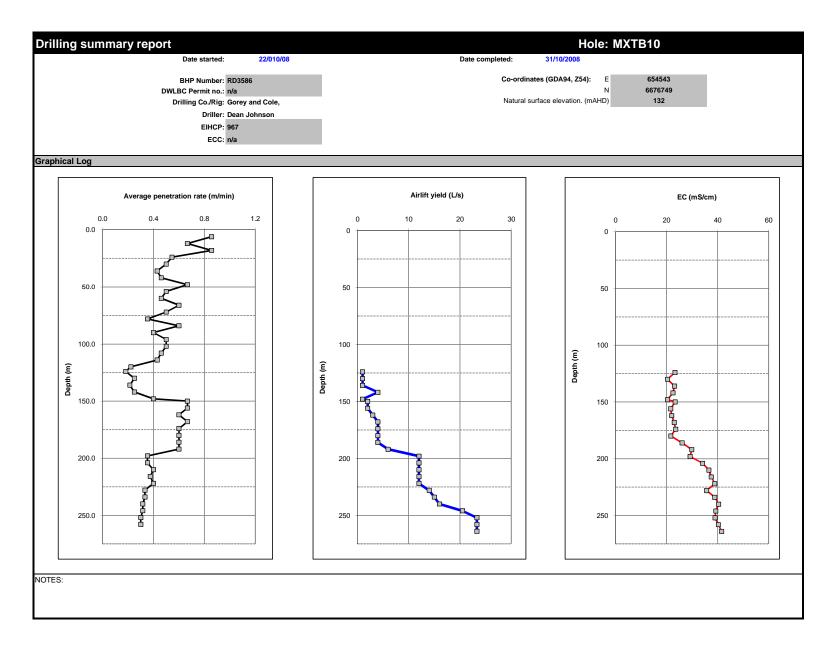
Date: 16/10/2008 Depth (m TOC)a: 89.34, b: 92.8

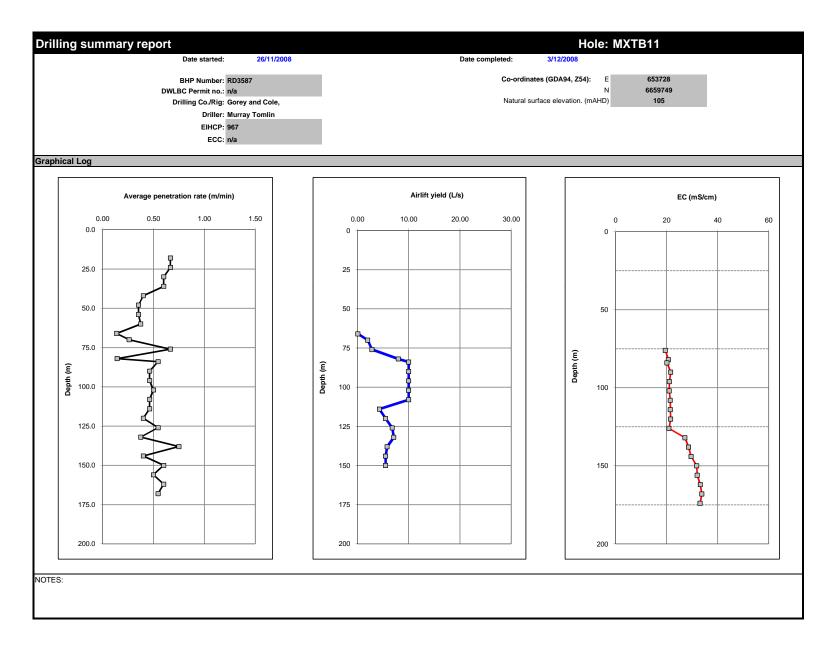

FIELD RECORDS / CONSTRUCTION INFO.

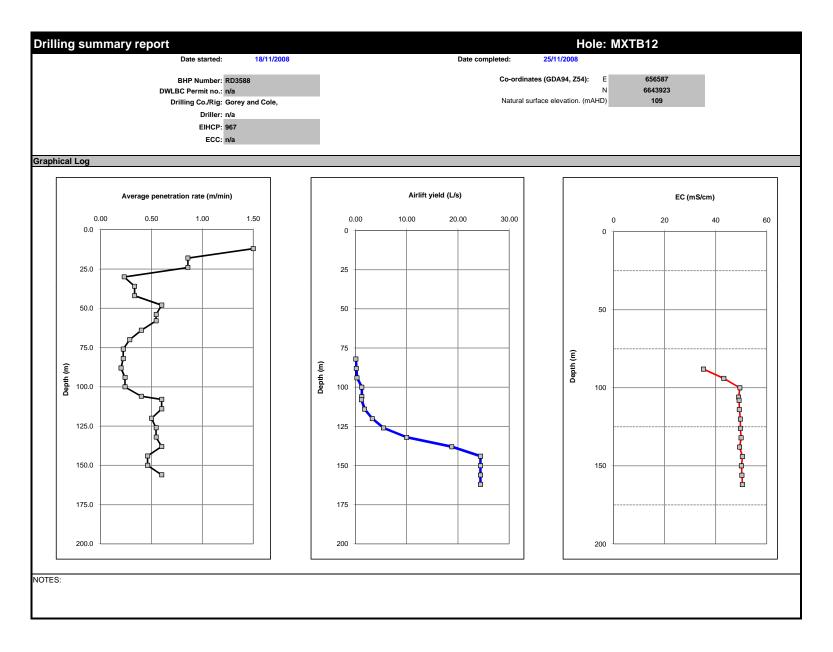

PROJECTION:GDA 1994, Zone 53

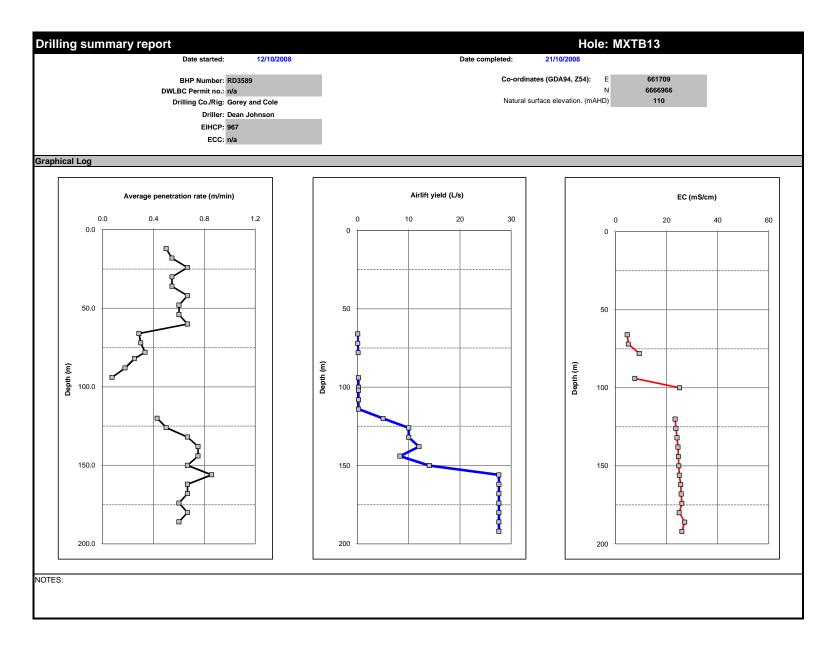

EASTING: 672164 NORTHING: 6652846

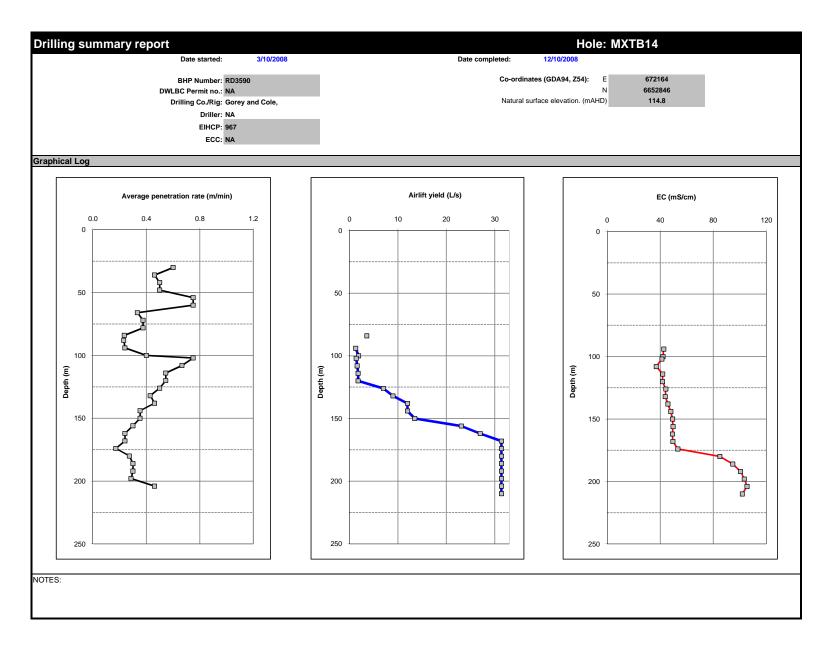

	METHOD	BIT LOG	PENETRATION RATE (m/mi	UNLOAD PRESSURE (psi)	DEPTH (m)	GRAPHIC LOG	LITHOLOGY	INTERPRETIVE LOG	WATER CUTS	AIRLIFT YIELD (L/sec)	EC (mS/cm)	COMMENTS	WELL	WELL DESCRIPTION
			0.35		150.0 -		Limestone; grey, crystalline, massive, dolomitic, vugs (~10%), ~1mm in size			13.5	49.3			
			0.35		-		Limestone; white, weathered, dolomitic, massive, 5-10% vugs 2mm in size			23.1	49.7			
			0.30		160.0 -		Limestone; grey, crystalline, dolomitic, vugs, <1mm in size			27	49.2			
			0.24		170.0 -					31.4	49.6			
			0.24	245	-		Limestone; dark grey, crystalline, weathered, 30-40% of chip with vugs up to 4mm, with some Pyrite			31.4	53.3	Fructured 174-176 m		
			0.17	245	180.0 -		Limestone: grey, grestalling delemitic, 459/ of phins with year			31.4	85			
			0.27		-		Limestone; grey, crystalline dolomitic, 15% of chips with vugs			31.4	94.7			
			0.30		190.0 -					31.4	100.6			Gravel Pack 192-210 m
			0.30				Limestone; grey with minor pink, crystalline dolomitic, 15% of chips with vugs Limestone; grey/light pink/white, dolomitic, massive, crystalline,			31.4	103.4			
					200.0 -		very minor vughs <0.5mm Limestone; grey/light pink/white, dolomitic, massive, crystalline,							80 mm PVC slotted casing 202-208 m
			0.29	245	-	3	very minor vugs <0.5mm, with some minor Shale; grey Limestone; grey/light pink/white, crystalline, massive, dolomitic,			31.4	105.5			555.11g 202 200 111
-	\downarrow		0.46	245	210.0 -		with 50% Shale; green/grey	Pws		31.4	101.9			
						II N	Shale; green/red, hard	//						


DATE: 12/10/08 LOGGED: J Richards CHECKED: K Furness DATE: 19/12/08









Airlift Test MXTB07

			_		
Pumped Well:	MXTB07a		Pumped Well:	MXTB07b	
Start Date and Time:	9/11/2008		Start Date and Time:	9/11/2008 8:44	
Finish Date and Time:	9/11/2008 13:18		Finish Date and Time:	10:34	
Total Time of Test:	120	min	Total Time of Test:	120	min
Airlift/Pumping Rate:	78.624	m3/day	Airlift/Pumping Rate:	157.25	m3/day
Monitored by:	Kate Hyland		Monitored by:	Kate Hyland	
Measurement Point:	PVC	Height above GL	Measurement Point:	top of PVC	Height above GL
Initial SWL:	64.96	m(bmp)	Initial SWL:	65.08	m(bmp)
Volume Lifted/Pumped:		m3	Volume Lifted/Pumped:		m3
Depth of Airline/Pump:	94	m(bgl)	Depth of Airline/Pump:	120	m(bgl)

Pumped Well: Recovery Test Data

			Waterlevel	Residua drawdo					Waterlevel	Residual drawdown
t' (min)		t/t'	(mTOC)	(m)		t' (min)		t/t'	(mTOC)	(m)
	0						0			
	1	121					1	121		
	2	61					2	61		
	3	41					3	41		
	4	31	65.01		0.05		4	31		
	5	25	65.015	(0.055		5	25		
	6	21	65.02		0.06		6	21		
	7	18.14286	65.02		0.06		7	18.1429		
	8	16	65.02		0.06		8	16		
	9	14.33333	65.02		0.06		9	14.3333	65.98	0.9
1	0	13	65.015		0.55		10	13	66.01	0.93
1	2	11	65.015	(0.055		12	11	66.055	0.975
1	L 4	9.571429	65.01		0.05		14	9.57143	66.055	0.975
1	16	8.5	65.01		0.05		16	8.5	66.045	0.965
1	8	7.666667	65.01		0.05		18	7.66667	66.045	0.965
2	20	7	65.01		0.05		20	7	66.045	0.965
2	25	5.8	65.01		0.05		25	5.8	66.045	0.965
3	30	5	65.01		0.05		30	5	66.045	0.965

Airlift Test MXTB09

Pumped Well:	MXTB9a	
Start Date and Time:	18/11/2008 11:30	
Finish Date and Time:	18/11/2008 13:30	
Total Time of Test:	120	min
Airlift/Pumping Rate:	61.344	m3/day
Monitored by:	K Furness	
Measurement Point:		Height above GL
Initial SWL:	43.05	m(bmp)
Volume Lifted/Pumped:	14.4	m3
Depth of Airline/Pump:	55	m(bgl)

Pumped Well:	MXTB9b	
Start Date and Time:	18/11/2008 8:20	
Finish Date and Time:	18/11/2008 10:20	
Total Time of Test:	120	min
Airlift/Pumping Rate:	172.8	m3/day
Monitored by:	K Furness	
Measurement Point:		Height above GL
Initial SWL:	46.04	m(bmp)
Volume Lifted/Pumped:	5.112	m3
Depth of Airline/Pump:	90	m(bgl)

				Residual				Residual
			Waterlevel	drawdown			Waterlevel	drawdown
t' (min)	t/	't'	(mTOC)	(m)	t' (min)	t/t'	(mTOC)	(m)
	0				0			
	1	121.00			1	121		
	2	61.00			2	61		
	3	41.00	45.98	2.93	3	41		
	4	31.00	45.99	2.94	4	31		
	5	25.00	45.99	2.94	5	25		
	6	21.00	45.985	2.935	6	21	46.92	0.88
	7	18.14	45.985	2.935	7	18.14286	46.89	0.85
	8	16.00	45.985	2.935	8	16	46.9	0.86
	9	14.33	45.985	2.935	9	14.33333	46.88	0.84
	10	13.00	45.985	2.935	10	13	46.875	0.835
	12	11.00	45.985	2.935	12	11	46.86	0.82
	14	9.57	45.985	2.935	14	9.571429	46.86	0.82
	16	8.50	45.985	2.935	16	8.5	46.86	0.82
	18	7.67	45.985	2.935	18	7.666667	46.85	0.81
	20	7.00	45.985	2.935	20	7	46.84	0.8
	25	5.80	45.985	2.935	25	5.8	46.83	0.79
	30	5.00	45.985	2.935	30	5	46.825	0.785
					35	4.428571	46.82	0.78
					40	4	46.815	0.775
					45	3.666667	46.81	0.77
					50	3.4	46.81	0.77
					55	3.181818	46.805	0.765
					60	3	46.805	0.765

AirliftTest MXTB11

Pumped Well:	MXTB11b	
Start Date and Time:	3/12/2008 10:50	
Finish Date and Time:	3/12/2008 11:30	
Total Time of Test:	120	min
Airlift/Pumping Rate:	112.32	m3/day
Monitored by:	Kate Hyland	
Measurement Point:		Height above GL
Initial SWL:	58.09	m(bmp)
Volume Lifted/Pumped:		m3
Depth of Airline/Pump:	100	m(bgl)

				Residual drawdown		
			Waterlevel			
t' (min)		t/t'	(mTOC)	(m)		
	0					
	1	121				
	2	61				
	3	41				
	4	31				
	5	25				
	6	21				
	7	18.14286				
	8	16	58.86	0.77		
	9	14.33333	58.87	0.78		
	10	13	58.865	0.775		
	12	11	58.865	0.775		
	14	9.571429	58.865	0.775		
	16	8.5	58.865	0.775		
	18	7.666667	58.865	0.775		
	20	7	58.865	0.775		
	25	5.8	58.865	0.775		
	30	5	58.865	0.775		

Airlift Test MXTB12

Pumped Well:	MXTB12a		Pumped Well:	MXTB12b	
Start Date and Time:	25/11/2008 13:40		Start Date and Time:	25/11/2008 10:55	
Finish Date and Time:	25/11/2008 15:40		Finish Date and Time:	25/11/2008 10:25	
Total Time of Test:	120	min	Total Time of Test:	120	min
Airlift/Pumping Rate:	14.7	m3/day	Airlift/Pumping Rate:	172.8	m3/day
Monitored by:	Kate Hyland		Monitored by:	Kate Hyland	
Measurement Point:		Height above GL	Measurement Point:		Height above GL
Initial SWL:	67.38	m(bmp)	Initial SWL:	67.36	m(bmp)
Volume Lifted/Pumped:	1224	m3	Volume Lifted/Pumped:	14400	m3
Depth of Airline/Pump:	74	m(bgl)	Depth of Airline/Pump:	100	m(bgl)

			Waterlevel	Residu drawo					Waterlevel	Residual drawdown
t' (min)	1	t/t'	(mTOC)	(m)		t' (min)		t/t'	(mTOC)	(m)
	0						0			
	1	121					1	121		
	2	61					2	61		
	3	41					3	41		
	4	31					4	31	67.42	
	5	25	67.53		0.25		5	25	67.41	
	6	21	67.48		0.2		6	21	67.425	0.065
	7	18.14286	67.46		0.18		7	18.142857	67.425	0.065
	8	16	67.45		0.17		8	16	67.435	0.075
	9	14.33333	67.435		0.155		9	14.333333	67.435	0.075
	10	13	67.425		0.145		10	13	67.435	0.075
	12	11	67.41		0.13		12	11	67.445	0.085
	14	9.571429	67.4		0.12		14	9.5714286	67.435	0.075
	16	8.5	67.385		0.105		16	8.5	67.435	0.075
:	18	7.666667	67.375		0.095		18	7.6666667	67.43	0.07
	20	7	67.37		0.09		20	7	67.425	0.065
	25	5.8	67.35		0.07		25	5.8	67.427	0.067
	30	5	67.345		0.065		30	5	67.435	0.075
	35	4.428571	67.34		0.06					
•	40	4	67.33		0.05					
•	45	3.666667	67.325		0.045					
!	50	3.4	67.32		0.04					
!	55	3.181818	67.32		0.04					
(60	3	67.32		0.04					
(65	2.846154	67.315		0.035					
•	70	2.714286	67.31		0.03					
;	80	2.5	67.305		0.025					
9	90	2.333333	67.3		0.02					
10	00	2.2	67.295		0.015					
1	10	2.090909	67.29		0.01					
1	20	2	67.29		0.01					

Airlift Test MXTB13

Pumped Well:	MXTB13a	
Start Date and Time:	21/10/2008	
Finish Date and Time:	21/10/2008 10:38	
Total Time of Test:	120	min
Airlift/Pumping Rate:	57.888	m3/day
Monitored by:	K Furness	
Measurement Point:	0.45	Height above GL
Initial SWL:	78.87	m(bmp)
Volume Lifted/Pumped:	4.824	m3
Depth of Airline/Pump:	89	m(bgl)

		_
Pumped Well:	MXTB13b	
Start Date and Time:	21/10/2008 11:29	
Finish Date and Time:	21/10/2008 14:19	
Total Time of Test:	170	min
Airlift/Pumping Rate:	216	m3/day
Monitored by:	MXTB13a	
Measurement Point:	0.45	Height above GL
Initial SWL:	97.65	m(bmp)
Volume Lifted/Pumped:	25.5	m3
Depth of Airline/Pump:	155	m(bgl)

t' (min)			Waterlevel (mTOC)	Residual drawdown (m)	t
	0				
	1	121			
	2	61			
	3	41			
	4	31	103.4	24.53	
	5	25	102.67	23.8	İ
	6	21	102.17	23.3	İ
	7	18.14286	101.55	22.68	
	8	16	100.97	22.1	
	9	14.33333	100.71	21.84	
	10	13	100.3	21.43	İ
	12	11	99.63	20.76	
	14	9.571429	99.03	20.16	İ
	16	8.5	98.61	19.74	l
	18	7.666667	98.25	19.38	l
	20	7	98.04	19.17	l
	25	5.8	97.71	18.84	l
	30	5	97.65	18.78	
	35	4.428571	97.65	18.78	
	40	4	97.65	18.78	
	45	3.666667	97.65	18.78	l

			Waterlevel	Residual drawdown
	t' (min)	t/t'	(mTOC)	(m)
	0			
	1	171		
	2	86		
	3	57.666667		
3	4	43.5		
3	5	35	97.32	-0.33
3	6	29.333333	97.77	0.12
3	7	25.285714	97.77	0.12
L	8	22.25	97.75	0.1
ļ	9	19.888889	97.75	0.1
3	10	18	97.745	0.095
6	12	15.166667	97.745	0.095
6	14	13.142857	97.745	0.095
ļ	16	11.625	97.745	0.095
3	18	10.44444	97.745	0.095
7	20	9.5	97.745	0.095
Ļ	25	7.8	97.745	0.095
3	30	7	97.745	0.095

Airlift Test MXTB14

7 111111 1 1									
	ь	umped Well:	MXTB14a				Pumped Well:	MXTB14b	
Sta		te and Time:				C+	art Date and Time:	12/10/2008 10:10	
		te and Time:			l .		sh Date and Time:	12/10/2008 11:10	
		Time of Test:		min	Total Time of Test		60	min	
		imping Rate:		m3/day			lift/Pumping Rate:		m3/day
AIII		lonitored by:		1113/uay		AII	Monitored by:	MXTB14a	1113/day
Me		ement Point:		Height above GL			Monitored Well:	WIXTDIAG	Height above GL
IVIC	asui	Initial SWL:		m(bmp)		М	easurement Point:		Height above GL
Volum	اماif	ted/Pumped:		m3		IVI	Initial SWL:	92.83	m(bmp)
		irline/Pump:		m(bgl)	Distanc	e fi	rom Pumped Well:	72.00	m
			Waterlevel	Residual drawdown				Waterlevel	Residual drawdown
t' (min)		t/t'	(mTOC)	(m)	t' (min)		:/t'	(mTOC)	(m)
ι (πππ)	1	ι/ι 61	•	(111)	(111111)	1	./ı 61	(IIIIOC)	(111)
	2	31				2	31		
	3	21		-0.83		3	21		
	4	16		-0.55		4	16		
	5	13		-0.55		5	13		
	6	11		-0.54		6	11		
	7	9.571429	88.8	-0.54		7	9.571428571	93	0.17
	8	8.5		-0.54		8	8.5	93	0.17
	9	7.666667	88.8	-0.54		9	7.666666667	93	0.17
	10	7		-0.54		0	7	92.99	0.16
	12	6	88.8	-0.54	1	2	6	92.99	0.16
	14	5.285714	88.8	-0.54	1	4	5.285714286	92.99	0.16
	16	4.75	88.8	-0.54	1	6	4.75	93.05	0.22
	18	4.333333	88.8	-0.54	1	8.	4.333333333	93	0.17
	20	4	88.8	-0.54	2	0.	4	93	0.17

-0.54

-0.54

25

30

35

3.4

2.714285714

3

93

93

93

0.17

0.17

0.17

88.8

88.8

25

30

3.4

3

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0808905** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K HYLAND Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-3-8549 9601

Project : VE30026.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : KF, KH

 Jate Samples Received
 : 21-OCT-2008

 Issue Date
 : 28-OCT-2008

No. of samples received : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

: EN/003/08

- General Comments
- Analytical Results

Site

Quote number

release.

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 2

 Signatories
 Position
 Accreditation Category

 Dilani Fernando
 Senior Inorganic Instrument Chemist
 Inorganics

No. of samples analysed

Herman Lin Senior Inorganic Chemist Inorganics

Inorganics

Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0808905

Client : SINCLAIR KNIGHT MERZ

Project : VE30026.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 4
Work Order : EM0808905

Client : SINCLAIR KNIGHT MERZ

Project : VE30026.2

ALS

Sub-Matrix: WATER	o-Matrix: WATER Client sample ID Client sampling date / time				MXTB13 (192M) drilled 1X Red & 1X Green Bottle 18-OCT-2008 09:00	 	
Compound	CAS Number	LOR	Unit	17-OCT-2008 09:00 EM0808905-001	EM0808905-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.72	7.94	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	24500	25900	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	15800	17600	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	1560	145	 	
EA045: Turbidity							
Turbidity		0.1	NTU	4320	225	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	190	312	 	
Total Alkalinity as CaCO3		1	mg/L	190	312	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	2680	2780	 	
^ Sulfur as S		1	mg/L	894	927	 	
^ Silica	7631-86-9	0.1	mg/L	26.4	29.0	 	
Silicon	7440-21-3	0.10	mg/L	12.3	13.5	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	7300	8300	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	616	672	 	
Magnesium	7439-95-4	1	mg/L	417	532	 	
Sodium	7440-23-5	1	mg/L	5120	5450	 	
Potassium	7440-09-7	1	mg/L	87	92	 	
EG005F: Dissolved Metals by ICP-AES	7400 00 0	0.04	m = //	-0.40	40.40		
Iron	7439-89-6	0.01	mg/L	<0.10	<0.10	 	
EG005T: Total Metals by ICP-AES	7400 00 0	0.01		400	0.00		
Iron	7439-89-6	0.01	mg/L	4.88	3.60	 	
EG020F: Dissolved Metals by ICP-MS		0.01			0.55		
Aluminium	7429-90-5	0.01	mg/L	0.01	0.02	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001 0.043	0.003 0.020	 	
Barium	7440-39-3	0.001	mg/L	0.043	0.020	 	

Page : 4 of 4 Work Order : EM0808905

Client : SINCLAIR KNIGHT MERZ

Project : VE30026.2

ALS

Sub-Matrix: WATER	Matrix: WATER Client sample ID				MXTB13 (192M) drilled 1X Red & 1X Green Bottle	 	
	CI	ient sampli	ng date / time	Bottle 17-OCT-2008 09:00	18-OCT-2008 09:00	 	
Compound	CAS Number	LOR	Unit	EM0808905-001	EM0808905-002	 	
EG020F: Dissolved Metals by ICP-MS - Co	ontinued						
Cobalt	7440-48-4	0.001	mg/L	0.003	0.002	 	
Copper	7440-50-8	0.001	mg/L	0.006	0.004	 	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	 	
Manganese	7439-96-5	0.001	mg/L	0.368	0.091	 	
Strontium	7440-24-6	0.001	mg/L	9.03	10.2	 	
Uranium	7440-61-1	0.001	mg/L	0.006	0.011	 	
Zinc	7440-66-6	0.005	mg/L	1.41	0.012	 	
Boron	7440-42-8	0.05	mg/L	5.42	5.38	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.2	1.1	 	
EK057G: Nitrite as N by Discrete Analyse	er						
Nitrite as N		0.01	mg/L	0.03	<0.01	 	
EK058G: Nitrate as N by Discrete Analys	er						
^ Nitrate as N	14797-55-8	0.01	mg/L	0.09	<0.01	 	
EK059G: NOX as N by Discrete Analyser	•						
Nitrite + Nitrate as N		0.01	mg/L	0.13	<0.01	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	266	298	 	
^ Total Cations		0.01	meq/L	290	317	 	
^ Ionic Balance		0.01	%	4.33	2.94	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0809035** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K HYLAND Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600
Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30064.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --

 C-O-C number
 : --

 Sampler
 : KF, KH

 Jate Samples Received
 : 27-OCT-2008

 Issue Date
 : 03-NOV-2008

No. of samples received : 2

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Dilani Fernando
 Senior Inorganic Instrument Chemist
 Inorganics

Herman Lin Senior Inorganic Instrument Chemist Inorganics

Senior Inorganic Instrument Chemist Inorganics

Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0809035

Client : SINCLAIR KNIGHT MERZ

Project : VE30064.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- Ionic Balance out of acceptable limits for EM0809035 #2 due to analytes not quantified in this report.
- It is recognised that Nitrite +Nitrate as N is less than Nitrite as N for EM0809035 #2. However, the difference is within experimental variation of the methods.

Page : 3 of 4
Work Order : EM0809035

Client : SINCLAIR KNIGHT MERZ

Project : VE30064.2

ALS

Sub-Matrix: WATER		Cli	ent sample ID	MXTB13A	MXTB13B	 	
	Clie	ent sampli	ing date / time	24-OCT-2008 09:30	24-OCT-2008 09:30	 	
Compound	CAS Number	LOR	Unit	EM0809035-001	EM0809035-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.95	7.20	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	25100	25200	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	16900	17300	 	
EA025: Suspended Solids	0.0 2.0 0.0						
^ Suspended Solids (SS)		1	mg/L	18	10	 	
EA045: Turbidity			3				
Turbidity		0.1	NTU	11.9	5.2	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	310	316	 	
Total Alkalinity as CaCO3		1	mg/L	310	316	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	2990	3700	 	
^ Sulfur as S		1	mg/L	997	1230	 	
^ Silica	7631-86-9	0.1	mg/L	24.6	47.7	 	
Silicon	7440-21-3	0.10	mg/L	11.5	22.3	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	7980	8620	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	658	719	 	
Magnesium	7439-95-4	1	mg/L	543	664	 	
Sodium	7440-23-5	1	mg/L	5280	6520	 	
Potassium	7440-09-7	1	mg/L	98	122	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.12	<0.10	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.68	0.19	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.02	<0.01	 	
Arsenic	7440-38-2	0.001	mg/L	0.042	0.021	 	
Barium	7440-39-3	0.001	mg/L	0.032	0.022	 	
Cobalt	7440-48-4	0.001	mg/L	0.035	0.014	 	
Copper	7440-50-8	0.001	mg/L	0.007	0.006	 	

Page : 4 of 4 Work Order : EM0809035

Client : SINCLAIR KNIGHT MERZ

Project : VE30064.2

Sub-Matrix: WATER	ER Client sample ID			MXTB13A	MXTB13B	 	
	CI	ient samplii	ng date / time	24-OCT-2008 09:30	24-OCT-2008 09:30	 	
Compound	CAS Number	LOR	Unit	EM0809035-001	EM0809035-002	 	
EG020F: Dissolved Metals by ICP-MS - Con	ntinued						
Lead	7439-92-1	0.001	mg/L	0.005	0.007	 	
Manganese	7439-96-5	0.001	mg/L	0.096	0.069	 	
Strontium	7440-24-6	0.001	mg/L	9.96	10.4	 	
Uranium	7440-61-1	0.001	mg/L	0.038	0.022	 	
Zinc	7440-66-6	0.005	mg/L	0.025	0.020	 	
Boron	7440-42-8	0.05	mg/L	5.33	5.49	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.2	1.0	 	
EK057G: Nitrite as N by Discrete Analyser	•						
Nitrite as N		0.01	mg/L	<0.01	0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r						
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	294	326	 	
^ Total Cations		0.01	meq/L	310	377	 	
^ Ionic Balance		0.01	%	2.68	7.23	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0808812** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K HYLAND Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600
Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE30026.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : --

 C-O-C number
 : --

 Sampler
 : KF, KH

 Jate Samples Received
 : 20-OCT-2008

 Issue Date
 : 28-OCT-2008

Site : ---No. of samples received : 2

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics
Herman Lin Senior Inorganic Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0808812

Client : SINCLAIR KNIGHT MERZ

Project : VE30026.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been preformed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- EGO05T: Iron LOR has been raised.
- lonic Balance out of acceptable limits due to analytes not quantified in this report.

Page : 3 of 4
Work Order : EM0808812

Client : SINCLAIR KNIGHT MERZ

Project : VE30026.2

Page : 4 of 4 Work Order : EM0808812

Client : SINCLAIR KNIGHT MERZ

Project : VE30026.2

Sub-Matrix: WATER	:: WATER Client sample ID			MXTB14a	MXTB14b	 	
	Cl	ient sampli	ng date / time	16-OCT-2008 09:00	16-OCT-2008 09:00	 	
Compound	CAS Number	LOR	Unit	EM0808812-001	EM0808812-002	 	
EG020F: Dissolved Metals by ICP-MS - Con	tinued						
Strontium	7440-24-6	0.001	mg/L	13.4	32.2	 	
Uranium	7440-61-1	0.001	mg/L	0.016	0.006	 	
Zinc	7440-66-6	0.005	mg/L	0.053	0.040	 	
Boron	7440-42-8	0.05	mg/L	6.31	4.85	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.3	1.0	 	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N		0.01	mg/L	0.27	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r						
^ Nitrate as N	14797-55-8	0.01	mg/L	0.23	<0.01	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	0.51	<0.01	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	475	1440	 	
^ Total Cations		0.01	meq/L	526	1640	 	
^ Ionic Balance		0.01	%	5.13	6.54	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0809556** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K FURNESS Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-3-8549 9601

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 11-NOV-2008

 Sampler
 : KF/KH
 Issue Date
 : 18-NOV-2008

Site : ---No. of samples received

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 2

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Instrument Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0809556

Client : SINCLAIR KNIGHT MERZ

Project : VE23063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005F: Iron LOR has been raised.

• EG005T: Iron LOR has been raised.

Page : 3 of 4
Work Order : EM0809556

Client : SINCLAIR KNIGHT MERZ

Project : VE23063.2

ALS

Sub-Matrix: WATER	Client sample ID		MXTB10	MXBT10	 		
				Shallow Installation	Deep Installation		
	Cl	ient sampli	ng date / time	01-NOV-2008 15:00	01-NOV-2008 15:00	 	
Compound	CAS Number	LOR	Unit	EM0809556-001	EM0809556-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.94	7.97	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	23600	41100	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	16300	28300	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	12	16	 	
EA045: Turbidity							
Turbidity		0.1	NTU	5.7	1.4	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	183	278	 	
Total Alkalinity as CaCO3		1	mg/L	183	278	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	3670	5050	 	
^ Sulfur as S		1	mg/L	1220	1680	 	
^ Silica	7631-86-9	0.1	mg/L	43.7	35.6	 	
Silicon	7440-21-3	0.10	mg/L	20.4	16.6	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	7170	15900	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	780	797	 	
Magnesium	7439-95-4	1	mg/L	394	1030	 	
Sodium	7440-23-5	1	mg/L	5120	10000	 	
Potassium	7440-09-7	1	mg/L	71	140	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.30	0.28	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.38	0.67	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.02	 	
Arsenic	7440-38-2	0.001	mg/L	0.003	0.008	 	
Barium	7440-39-3	0.001	mg/L	0.036	0.029	 	
Cobalt	7440-48-4	0.001	mg/L	0.008	0.039	 	

Page : 4 of 4 Work Order : EM0809556

Client : SINCLAIR KNIGHT MERZ

Project : VE23063.2

Sub-Matrix: WATER	Matrix: WATER Client sample ID		MXTB10	MXBT10	 		
				Shallow Installation	Deep Installation		
	Client sampling date / time					 	
Compound	CAS Number	LOR	Unit	EM0809556-001	EM0809556-002	 	
EG020F: Dissolved Metals by ICP-MS - Con	tinued						
Copper	7440-50-8	0.001	mg/L	0.006	0.009	 	
Lead	7439-92-1	0.001	mg/L	<0.001	0.002	 	
Manganese	7439-96-5	0.001	mg/L	0.187	0.391	 	
Strontium	7440-24-6	0.001	mg/L	12.3	14.2	 	
Uranium	7440-61-1	0.001	mg/L	0.005	0.006	 	
Zinc	7440-66-6	0.005	mg/L	0.051	0.035	 	
Boron	7440-42-8	0.05	mg/L	7.82	5.51	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.6	1.1	 	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N		0.01	mg/L	0.16	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r						
^ Nitrate as N	14797-55-8	0.01	mg/L	0.37	0.03	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	0.53	0.03	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	282	558	 	
^ Total Cations		0.01	meq/L	296	566	 	
^ Ionic Balance		0.01	%	2.36	0.65	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0809550** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K FURNESS Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-3-8549 9601

Project : VE26063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : KF, KH

 Jate Samples Received
 : 11-NOV-2008

 Issue Date
 : 18-NOV-2008

Site : ----

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

No. of samples received

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 2

Signatories	Position	Accreditation Category	
Dilani Fernando	Senior Inorganic Instrument Chemist	Inorganics	
Herman Lin	Senior Inorganic Chemist	Inorganics	
Nikki Stepniewski	Non-metallic Supervisor	Inorganics	

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0809550

Client : SINCLAIR KNIGHT MERZ

Project : VE26063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

EG005F: Iron LOR has been raised.

EG005T: Iron LOR has been raised.

Page : 3 of 4
Work Order : EM0809550

Client : SINCLAIR KNIGHT MERZ

Project : VE26063.2

ALS

Sub-Matrix: WATER		Clie	ent sample ID	MXTB10a	MXTB10b	 	
	Cli	ient sampli	ng date / time	09-NOV-2008 15:40	09-NOV-2008 15:30	 	
Compound	CAS Number	LOR	Unit	EM0809550-001	EM0809550-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	6.95	7.25	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	24600	40300	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	17200	28800	 	
EA025: Suspended Solids	0.0 2.0 0.0						
^ Suspended Solids (SS)		1	mg/L	10	30	 	
EA045: Turbidity							
Turbidity		0.1	NTU	9.8	12.6	 	
ED037P: Alkalinity by PC Titrator					.=.		
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	163	278	 	
Total Alkalinity as CaCO3		1	mg/L	163	278	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	3840	4950	 	
^ Sulfur as S		1	mg/L	1280	1650	 	
^ Silica	7631-86-9	0.1	mg/L	31.5	34.9	 	
Silicon	7440-21-3	0.10	mg/L	14.7	16.3	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	7580	15500	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	761	774	 	
Magnesium	7439-95-4	1	mg/L	418	1020	 	
Sodium	7440-23-5	1	mg/L	5250	9840	 	
Potassium	7440-09-7	1	mg/L	71	138	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.28	0.23	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.48	0.76	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.02	0.03	 	
Arsenic	7440-38-2	0.001	mg/L	0.003	0.004	 	
Barium	7440-39-3	0.001	mg/L	0.037	0.035	 	
Cobalt	7440-48-4	0.001	mg/L	0.012	0.036	 	
Copper	7440-50-8	0.001	mg/L	0.006	0.014	 	

Page : 4 of 4 Work Order : EM0809550

Client : SINCLAIR KNIGHT MERZ

Project : VE26063.2

Sub-Matrix: WATER	Client sample ID			MXTB10a	MXTB10b	 	
	CI	ient samplii	ng date / time	09-NOV-2008 15:40	09-NOV-2008 15:30	 	
Compound	CAS Number	LOR	Unit	EM0809550-001	EM0809550-002	 	
EG020F: Dissolved Metals by ICP-MS - Con	ntinued						
Lead	7439-92-1	0.001	mg/L	0.003	0.006	 	
Manganese	7439-96-5	0.001	mg/L	0.198	0.402	 	
Strontium	7440-24-6	0.001	mg/L	12.5	14.4	 	
Uranium	7440-61-1	0.001	mg/L	0.005	0.007	 	
Zinc	7440-66-6	0.005	mg/L	0.043	0.047	 	
Boron	7440-42-8	0.05	mg/L	8.14	5.27	 	
EK040P: Fluoride by PC Titrator							
Fluoride	16984-48-8	0.1	mg/L	1.5	1.1	 	
EK057G: Nitrite as N by Discrete Analyser	•						
Nitrite as N		0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	r						
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	 	
EN055: Ionic Balance							
^ Total Anions		0.01	meq/L	297	546	 	
^ Total Cations		0.01	meq/L	302	554	 	
^ Ionic Balance		0.01	%	0.90	0.71	 	

ALS

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0810011** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR DANIEL PIERCE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : ---- QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : --- Date Samples Received
 : 24-NOV-2008

 Sampler
 : KF, KH
 Issue Date
 : 01-DEC-2008

Site : ----

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below.

Signatories Position Accreditation Category

Herman Lin Senior Inorganic Chemist Inorganics

No. of samples received

: 2

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0810011

Client : SINCLAIR KNIGHT MERZ

Project : ---

General Comments

The analytical procedures used by the Environmental Division Europe have been developed from established internationally recognized procedures such as those published by the USEPA, ISO and EN. In house developed procedures are employed in the absence of documented standards or by client request.

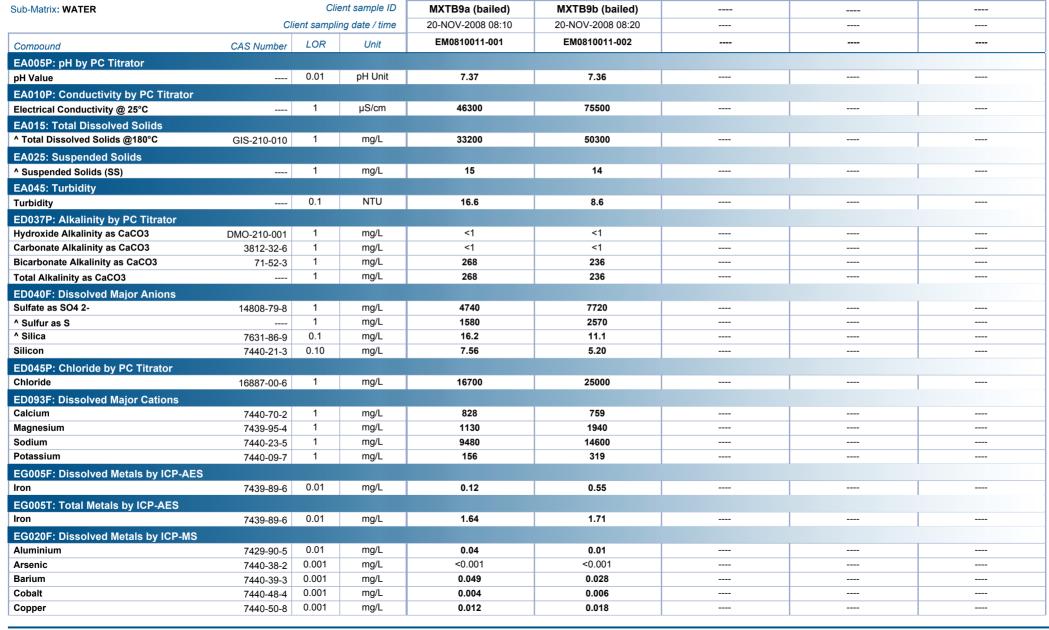
Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number


LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Page : 3 of 4
Work Order : EM0810011

Client : SINCLAIR KNIGHT MERZ

Project : --

Page : 4 of 4 Work Order : EM0810011

Client : SINCLAIR KNIGHT MERZ

Project : --

Sub-Matrix: WATER	Client sample ID			MXTB9a (bailed)	MXTB9b (bailed)			
	Client sampling date / time			20-NOV-2008 08:10	20-NOV-2008 08:20			
Compound	CAS Number	LOR	Unit	EM0810011-001	EM0810011-002			
EG020F: Dissolved Metals by ICP-MS - Continued								
Lead	7439-92-1	0.001	mg/L	0.071	0.002			
Manganese	7439-96-5	0.001	mg/L	0.161	0.320			
Strontium	7440-24-6	0.001	mg/L	14.7	14.3			
Uranium	7440-61-1	0.001	mg/L	0.029	0.007			
Zinc	7440-66-6	0.005	mg/L	0.021	0.010			
Boron	7440-42-8	0.05	mg/L	4.12	6.47			
EK040P: Fluoride by PC Titrator								
Fluoride	16984-48-8	0.1	mg/L	1.4	1.1			
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N		0.01	mg/L	0.62	0.06			
EK058G: Nitrate as N by Discrete Analyser								
^ Nitrate as N	14797-55-8	0.01	mg/L	2.18	0.04			
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N		0.01	mg/L	2.80	0.10			
EN055: Ionic Balance								
^ Total Anions		0.01	meq/L	574	870			
^ Total Cations		0.01	meq/L	550	841			
^ Ionic Balance		0.01	%	2.15	1.72			

ALS

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0810010** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : MR DANIEL PIERCE Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : ---- QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : --- Date Samples Received
 : 24-NOV-2008

 Sampler
 : KF, KH
 Issue Date
 : 01-DEC-2008

No. of samples received : 2

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below.

Signatories Position Accreditation Category

Herman Lin Senior Inorganic Chemist Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0810010

Client : SINCLAIR KNIGHT MERZ

Project : ---

ALS

General Comments

The analytical procedures used by the Environmental Division Europe have been developed from established internationally recognized procedures such as those published by the USEPA, ISO and EN. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• It is recognised that NOx is less than Nitrite for sample #2. However, the difference is within experimental variation of the methods.

Client : SINCLAIR KNIGHT MERZ

Project : ---

ALS

Sub-Matrix: WATER		Cli	ent sample ID	MXTB7a (bailed)	MXTB7b (bailed)	 	
	Client sampling date / time		15-NOV-2008 12:00	15-NOV-2008 12:30	 		
Compound	CAS Number	LOR	Unit	EM0810010-001	EM0810010-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.46	7.19	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	20400	41700	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	12900	25300	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	10	12	 	
EA045: Turbidity							
Turbidity		0.1	NTU	21.1	7.4	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	236	263	 	
Total Alkalinity as CaCO3		1	mg/L	236	263	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	2280	4660	 	
^ Sulfur as S		1	mg/L	759	1550	 	
^ Silica	7631-86-9	0.1	mg/L	16.3	13.8	 	
Silicon	7440-21-3	0.10	mg/L	7.61	6.46	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	6750	13200	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	621	796	 	
Magnesium	7439-95-4	1	mg/L	358	928	 	
Sodium	7440-23-5	1	mg/L	3810	9020	 	
Potassium	7440-09-7	1	mg/L	65	150	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	<0.10	<0.10	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	2.58	2.41	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	0.03	0.01	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	 	
Barium	7440-39-3	0.001	mg/L	0.034	0.027	 	
Cobalt	7440-48-4	0.001	mg/L	0.004	0.005	 	
Copper	7440-50-8	0.001	mg/L	0.005	0.011	 	

Client : SINCLAIR KNIGHT MERZ

Project : ---

Sub-Matrix: WATER		Clie	ent sample ID	MXTB7a (bailed)	MXTB7b (bailed)						
	CI	ient sampli	ng date / time	15-NOV-2008 12:00	15-NOV-2008 12:30						
Compound	CAS Number	LOR	Unit	EM0810010-001	EM0810010-002						
EG020F: Dissolved Metals by ICP-MS - Continued											
Lead	7439-92-1	0.001	mg/L	0.031	<0.001						
Manganese	7439-96-5	0.001	mg/L	0.145	0.280						
Strontium	7440-24-6	0.001	mg/L	9.88	16.3						
Uranium	7440-61-1	0.001	mg/L	0.011	0.007						
Zinc	7440-66-6	0.005	mg/L	0.035	0.016						
Boron	7440-42-8	0.05	mg/L	4.08	5.38						
EK040P: Fluoride by PC Titrator											
Fluoride	16984-48-8	0.1	mg/L	0.7	0.8						
EK057G: Nitrite as N by Discrete Analyse	r										
Nitrite as N		0.01	mg/L	0.02	0.01						
EK058G: Nitrate as N by Discrete Analyse	er										
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01						
EK059G: NOX as N by Discrete Analyser											
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01						
EN055: Ionic Balance											
^ Total Anions		0.01	meq/L	242	474						
^ Total Cations		0.01	meq/L	228	512						
^ Ionic Balance		0.01	%	3.14	3.83						

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0809552** Page : 1 of 3

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K FURNESS Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

 Telephone
 : +61 08 8424 3800
 Telephone
 : +61-3-8549 9600

 Facsimile
 : +61 08 8424 3810
 Facsimile
 : +61-3-8549 9601

 Order number
 : --

 C-O-C number
 : --

 Sampler
 : KF, KH

 Jate Samples Received
 : 11-NOV-2008

 Issue Date
 : 17-NOV-2008

Site : ---

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 2

Signatories Position Accreditation Category

No. of samples received

Nikki StepniewskiNon-metallic SupervisorInorganicsTerrance HettipathiranaSenior ICP/MS ChemistInorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0809552

Client : SINCLAIR KNIGHT MERZ

Project : VE23063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005T: Iron LOR has been raised.

Client : SINCLAIR KNIGHT MERZ

Project : VE23063.2

Sub-Matrix: WATER	Client sample ID			MXTB07 - 1	MXTB07 - 2	 	
	Cl	ient sampli	ng date / time	04-NOV-2008 13:00	04-NOV-2008 17:00	 	
Compound	CAS Number	LOR	Unit	EM0809552-001	EM0809552-002	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	10700	24200	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	810	11	 	
EA045: Turbidity							
Turbidity		0.1	NTU	442	6.2	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	3.74	0.17	 	
EK057G: Nitrite as N by Discrete Analyse	r						
Nitrite as N		0.01	mg/L	<0.01	<0.01	 	
EK058G: Nitrate as N by Discrete Analyse	er						
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.38	 	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.38	 	

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0809540** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K FURNESS Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE26063.2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : KF, KH

 Jate Samples Received
 : 11-NOV-2008

 Issue Date
 : 18-NOV-2008

No. of samples received : 2

 $\label{eq:Quote number} \mbox{Quote number} \qquad \qquad : \mbox{EN/003/08} \qquad \qquad \mbox{No. of samples analysed} \qquad : \mbox{2}$

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Site

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Instrument Chemist	Inorganics
Nikki Stepniewski	Non-metallic Supervisor	Inorganics
Terrance Hettipathirana	Senior ICP/MS Chemist	Inorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0809540

Client : SINCLAIR KNIGHT MERZ

Project : VE26063.2

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

EG005F: Iron LOR has been raised.

• EG005T: Iron LOR has been raised.

Client : SINCLAIR KNIGHT MERZ

Project : VE26063.2

ALS

Sub-Matrix: WATER		Clie	ent sample ID	MXTB07a	MXTB07b	 	
	Client sampling date / time		09-NOV-2008 13:18	09-NOV-2008 10:46	 		
Compound	CAS Number	LOR	Unit	EM0809540-001	EM0809540-002	 	
EA005P: pH by PC Titrator							
pH Value		0.01	pH Unit	8.09	7.99	 	
EA010P: Conductivity by PC Titrator							
Electrical Conductivity @ 25°C		1	μS/cm	20500	44700	 	
EA015: Total Dissolved Solids							
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	14200	31600	 	
EA025: Suspended Solids							
^ Suspended Solids (SS)		1	mg/L	13	4	 	
EA045: Turbidity							
Turbidity		0.1	NTU	17.6	4.6	 	
ED037P: Alkalinity by PC Titrator							
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	233	269	 	
Total Alkalinity as CaCO3		1	mg/L	233	269	 	
ED040F: Dissolved Major Anions							
Sulfate as SO4 2-	14808-79-8	1	mg/L	2510	5490	 	
^ Silica	7631-86-9	0.1	mg/L	37.1	37.2	 	
Silicon	7440-21-3	0.10	mg/L	17.3	17.4	 	
ED045P: Chloride by PC Titrator							
Chloride	16887-00-6	1	mg/L	7010	16700	 	
ED093F: Dissolved Major Cations							
Calcium	7440-70-2	1	mg/L	589	837	 	
Magnesium	7439-95-4	1	mg/L	374	1060	 	
Sodium	7440-23-5	1	mg/L	4590	11700	 	
Potassium	7440-09-7	1	mg/L	70	166	 	
EG005F: Dissolved Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.30	0.36	 	
EG005T: Total Metals by ICP-AES							
Iron	7439-89-6	0.01	mg/L	0.55	0.67	 	
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	0.05	 	
Arsenic	7440-38-2	0.001	mg/L	0.002	0.006	 	
Barium	7440-39-3	0.001	mg/L	0.030	0.026	 	
Cobalt	7440-48-4	0.001	mg/L	0.004	0.005	 	
Copper	7440-50-8	0.001	mg/L	0.004	0.010	 	
Lead	7439-92-1	0.001	mg/L	<0.001	0.002	 	

Client : SINCLAIR KNIGHT MERZ

Project : VE26063.2

Sub-Matrix: WATER	Client sample ID			MXTB07a	MXTB07b						
	CI	ient sampli	ng date / time	09-NOV-2008 13:18	09-NOV-2008 10:46						
Compound	CAS Number	LOR	Unit	EM0809540-001	EM0809540-002						
EG020F: Dissolved Metals by ICP-MS - Continued											
Manganese	7439-96-5	0.001	mg/L	0.126	0.274						
Strontium	7440-24-6	0.001	mg/L	9.49	15.8						
Uranium	7440-61-1	0.001	mg/L	0.014	0.006						
Zinc	7440-66-6	0.005	mg/L	0.012	0.030						
Boron	7440-42-8	0.05	mg/L	4.27	5.85						
EK040P: Fluoride by PC Titrator	EK040P: Fluoride by PC Titrator										
Fluoride	16984-48-8	0.1	mg/L	0.8	0.8						
EK057G: Nitrite as N by Discrete Analyse	r										
Nitrite as N		0.01	mg/L	0.09	0.02						
EK058G: Nitrate as N by Discrete Analyse	er										
^ Nitrate as N	14797-55-8	0.01	mg/L	0.30	0.08						
EK059G: NOX as N by Discrete Analyser											
Nitrite + Nitrate as N		0.01	mg/L	0.40	0.10						
EN055: Ionic Balance											
^ Total Anions		0.01	meq/L	255	591						
^ Total Cations		0.01	meq/L	262	641						
^ Ionic Balance		0.01	%	1.30	4.02						

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0810344** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K FURNESS Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : ---- QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

Order number : ----

 C-O-C number
 : -- Date Samples Received
 : 03-DEC-2008

 Sampler
 : KF, KH
 Issue Date
 : 11-DEC-2008

Site : ----

Quote number : EN/003/08 No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

: 2

Signatories Position Accreditation Category

No. of samples received

Herman LinSenior Inorganic ChemistInorganicsTerrance HettipathiranaSenior ICP/MS ChemistInorganics

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0810344

Client : SINCLAIR KNIGHT MERZ

Project : ---

General Comments

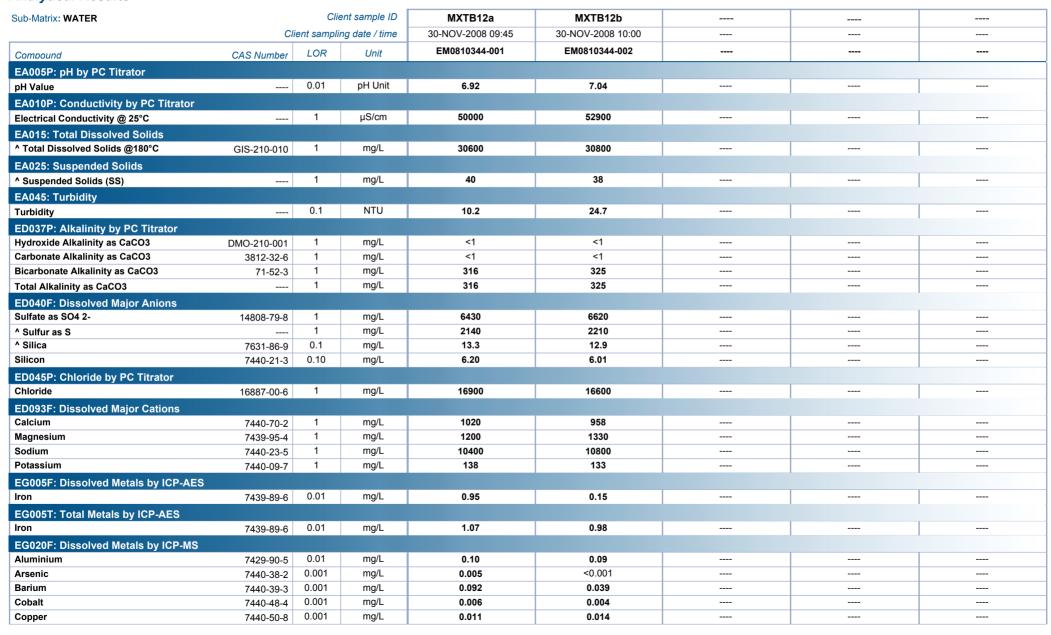
The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.


Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Client : SINCLAIR KNIGHT MERZ

Project : ---

Client : SINCLAIR KNIGHT MERZ

Project : ---

ALS

Sub-Matrix: WATER		Clie	ent sample ID	MXTB12a	MXTB12b						
	CI	ient sampli	ng date / time	30-NOV-2008 09:45	30-NOV-2008 10:00						
Compound	CAS Number	LOR	Unit	EM0810344-001	EM0810344-002						
EG020F: Dissolved Metals by ICP-MS - Continued											
Lead	7439-92-1	0.001	mg/L	0.003	0.002						
Manganese	7439-96-5	0.001	mg/L	0.702	0.945						
Strontium	7440-24-6	0.001	mg/L	13.2	12.5						
Uranium	7440-61-1	0.001	mg/L	0.023	0.009						
Zinc	7440-66-6	0.005	mg/L	0.037	0.027						
Boron	7440-42-8	0.05	mg/L	5.95	6.26						
EK040P: Fluoride by PC Titrator											
Fluoride	16984-48-8	0.1	mg/L	1.2	1.2						
EK057G: Nitrite as N by Discrete Analyse	r										
Nitrite as N		0.01	mg/L	<0.01	<0.01						
EK058G: Nitrate as N by Discrete Analyse	er										
^ Nitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01						
EK059G: NOX as N by Discrete Analyser											
Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01						
EN055: Ionic Balance											
^ Total Anions		0.01	meq/L	618	612						
^ Total Cations		0.01	meq/L	605	630						
^ Ionic Balance		0.01	%	1.07	1.44						

Environmental Division

CERTIFICATE OF ANALYSIS

Work Order : **EM0810576** Page : 1 of 4

Client : SINCLAIR KNIGHT MERZ Laboratory : Environmental Division Melbourne

Contact : K FURNESS Contact : Paul Loewy

Address : LEVEL 5, 33 KING WILLIAM ST Address : 4 Westall Rd Springvale VIC Australia 3171

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8424 3800 Telephone : +61-3-8549 9600 Facsimile : +61 08 8424 3810 Facsimile : +61-3-8549 9601

Project : VE23064 2 QC Level : NEPM 1999 Schedule B(3) and ALS QCS3 requirement

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : KF, KH

 Jate Samples Received
 : 10-DEC-2008

 Issue Date
 : 17-DEC-2008

Site : ---No. of samples received : 1

Quote number : EN/003/08 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

NATA Accredited Laboratory 825

This document is issued in accordance with NATA accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Herman Lin	Senior Inorganic Chemist	Inorganics	
Nikki Stepniewski	Non-metallic Supervisor	Inorganics	
Terrance Hettipathirana	Senior ICP/MS Chemist	Inorganics	

Environmental Division Melbourne
Part of the ALS Laboratory Group

4 Westall Rd Springvale VIC Australia 3171

Tel. +61-3-8549 9600 Fax. +61-3-8549 9601 www.alsglobal.com

Work Order : EM0810576

Client : SINCLAIR KNIGHT MERZ

Project : VE23064 2

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

Key: CAS Number = Chemistry Abstract Services number

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

• EG005F: LOR has been raised.

Client : SINCLAIR KNIGHT MERZ

Project : VE23064 2

ALS

Sub-Matrix: WATER		Clie	ent sample ID	MxTB11b	 	
	Cli	ient sampli	ng date / time	08-DEC-2008 16:40	 	
Compound	CAS Number	LOR	Unit	EM0810576-001	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.21	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	43500	 	
EA015: Total Dissolved Solids						
^ Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	30800	 	
EA025: Suspended Solids	0.0 2.0 0.0					
^ Suspended Solids (SS)		1	mg/L	115	 	
EA045: Turbidity						
Turbidity		0.1	NTU	4.5	 	
ED037P: Alkalinity by PC Titrator						
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	 	
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	 	
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	269	 	
Total Alkalinity as CaCO3		1	mg/L	269	 	
ED040F: Dissolved Major Anions						
Sulfate as SO4 2-	14808-79-8	1	mg/L	4180	 	
^ Sulfur as S		1	mg/L	1390	 	
^ Silica	7631-86-9	0.1	mg/L	11.2	 	
Silicon	7440-21-3	0.10	mg/L	5.23	 	
ED045P: Chloride by PC Titrator						
Chloride	16887-00-6	1	mg/L	13300	 	
ED093F: Dissolved Major Cations						
Calcium	7440-70-2	1	mg/L	681	 	
Magnesium	7439-95-4	1	mg/L	949	 	
Sodium	7440-23-5	1	mg/L	7940	 	
Potassium	7440-09-7	1	mg/L	118	 	
EG005F: Dissolved Metals by ICP-AES						
Iron	7439-89-6	0.01	mg/L	<0.10	 	
EG005T: Total Metals by ICP-AES						
Iron	7439-89-6	0.01	mg/L	1.96	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.03	 	
Arsenic	7440-38-2	0.001	mg/L	0.039	 	
Barium	7440-39-3	0.001	mg/L	0.028	 	
Cobalt	7440-48-4	0.001	mg/L	0.033	 	
Copper	7440-50-8	0.001	mg/L	0.012	 	

Client : SINCLAIR KNIGHT MERZ

Project : VE23064 2

ALS

Sub-Matrix: WATER	Client sample ID			MxTB11b	 	
	CI	ient samplii	ng date / time	08-DEC-2008 16:40	 	
Compound	CAS Number	LOR	Unit	EM0810576-001	 	
EG020F: Dissolved Metals by ICP-MS - Con	ntinued					
Lead	7439-92-1	0.001	mg/L	0.022	 	
Manganese	7439-96-5	0.001	mg/L	0.146	 	
Strontium	7440-24-6	0.001	mg/L	12.7	 	
Uranium	7440-61-1	0.001	mg/L	0.016	 	
Zinc	7440-66-6	0.005	mg/L	0.067	 	
Boron	7440-42-8	0.05	mg/L	4.46	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	8.5	 	
EK057G: Nitrite as N by Discrete Analyser	r					
Nitrite as N		0.01	mg/L	0.03	 	
EK058G: Nitrate as N by Discrete Analyse	r					
^ Nitrate as N	14797-55-8	0.01	mg/L	0.08	 	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N		0.01	mg/L	0.12	 	
EN055: Ionic Balance						
^ Total Anions		0.01	meq/L	467	 	
^ Total Cations		0.01	meq/L	461	 	
^ Ionic Balance		0.01	%	0.73	 	

Olympic Dam EIS Project – Hydrogeological data and information collation report FINAL

Attachment E Geological log for Margaret Creek Bore #1

Fee	Feet Meters		ers	Description	Formation
From	To	From	То	Description	Formation
0	80	0	24	Shale	Bull Dog Shale
80	114	24	35	Gravel, Quartz, Sub-Angular	Cadnaowie Formation
114	149	35	45	Gravelley, Sand, white / Grey	Algebuckina Sandstone
149	168	45	51	Grey Mud / Siltstone	Stuart Range
168	200	51	61	Choc Brown Mud / Siltstone	Boorthanna Formation (Upper?)
200	276	61	84	Gravelley Mud / Siltstone, Grey	Boorthanna Formation (Lower?)
276	295	84	90	Sub-Angular Pebbles, Light / Off Grey colour	Boorthanna Formation (Lower?)
295	301	90	92	Dark Grey Mudstone	Boorthanna
301	335	92	102	Sandy, Fine Gravel, Grey / Brown, Purple mottling	Boorthanna Formation (Lower?)
335	378	102	115	Light Grey Mud / Siltstone, Fine Grains	Boorthanna Formation (Lower?)
378	391	115	119	Fine Grain, Sandy Mudstone, Light Grey / Brown	Boorthanna Formation (Lower?)
391	395	119	120	Fine sand, Light brown / Grey, Red Occurances, Grey (Sulpher?), occura	Boorthanna Formation (Lower?)
395	460	120	140	Light Grey Mudstone (Stuart Range esc)	Boorthanna
460	612	140	187	Fine Sand, quartz occurances	Arcoona Quartzite?
612	619	187	189	Fine Sand, quartz occurances, Redish Pink	Arcoona Quartzite?
619	648	189	198	Fine Sand, Quartz, Dark Grey	Arcoona Quartzite?
648	675	198	206	Fine Sand, quartz occurances, Redish Pink	Arcoona Quartzite?
675	681	206	208	Red Sandy, Fine Grain	Arcoona Quartzite?
681	685	208	209	Fine Sand, quartz occurances, Redish Pink	Arcoona Quartzite?