

APPENDIX 08

Sensitivity of marine biota to changes in salinity

O8 SENSITIVITY OF MARINE BIOTA TO CHANGES IN SALINITY

The tolerance of marine biota to high salinities from studies in Australia and elsewhere in the world has been reviewed and the results summarised in Table O8.1. Note that in many cases the tested brine contained other possible contaminants, including anti-scalants or sewage.

Common name	Scientific name	Salinity	Response	Reference
		g/L		
Seagrass	Halophila johnsonii	30	Optimum growth	Torquemada et al. (2005)
		>40	Reduced growth	
		>50	Reduced photosynthetic activity	
		>60	Increased mortality	
Hermit crab (larvae)	Pagurus criticornus	25 and 35	Normal growth and metamorphosis	Blaszkoski and Moreira (1986)
		45	Development inhibited at Stage II	
Mole Crab	Emerita analoga	>52	Lethal within two hours	Gross (1957)
Amphipod	Rhepoxynius abronius	43	No measurable effect to survival	Bay and Greenstein (1992)
Giant Kelp	Macrocystis pyrifera		No measurable effect to growth	
Purple sea urchin	Stronglyocentrotus purpuratus	36.5	Inhibition of embryo development	
Purple sea urchin	Stronglyocentrotus purpuratus	40	No measurable effect on survival or fertilisation	Le Page (2005)
Red Abalone	Haliotis rufescens			
Sand Dollar	Dendraster excentricus			
Sand Dollar	Dendraster excentricus	43-48	No measurable effect	ABA Consultants, 1992 (cited in
Olive Snail	Olivella pycna		Lethal to juveniles (10–15 mm diameter)	Kinnetic Laboratories 2005)
Littleneck Clams	Venerupis (Ruditapes) philippinarum	<50	No measurable effect	lso et al. (1994)
		60-70	Impaired behaviour observed	
			Lethal within 48 hours at 60 ppt	
			Lethal within 24 hours at 70 ppt	
Sea Bream (iuvenile)	Pagrus major	<45	No measurable effect	
,		50	Colour darkening observed after 30	
			minutes	
			25% fatality within 24 hours	
		70	Lethal within 1 hour	
Marbled Flounder (eggs)	Pseudopleuronectes yokohamae	31-60	Hatchability successful but delayed with increasing salinity	
		70	Hatchability 0%	
Marbled Flounder (larvae)		<50	No observable effect	
		>50	Lethal after six days	
		60-100	Number of dead larvae increased in shorter periods of time	
Microalga	Nitzschia closterium	36.8	Reduced growth	Geotechnical Services (2006)
Common kelp	Ecklonia radiata	36.5	Reduced germination	
Blue Mussel (larvae)	Mytilus edulis	40	Impaired development	
Copepod	Gladioferens imparipes	36.8	Impaired reproduction	
Snapper (larvae)	Pagrus auratus	40	Reduced growth	

Table O8.1 Summary of the response of marine biota to low and high salinities

Common name	Scientific name	Salinity	Response	Reference
		g/L		
California Grunion (larvae)	Leuresthes tenuis	41	50% fatality within 24 hours	Reynolds et al. 1976
Sheepshead Minnow	Cyprinodon variegatus	70	50% fatality within 48 hours	Pillard et al. 1999
Inland Silverside Minnow	Menidia beryllina	44	50% fatality within 48 hours	
Mysid shrimp	Mysidopsis bahia	43	50% fatality within 48 hours	
Western King Prawn	Melicertus latisulcatus	<10	100% mortality	Sang and Fotedar 2004
		>52	Adult mortality	Wu 1990
		>63	Juvenile mortality	
		>40	Larval mortality	
		>50	Reduced juvenile growth	
Chokka squid	Loligo vulgaris	34	60% hatching rate, 56% hatching success	Sen 2005
		37	88.5% hatching rate, 82% hatching success	
		>47	Prohibits development	D'Aniello et al. 1989
Patagonian squid	Loligo gahi	▲34.3	Zero survival, malformed embryos, ink ejection	Cinti et al. 2004
Golden cuttlefish	Sepia esculenta	>25.4	58-66% hatching success	Choe 1966 (cited in Paulij et al. 1990)
Japanese cuttlefish	Sepiella maindroni (Sepiella japonica)	>25.4	50-63% hatching success	
Kisslip cuttlefish, Bigfin reef squid, Double-ear Bobtail	Sepia subaculeata (Sepia (Acanthosepion) lycidas), Sepioteuthis lessoniana, Eupryma berry	27.1	>80% hatching success	
Australian Giant Cuttlefish	Sepia apama	45	Reduced embryo growth and survival	B Gillanders, University of Adelaide, pers. comm., 3 December 2008
		50	Zero survival of embryos	

Table O8.1 Summary of the response of marine biota to low and high salinities (cont'd)

O8.1 REFERENCES

Bay SM & Greenstein D 1992, 'Toxic Effects of Elevated Salinity and Desalination Waste Brine', JN Cross, C Francisco & D Hallock (eds), Southern California Coastal Water Research Project Annual Report 1992–1993, Westminster, CA, pp. 149–153.

Blaszkowski, C & Moreiera, GS 1986, 'Combined effects of temperature and salinity on the survival and duration of larval states of *Pagurus criticornis*', *Journal of Experimental Marine Biology and Ecology*, vol. 103, pp. 77–86.

Cinti, A, Baron, PJ, & Rivas, AL 2004, 'The effects of environmental factors on the embryonic survival of the Patagonian squid *Loligo gahi*', *Journal of Experimental Marine Biology and Ecology*, vol. 313, no. 1, pp. 225–240.

D'Aniello, A, D'Onofrio, G, Pischetola, M & Denucè, JM 1989, 'Effect of pH, salinity and Ca²⁺, Mg²⁺, K⁺ and SO₄²⁺ ions on hatching and viability of *Loligo vulgaris* embryo', *Comparative Biochemistry and Physiology*, Part A, vol. 94, no. 3, pp. 477–481.

Geotechnical Services 2006, The provision for water quality monitoring services for Cockburn Sound (WET testing only), report prepared for Water Corporation, Western Australia.

Gross, WJ 1957, 'An analysis of response to osmotic stress in selected decapod crustacea', Biological Bulletin, vol. 112, pp. 43-62.

Iso, S, Suizu, S & Maejima, A 1994, 'The lethal effect of hypertonic solutions and avoidance of marine organisms in relation to discharged brine from a desalination plant', *Desalination*, vol. 97, pp. 389–399.

Kinnetic Laboratories Inc 2005, California American Water Monterey County Coastal Water Project Marine Biological Resources Phase II Report, report for RBF Consulting, Ontario Canada.

Le Page, SD 2005, Salinity Tolerance Investigations: A Supplemental Report for the Carlsbad, CA. Desalination Project, prepared for Poseidon Resources by M-REP Consulting, Carlsbad, CA.

Paulij, WP, Bogaards, RH & Denuce, JM 1990, 'Influence of salinity on embryonic development and the distribution of Sepia officinalis in the Delta Area (south western part of The Netherlands)', *Marine Biology*, vol. 107, pp.17–23.

Pillard, DA, DuFresne, DL, Tietge, JE & Evans, JM 1999, 'Response of mysid shrimp (*Mysidopsis bahia*), sheepshead minnow (*Cyprinodon variegatus*), and inland silverside minnow (*Menidia beryllina*) to changes in artificial seawater salinity', *Environmental Toxicology and Chemistry*, vol. 18, pp. 430–435.

Reynolds, WW, Thomson, DA & Casterlin, ME 1976, 'Temperature and salinity tolerances of larval Californian grunion, *Leuresthes tenius* (Ayres): A comparison with gulf grunion, *L. sardinia* (Jenkins and Evermann)', *Journal of Experimental Marine Biology and Ecology*, vol. 24, pp. 73–82.

Sang, HM & Fotedar, R 2004, 'Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn (*Penaeus latisulcatus* Kishinouye, 1896) reared at different salinities', *Aquaculture*, vol. 234, pp. 601–614.

Sen, H 2005, 'Incubation of European Squid (*Loligo vulgaris* Lamarck, 1798) eggs at different salinities', *Aquaculture Research*, vol. 36, pp. 876–881.

Torquemada, YF, Durako, MJ & Sánchez-Lizaso, JL 2005, 'Effects of the salinity and possible interactions with temperature and pH on growth and photosynthesis of *Halophila johnsonii* Eiseman', *Marine Biology*, vol. 148, pp. 251–260.

Wu, J 1990, 'Environmental Factors Affecting the Survival and Growth of Western King Prawn, *Penaeus latisulcatus*, Under Aquaculture Conditions in Spencer Gulf, South Australia', Masters thesis, University of Adelaide.