

APPENDIX 010 Ecotoxicology studies

010 ECOTOXICOLOGY STUDIES

010.1 INTRODUCTION

The toxicity of simulated brine was tested using 15 species of marine flora and fauna. The tests were managed by Hydrobiology and Geotechnical Services and undertaken in laboratories in Sydney, Adelaide and Perth during 2006 and 2007.

A suite of species from Upper Spencer Gulf, or surrogates for which recognised tests were available, were tested using both chronic and acute tests by Hydrobiology in 2006. These tests are presented in Appendix 010.2.

Toxicity tests were developed for the Australian Giant Cuttlefish *Sepia apama* by Geotechnical Services in 2006. These tests are presented in Appendix 010.3.

Following a review of the 2006 reports, additional tests were undertaken in 2007 to include more local species, chronic rather than acute tests, and a consistent diluent salinity (41 g/L), and to repeat the Giant Cuttlefish tests. The 2007 tests are presented in Appendix 010.4.

Several interim species protection trigger values (SPTV) were calculated using the three suites of toxicity tests. The CSIRO subsequently reviewed all the tests and calculated an overall SPTV using the most appropriate species and tests. The CSIRO's assessment is presented in Appendix O10.5. Dr Michael Warne of the CSIRO has also provided a peer review letter of testimony for the ecotoxicological studies undertaken for the Draft EIS (see overleaf).

A number of terms are used throughout the reports, and are explained in Table O10.1.

Table 010.1 Glossary

EC50	Concentration that causes an effect on 50% of the population
	For example:
	Growth: Concentration that results in 50% less growth when compared to controls
	Reproduction: Concentration that results in 50% less fecundity when compared to controls
	Germination: Concentration that results in 50% germination of zoospores
	Larval development: Concentration that results in 50% of larva deformed
	Calculated statistically
IC50	Concentration that causes an inhibition of growth of 50% when compared with controls (Unicellular alga bioassay)
	Calculated statistically
EC/IC10	Concentration that causes an effect of 10% when compared with controls
	Calculated statistically
LOEC	Lowest observed effect concentration
	Function of concentration tested
NOEC	No observed effect concentration
	Function of concentration tested
g/L	Grams per litre (effectively the same as parts per thousand or practical salinity units)
BurrliOZ	Software designed to estimate the protecting concentrations of chemicals such that a given percentage of species will survive, by fitting a certain distribution, called the Burr III distribution, to the input data (other distributions fitted to the data are the normal and the log-logistic distributions, however, these latter distributions are provided only as a reference guide and are not used to estimate the protecting concentrations).

Our Ref: Statement re Point Lowly Desalination Plant EIS

Mr David Wiltshire ARUP ENSR GPO Box 11052 Adelaide SA 5001

14 November 2008

Dear David,

As part of my work for your organisation I was asked to review the whole effluent toxicity (WET) testing reported in a report by Hydrobiology Pty Ltd "Ecotoxicity of effluent from the proposed Olympic Dam desalination plant", a report by Geotechnical Services 2006 entitled "The provision of water quality monitoring services for Cockburn Sound (WET testing only). Simulated and RO brine. Report ENV05-214 and ENV05-389" and a report by Geotechnical Services 2007/2008 entitled "The provision of reverse osmosis brine toxicity testing – Report ECX07-1805". I have done this and I am satisfied that the test procedures used for the whole effluent toxicity testing and the statistical techniques used to estimate the toxicity are appropriate. However, it was noted that the statistical distributions used did not fit the data particularly well for a number of the test species in the Geotechnical Services 2007/08 report. The toxicity of the saline brine to these species was calculated using a different method, which improved the fit to the data.

The calculation of a species protection value was correctly executed within the Geotechnical Services and Hydrobiology reports, however, it was necessary to conduct a holistic review of all tests performed to date, and select the most appropriate set of results for calculating the species protection value. This was done in the CSIRO report "Selection of species and other factors that affect dilution factors for saline brine discharge from the proposed plant at Point Lowly, South Australia." I confirm that the work presented in the reports by Hydrobiology Pty Ltd and Geotechnical Services is acceptable for the intended purpose.

In addition, I read the marine chapter of the Draft EIS (as presented to me on 11 July 2008) and I confirm that it appropriately summarises the findings of the three reports I read and my own report

Yours faithfully,

Michael Warne Principal Research Scientist Centre for Environmental Contaminants Research

APPENDIX 010.2

Ecotoxicity of effluent from the proposed Olympic Dam desalination plant (report by Hydrobiology, 2006)

See overleaf for report.

ARUP/HLA

Ecotoxicity of Effluent from the Proposed Olympic Dam Desalination Plant

Final

ABN 26 096 574 659 PO Box 2050 Milton QLD 4064 47 Park Rd Milton QLD 4064

> Phone +61 (07) 3368 2133 Fax +61 (07) 3367 3629

> > October 2006

Date Printed	19 August 2008
Title	Ecotoxicity of Effluent from the Proposed Olympic Dam Desalination Plant
Job Number	ARUP-HLA/0601
Status	Final
Client	ARUP-HLA
Authors	Dustin Hobbs, Jenny Stauber, Anu Kumar, Ross Smith,
File Name	ARUP-HLA_0601_RO_desal_plant_ecotox_report
Authorised	OHBS.

ACN ABN GST	096 574 659 26 096 574 659 The company is registered for GST Principal place of business 47 Park Rd
	Milton
	QLD 4064
Registered Office	Level 21
	141 Queen St
	Brisbane
	QLD 4000
Postal Address	PO Box 2050 Milton QLD 4064
Phone	61 (07) 3368 2133
Fax	61 (07) 3367 3629
Email contact:	info@hydrobiology.com

CONTENTS

EXECUT	IVE SUM	MARY	I
1	INTROD	UCTION	1
	1.1	Background	1
	1.2	Study objectives	1
	1.3	Literature review	2
2	METHO)\$	4
	2.1	Prototype effluent	4
	2.2	Direct Toxicity Assessment (DTA) of prototype effluent	4
	2.3	Assessment of possible desalination effluent impacts	5
3	RESULT	S	6
	3.1	Direct Toxicity Assessment QA/QC	6
	3.2	Desalination effluent DTA results	6
	3.3	Derivation of 'safe' dilutions	7
4	DISCUS	SION	8
5	CONCLU	JSIONS	9
6	REFERE	NCES	10

FIGURES

Ciguro 2.4	Depute from distribution fitting of explosion testing results
rigure 3. i	Results from distribution fitting of ecotoxicity testing results

TABLES

Table 0.1	Ranking of species from most to least sensitive with their corresponding NOEC's i
Table 3.1	Direct toxicity assessment results for the prototype RO desalination plant effluent6
Table 3.2	The values from the results of the DTA on the prototype effluent used for the
deriva	ation of the SSD7

APPENDICES

Appendix 1 – Prototype desalination plant effluent chemical additives Appendix 2 – DTA reports

EXECUTIVE SUMMARY

The assessment of a prototype desalination plant effluent on the marine biota has been undertaken as part of an assessment of the potential impacts of the proposed desalination plant to be situated in Point Lowly. This desalination plant is part of the proposed expansion of BHP Billiton's Olympic Dam copper, gold, silver and uranium mine and these investigations are to be part of the overall EIS for the proposed expansion of the mine and processing plant and associated infrastructure.

Toxicity testing was undertaken on a prototype desalination plant effluent using a suite of locally relevant organisms or organisms that could be used as surrogates for local species. This suite included:

- The microalga, Nitzschia closterium, used in a 72-h growth rate inhibition test;
- The sea urchin, Heliocidaris tuberculata, used in a 72-h larval development test;
- The yellowtail kingfish, Seriola lalandi, used in a 96-h survival test;
- The macroalga, Hormisira banksii, used in a 72-h germination test;
- The oyster, Saccostrea commercialis, used in a 48-h larval development test, and;
- The prawn, Penaeus monodon, used in a 96-h survival test.

Standard testing methods were used to evaluate the toxicity of the prototype desalination plant effluent. The tests and organisms chosen were as locally relevant as possible, including the yellowtail kingfish, *Nitzschia closterium* and *Hormisira banksii*, all of which can be found in the Spencer Gulf. In some cases, the chosen biota were surrogate species, included due to their availability for testing year round from pristine areas or from hatcheries. Tests with these species are known to be highly reproducible, with appropriate quality assurance protocols.

The effluent was toxic to the test species, with EC/LC50 values ranging from 12 to >33% effluent. The sea urchin was the most sensitive species, with a no observed effect concentration (NOEC) of 4.1% effluent concentration. The least sensitive species were the prawn and macroalgae, with NOECs of 17%. All QA/QC criteria were met for all direct toxicity assessment's undertaken.

Ranking	Test	NOEC (%)
1	72 h sea urchin larval development test (sub-chronic)	4
2	48 h oyster larval development test (sub-chronic)	
3	72 h microalgal growth test (chronic)	11
4	96 h fish imbalance test (acute)	12
5	72 h macroalgal germination test (chronic)	16
5	96 h prawn mortality test (acute)	17

Table 0.1 Ranking of species from most to least sensitive with their correspondingNOEC's

Through the use of salinity controls the observed toxicity was attributed to salinity for all organisms except the microalgae. The microalgae results indicated that 70% of the toxicity

Ecotoxicity of Effluent from the Proposed Olympic Dam Desalination Plant

observed was caused by the high salinity but the remaining toxicity may have been caused by the added antiscalant.

"Safe" dilutions of the discharge were determined by combining acute data (after application of an acute to chronic ratio) and chronic data in a species sensitivity distribution. To protect 95% of species (appropriate for slightly to moderately disturbed ecosystems), the effluent would need to be diluted 1:60 times. To protect 99% of species (in pristine environments) the effluent would need to be diluted at least 1:80 times. Comparisons of these estimated "safe" dilutions with the dilutions achievable by the diffuser at the edge of the mixing zone, should ensure low risk to marine biota in the vicinity of the discharge.

As the final make up of the desalination plant effluent is still unknown, and will generally not be known until the plant is set up and processing, the toxicity of the effluent may increase or decrease pending the final concentration of the brine and the additives used during the process. Further testing would be recommended once the plant is commissioned and the final make up of the effluent has been determined.

1 INTRODUCTION

This report has been prepared by Hydrobiology Pty Ltd in association with Ecotox Services Australasia Pty Ltd and CSIRO Centre for Environmental Contaminants Research for ARUP/HLA. The assessment of effluent from a prototype desalination plant has been undertaken to determine its potential toxicity to the aquatic biota of the northern Spencer Gulf, to determine a safe dilution factor for the effluent, and to offer advice on measures to mitigate any identified problems.

1.1 Background

BHP Billiton proposes to expand the existing Olympic Dam copper, uranium, gold and silver mine and mine processing plant including associated infrastructure, located approximately 570 km NNW of Adelaide, South Australia. The project is currently in the planning phase with several options for major infrastructure being investigated. One of the principal components of the proposed expansion currently under investigation is the sourcing and supply of additional water needed for the proposed mine expansion via a water pipeline from a seawater desalination plant on the northern Spencer Gulf. Currently an EIS is being prepared by an ARUP/HLA consortium for the proposed expansion of the Olympic Dam mining and processing operations. A component of these studies is the assessment of the potential impacts of the proposed desalination plant brine discharge on the marine biota, including a study of the ecotoxicology of the brine discharge on local marine biota.

The area being considered for the desalination plant is Point Lowly, 20 km north of Whyalla. The northern Spencer Gulf is a low energy, seagrass-based ecosystem, with deep off-shore channels of up to 25 m in depth into which the brine would be discharged. These off-shore channels regularly have strong tidal flows of up to 2 to 3 knots. The region supports lucrative fisheries including the Western King Prawn fishery, and aquaculture of the Yellowtail Kingfish in sea cages in Fitzgerald Bay. The Australian Giant Cuttlefish also aggregates annually for breeding in the Point Lowly area and has become a major tourist attraction in South Australia, being visited by divers from all over world.

The main concerns associated with the discharges from the desalination plant are the potential effects of the hyper-saline effluent and associated antiscalants and other possible contaminants on the marine biota in the vicinity of the outfall, with particular attention focussed on the breeding grounds of the Australian Giant Cuttlefish, the Western King Prawn and Yellowtail Kingfish, due to their economic importance to the region, and to the seagrass communities.

1.2 Study objectives

- Undertake a review of all available literature on the toxicity of discharges from desalination plants similar to that proposed for use in the Olympic Dam Development Project.
- Undertake Direct Toxicity Assessment (DTA) on a prototype discharge using a suite of temperate Australian species comprising several trophic levels and taxonomic groups.
- Use results from the DTA of prototype discharge to develop species protection values using species sensitivity distributions.

 Apply the derived species protection values to the information collected during the literature review and identify any possible ecological problems that may be associated with the discharge.

1.3 Literature review

A literature review was undertaken encompassing existing information on the toxicity of typical desalination plant discharges and the toxicants that can be associated with such outputs. As it is not yet known which chemicals will be used in the reverse osmosis RO process, the products used in the generation of the prototype effluent were researched and reported using available sources.

Hoepner (1999) identified and discussed the possible components of desalination plant discharges that may enter the sea. Those discussed which were relevant to RO processes are corrosion products (metals), antiscaling additives, antifouling additives, halogenated organic compounds formed after chlorine addition, anticorrosion additives, acid and the concentrated brine left after extraction of fresh water. The final make-up of the effluent from the proposed desalination plant will not be known until the plant is operational and running at optimum capacity at which time any of the previously mentioned components may make up the final effluent. Additives that may be used in the desalination process for this project, include, FeCl₃ (coagulant), chlorine gas (disinfectant), sodium metabisulphite (chlorine scavenger) and NALCO PC-1020T (antiscalant).

The FeCl₃ added as a coagulant to feed water for the removal of large particles before reaching the RO membranes would be settled out from the filter backwash and disposed of on land. Chlorine added to the feed water for disinfection will be removed by the use of sodium metabisulphite as a chlorine scavenger. Therefore, there is not expected to be any residual chlorine present in the effluent. Data for the toxicity of sodium metabisulphite to marine organisms is not available, although data for the response of freshwater organisms to this chemical indicate that the alga *Desmodesmus subspicatus* is the most sensitive, with an IC50 (the concentration that will inhibit growth by 50%) of 48 mg/L after a 72-h exposure.

Antiscaling chemicals are used to prevent metal hydroxides/oxides and compounds such as calcium carbonate, calcium sulfate and silicates from precipitating out of aqueous solution onto membranes and other equipment. The antiscalant used for the processing of the simulated effluent was NALCO PC 1020T, which is an organophosphonate compound. NALCO PC 1020T was used as an additive in the processing of a prototype RO desalination effluent by Geotechnical Services (2005) that was then assessed using ecotoxicity testing. These results are covered below, but it is difficult to extrapolate results from the Geotechnical Services (2005) testing to the testing undertaken for this project mainly due to the different feed waters that were used. Currently, specific ecotoxicity data are not available for this particular antiscalant.

The effect that the hypersaline brine will have on the marine ecosystem is of the greatest concern when dealing with effluent from a seawater RO desalination plant. The proposed operating water recovery rates will produce an effluent with an average salinity of 75‰, with predicted peaks of 78 ‰. Marine organisms exist in an osmotic balance with their marine environment and an increase in the concentration of salts may result in the dehydration of cells, decreasing cell turgidity and leading to death (mainly of the larvae and young individuals) (Einav *et al.*, 2002).

Few researchers have looked at the effects of hypersalinity on marine organisms. Torquemada *et al.* (2005) investigated the effect of salinity on the growth and photosynthesis of the seagrass *Halophila johnsonii*. It was found that high salinity values of 60 ‰ caused significantly higher mortality than the optimum 30 ‰ and growth was significantly reduced at 40, 50 and 60 ‰ compared with 30 ‰. Photosynthetic activity was also reduced above 50 ‰.

Blaszkoski and Moreira (1986) found that over the course of 16 days (at 30°C) larvae of the hermit crab (*Pagurus criticornus*) grow and metamorphose equally well in 25 and 35 ‰, but at 45 ‰ fewer larvae progress beyond development stage II (about 5 days).

Reynolds *et al.* (1976) determined that *Leuresthes tenuis* (California grunion) pro-larvae (larvae with a yolk sac, up to 4 days old) have an upper salinity tolerance LC50 of 41 ‰ after 24 hours exposure.

Pillard *et al.* (1999) exposed the mysid shrimp (*Mysidopsis bahia*), sheepshead minnow (*Cyprinodon variegatus*) and inland silverside minnow (*Menidia beryllina*) to balanced solutions of synthetic seawater ranging from near zero to 80 ‰ salinity. The mysid shrimp and inland silverside had 48-h LC50s of 43 and 44 ‰ respectively while the sheepshead minnow had a 48 h LC50 of 70 ‰.

An investigation of the toxicity of prototype reverse osmosis desalination plant effluent was undertaken by Geotechnical Services (2006) for the Western Australian Water Corporation. The prototype effluent was evaluated using bacteria (15 min Microtox), 72-h *Nitzschia closterium* algal growth bioassay, and a 24-d *Gladioferens imparipes* copepod reproduction test. The prototype effluent was toxic, with no observed effect concentrations (NOECs) of <6.3 % sample concentration for Microtox, 42 % for the algae and <2.6 % for the copepods.

Le Page (2005) successfully maintained sexually mature purple sea urchins (*Stronglyocentrotus purpuratus*) for 3 months in 36.2 ‰ water (the salinity that was expected to be experienced in the zone of initial dilution) blended from demonstration plant RO water (~66 ‰) and seawater (33.5 ‰). In addition eggs and sperm were harvested from these urchins and the eggs were successfully fertilised in 36 ‰ seawater (60 min sperm activation tests).

Bay and Greenstein (1992) investigated the toxicity of mixes of brine from various desalination plants and seawater. Bioassays used were 48-h spore germination and germ tube length using the giant kelp (*Macrocystis pyrifera*), 10-d survival test using amphipods (*Rhepoxynius abronius*) and 48-h fertilisation test using the sea urchin (*Strongylocentrotus purpuratus*). No effect was observed for any of these tests over a range of salinities up to 43 ‰.

From the available literature, toxicity of desalination plant effluent seems to be mainly attributable to the high salinity of the brine. Other constituents that may be used in the treatment process are not discharged at levels during normal operation that are likely to cause toxicity on marine biota.

2 METHODS

2.1 Prototype effluent

The prototype effluent was prepared and provided to the ecotoxicity testing labs, where it was refrigerated until testing was undertaken within the next 1 to 2 weeks depending on organism availability. The processing methodology for developing the effluent was provided by CITOR Pty Ltd and is attached in The samples were handled with minimal agitation to limit the loss of volatiles and were allowed to warm to the experiment temperature (20°C) prior to testing.

2.2 Direct Toxicity Assessment (DTA) of prototype effluent

Direct toxicity assessments of the prototype RO desalination plant effluent were carried out by Ecotox Services Australasia (ESA) and CSIRO Centre for Environmental Contaminants Research (CECR). The assessments included:

- Microalgal (*Nitzschia closterium*) 72-h growth rate inhibition test (chronic). This is a chronic test with a locally relevant species that is widely distributed in Australian waters. It is particularly sensitive to metals and ammonia and has been widely used in DTA in Australia and SE Asia. This test was carried out by CECR, Sydney.
- Macroalgal germination test (chronic) using the kelp *Ecklonia radiata* was originally to be used, but due to rough seas hindering collection and the lack of gametes in those specimens that were collected, the brown alga *Hormosira banksii* (Neptune's necklace) was used in its place. This bioassay measures germination success over 72 h from fertilisation as the end-point. Both species are widely distributed throughout southern Australian waters. *Hormosira*, an intertidal species, has been widely used for DTA in Australia, and viable gametes are available all year-round. This test was carried out by ESA.
- Prawn 96-h acute toxicity test (acute). This test uses 15-day post-larvae of the tiger prawn, *Penaeus monodon*, and has become one of the most widely used tests for the assessment of effluents in Australia. Although a tropical species, post-larvae of *P. monodon* are readily available from commercial hatcheries, so it is commonly used as a surrogate for other prawn species. The native prawn species of northern Spencer Gulf were not readily available from hatcheries and have not undergone standardisation for toxicity testing. This test was carried out by ESA.
- Oyster 48-h larval development test (sub-chronic). This test can utilise either the rock oyster, Saccostrea commercialis, or the Pacific oyster, Crassostrea gigas. The Pacific oyster was proposed as the species which may be most relevant to South Australian waters, given that there is a significant oyster culture industry in the region that uses this species. However, due to the Pacific oyster not spawning at the time of testing, the rock oyster was used as a surrogate. Both species are euryhaline and so are relatively tolerant of hypo and hypersaline conditions. The test using the rock oyster has been widely used for DTA in Australia. This test was carried out by ESA.
- Sea urchin 72-h larval development test using *Heliocidaris tuberculata* (sub-chronic). This species is widely used in Australian toxicity assessment programs and has been

shown to be sensitive to a range of heavy metals, ammonia and surfactants. The test has routinely been used to assess the toxicity of sewage effluents, mine tailings, pulp/paper mill effluents, sediment pore waters, landfill leachates and petroleum hydrocarbons and dispersants. As there is currently no hatchery rearing of sea urchin species in Australia, it is necessary to collect broodstock from wild populations. *H. tuberculata* is distributed on rocky reefs from Southern Queensland to central New South Wales and produces robust gametes throughout the year. It was used as a surrogate for species native to Spencer Gulf. This test was carried out by ESA.

• Fish 96-h imbalance test (acute). This test determines mortality in 8-12 mm larvae over 96 h. Yellowtail kingfish, *Seriola lalandi*, was used for the discharge DTA testing. Other fish species have routinely been used for the assessment of effluents from pulp and paper mill and sewage treatment plants and contaminants such as aquaculture chemicals, pesticides and endocrine disrupting compounds throughout Australia. This test was carried out by CECR, Adelaide.

2.3 Assessment of possible desalination effluent impacts

The data produced from the suite of DTA testing of the prototype desalination plant discharge were used in a species sensitivity distribution to derive a "safe" dilution of effluent. No observable effect data (NOEC) or equivalent, from acute and chronic tests, were combined (after application of an appropriate acute to chronic ratio to the acute values) and the safe dilution extrapolated from the data according to the method of ANZECC and ARMCANZ (2000). This value was then used in conjunction with the results of the literature review and other available information to determine the possible impact of the discharge on the marine ecology of the northern Spencer Gulf.

3 RESULTS

3.1 Direct Toxicity Assessment QA/QC

Quality assurance and quality control was undertaken for all testing undertaken for this study. This involved the use of controls, salinity controls and reference toxicants. All water quality criteria were met throughout testing, all tests were valid according to test validity criteria and reference toxicity indicated that responses of all the organisms were within the accepted parameters. QA/QC information can be found for each individual test in Appendix 2.

3.2 Desalination effluent DTA results

The results of the direct toxicity assessment of the desalination effluent with 6 species can be seen in Table 3.1. The test reports are given in Appendix 2.

Test	NOEC (%)	LOEC(%)	EC50 (%) (95% CI)
72 h microalgal growth test	11	33	26 (25 – 27)
72 h macroalgal germination test	17	33	> 33
96 h prawn mortality test	17	33	22 (16 – 32)
48 h oyster larval development test	8.3	17	12 (11 – 12)
72 h sea urchin larval development test	4.1	8.3	12 (11 – 12)
96 h fish imbalance test	13	25	19 (17 – 22)

Table 3.1	Direct toxicity assessment results for the prototype RO desalination plant
effluent.	

Toxicity was observed in all tests with NOEC's ranging from 4.1% effluent concentration for the sea urchin larval development test to 17% effluent concentration for both the macroalgal germination test and the prawn mortality test. To determine the effect of high salinity on the microalgae, macroalgae, prawn, oyster and sea urchin, salinity controls of 39, 42 and 51 ‰, were used during testing by dissolving artificial sea salts in the diluent seawater.

Salinities for each dilution were recorded during the fish testing allowing for observation of the effects of the elevated salinity. Results from the salinity controls indicated that salinity was the main cause of toxicity observed in the macroalgae, prawn, oyster and sea urchin tests. The toxicity of the effluent to the fish was also attributed to the elevated salinity, as the salinity at the observed NOEC was 45 ‰ while the salinity at the observed LOEC was 54 ‰. Toxicity of the effluent to the microalga was predominantly due to the high salinity, but salinity alone could not explain all of the observed toxicity. This unexplained observed toxicity may be attributable to the antiscalant that was used during the processing of the prototype effluent.

3.3 Derivation of 'safe' dilutions

The data for the testing undertaken in this study included both acute and chronic test results (Table 3.2). The default acute to chronic ratio of 10, as suggested by ANZECC/ARMCANZ (2000) for converting acute LC50 values to chronic NOEC values, was used to convert the acute test (prawn and fish) LC50 values to chronic NOEC equivalents for inclusion in the species sensitivity distribution (SSD). The BurrliOZ software (provided as part of the ANZECC and ARMCANZ 2000 package) was used to calculate the SSD, which is presented in

Figure 3.1. The concentration to protect 95% of species derived from the Burr Type III distribution fitted to the data was 1.66% effluent concentration, corresponding to a 'safe' dilution of 1:60. For 99% species protection, the estimate was 1.23% effluent, corresponding to a 'safe' dilution of 1:80.

Table 3.2 The values from the results of the DTA on the prototype effluent used for the derivation of the SSD

Test	Endpoint (%)	Value Used in SSD (%)
96 h prawn mortality test (acute)	22 (LC50)	2.2
96 h fish imbalance test (acute)	19 (LC50)	1.9
72 h microalgal growth test (chronic)	11 (NOEC)	11
72 h macroalgal germination test (chronic)	17 (NOEC)	17
72 h sea urchin larval development test (sub- chronic)	4.1 (NOEC)	4.1
48 h oyster larval development test (sub-chronic)	8.3 (NOEC)	8.3

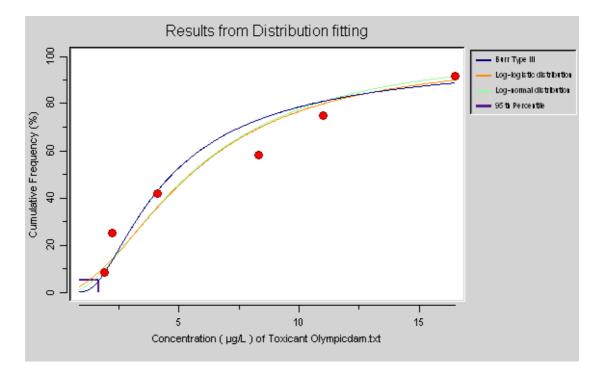


Figure 3.1 Results from distribution fitting of ecotoxicity testing results

4 DISCUSSION

The makeup of effluent from desalination plants can differ from plant to plant and can contain any number of compounds (Hoepner 1999). Those compounds in RO desalination plant effluent that may be of concern to marine biota in the receiving environment are generally removed by scavengers or are at concentrations that will not cause any toxic effect to the majority of the organisms.

Direct toxicity assessments carried out on the supplied prototype desalination plant effluent indicated that the effluent was toxic to marine biota. Sea urchin larval development was the most sensitive test, which may be due to echinoderms generally being less tolerant to salinity changes than other taxonomic groups (Graham 2005). The prawn and macro-algae tests were the least sensitive tests to the effluent.

Salinity controls were used to determine the effect high salinity was having on the test organisms. It was found that salinity was the major cause of the observed toxicity for all organisms except for the microalgae. The highest concentration tested, 33% of the desalination effluent sample concentration, caused a 70% inhibition in algal growth, while the salinity-matched control (51 ‰) caused only 54% inhibition in algal growth. This suggests that, while high salinity contributed to the reduced growth in the effluent sample, salinity did not account for all of the observed toxicity and that the added antiscalant may have been contributing to the toxicity.

Data generated from the DTA tests was then used to determine a species sensitivity distribution. A 'safe' dilution to protect 95% of species of 1:60 was estimated; the estimated 'safe' dilution to protect 99% of species was 1:80. Geotechnical Services (2006) used the results from DTAs using six species to derive "safe" dilutions for simulated desalination plant effluent that had an end salinity of 66 ‰ and treated with very similar levels of additives to that in the current study. The "safe" dilutions they derived to protect 95% and 99% of marine species were 1:71 and 1:106 respectively. These dilutions are similar to those derived in this study.

These estimated "safe" dilutions can then be compared with modeled dilution estimates achieved by the diffuser at the edge of the designated mixing zone surrounding the outfall. The higher than normal salinity of the water in the upper Spencer Gulf may also reduce the impact of the increased salinity of the effluent although Shepherd (1983) has suggested that the far northern section of the Spencer Gulf ecosystem is already under stress due to the high salinity and wide temperature fluctuations. Therefore, additional stress, such as effluent discharges, may have more serious consequences than in less stressed environments further to the south. This will all depend on the target salinity that is set for the desalination discharge.

As the final make up of the desalination plant effluent is still unknown, and will generally not be known until the plant is set up and processing, the toxicity of the effluent may increase or decrease pending the final concentration of the brine and the additives used during the process Further DTA testing would be recommended once the plant is commissioned and the final make up of the effluent has been determined.

5 CONCLUSIONS

- Prototype desalination plant effluent was found to be toxic to all tested organisms
- Toxicity was attributed to high salinity for all species except for microalgae, for which part of the observed toxicity may have been attributable to the antiscalant.
- Data from DTA tests were used to derive 95% and 99% species protective concentrations of 1.66 and 1.23% effluent concentration respectively using species sensitivity distributions.
- The corresponding 'safe' dilutions to protect 95 and 99% of species were estimated to be 1:60 and 1:80 respectively.

6 REFERENCES

ANZECC/ARMCANZ 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy, Australian and New Zealand Environment Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand.

Bay, S.M. and Greenstein, D. 1992. Toxic Effects of Elevated Salinity and Desalination Waste Brine. pp. 149-153 *in*: J.N. Cross, C. Francisco and D. Hallock (eds.), Southern California Coastal Water Research Project Annual Report 1992-1993. Westminster, CA.

Blaszkowski, C. and G.S. Moreiera. 1986. Combined effects of temperature and salinity on the survival and duration of larval states of *Pagurus criticornis*. Journal of Experimental Marine Biology and Ecology 103:77-86.

Einav, R, Harussi K and Perry D. 2002. The footprint of the desalination processes on the - environment. Desalination 152:141-154.

Geotechnical Services, 2006. The provision for water quality monitoring services for Cockburn Sound (WET testing only). A report prepared for Water Corporation, Western Australia.

Graham, J.B. 2005. Marine biological considerations related to the reverse osmosis desalination project at the Encina power plant, Carlsbad, CA. A report prepared for Poseidon Resources, 501 West Broadway, San Diego, CA 92101.

Hoepner, T 1999. A procedure for environmental impact assessments (EIA) for seawater desalination plants. Desalination 124:1-12.

Le Page, S. D. 2005. Salinity tolerance investigations: A supplemental report for the arlsbad, CA. desalination project. A report prepared for Poseidon Resources, 501 West Broadway, San Diego, CA 92101.

Pillard, D. A., D. L. DuFresne, J. E. Tietge, and J. M. Evans. 1999. Response of mysid shrimp (*Mysidopsis bahia*), sheepshead minnow (*Cyprinodon variegatus*), and inland silverside minnow (*Menidia beryllina*) to changes in artificial seawater salinity. Environmental Toxicology and Chemistry 18:430-435.

Reynolds, W. W., D. A. Thomson, and M.E. Casterlin. 1976. Temperature and salinity tolerances of larval Californian grunion, *Leuresthes tenius* (Ayres): A comparison with gulf grunion, *L. sardinia* (Jenkins and Evermann). Journal of Experimental Marine Biology and Ecology 24:73-82.

Shepherd, S. A. 1983. The epifauna of megaripples: Species' adaptations and populations responses to disturbance. Australian Journal of Ecology 8:3-8.

Torquemada YF, Durako MJ and Lizaso JLS. 2005. Effects of the salinity and possible interactions with temperature and pH on growth and photosynthesis of *Halophila johnsonii* Eiseman. Marine Biology 148:251-260.

APPENDIX 1

PROTOTYPE DESALINATION PLANT EFFLUENT CHEMICAL ADDITIVES

Manufacturers of Reverse Osmosis and associated Water Purification Equipment

A.B.N. 64 064 083 192

BHP BILLITON ECOTOXICOLOGY PROJECT

RO WATER PROCESSING REPORT 29/05/06 - 02/06/06

Conducted by Paul Fildes on 29/05/2006 to 01/06/06. At SAAM Pty Ltd Pt Lowly Whyalla

Containers 1 – 8 had been filled with ambient Seawater on Friday 26 May by SAAM Pty Ltd. Processing was commenced @ 1000 hrs Mon 29/05/06. TDS (Seawater): 44.2 PPT The Containers were each dosed with NALCO Anti-scalant PC-1020T Dosing Rate: 3.6 mg/L

<u>Method</u>

Five (5) x Containers (1000 L) used in the processing of Brine. Each Container had the Brine recirculated from the RO Discharge and the Permeate discarded until the desired Salinity level was achieved.

Four (4) Containers were finished on Wed 31/05 @ 1600 hrs. Each Containers holding approx. 500 L Brine TDS Readings varied i.e. of the range 79.1 – 79.5 PPT These Containers were then 'blended' to achieve a uniform TDS of 79.2 PPT in Containers 1 & 2.

Container 3 was successfully processed on Thurs 01/06. Resulting in a final TDS reading of 79.4 PPT @ 1100 hrs. 200 L Brine was then decanted into a 200 L Drum with a final TDS result of 79.3 PPT

The 1000 L Containers were collected by Toll Logistics on Thurs 01/06 at approx. 1400 hrs. Containers 1 & 2 held 1000 L each of Brine. Container 3 held approx. 300 L. The remaining Containers 4 – 10 held 1000 L each of ambient Seawater.

The 200 L Drums – one holding Brine, the other ambient Seawater - were delivered to A. Kumar at the University of Adelaide, SA @ 1100 hrs Fri 02/06 by P. Fildes.

<u>Nofe</u>

All readings varied over the four (4) days of Processing and the Readings given are the final ones taken on Thurs 01/06.

Paul Fildes

08/06/2006

HEAD OFFICE AND PRODUCTION PLANT: 11 MEWS ROAD FREMANTLE. WESTERN AUSTRALIA 6160 BOX 1351 FREMANTLE. WESTERN AUSTRALIA 6959

PH: 61-08-9430-5566 FAX: 61-08-9336-1851 WEBSITE: www.citor.com.au EMAIL: enguiries@citor.com.au

Hydrobiology Pty Ltd

APPENDIX 2 DTA REPORTS

Centre for Environmental Contaminants Research

Lucas Heights Science and Technology Centre New Illawarra Road, Lucas Heights, NSW Private Mail Bag 7, Bangor, NSW, 2234, Australia Telephone 61 2 9710 6808 Fax 61 2 9710 6837

Chronic Algal Growth Test Report 06178 NAG

Client:Hydrobiology Pty LtdProject:Olympic Dam; Desalination plant dischargeTest Performed:72-h chronic algal growth rate toxicity test using the marine alga Nitzschia closterium

Samples Received: 27/6/2	006	Test Initiated: 4/7/2006
CSIRO Sample No. Samp	le Name	Sample Description
WQE06178 Diluer	nt Water	Seawater
WQE06179 Desali	nation plant discharge	Brine

Sample Physico-Chemistry and Preparation: The salinity of the pilot plant waste water was 77‰ and the pH was 7.9. The sample was diluted prior to testing with dilution water (37‰) supplied by CSIRO Land and Water. Prior to use, the dilution water was filtered (0.45 μ m) to remove any microorganisms that may have been present in the seawater. To determine the effect of high salinity on the growth of *Nitzschia*, salinity controls (39, 42 and 51‰) were prepared by dissolving GP-2 artificial sea salts in natural seawater.

Sample		Physi	ico-chemistry		
	pН	‰	mS/cm	DO ^a	
WQE06178 (dilution water as received)	8.06	37	55	106	
WQE06178 (dilution water filtered)	8.08	37	56	98	
WQE06179 (plant discharge as received)	7.93	77	106	99	
Salinity Control (39‰)	8.10	39	58	97	
Salinity Control (42‰)	8.06	42	62	96	
Salinity Control (51‰)	7.99	51	73	97	
Natural seawater control	8.19	35	54	98	
‰ = Salinity; mS/cm = Conductivity; ^a Dissolved Ox	(%) xygen				

Test Method: This test measures the decrease (inhibition) in algal growth rate of the temperate marine alga *Nitzschia closterium* after exposure to the samples for 72 h (initial cell density $2-4 \times 10^4$ cells/mL). The test protocol is based on the OECD Test Guideline 201(1984) and the protocol of Stauber et. al. (1994). The 72-h IC50, NOEC and LOEC values were calculated using ToxCalc Version 5.0.23 (Tidepool Software).

Results: Algal growth in the dilution water was similar to the algal growth in the QA control (1.80 and 1.74 doublings per day respectively). Increased salinity of 39‰ and 51‰ caused a significant reduction in *Nitzschia* growth rate, however a salinity of 42‰ did not cause a reduction in algal growth.

The Olympic Dam plant discharge was toxic to *Nitzschia*, with an IC50 of 26%. There was no effect on algal growth at a concentration of 11%. The highest concentration tested, 33%, caused a 70% inhibition in algal growth, while the salinity-matched control (51‰) caused only 54% inhibition in algal growth. This suggests that while high salinity contributed to the reduced algal growth in the discharge sample (toxicity), salinity may not account for all of the observed toxicity (i.e. another toxicant(s) was contributing to toxicity).

When the highest concentrations tested (3.7, 11 and 33%) were corrected for reduced growth caused by high salinity (i.e. compared to the salinity-matched controls), the discharge was less toxic, with an IC50 of >33%. The LOEC was 33%, causing 32% inhibition in *Nitzschia* growth rate. This again indicated that salinity alone was not the sole cause of toxicity in the Olympic Dam desalination discharge.

There was no effect on algal growth rate at 11% before and after correction for effects due to high salinity.

Sample	Growth Rate (Doublings/day)	% of QA/Diluent Control	% of Salinity Control	CV (%)
QA Control (35‰)	1.74	100	_	6.0
Diluent Water (37‰)	1.80	103	_	3.3
Salinity Control 39‰	1.38	79^{a}	_	1.5
Salinity Control 42‰	1.62	93	_	11
Salinity Control 51‰	0.80	46^{a}	_	4.0
Olympic Dam- plant discharge				
Diluent Water	1.80	100	100	3.3
0.14%	1.84	102	102	2.6
0.4%	1.79	100	100	0.2
1.2%	1.83	102	102	1.5
3.7% (39‰)	1.73	97	125 ^b	6.1
11% (42‰)	1.74	97	107	5.2
33% (51‰)	0.55	30^{a}	68^{a}	5.2
Sample	IC50 (%)	LOEC (%)	NOEC (%)	
Olympic Dam	26 (25-27)	_	11	
Olympic Dam (corrected for effects due to high salinity)	>33	33	11	
^a Significantly less than control; ^b Signifi	cantly greater than than con	trol;		

Quality Assurance/Quality Control	Criterion	This Test	Criterion Met?
Control growth rate (doublings/day)	1.5 ± 0.3	1.74	Yes
Control growth rate CV	<20%	6%	Yes
Reference toxicant IC50 (measured copper, µg Cu/L)	18 ± 12	30	Yes

References:

OECD (1984) Guideline for testing of chemicals. Alga growth inhibition test. Test Guideline No. 201. Organisation for Economic Cooperation and Development, Paris, France.

Stauber, J.L., Tsai, J., Vaughan, G.T., Peterson, S.M. and Brockbank, C.I. (1994) Algae as indicators of toxicity of the effluent from bleached eucalypt kraft paper mills. National Pulp Mills Research Program Technical Report No. 3 Canberra: CSIRO, 146 pp.

Test carried out by: Test supervised and reported by:	Janine Wech and Monique Binet Merrin Adams Experimental Scientist (ph: 02 9710 6831)
Test report authorised by:	Jenny Stauber Senior Principal Research Scientist (ph: 02 9710 6808)
Date:	19/7/2006

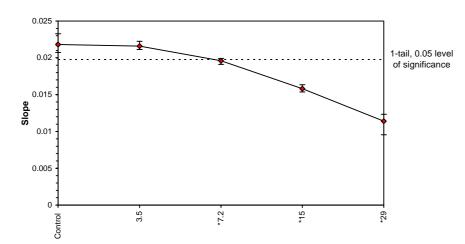
Page 3 of 11

APPENDIX – QA

4/07/2006

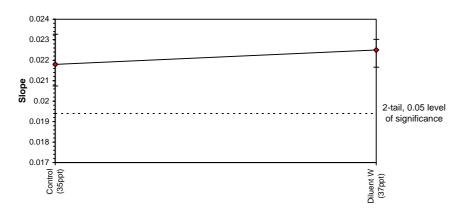
72-h Chronic Toxicity of Olympic Dam pilot plant waste water to Nitzschia closterium: Quality Assurance

	Sample		н	0h	24h	48h	72h	Slope	Growth Rate	(dblngc/day)	Pearson	% Control	Mean %
Flask No.	Sample	Day 0	Day 3	.	counts in			Siope	Growin Kale	(ubiligs/uay) Mean	realson		Weall /0
QA Control		Day U	Day 5	All Cell	counts in	(cens/inc) i	Jy X 10			Weall			
				3.1	10.4	37.2	92.0	0.02078	1.66	1.74	99%	95%	100%
2	Control	8.12	8.5	3.1	10.4	40.6	99.5	0.02078	1.00	1.74	99%	98%	10070
3	(35%)	0.12	0.5	3.1	10.0	45.6	135.4	0.02331	1.86		100%	107%	
5	(00/00)			0.1	-	Mean contr		0.02184	1.00		10070	10770	
Measured co	anar aanaanti	rotiono (una	<i>a</i>)		,	iean conu	or rate=	0.02104	1				
4		alions (µg/	<i>L)</i>	3.1	7.0	31.3	91.0	0.02113	1.68	1.72	99%	97%	99%
5	3.5	8.13	8.52	3.1	8.4	40.9	108.2	0.02113	1.00	1.72	99%	102%	99%
6	3.5	0.15	0.52	3.1	8.2	32.6	99.7	0.02223	1.71		100%	98%	
7				3.1	5.9	26.3	73.5	0.02141	1.59	1.56	98%	91%	90%
8	7.2	8.12	8.46	3.1	7.5	26.0	68.7	0.01933	1.53	1.50	100%	88%	5070
9	1.2	0.12	0.40	3.1	7.5	28.9	74.6	0.01972	1.52		99%	91%	
10				3.1	6.1	12.2	43.5	0.01567	1.30	1.26	97%	72%	72%
11	15	8.12	8.32	3.1	5.0	15.3	42.7	0.01507	1.30	1.20	98%	75%	12/0
12	10	0.12	0.52	3.1	5.9	15.3	37.6	0.01534	1.30		99%	70%	
10				3.1	4.7	9.3	14.1	0.00951	0.76	0.90	99%	44%	52%
11	29	8.09	8.26	3.1	4.8	10.4	22.7	0.00001	0.98	0.50	99%	56%	5270
12		0.00	0.20	3.1	2.9	9.0	20.1	0.01226	0.98		89%	56%	
Dilution Wate	r (37‰)			0.1	2.0	0.0	20.1	0.01220	0.00	1	0070	0070	
13				3.1	11.9	41.1	109.9	0.02169	1.73	1.80	100%	99%	103%
14	Dilution	8.07	8.53	3.1	13.6	45.4	137.5	0.02285	1.82		100%	105%	10070
15	Water	0.07	0.00	3.1	11.8	52.9	129.5	0.02305	1.84		99%	106%	
Salinity Contr				0.1	1110	02.0	12010	0102000			0070	10070	
13				3.1	10.4	28.5	52.0	0.01720	1.37	1.38	98%	79%	79%
14	39‰	8.06	8.44	3.1	11.1	31.6	51.4	0.01721	1.37		96%	79%	
15				3.1	10.9	33.3	54.4	0.01764	1.41		97%	81%	
16				3.1	9.4	32.2	53.3	0.01774	1.41	1.62	97%	81%	93%
17	42‰	8.05	8.59	3.1	9.9	41.0	97.4	0.02136	1.70	-	99%	98%	
18	1			3.1	9.9	41.4	104.5	0.02176	1.73	1	99%	100%	
16				3.1	5.2	12.2	16.0	0.01052	0.84	0.80	97%	48%	46%
17	51‰	8.02	8.42	3.1	6.0	11.1	15.9	0.01008	0.80		98%	46%	
18	1			3.1	5.4	12.4	13.9	0.00971	0.77	1	93%	44%	

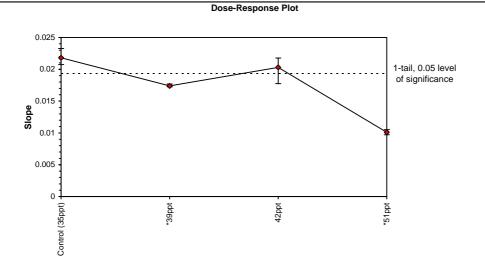

	Algal Growth Rate-Slope											
Start Date:	4/07/2006		Test ID:	OD	Sample ID:	REF-Ref Toxicant						
End Date:	4/07/2006		Lab ID:	CECR-Centre for Environmenta	a Sample Type:	Copper						
Sample Date:			Protocol:	BD-Flow-FACSCalibur flow cyto	Test Species:	NC-Nitzschia closterium						
Comments:	Measured of	concentra	tions of co	pper								
Conc-ug/L	1	2	3									
Control	0.0208	0.0214	0.0233	3								
3.5	0.0211	0.0222	0.0214	l l								
7.2	0.0199	0.0191	0.0198	3								
15	0.0157	0.0163	0.0153	3								
29	0.0095	0.0123	0.0123	3								

		_		Transform	n: Untrans	formed			1-Tailed			
Conc-ug/L	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean
Control	0.0218	1.0000	0.0218	0.0208	0.0233	6.013	3				0.0218	0.0000
3.5	0.0216	0.9886	0.0216	0.0211	0.0222	2.631	3	0.304	2.470	0.0020	0.0216	0.0114
*7.2	0.0196	0.8982	0.0196	0.0191	0.0199	2.211	3	2.714	2.470	0.0020	0.0196	0.1018
*15	0.0158	0.7224	0.0158	0.0153	0.0163	3.143	3	7.399	2.470	0.0020	0.0158	0.2776
*29	0.0114	0.5198	0.0114	0.0095	0.0123	14.079	3	12.798	2.470	0.0020	0.0114	0.4802

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norma	al distribution	(p > 0.01)			0.974617		0.835		-0.35583	0.35037
Bartlett's Test indicates equal variar	nces (p = 0.33	3)			4.596714		13.2767			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	3.5	7.2	5.01996		0.002024	0.092673	5.95E-05	1.01E-06	6.4E-07	4, 10


					Maximum Likeli	hood-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Contr	ol Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	2.044053	1.187674	-0.28379	4.371895	0	0.020239	5.991477	0.99	1.479636	0.489224	4
Intercept	1.975545	1.547293	-1.05715	5.008239							
TSCR						1.0 🕇				~	
Point	Probits	ug/L	95% Fidu	cial Limits		0.9					
EC01	2.674	2.195486				0.9					
EC05	3.355	4.730794				0.8 -			/		
EC10	3.718	7.123119				0.7			/		
EC15	3.964	9.388321							/		
EC20	4.158	11.69216				es 0.6 0.5 es 0.4		/			
EC25	4.326	14.1143				5 0.5					
EC40	4.747	22.68259				SS -		7			
EC50	5.000	30.17422				2 0.4		/			
EC60	5.253	40.14021				0.3 -					
EC75	5.674	64.50787				0.2		7			
EC80	5.842	77.87131				0.2		/			
EC85	6.036	96.98047				0.1 -	^	6			
EC90	6.282	127.8209				0.0					
EC95	6.645	192.4589				0.0 +		10	100	1000	
EC99	7.326	414.7073						Dose u		1000	

Dose-Response Plot


					Algal Gr	owth Rat	e-Slope					
Start Date:	4/07/2006		Test ID:	OD			Sample ID):	WQE0617	'8		
End Date:	4/07/2006		Lab ID:	CECR-Cen	tre for Envi	ronmenta	Sample Ty	/pe:	Diluent wa			
Sample Date:			Protocol:	BD-Flow-F	ACSCalibu	flow cyto	Test Spec	ies:	NC-Nitzsc	hia closteri	um	
Comments:												
Conc-	1	2	3									
Control (35ppt)	0.0208	0.0214	0.0233									
luent W (37ppt)	0.0217	0.0228	0.0231									
				Transform	n: Untrans	formed			2-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
Control (35ppt)	0.0218	1.0000	0.0218	0.0208	0.0233	6.013	3					
luent W (37ppt)	0.0225	1.0316	0.0225	0.0217	0.0231	3.256	3	0.794	2.776	0.0024		
Auxiliary Tests	6						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indicate	es normal	distribution	n (p > 0.01)			0.947776		0.713		0.525322	-0.67224
F-Test indicates	s equal varia	ances (p =	0.48)				3.204553		199.012			
Hypothesis Te	et (2 tail 0	05)					MSDu	MSDp	MSB	MSE	F-Prob	df
Hypothesis re	si (z-iaii, u.											

Dose-Response Plot

					Algal Gr	owth Rat	e-Slope					
Start Date:	4/07/2006		Test ID:	OD			Sample ID		Salinity Cor	ntrols		
End Date:	4/07/2006		Lab ID:	CECR-Cen	tre for Envi	ironmenta	Sample Ty	pe:	Seawater +	salts		
Sample Date:			Protocol:	BD-Flow-F	ACSCalibu	r flow cyto	Test Speci	es:	NC-Nitzsch	ia closteri	um	
Comments:							•					
Conc-	1	2	3									
Control (35ppt)	0.0208	0.0214	0.0233									
39ppt	0.0172	0.0172	0.0176									
42ppt	0.0177	0.0214	0.0218									
51ppt	0.0105	0.0101	0.0097									
				Transform	n: Untrans	sformed			1-Tailed			
Conc-	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD		
Control (35ppt)	0.0218	1.0000	0.0218	0.0208	0.0233	6.013	3					
*39ppt	0.0174	0.7944	0.0174	0.0172	0.0176	1.468	3	4.197	2.420	0.0026		
42ppt	0.0203	0.9288	0.0203	0.0177	0.0218	10.929	3	1.454	2.420	0.0026		
*51ppt	0.0101	0.4626	0.0101	0.0097	0.0105	3.982	3	10.972	2.420	0.0026		
Auxiliary Tests	6						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indicat	es normal	distribution	(p > 0.01)			0.925348		0.805		-0.79515	1.458977
D A A A A			(•			7 500050		44 0 4 4 0 0			

	0.0200.0		0.000		0.1.00.10	
Bartlett's Test indicates equal variances (p = 0.06)	7.580256		11.34488			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test indicates significant differences	0.002589	0.118535	8.13E-05	1.72E-06	1.9E-05	3, 8

APPENDIX – Olympic Dam, desalination pilot plant discharge

4/07/2006

72-h Chronic Toxicity of Olympic Dam pilot Plant waste water to Nitzschia closterium

	Sample	p	H	Day 0	24h	48h	72h	Slope	Growth Rate	(dblngs/day)	Pearson	% Control	Mean %
Flask No.		Day 0	Day 3	All cell	counts in	(cells/mL)	by x10 ⁴	1 ·		Mean			
Samples and	d Controls							•	•				
25				3.1	11.9	41.1	109.9	0.02169	1.73	1.80	100%	96%	100%
26	Dilution Water	8.07	8.53	3.1	13.6	45.4	137.5	0.02285	1.82		100%	101%	
27	(WQE06178)			3.1	11.8	52.9	129.5	0.02305	1.84		99%	102%	
						Mean contr	ol rate=	0.02253					
Brisbane wa	ter- Pilot Plant wa	aste water (WQE06179)									
28				3.1	12.6	39.8	129.1	0.02240	1.78	1.84	100%	99%	102%
29	0.14%	8.07	8.62	3.1	11.5	43.0	149.7	0.02350	1.87		100%	104%	
30				3.1	10.2	47.6	134.4	0.02332	1.86		99%	104%	
31				3.1	10.9	42.7	121.6	0.02246	1.79	1.79	100%	100%	100%
32	0.4%	8.07	8.52	3.1	10.4	41.5	121.5	0.02249	1.79		100%	100%	
33				3.1	11.3	38.4	129.9	0.02257	1.80		100%	100%	
34				3.1	9.8	42.8	140.2	0.02342	1.87	1.83	100%	104%	102%
35	1.2%	8.06	8.59	3.1	11.2	42.1	133.8	0.02291	1.83		100%	102%	
36				3.1	9.1	46.3	117.4	0.02275	1.81		99%	101%	
37				3.1	8.4	36.6	77.9	0.02023	1.61	1.73	99%	90%	97%
38	3.7%	8.06	8.52	3.1	11.3	43.3	126.0	0.02262	1.80		100%	100%	
39				3.1	12.1	38.7	129.8	0.02244	1.79		100%	100%	
40				3.1	7.7	28.9	95.3	0.02106	1.68	1.74	100%	93%	97%
41	11%	8.07	8.53	3.1	7.1	35.3	88.9	0.02119	1.69]	99%	94%	
42				3.1	7.7	38.3	126.3	0.02309	1.84		99%	102%	
43				3.1	4.2	6.7	9.4	0.00695	0.55	0.55	100%	31%	30%
44	33%	8.06	8.28	3.1	4.7	7.3	8.7	0.00648	0.52]	97%	29%	
45				3.1	4.6	7.3	9.9	0.00717	0.57	1	99%	32%	

				Algal Growth Rate-Slo	оре	
Start Date: 4	4/07/2006		Test ID:	OD Sam	nple ID:	WQE06179
End Date: 4	4/07/2006		Lab ID:	CECR-Centre for Environmental Sam	nple Type:	Olympic Dam PPWW
Sample Date:			Protocol:	BD-Flow-FACSCalibur flow cyto Test	t Species:	NC-Nitzschia closterium
Comments:	Pilot Plant v	waste wat	er prepare	d June06		
Conc-%	1	2	3			
Diluent W	0.0217	0.0228	0.0231			
0.14	0.0224	0.0235	0.0233			
0.4	0.0225	0.0225	0.0226			
1.2	0.0234	0.0229	0.0228			
3.7	0.0202	0.0226	0.0224			
11	0.0211	0.0212	0.0231			
33	0.0070	0.0065	0.0072			

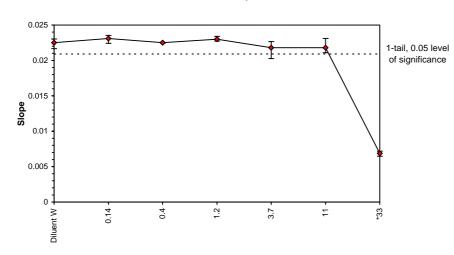
		Transform: Untran				formed			1-Tailed			Isotonic		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Mean	N-Mean		
Diluent W	0.0225	1.0000	0.0225	0.0217	0.0231	3.256	3				0.0228	1.0000		
0.14	0.0231	1.0242	0.0231	0.0224	0.0235	2.559	3	-0.861	2.530	0.0016	0.0228	1.0000		
0.4	0.0225	0.9991	0.0225	0.0225	0.0226	0.241	3	0.033	2.530	0.0016	0.0228	0.9985		
1.2	0.0230	1.0222	0.0230	0.0228	0.0234	1.524	3	-0.789	2.530	0.0016	0.0228	0.9985		
3.7	0.0218	0.9661	0.0218	0.0202	0.0226	6.115	3	1.209	2.530	0.0016	0.0218	0.9548		
11	0.0218	0.9667	0.0218	0.0211	0.0231	5.212	3	1.186	2.530	0.0016	0.0218	0.9548		
*33	0.0069	0.3048	0.0069	0.0065	0.0072	5.185	3	24.767	2.530	0.0016	0.0069	0.3011		

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norm		0.984758		0.873		-0.33021	0.505271			
Bartlett's Test indicates equal varia		12.19023		16.81187						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	11	33	19.05256	9.090909	0.0016	0.071018	0.000105	6E-07	2.4E-12	6, 14

				Line	ear Interpolation	(200 Resamp	oles)
Point	%	SD	95% CL	(Exp)	Skew		
IC05	11.163	3.781	0.000	13.502	-0.1910		
IC10	12.846	0.649	10.082	15.064	0.2413		
IC15	14.529	0.598	11.965	16.577	0.2526	1.0 -	1
IC20	16.211	0.548	13.784	18.107	0.2640	0.9	
IC25	17.894	0.499	15.650	19.618	0.2744	-	
IC40	22.942	0.365	21.277	24.321	0.2706	0.8	
IC50	26.308	0.294	25.020	27.412	0.1665	0.7 -	ا م ا
						0.6	
						0.5 - 0.4 - 0.4 - 0.5 - 0.4 - 0.4 - 0.5 - 0.4 -	
						<mark>ດ</mark> 0.4	
						& _{0.3}	

0.2 0.1 0.0

0


20

Dose %

30

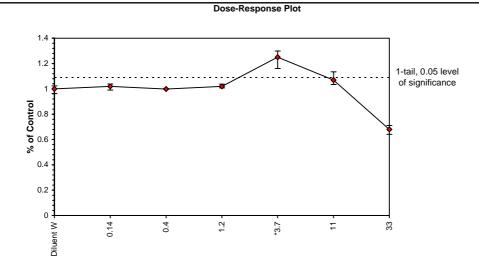
40

10

APPENDIX – Olympic Dam, desalination pilot plant discharge; Data corrected for effects due to high salinity

4/07/2006

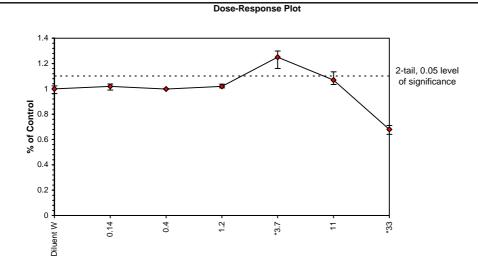
72-h Chronic Toxicity of Olympic Dam pilot plant waste water to Nitzschia closterium


	Sample	р	H	Day 0	24h	48h	72h	Slope	Growth Rate	(dblngs/day)	Pearson	% Control	Mean %
Flask No.		Day 0	Day 3	All cell	counts in	(cells/mL)	by x10⁴			Mean			
Samples and	d Controls												
25				3.1	11.9	41.1	109.9	0.02169	1.73	1.80	100%	96%	100%
26	Dilution Water	8.07	8.53	3.1	13.6	45.4	137.5	0.02285	1.82		100%	101%	
27	(WQE06178)			3.1	11.8	52.9	129.5	0.02305	1.84		99%	102%	
					1	Mean contr	ol rate=	0.02253					
liot Plant w	aste water (WQE	06179)							-				
28		,		3.1	12.6	39.8	129.1	0.02240	1.78	1.84	100%	99%	102%
29	0.14%	8.07	8.62	3.1	11.5	43.0	149.7	0.02350	1.87		100%	104%	
30				3.1	10.2	47.6	134.4	0.02332	1.86		99%	104%	
31				3.1	10.9	42.7	121.6	0.02246	1.79	1.79	100%	100%	100%
32	0.4%	8.07	8.52	3.1	10.4	41.5	121.5	0.02249	1.79		100%	100%	
33				3.1	11.3	38.4	129.9	0.02257	1.80		100%	100%	
34				3.1	9.8	42.8	140.2	0.02342	1.87	1.83	100%	104%	102%
35	1.2%	8.06	8.59	3.1	11.2	42.1	133.8	0.02291	1.83		100%	102%	
36	- 1			3.1	9.1	46.3	117.4	0.02275	1.81		99%	101%	
37				3.1	8.4	36.6	77.9	0.02023	1.61	1.73	99%	117%	125%
38	3.7%*	8.06	8.52	3.1	11.3	43.3	126.0	0.02262	1.80		100%	130%	
39	(39‰)			3.1	12.1	38.7	129.8	0.02244	1.79		100%	129%	
40				3.1	7.7	28.9	95.3	0.02106	1.68	1.74	100%	104%	107%
41	11%*	8.07	8.53	3.1	7.1	35.3	88.9	0.02119	1.69		99%	104%	
42	(42‰)			3.1	7.7	38.3	126.3	0.02309	1.84		99%	114%	
43				3.1	4.2	6.7	9.4	0.00695	0.55	0.55	100%	69%	68%
44	33%*	8.06	8.28	3.1	4.7	7.3	8.7	0.00648	0.52		97%	64%	
45	(51‰)			3.1	4.6	7.3	9.9	0.00717	0.57		99%	71%	
alinity Cont	rols					•		•					
16				3.1	10.4	28.5	52.0	0.01720	1.37	1.38	98%	76%	77%
17	39‰	8.06	8.44	3.1	11.1	31.6	51.4	0.01721	1.37		96%	76%	
18				3.1	10.9	33.3	54.4	0.01764	1.41		97%	78%	
					Me	an 39‰ co	ntrol rate=	0.01735					
19				3.1	9.4	32.2	53.3	0.01774	1.41	1.62	97%	79%	90%
20	42‰	8.05	8.59	3.1	9.9	41.0	97.4	0.02136	1.70		99%	95%	
21	- 1			3.1	9.9	41.4	104.5	0.02176	1.73		99%	97%	
	•				Me	an 42‰ co	ntrol rate=	0.02028					
22				3.1	5.2	12.2	16.0	0.01052	0.84	0.80	97%	47%	45%
23	51‰	8.02	8.42	3.1	6.0	11.1	15.9	0.01008	0.80		98%	45%	
24			-	3.1	5.4	12.4	13.9	0.00971	0.77		93%	43%	
					Mei	an 51‰ co	ntrol rate=		1				

* % Control data expressed as a percentage of appropriate salinity-matched control

				Algal Growth	Rate-% of Control		
Start Date:	4/07/2006		Test ID:	OD	Sample ID:	WQE06179	
End Date:	4/07/2006		Lab ID:	CECR-Centre for Enviro	nmental Sample Type:	Olympic Dam PPWW	
Sample Date:			Protocol:	BD-Flow-FACSCalibur fl	ow cyto Test Species:	NC-Nitzschia closterium	
Comments:	Pilot Plant	waste wat	er prepare	d June06, data corrected	I for effeects due to high s	alinity	
Conc-%	1	2	3				
Diluent W	0.9628	1.0141	1.0232				
0.14	0.9943	1.0431	1.0351				
0.4	0.9970	0.9984	1.0017				
1.2	1.0397	1.0169	1.0099				
3.7	1.1660	1.3036	1.2936				
11	1.0383	1.0445	1.1382				
33	0.6879	0.6410	0.7100				

				Transform	n: Untrans	formed			1-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD
Diluent W	1.0000		1.0000	0.9628	1.0232	3.256	3			
0.14	1.0242		1.0242	0.9943	1.0431	2.559	3	0.707	2.530	0.0864
0.4	0.9991		0.9991	0.9970	1.0017	0.241	3	-0.027	2.530	0.0864
1.2	1.0222		1.0222	1.0099	1.0397	1.524	3	0.649	2.530	0.0864
*3.7	1.2544		1.2544	1.1660	1.3036	6.115	3	7.448	2.530	0.0864
11	1.0737		1.0737	1.0383	1.1382	5.212	3	2.156	2.530	0.0864
33	0.6797		0.6797	0.6410	0.7100	5.185	3	-9.378	2.530	0.0864


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norm		0.971166		0.873		-0.50592	0.776482			
Bartlett's Test indicates equal varia		12.88323		16.81187						
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	33	>33		3.030303	0.086425	0	0.08672	0.00175	1.2E-08	6, 14

				Algal Growth Rate-% of Control	
Start Date:	4/07/2006		Test ID:	OD Sample ID:	WQE06179
End Date:	4/07/2006		Lab ID:	CECR-Centre for Environmental Sample Type:	Olympic Dam PPWW
Sample Date:			Protocol:	BD-Flow-FACSCalibur flow cyto Test Species:	NC-Nitzschia closterium
Comments:	Pilot Plant	waste wa	ter prepare	ed June06, data corrected for effects due to high sa	alinity
Conc-%	1	2	3		
Diluent W	0.9628	1.0141	1.0232	2	
0.14	0.9943	1.0431	1.0351		
0.4	0.9970	0.9984	1.0017	,	
1.2	1.0397	1.0169	1.0099)	
3.7	1.1660	1.3036	1.2936	3	
11	1.0383	1.0445	1.1382	2	
33	0.6879	0.6410	0.7100)	

				Transform	n: Untrans	formed			2-Tailed	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD
Diluent W	1.0000		1.0000	0.9628	1.0232	3.256	3			
0.14	1.0242		1.0242	0.9943	1.0431	2.559	3	0.707	3.020	0.1032
0.4	0.9991		0.9991	0.9970	1.0017	0.241	3	0.027	3.020	0.1032
1.2	1.0222		1.0222	1.0099	1.0397	1.524	3	0.649	3.020	0.1032
*3.7	1.2544		1.2544	1.1660	1.3036	6.115	3	7.448	3.020	0.1032
11	1.0737		1.0737	1.0383	1.1382	5.212	3	2.156	3.020	0.1032
*33	0.6797		0.6797	0.6410	0.7100	5.185	3	9.378	3.020	0.1032

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates norm		0.971166		0.873		-0.50592	0.776482			
Bartlett's Test indicates equal varia		12.88323		16.81187						
Hypothesis Test (2-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	11	33	19.05256	9.090909	0.103163	0	0.08672	0.00175	1.2E-08	6, 14

Toxicity Assessment of Desalination Plant Waste Water

Hydrobiology for ARUP / HLA

Test Report

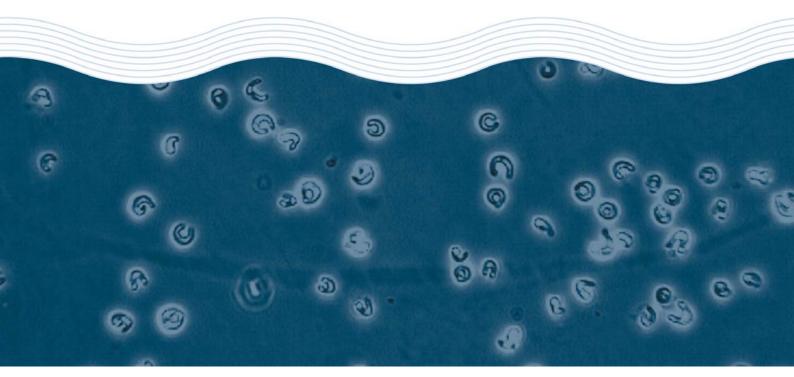
August 2006

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

61 2 9420 9484 W>www.ecotox.com.au

C



Toxicity Assessment of Desalination Plant Waste Water

Hydrobiology for ARUP / HLA

Test Report

August 2006

(page 1 of 1)

Client:	Hydrobiology	ESA Job #:	PR0226	
	PO Box 2050	Date Sampled:	Not supplied	
	Milton QLD 4064	Date Received:	30 June 2006	
Attention:	Dustin Hobbs	Sampled By:	Not supplied	
Contract #:		Quote #:	PL0226_q01	
-				
Lab ID No.:	Sample Name:	Sample Descriptio	n:	
1715	Olympic Dam	Desalination plant e	effluent, conductivity 109.8	
		mS/cm, pH 8.0	-	
Test Perform	ed:	72-hr Sea urchin larval development test u	sing Heliocidaris tuberculata	
Test Protocol:		ESA SOP 105, based on APHA (1998) and Simon and Laginestra		
		(1996)	-	
Deviations fro	om Protocol:	Ňil		
Source of Test Organisms:		Field collected from South Maroubra NSW on 13 July 2006		
Test Initiated:		13 July 2006 at 1500 h	-	
Salinity Contro	ols	Sample 1715: Olympic Dam	Vacant	
Treatment	% Normal	Concentration % Normal		

Samily Controls		Sample 1715. Olympic Dai	11	vacan
Treatment	% Normal	Concentration	% Normal	
	Larvae	(%)	Larvae	
	(Mean ± SD)	(salinity in brackets)	(Mean ± SD)	
FSW Control	95.3 ± 1.9	FSW Control (36.3%)	95.3 ± 1.9	
40.5‰	92.8 ± 3.1	2.1 (37.5‰)	92.5 ± 2.4	
44.4‰	$\textbf{0.0}\pm\textbf{0.0}$	4.1 (38.5‰)	93.3 ± 1.3	
51.8‰	0.0 ± 0.0	8.3 (40.5‰)	91.5 ± 2.7	
		16.5 (44.4‰)	0.0 ± 0.0	
		33 (51.8‰)	0.0 ± 0.0	
		72 hr EC50 = 11.5 (11.3-1 ⁻	1.7)%	
		(TSK Trim value = 2.5%)		
		NOEC = 4.1%		
		LOEC = 8.3%		11

* Significantly lower % normally developed larvae compared with the FSW Control treatment (Dunnett's Test, 1 tailed, P=0.05, df=3,12).

QA/QC Parameter	Criterion	This Test	Criterion met?
Control minimum % normal larvae	>70%	95.3%	Yes
Test Temperature limits	$20.0 \pm 1^{\circ}C$	20.0°C	Yes
Reference Toxicant within cusum chart limits	6.8-10.8 μg/L	8.8 μg/L	Yes

Test Report Authorised by:

Dr Rick Krassoi, Director on 18 August 2006

Results are based on the samples in the condition as received by ESA

El Vami

NATA Accredited Laboratory Number: 14709

The tests, calibrations or methods covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to Australian national standards of measurement. This document shall not be reproduced except in full.

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(page 1 of 1)

Client:	Hydrobiology	ESA Job #:	PR0226
	PO Box 2050	Date Sampled:	Not supplied
	Milton QLD 4064	Date Received:	30 June 2006
Attention:	Dustin Hobbs	Sampled By:	Not supplied
Contract #:		Quote #:	PL0226_q01

Lab ID No.: 1715	Sample Name: Olympic Dam	Sample Description: Desalination plant effluent, conductivity 109.8 mS/cm, pH 8.0	
Test Performe	ed:	72-hr Macroalgal germination test using Hormosira banksii	
Test Protocol:		ESA SOP 116, based on Gunthorpe et al. (1997) and Kevekordes and	
		Clayton (1996)	
Deviations fro	om Protocol:	Nil	
Source of Test Organisms:		Field collected from Bilgola Beach NSW on 27 July 2006	
Test Initiated:		28 July 2006 at 1200 h	

Salinity Controls		Sample 1715: Olympic L	Dam	Vacant
Treatment	% Germinated	Concentration	% Germinated	
	(Mean ± SD)	(%)	(Mean ± SD)	
		(salinity in brackets)		
FSW Control	92.8 ± 2.5	FSW Control (36.8‰)	92.8 ± 2.5	
40‰	93.5 ± 2.7	2.1 (37.7‰)	92.5 ± 3.1	
44‰	91.8 ± 2.9	4.4 (38.5‰)	93.0 ± 2.2	
51‰	$85.0 \pm 3.6^{*}$	8.3 (40.2‰)	94.0 ± 4.1	
		16.5 (43.7 ‰)	94.8 ± 1.7	
		33 (50.8 ‰)	$77.8\pm6.9^{\star\star}$	
		72 hr EC50 = >33% NOEC = 16.5% LOEC = 33%		

* Significantly lower % germination compared with the FSW Control treatment (Dunnett's Test, 1 tailed, P<0.05, df=3,12). ** Significantly lower % germination compared with the FSW Control treatment (Dunnett's Test, 1 tailed, P<0.05, df=5,18).

QA/QC Parameter	Criterion	This Test	Criterion met?
Control minimum % germinated	>70 %	92.8%	Yes
Test Temperature limits	18.0 ± 1 °C	18.5°C	Yes
Reference Toxicant within cusum chart limits	48.6-173.6µg/L	165.1 μg/L	Yes

Test Report Authorised by:

Dr Rick Krassoi, Director on 18 August 2006

Results are based on the samples in the condition as received by ESA. This report shall not be reproduced except in full.

For Vamo

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(page 1 of 1)

Client:	Hydrobiology PO Box 2050 Milton OL D 4064	ESA Job #: Date Sampled:	PR0226 Not supplied
Attention: Order #:	Milton QLD 4064 Dustin Hobbs	Date Received: Sampled By: Quote #:	30 June 2006 Not supplied PL0226_q01

Lab ID No.:Sample Name:1715Olympic Dam	Sample Description: Desalination plant effluent, conductivity 109.8 mS/cm, pH 8.0
--	---

Test Performed:	48-hour larval development test using the rock oyster Saccostrea
	commercialis
Test Protocol:	ESA SOP 106, based on APHA (1998)
Deviations from Protocol:	Nil
Source of Test Organisms:	Farm reared, Merrimbula NSW
Test Initiated:	13 July 2006 at 1830 h

Salinity Controls		Sample 1715: Olympic Da	am	Vacant
Treatment	% Alive	Concentration	% Alive Normal	
	Normal	(%)	(Mean ± SD)	
	(Mean ± SD)	(salinity in brackets)		
FSW Control	73.9 ± 3.0	FSW Control (36.3‰)	73.9 ± 3.0	
40.5‰	76.3 ± 5.6	2.1 (37.5‰)	72.8 ± 6.1	
44.4‰	0.0 ± 0.0	4.1 (38.5‰)	$\textbf{76.3} \pm \textbf{4.9}$	
51.8‰	0.0 ± 0.0	8.3 (40.5‰)	72.8 ± 6.9	
		16.5 (44.4‰)	0.0 ± 0.0	
		33 (51.8‰)	$\textbf{0.0}\pm\textbf{0.0}$	
		72 hr EC50 = 11.5 (11.4- (TSK Trim value = 0.0%) NOEC = 8.3% LOEC = 16.5%		

QA/QC Parameter	Criterion	This Test	Criterion met?
Control minimum % normal surviving larvae	>70 %	73.9%	Yes
Test Temperature limits	23.0 ± 1 °C	23.0°C	Yes
Reference Toxicant within cusum chart limits	16.7 – 22.9 µg/L	21.0 µg/L	Yes

Test Report Authorised by:

For Vamo Dr Rick Krassoi, Director on 18 August 2006

Results are based on the samples in the condition as received by ESA. This report shall not be reproduced except in full.

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

(page 1 of 1)

Client:	Hydrobiology	ESA Job #:	PR0226
	PO Box 2050	Date Sampled:	Not supplied
	Milton QLD 4064	Date Received:	30 June 2006
Attention:	Dustin Hobbs	Sampled By:	Not supplied
Contract #:		Quote #:	PL0226_q01

Lab ID No.: 1715	Sample Name: Olympic Dam	Sample Description: Desalination plant effluent, conductivity 109.8 mS/cm, pH 8.0

Test Performed:	96-hr acute (survival) toxicity test using the tiger prawn <i>Penaeus monodon</i>
Test Protocol:	ESA SOP 107, based on USEPA (1994, 1996)
Deviations from Protocol:	Nil
Source of Test Organisms:	Hatchery-reared, Cairns Qld
Test Initiated:	14 July 2006 at 0900 h

Salinity Controls Treatment	% Survival	Sample 1715: Olympic Dam Concentration (%)	% Survival	Vacant
	(Mean ± SD)	(salinity in brackets)	(Mean ± SD)	
FSW Control	90.0 ± 20.0	FSW Control (36.3‰)	90.0 ± 20.0	
40.5‰	100 ± 0.0	2.1 (37.5‰)	85.0 ± 19.2	
44.4‰	55.0 ± 10.0	4.1 (38.2‰)	85.0 ± 10.0	
51.8‰	$\textbf{0.0}\pm\textbf{0.0}$	8.3 (40.2‰)	95.0 ± 10.0	
		16.5 (43.9‰)	65.0 ± 10.0	
		33 (51.7‰)	$20.0\pm16.3^{\star}$	
		96 hr LC50 = 22.4 (15.8-31. (TSK Trim value = 22.2%) NOEC = 16.5% LOEC = 33%	6)%	

* Significantly reduced survival compared with the FSW Control treatment (Dunnett's Test, 1 tailed, P<0.05, df=5,18).

QA/QC Parameter	Criterion	This Test	Criterion met?
Control % survival	<u>></u> 90%	90%	Yes
Test Temperature limits	25.0 ± 1°C	25.0°C	Yes
Reference Toxicant within cusum chart limits	7.4-20.1mg/L	13.1 mg/L	Yes

Test Report Authorised by:

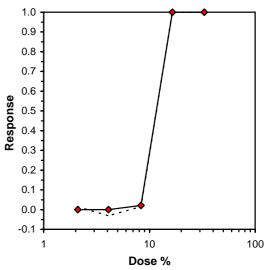
For Vamo

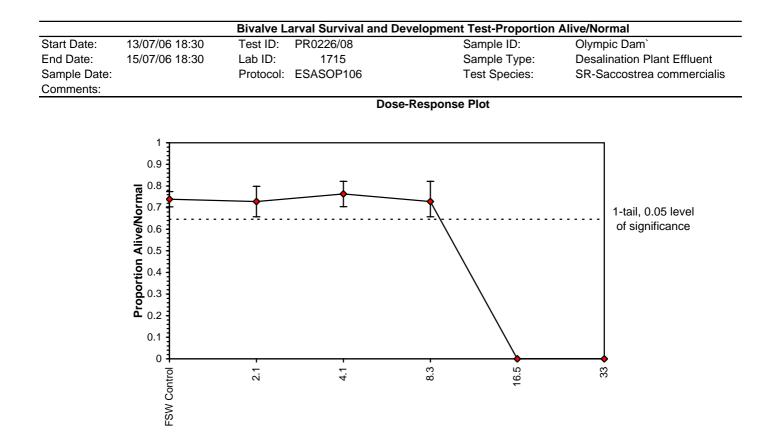
Dr Rick Krassoi, Director on 18 August 2006

Results are based on the samples in the condition as received by ESA. This report shall not be reproduced except in full.

 ECOTOX Services Australasia Pty Ltd
 ABN>45
 0.94
 7.14
 9.04

 unit 27/2 chaplin drive lane cove nsw 2066
 T>61
 2
 9420
 9481

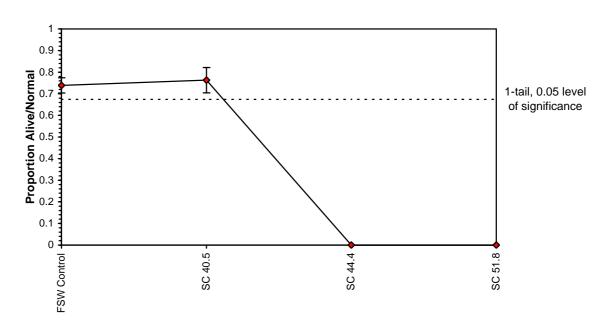

Statistical Printouts for the Rock Oyster Larval Development Tests


			Bivalve La	rval Survival and	d Development Test-Proportion	n Alive/Normal
Start Date:	13/07/06 18	3:30	Test ID:	PR0226/08	Sample ID:	Olympic Dam`
End Date:	15/07/06 18	3:30	Lab ID:	1715	Sample Type:	Desalination Plant Effluent
Sample Date:			Protocol:	ESASOP106	Test Species:	SR-Saccostrea commercialis
Comments:						
Conc-%	1	2	3	4		
FSW Control	0.7746	0.7277	0.7042	0.7512		
2.1	0.6573	0.7981	0.7512	0.7042		
4.1	0.7512	0.7746	0.7042	0.8216		
8.3	0.7042	0.7277	0.8216	0.6573		
16.5	0.0000	0.0000	0.0000	0.0000		
33	0.0000	0.0000	0.0000	0.0000		

			T	ransform:	Arcsin Sq	uare Root	1-Tailed			Number	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp
FSW Control	0.7394	1.0000	1.0356	0.9958	1.0762	3.340	4				44
2.1	0.7277	0.9841	1.0236	0.9454	1.1048	6.699	4	0.270	2.290	0.1013	46
4.1	0.7629	1.0317	1.0638	0.9958	1.1347	5.439	4	-0.638	2.290	0.1013	40
8.3	0.7277	0.9841	1.0244	0.9454	1.1347	7.818	4	0.252	2.290	0.1013	46
16.5	0.0000	0.0000	0.0767	0.0767	0.0767	0.000	4				170
33	0.0000	0.0000	0.0767	0.0767	0.0767	0.000	4				170

Auxiliary Tests					Statistic		Critical		Skew
Shapiro-Wilk's Test indicates normal	distribution	(p > 0.01)			0.961195		0.844		0.399127
Bartlett's Test indicates equal variant	ces (p = 0.63	3)			1.75237		11.34487		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test	8.3	16.5	11.70256	12.04819	0.093199	0.125967	0.00141	0.003915	0.782957

				Trimmed Spearman-Karber	
Trim Level	EC50	95%	CL		
0.0%	11.532	11.357	11.710		
5.0%	11.616	11.525	11.708		
10.0%	11.616	11.525	11.708	1.0 -	—
20.0%	11.616	11.525	11.708	0.9	
Auto-0.0%	11.532	11.357	11.710	4	
				0.8	



		Bivalve L	arval Survival and Development Test-Proportion Alive/Normal							
Start Date:	13/07/06 18:30	Test ID:	PR0226/08			Sample ID:		Olympic D		
End Date:	15/07/06 18:30	Lab ID:	1715			Sample Typ			on Plant Effluent	
Sample Date:		Protocol:	ESASOP106	6		Test Specie	es:	SR-Sacco	strea commercialis	
Comments:										
-						ita Summar			-	
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N		
FSW Control	%Alive Normal		73.94	70.42	77.46	3.03	2.35			
2.1			72.77	65.73	79.81	6.06	3.38			
4.1			76.29	70.42	82.16	4.89	2.90			
8.3			72.77	65.73	82.16	6.91	3.61			
16.5			0.00	0.00	0.00	0.00		4		
33			0.00	0.00	0.00	0.00		4	-	
FSW Control	Temp C		23.00	23.00	23.00	0.00	0.00			
2.1			23.00	23.00	23.00	0.00	0.00			
4.1			23.00	23.00	23.00	0.00	0.00			
8.3			23.00	23.00	23.00	0.00	0.00			
16.5			23.00	23.00	23.00	0.00	0.00			
33			23.00	23.00	23.00	0.00	0.00	1	_	
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1		
2.1			8.10	8.10	8.10	0.00	0.00	1		
4.1			8.10	8.10	8.10	0.00	0.00	1		
8.3			8.10	8.10	8.10	0.00	0.00	1		
16.5			8.10	8.10	8.10	0.00	0.00	1		
33			8.10	8.10	8.10	0.00	0.00	1		
FSW Control	Salinity ppt		36.30	36.30	36.30	0.00	0.00	1	-	
2.1			37.50	37.50	37.50	0.00	0.00	1		
4.1			38.50	38.50	38.50	0.00	0.00			
8.3			40.50	40.50	40.50	0.00	0.00	1		
16.5			44.40	44.40	44.40	0.00	0.00			
33			51.80	51.80	51.80	0.00	0.00			
FSW Control	DO (%sat)		107.30	107.30	107.30	0.00	0.00		-	
2.1	· · ·		106.20	106.20	106.20	0.00	0.00			
4.1			104.70	104.70	104.70	0.00	0.00			
8.3			103.20	103.20	103.20	0.00	0.00			
16.5			102.80	102.80	102.80	0.00	0.00			
33			102.80	102.80	102.80	0.00	0.00			

			Bivalve La	arval Survival a	nd Development Test-Proportion Alive/Normal
Start Date:	13/07/06 18	3:30	Test ID:	PR0226/07	Sample ID: Salinity Controls
End Date:	15/07/06 18	3:30	Lab ID:	1715	Sample Type: Salinity Controls
Sample Date:			Protocol:	ESASOP106	Test Species: SR-Saccostrea commercialis
Comments:					
Conc-ppt	1	2	3	4	
FSW Control	0.7746	0.7277	0.7042	0.7512	
SC 40.5	0.7981	0.7277	0.7042	0.8216	
SC 44.4	0.0000	0.0000	0.0000	0.0000	
SC 51.8	0.0000	0.0000	0.0000	0.0000	

		_	Transform: Arcsin Square Root				_	1-Tailed		
Conc-ppt	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD
FSW Control	0.7394	1.0000	1.0356	0.9958	1.0762	3.340	4			
SC 40.5	0.7629	1.0317	1.0643	0.9958	1.1347	6.209	4	-0.770	1.943	0.0725
SC 44.4	0.0000	0.0000	0.0767	0.0767	0.0767	0.000	4			
SC 51.8	0.0000	0.0000	0.0767	0.0767	0.0767	0.000	4			

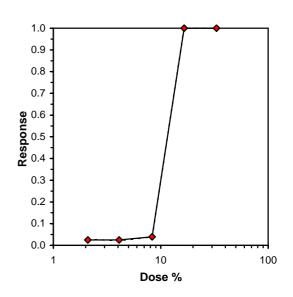
Auxiliary Tests	Statistic		Critical		Skew
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.949272		0.749		0.035188
F-Test indicates equal variances (p = 0.32)	3.650608		47.46723		
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob
Homoscedastic t Test indicates no significant differences	0.065879	0.089042	0.001648	0.002782	0.470693

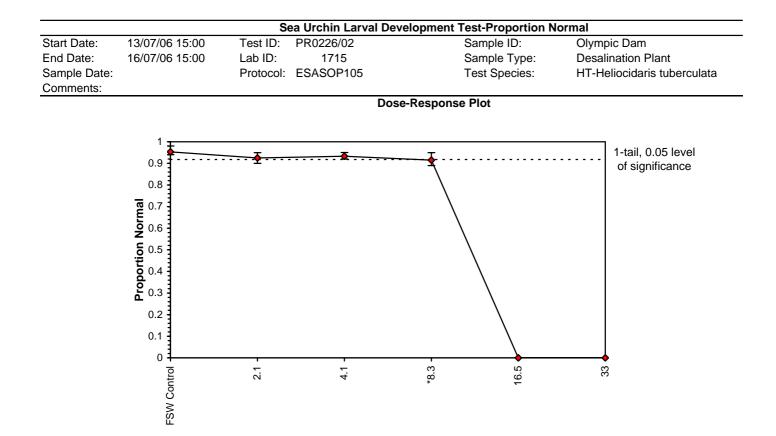
Dose-Response Plot

		Bivalve L	arval Survival and Dev	elopment Test-Proportion	Alive/Normal
Start Date:	13/07/06 18:30	Test ID:	PR0226/07	Sample ID:	Salinity Controls
End Date:	15/07/06 18:30	Lab ID:	1715	Sample Type:	Salinity Controls
Sample Date:		Protocol:	ESASOP106	Test Species:	SR-Saccostrea commercialis
Comments:					

			Au	xiliary Data	a Summar	У	
Conc-ppt	Parameter	Mean	Min	Max	SD	CV%	Ν
FSW Control	%Alive Normal	73.94	70.42	77.46	3.03	2.35	4
SC 40.5		76.29	70.42	82.16	5.59	3.10	4
SC 44.4		0.00	0.00	0.00	0.00		4
SC 51.8		0.00	0.00	0.00	0.00		4
FSW Control	Temp C	23.00	23.00	23.00	0.00	0.00	1
SC 40.5		23.00	23.00	23.00	0.00	0.00	1
SC 44.4		23.00	23.00	23.00	0.00	0.00	1
SC 51.8		23.00	23.00	23.00	0.00	0.00	1
FSW Control	pН	8.10	8.10	8.10	0.00	0.00	1
SC 40.5		8.10	8.10	8.10	0.00	0.00	1
SC 44.4		8.10	8.10	8.10	0.00	0.00	1
SC 51.8		8.10	8.10	8.10	0.00	0.00	1
FSW Control	Salinity ppt	36.30	36.30	36.30	0.00	0.00	1
SC 40.5		40.50	40.50	40.50	0.00	0.00	1
SC 44.4		44.40	44.40	44.40	0.00	0.00	1
SC 51.8		51.80	51.80	51.80	0.00	0.00	1
FSW Control	DO (%sat)	107.30	107.30	107.30	0.00	0.00	1
SC 40.5		109.70	109.70	109.70	0.00	0.00	1
SC 44.4		107.20	107.20	107.20	0.00	0.00	1
SC 51.8		108.40	108.40	108.40	0.00	0.00	1

Statistical Printouts for the Sea Urchin Larval Development Test

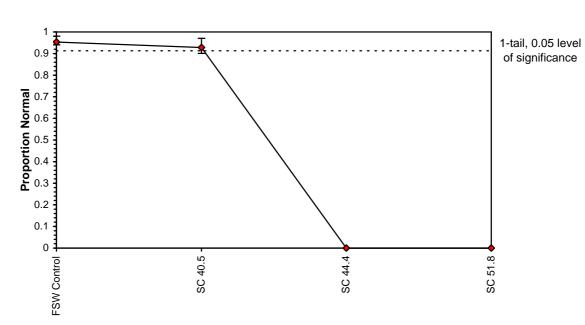

			Se	a Urchin Larval Deve	lopment Test-Proportion N	ormal
Start Date:	13/07/06 15	5:00	Test ID:	PR0226/02	Sample ID:	Olympic Dam
End Date:	16/07/06 15:00		Lab ID:	1715	Sample Type:	Desalination Plant
Sample Date:			Protocol:	ESASOP105	Test Species:	HT-Heliocidaris tuberculata
Comments:						
Conc-%	1	2	3	4		
FSW Control	0.9400	0.9800	0.9500	0.9400		
2.1	0.9400	0.9000	0.9500	0.9100		
4.1	0.9300	0.9300	0.9200	0.9500		
8.3	0.9000	0.8900	0.9200	0.9500		
16.5	0.0000	0.0000	0.0000	0.0000		
33	0.0000	0.0000	0.0000	0.0000		


			Transform: Arcsin Square Root						1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	
FSW Control	0.9525	1.0000	1.3552	1.3233	1.4289	3.705	4				19	
2.1	0.9250	0.9711	1.2959	1.2490	1.3453	3.529	4	1.902	2.290	0.0713	30	
4.1	0.9325	0.9790	1.3088	1.2840	1.3453	1.978	4	1.488	2.290	0.0713	27	
*8.3	0.9150	0.9606	1.2778	1.2327	1.3453	3.900	4	2.485	2.290	0.0713	34	
16.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	
33	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400	

Auxiliary Tests					Statistic		Critical		Skew
Shapiro-Wilk's Test indicates normal	distribution	(p > 0.01)			0.899043		0.844		0.710577
Bartlett's Test indicates equal varian	ces (p = 0.74	4)			1.269327		11.34487		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test	4.1	8.3	5.833524	24.39024	0.034334	0.035981	0.004374	0.001941	0.134603

Trimmed Spearman-Karber

_ 1	Frim Level	EC50	95%	CL
	0.0%			
	5.0%	11.539	11.456	11.623
	10.0%	11.539	11.456	11.623
	20.0%	11.539	11.456	11.623
	Auto-2.5%	11.478	11.303	11.656



		S	ea Urchin Lar	val Devel	opment T	est-Propor	tion Norr		
Start Date:	13/07/06 15:00	Test ID:	PR0226/02			Sample ID:		Olympic D	
End Date:	16/07/06 15:00	Lab ID:	1715			Sample Typ		Desalinati	
Sample Date:		Protocol:	ESASOP105	5		Test Specie	S:	HT-Helioc	idaris tuberculata
Comments:									
						ta Summar			_
Conc-%	Parameter		Mean	Min	Max	SD	CV%	N	
FSW Control	% Normal		95.25	94.00	98.00	1.89	1.44		
2.1			92.50	90.00	95.00	2.38	1.67		
4.1			93.25	92.00	95.00	1.26	1.20		
8.3			91.50	89.00	95.00	2.65	1.78		
16.5			0.00	0.00	0.00	0.00		4	
33			0.00	0.00	0.00	0.00		4	-
FSW Control	Temp C		20.00	20.00	20.00	0.00	0.00		
2.1			20.00	20.00	20.00	0.00	0.00		
4.1			20.00	20.00	20.00	0.00	0.00		
8.3			20.00	20.00	20.00	0.00	0.00		
16.5			20.00	20.00	20.00	0.00	0.00		
33			20.00	20.00	20.00	0.00	0.00		_
FSW Control	рН		8.10	8.10	8.10	0.00	0.00	1	
2.1			8.10	8.10	8.10	0.00	0.00	1	
4.1			8.10	8.10	8.10	0.00	0.00	1	
8.3			8.10	8.10	8.10	0.00	0.00	1	
16.5			8.10	8.10	8.10	0.00	0.00	1	
33			8.10	8.10	8.10	0.00	0.00	1	
FSW Control	Salinity ppt		36.30	36.30	36.30	0.00	0.00	1	-
2.1			37.50	37.50	37.50	0.00	0.00	1	
4.1			38.50	38.50	38.50	0.00	0.00	1	
8.3			40.50	40.50	40.50	0.00	0.00	1	
16.5			44.40	44.40	44.40	0.00	0.00	1	
33			51.80	51.80	51.80	0.00	0.00	1	
FSW Control	DO (%sat)		107.30	107.30	107.30	0.00	0.00	1	-
2.1			106.20	106.20	106.20	0.00	0.00	1	
4.1			104.70	104.70	104.70	0.00	0.00	1	
8.3			103.20	103.20	103.20	0.00	0.00		
16.5			102.80	102.80	102.80	0.00	0.00		
33			102.80	102.80	102.80	0.00	0.00		

			Se	a Urchin Larval D	evelopment Test-Proportion N	ormal
Start Date:	13/07/06 15	5:00	Test ID:	PR0226/01	Sample ID:	Salinity Controls
End Date:	16/07/06 15	:00	Lab ID:	1715	Sample Type:	Salinity Controls
Sample Date:			Protocol:	ESASOP105	Test Species:	HT-Heliocidaris tuberculata
Comments:						
Conc-%	1	2	3	4		
FSW Control	0.9400	0.9800	0.9500	0.9400		
SC 40.5	0.9300	0.9700	0.9100	0.9000		
SC 44.4	0.0000	0.0000	0.0000	0.0000		
SC 51.8	0.0000	0.0000	0.0000	0.0000		

		_	Transform: Arcsin Square Root						1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD		
FSW Control	0.9525	1.0000	1.3552	1.3233	1.4289	3.705	4					
SC 40.5	0.9275	0.9738	1.3037	1.2490	1.3967	5.059	4	1.242	1.943	0.0805		
SC 44.4	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4					
SC 51.8	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4					

Auxiliary Tests	Statistic		Critical		Skew
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.835737		0.749		1.098615
F-Test indicates equal variances (p = 0.66)	1.726196		47.46723		
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob
Homoscedastic t Test indicates no significant differences	0.039395	0.041284	0.005302	0.003436	0.260502

Dose-Response Plot

		S	ea Urchin Lar	val Devel	lopment T	est-Propor	tion Norr	nal	
Start Date:	13/07/06 15:00	Test ID:	PR0226/01		· ·	Sample ID:	-	Salinity C	ontrols
End Date:	16/07/06 15:00	Lab ID:	1715		;	Sample Typ	e:	Salinity C	ontrols
Sample Date:		Protocol:	ESASOP105	i	-	Test Specie	S:	HT-Helioo	idaris tuberculata
Comments:									
				Au	xiliary Dat	a Summar	у		
Conc-%	Parameter		Mean	Min	Max	SD	CV%	Ν	-
FSW Control	% Normal		95.25	94.00	98.00	1.89	1.44	4	
SC 40.5	i i		92.75	90.00	97.00	3.10	1.90	4	
SC 44.4			0.00	0.00	0.00	0.00		4	
SC 51.8			0.00	0.00	0.00	0.00		4	_
FSW Control	Temp C		20.00	20.00	20.00	0.00	0.00	1	-
SC 40.5	i		20.00	20.00	20.00	0.00	0.00	1	
SC 44.4			20.00	20.00	20.00	0.00	0.00	1	
SC 51.8	1		20.00	20.00	20.00	0.00	0.00	1	_
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1	-
SC 40.5	i		8.10	8.10	8.10	0.00	0.00	1	
SC 44.4			8.10	8.10	8.10	0.00	0.00	1	
SC 51.8			8.10	8.10	8.10	0.00	0.00	1	_
FSW Control	Salinity ppt		36.30	36.30	36.30	0.00	0.00	1	_
SC 40.5	i		40.50	40.50	40.50	0.00	0.00	1	
SC 44.4			44.40	44.40	44.40	0.00	0.00	1	
SC 51.8	6		51.80	51.80	51.80	0.00	0.00	1	_
FSW Control	DO (%sat)		107.30	107.30	107.30	0.00	0.00	1	-
SC 40.5	i		109.70	109.70	109.70	0.00	0.00	1	
00 44 4			407.00	407 00	407.00	0.00	0.00	4	

107.20

108.40

107.20

108.40

0.00

0.00

107.20

108.40

1

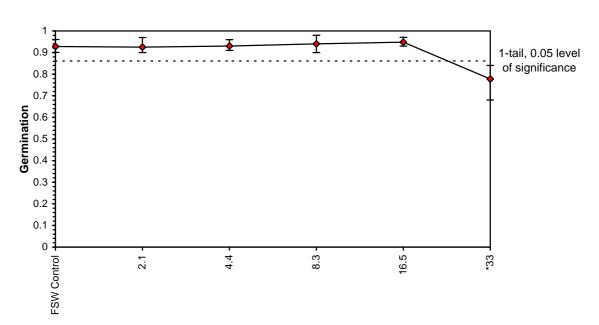
1

0.00

0.00

SC 44.4

SC 51.8

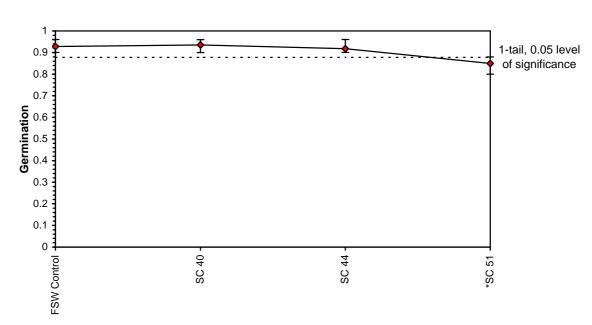


Statistical Printouts for the Acute *Hormosira* Cell Germination Test

			Macioalgai Germ	ination Test-Germination	
28/07/06 12	:00	Test ID:	PR0226/05	Sample ID:	Olympic Dam
31/07/06 12	:00	Lab ID:	1715	Sample Type:	Desalination Plant
		Protocol:	ESASOP116	Test Species:	HB-Hormosira banksii
1	2	3	4		
0.9600	0.9300	0.9200	0.9000		
0.9200	0.9100	0.9700	0.9000		
0.9300	0.9200	0.9100	0.9600		
0.9800	0.9000	0.9100	0.9700		
0.9400	0.9700	0.9300	0.9500		
0.8000	0.7900	0.8400	0.6800		
	31/07/06 12 1 0.9600 0.9200 0.9300 0.9800 0.9400	1 2 0.9600 0.9300 0.9200 0.9100 0.9300 0.9200 0.9800 0.9000 0.9400 0.9700	1/07/06 12:00 Lab ID: Protocol: 1 2 3 0.9600 0.9300 0.9200 0.9200 0.9100 0.9700 0.9300 0.9200 0.9100 0.9300 0.9200 0.9100 0.9800 0.9000 0.9100 0.9400 0.9700 0.9300	1/07/06 12:00 Lab ID: 1715 Protocol: ESASOP116 1 2 3 4 0.9600 0.9300 0.9200 0.9000 0.9200 0.9100 0.9700 0.9000 0.9300 0.9200 0.9100 0.9600 0.9300 0.9200 0.9100 0.9600 0.9800 0.9000 0.9100 0.9700 0.9400 0.9700 0.9300 0.9500	31/07/06 12:00 Lab ID: Protocol: 1715 Sample Type: Test Species: 1 2 3 4 0.9600 0.9300 0.9200 0.9000 0.9200 0.9100 0.9700 0.9000 0.9300 0.9200 0.9000 0.9300 0.9300 0.9200 0.9000 0.9000 0.9300 0.9200 0.9100 0.9600 0.9800 0.9000 0.9700 0.9700 0.9400 0.9700 0.9300 0.9500

			T	ransform:	Arcsin Sq					
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD
FSW Control	0.9275	1.0000	1.3014	1.2490	1.3694	3.886	4			
2.1	0.9250	0.9973	1.2990	1.2490	1.3967	5.135	4	0.052	2.410	0.1109
4.4	0.9300	1.0027	1.3057	1.2661	1.3694	3.456	4	-0.093	2.410	0.1109
8.3	0.9400	1.0135	1.3352	1.2490	1.4289	6.804	4	-0.735	2.410	0.1109
16.5	0.9475	1.0216	1.3421	1.3030	1.3967	3.002	4	-0.885	2.410	0.1109
*33	0.7775	0.8383	1.0827	0.9695	1.1593	7.430	4	4.755	2.410	0.1109

Auxiliary Tests					Statistic		Critical		Skew
Shapiro-Wilk's Test indicates normal		0.965597		0.884		0.080912			
Bartlett's Test indicates equal variand		2.789603		15.08627					
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test	16.5	33	23.33452	6.060606	0.066925	0.072028	0.037823	0.004232	2.1E-04


Dose-Response Plot

			Macroal	gal Germ	ination Te	st-Germina	ation		
Start Date:	28/07/06 12:00	Test ID:	PR0226/05			Sample ID:		Olympic D	am
End Date:	31/07/06 12:00	Lab ID:	1715		5	Sample Typ	e:	Desalinati	on Plant
Sample Date:		Protocol:	ESASOP116	6	٦	Fest Specie	S:	HB-Hormo	osira banksi
Comments:									
					-	a Summar			-
Conc-%	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Control			92.75	90.00	96.00	2.50	1.70		
2.1			92.50	90.00	97.00	3.11	1.91		
4.4			93.00	91.00	96.00	2.16	1.58		
8.3			94.00	90.00	98.00	4.08	2.15		
16.5			94.75	93.00	97.00	1.71	1.38		
33			77.75	68.00	84.00	6.85	3.37		-
FSW Control			18.50	18.50	18.50	0.00	0.00		
2.1			18.50	18.50	18.50	0.00	0.00		
4.4	ļ		18.50	18.50	18.50	0.00	0.00	1	
8.3	}		18.50	18.50	18.50	0.00	0.00	1	
16.5			18.50	18.50	18.50	0.00	0.00	1	
33			18.50	18.50	18.50	0.00	0.00	1	_
FSW Control	рН		8.00	8.00	8.00	0.00	0.00	1	-
2.1			8.10	8.10	8.10	0.00	0.00	1	
4.4	ļ		8.10	8.10	8.10	0.00	0.00	1	
8.3	5		8.10	8.10	8.10	0.00	0.00	1	
16.5	5		8.10	8.10	8.10	0.00	0.00	1	
33	5		8.00	8.00	8.00	0.00	0.00	1	
FSW Control	Salinity ppt		36.80	36.80	36.80	0.00	0.00	1	-
2.1			37.70	37.70	37.70	0.00	0.00	1	
4.4	ļ		38.50	38.50	38.50	0.00	0.00	1	
8.3	}		40.20	40.20	40.20	0.00	0.00	1	
16.5	5		43.70	43.70	43.70	0.00	0.00	1	
33			50.80	50.80	50.80	0.00	0.00	1	
FSW Control	DO (%sat)		100.40	100.40	100.40	0.00	0.00	1	-
2.1			103.60	103.60	103.60	0.00	0.00	1	
4.4	ļ		103.20	103.20	103.20	0.00	0.00	1	
8.3	}		102.20	102.20	102.20	0.00	0.00	1	
16.5	5		102.10	102.10	102.10	0.00	0.00	1	
33			102.10	102.10	102.10	0.00	0.00	1	

				Macroalgal Ge	rmination Test-Germination	
Start Date:	28/07/06 12	2:00	Test ID:	PR0226/04	Sample ID:	Salinity Controls
End Date:	31/07/06 12	2:00	Lab ID:	1715	Sample Type:	Salinity Controls
Sample Date:			Protocol:	ESASOP116	Test Species:	HB-Hormosira banksii
Comments:						
Conc-%	1	2	3	4		
FSW Control	0.9600	0.9300	0.9200	0.9000		
SC 40	0.9500	0.9600	0.9300	0.9000		
SC 44	0.9600	0.9000	0.9000	0.9100		
SC 51	0.8800	0.8500	0.8700	0.8000		

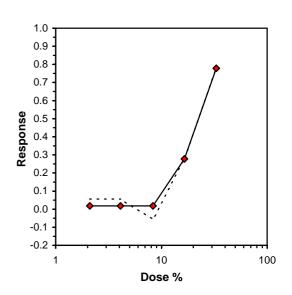
		_	T	ransform:	Arcsin Sq	1-Tailed				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD
FSW Control	0.9275	1.0000	1.3014	1.2490	1.3694	3.886	4			
SC 40	0.9350	1.0081	1.3167	1.2490	1.3694	4.010	4	-0.412	2.290	0.0852
SC 44	0.9175	0.9892	1.2834	1.2490	1.3694	4.513	4	0.483	2.290	0.0852
*SC 51	0.8500	0.9164	1.1748	1.1071	1.2171	4.141	4	3.403	2.290	0.0852

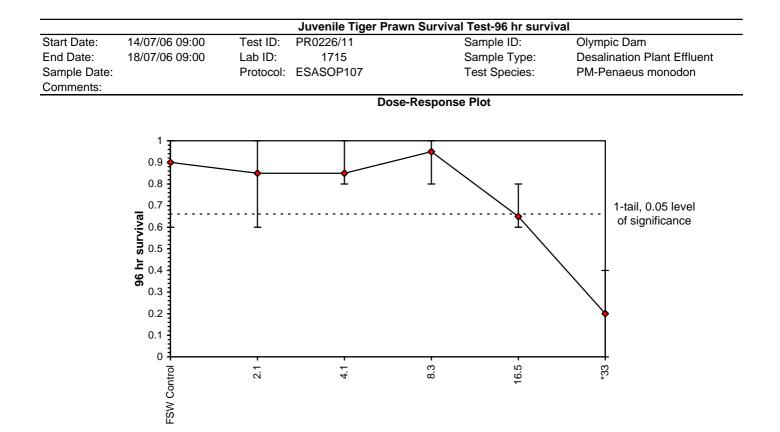
Auxiliary Tests	Statistic		Critical		Skew
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.961144		0.844		0.26364
Bartlett's Test indicates equal variances (p = 0.99)	0.090511		11.34487		
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test indicates significant differences	0.049704	0.053493	0.016539	0.002767	0.009855

Dose-Response Plot

			Macroalgal Germ	ination Test-Germination	
Start Date:	28/07/06 12:00	Test ID:	PR0226/04	Sample ID:	Salinity Controls
End Date:	31/07/06 12:00	Lab ID:	1715	Sample Type:	Salinity Controls
Sample Date:		Protocol:	ESASOP116	Test Species:	HB-Hormosira banksi
Comments:				-	
			Au	xiliary Data Summary	

			Au	xillary Data	a Summar	у	
Conc-%	Parameter	Mean	Min	Max	SD	CV%	Ν
FSW Control	% Germinated	92.75	90.00	96.00	2.50	1.70	4
SC 40		93.50	90.00	96.00	2.65	1.74	4
SC 44		91.75	90.00	96.00	2.87	1.85	4
SC 51		85.00	80.00	88.00	3.56	2.22	4
FSW Control	Temp C	18.50	18.50	18.50	0.00	0.00	1
SC 40		18.50	18.50	18.50	0.00	0.00	1
SC 44		18.50	18.50	18.50	0.00	0.00	1
SC 51		18.50	18.50	18.50	0.00	0.00	1
FSW Control	рН	8.00	8.00	8.00	0.00	0.00	1
SC 40		8.10	8.10	8.10	0.00	0.00	1
SC 44		8.30	8.30	8.30	0.00	0.00	1
SC 51		8.40	8.40	8.40	0.00	0.00	1
FSW Control	Salinity ppt	36.80	36.80	36.80	0.00	0.00	1
SC 40		40.10	40.10	40.10	0.00	0.00	1
SC 44		43.90	43.90	43.90	0.00	0.00	1
SC 51		51.00	51.00	51.00	0.00	0.00	1
FSW Control	DO (%sat)	100.40	100.40	100.40	0.00	0.00	1
SC 40		101.20	101.20	101.20	0.00	0.00	1
SC 44		102.60	102.60	102.60	0.00	0.00	1
SC 51		103.10	103.10	103.10	0.00	0.00	1

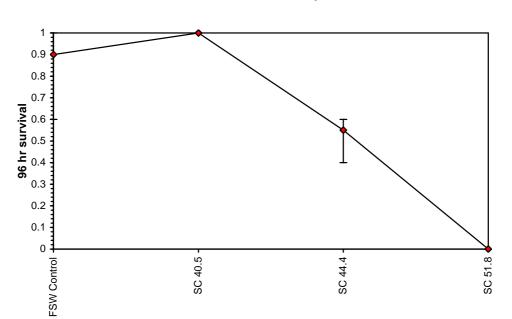

Statistical Printouts for the Juvenile Tiger Prawn Tests


				Juvenile Tiger	Prawn Survival Test-96 hr surviva	l
Start Date:	14/07/06 09	00:00	Test ID:	PR0226/11	Sample ID:	Olympic Dam
End Date:	18/07/06 09	:00	Lab ID:	1715	Sample Type:	Desalination Plant Effluent
Sample Date:			Protocol:	ESASOP107	Test Species:	PM-Penaeus monodon
Comments:						
Conc-%	1	2	3	4		
FSW Control	1.0000	0.6000	1.0000	1.0000		
2.1	0.6000	0.8000	1.0000	1.0000		
4.1	0.8000	0.8000	1.0000	0.8000		
8.3	1.0000	0.8000	1.0000	1.0000		
16.5	0.8000	0.6000	0.6000	0.6000		
33	0.0000	0.4000	0.2000	0.2000		

			T	ransform:	Arcsin Sq	uare Root		1-Tailed		Number	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp
FSW Control	0.9000	1.0000	1.2305	0.8861	1.3453	18.660	4				2
2.1	0.8500	0.9444	1.1709	0.8861	1.3453	18.840	4	0.490	2.410	0.2928	3
4.1	0.8500	0.9444	1.1667	1.1071	1.3453	10.206	4	0.525	2.410	0.2928	3
8.3	0.9500	1.0556	1.2857	1.1071	1.3453	9.261	4	-0.455	2.410	0.2928	1
16.5	0.6500	0.7222	0.9413	0.8861	1.1071	11.742	4	2.380	2.410	0.2928	7
*33	0.2000	0.2222	0.4594	0.2255	0.6847	40.823	4	6.347	2.410	0.2928	16

Auxiliary Tests				Statistic		Critical		Skew	
Shapiro-Wilk's Test indicates normal		0.935624		0.884		-0.62657			
Bartlett's Test indicates equal variand		2.906309		15.08627					
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test	16.5	33	23.33452	6.060606	0.238648	0.268569	0.381349	0.029521	2.0E-05

-					Trimmed Spearman-Karber
	Trim Level	EC50	95%	CL	-
	0.0%				
	5.0%				
	10.0%				1.0
	20.0%				0.9
	Auto-22.2%	22.374	15.840	31.604	0.8


			Juvenile Ti	ger Prawr	n Survival	Test-96 hr	survival		
Start Date: 14/07/06 09:00 Test ID:			PR0226/11			Sample ID:		Olympic D	
End Date:	18/07/06 09:00	Lab ID:	1715			Sample Typ		Desalinati	on Plant Effluen
Sample Date:		Protocol:	ESASOP107	7		Test Specie	S:	PM-Penae	eus monodon
Comments:									
						ta Summar			
Conc-%	Parameter		Mean	Min	Max	SD	CV%	Ν	
FSW Control	% Survival		90.00	60.00	100.00	20.00	4.97		
2.1			85.00	60.00	100.00	19.15	5.15		
4.1			85.00	80.00	100.00	10.00	3.72		
8.3			95.00	80.00	100.00	10.00	3.33		
16.5			65.00	60.00	80.00	10.00	4.87		
33			20.00	0.00	40.00	16.33	20.21	4	
FSW Control	Temp C		25.00	25.00	25.00	0.00	0.00		
2.1			25.00	25.00	25.00	0.00	0.00		
4.1			25.00	25.00	25.00	0.00	0.00		
8.3			25.00	25.00	25.00	0.00	0.00		
16.5			25.00	25.00	25.00	0.00	0.00	1	
33			25.00	25.00	25.00	0.00	0.00	1	
FSW Control	рН		8.10	8.10	8.10	0.00	0.00		
2.1			8.10	8.10	8.10	0.00	0.00	1	
4.1			8.00	8.00	8.00	0.00	0.00	1	
8.3			8.00	8.00	8.00	0.00	0.00	1	
16.5			8.00	8.00	8.00	0.00	0.00	1	
33			8.10	8.10	8.10	0.00	0.00	1	
FSW Control	Salinity ppt		36.30	36.30	36.30	0.00	0.00	1	-
2.1			37.50	37.50	37.50	0.00	0.00	1	
4.1			38.20	38.20	38.20	0.00	0.00	1	
8.3			40.20	40.20	40.20	0.00	0.00	1	
16.5			43.90	43.90	43.90	0.00	0.00	1	
33			51.70	51.70	51.70	0.00	0.00		
FSW Control	DO (%sat)		103.60	103.60	103.60	0.00	0.00	1	•
2.1			102.80	102.80	102.80	0.00	0.00	1	
4.1			103.20	103.20	103.20	0.00	0.00	1	
8.3			105.40	105.40	105.40	0.00	0.00		
16.5			104.10	104.10	104.10	0.00	0.00		
33			105.40	105.40	105.40	0.00	0.00		

				Juvenile Tiger Pra	awn Survival Test-96 hr surviv	al				
Start Date:	rt Date: 14/07/06 09:00		Test ID:	PR0226/10	Sample ID:	Salinity Controls				
End Date:	18/07/06 09:00		e: 18/07/06 09:00		Date: 18/07/06 09:00 La		Lab ID:	1715	Sample Type:	Salinity Controls
Sample Date:		Protocol:	ESASOP107	Test Species:	PM-Penaeus monodon					
Comments:										
Conc-ppt	1	2	3	4						
FSW Control	1.0000	0.6000	1.0000	1.0000						
SC 40.5	1.0000	1.0000	1.0000	1.0000						
SC 44.4	0.6000	0.4000	0.6000	0.6000						
SC 51.8	0.0000	0.0000	0.0000	0.0000						

			Т	Transform: Arcsin Square Root				Rank	1-Tailed
Conc-ppt	Mean	N-Mean	Mean	Min	Max	CV%	Ν	Sum	Critical
FSW Control	0.9000	1.0000	1.2305	0.8861	1.3453	18.660	4		
SC 40.5	1.0000	1.1111	1.3453	1.3453	1.3453	0.000	4	20.00	11.00
SC 44.4	0.5500	0.6111	0.8357	0.6847	0.8861	12.047	4	11.50	11.00
SC 51.8	0.0000	0.0000	0.2255	0.2255	0.2255	0.000	4		

Auxiliary Tests	Statistic	Critical	Skew
Shapiro-Wilk's Test indicates non-normal distribution (p <= 0.01)	0.769409	0.805	-1.91384
Equality of variance cannot be confirmed			

Hypothesis Test (1-tail, 0.05) Steel's Many-One Rank Test indicates no significant differences

Dose-Response Plot

			Juvenile Tig	ger Prawr	n Survival	Test-96 hr	survival		
Start Date:	14/07/06 09:00	Test ID:	PR0226/10			Sample ID:		Salinity C	ontrols
End Date:	18/07/06 09:00	Lab ID:	1715			Sample Typ	e:	Salinity C	ontrols
Sample Date:		Protocol:	ESASOP107	,		Test Specie	s:	PM-Pena	eus monodo
Comments:									
				Au	xiliary Da	ta Summar	у		
Conc-ppt	Parameter		Mean	Min	Max	SD	CV%	Ν	-
FSW Control	% Survival		90.00	60.00	100.00	20.00	4.97	4	
SC 40.5			100.00	100.00	100.00	0.00	0.00	4	
SC 44.4			55.00	40.00	60.00	10.00	5.75	4	
SC 51.8			0.00	0.00	0.00	0.00		4	
FSW Control	Temp C		25.00	25.00	25.00	0.00	0.00	1	-
SC 40.5			25.00	25.00	25.00	0.00	0.00	1	
SC 44.4			25.00	25.00	25.00	0.00	0.00	1	
SC 51.8			25.00	25.00	25.00	0.00	0.00	1	
FSW Control	pН		8.10	8.10	8.10	0.00	0.00	1	-
SC 40.5			8.10	8.10	8.10	0.00	0.00	1	
SC 44.4			8.10	8.10	8.10	0.00	0.00	1	
SC 51.8			8.30	8.30	8.30	0.00	0.00	1	
FSW Control	Salinity ppt		36.30	36.30	36.30	0.00	0.00	1	_
SC 40.5			40.30	40.30	40.30	0.00	0.00	1	
SC 44.4			44.40	44.40	44.40	0.00	0.00	1	
SC 51.8			51.60	51.60	51.60	0.00	0.00	1	
FSW Control	DO (%sat)		103.60	103.60	103.60	0.00	0.00	1	-
SC 40.5			105.00	105.00	105.00	0.00	0.00	1	
SC 44.4			107.40	107.40	107.40	0.00	0.00	1	
SC 51.8			104.70	104.70	104.70	0.00	0.00	1	

CSIRO, Land and Water

Centre for Environmental Contaminants Research Waite Road, Urrbrae, SA Private Mail Bag 2, Glen Osmond, SA, 5064, Australia

Tel: (+61 8) 8303 8597 Fax: (+61 8) 8303 8565

Toxicity of brine to Juvenile yellowtail kingfish (Seriola lalandi)

Client:	Arup/HAL – Dr David Wiltshire and Dr Emma Cronin
Project:	Olympic Dam Development Study: Ecotoxicological studies
Test Performed:	96 h acute toxicity test of brine water to juvenile yellowtail kingfish, <i>Seriola lalandi</i>

TEST METHODS:

Fish fingerling (approximately 1 g in weight) were collected from the Spencer Gulf Aquaculture hatchery, South Australia and transported to Adelaide laboratory. Fish were acclimatised to the laboratory conditions in 200 L tanks for at least a week before they were use for the range-finding or the definitive bioassays. These fish tanks were constantly aerated and fingerlings were fed twice a day with brine shrimp nauplii (*Artemia salina*). Fish were kept under constant temperature conditions ($20 \pm 1^{\circ}$ C) with a 16 h light: 8 h dark photoperiod using cool white fluorescent lamps. Filtered seawater from SARDI, West Lakes was used during acclimation and as a diluent for testing (Table 1).

Fish were collected from the hatchery at three different time intervals

Water quality parameters	Sea Water
рН	7.5
Salinity	40 g/L
Dissolved oxygen (DO%)	> 80% saturation
Temperature (°C)	20 ± 0.5

96 h acute toxicity test:

This test measures the survival of fish fingerlings after exposure to the toxicant or effluents for 96 h and is based on USEPA protocol (2002a)

Brine water sampling:

200 L of brine sample was provided by Mr Paul Hochman on 6th May 2006 to the CSIRO Adelaide laboratory. Samples were transferred into 20 L carboys and stored at 4°C until testing. Samples were handled with minimal agitation to limit the loss of volatiles and were allowed to warm to testing temperature (20°C) prior to testing. The detailed processing methodology was provided by Dr Emma Cronin and is included as an Appendix 1 in this report.

Experimental design:

Toxicity tests were conducted with brine water sample using semi-static renewal exposure regime. The brine water was tested at 100, 50, 25, 12.5, 6.25 and 1 % dilution in 10 L glass aquaria containing 5 L of the test sample. Brine was diluted with the filtered seawater from SARDI. Each test concentration consisted of four replicate aquaria. Five fish fingerling were randomly added to each aquarium resulting in total of 20 fish/ test concentration.

Initial testing confirmed that fingerlings could not withstand starving condition for more than 24 hours. Therefore, the fish fingerlings were fed brine shrimp nauplii (once/day) for the duration of the test. The test water was renewed every 24 h and fresh nauplii was added to each test aquaria until the next renewal. The test conditions were maintained at a constant temperature of ($20 \pm 0.5^{\circ}$ C) with a photoperiod of 16-h light and 8-h darkness. This test was conducted twice using two batches of fish collected from the Spencer Gulf hatchery.

Copper chloride was used as a reference toxicant. Sine no background data was available on the copper toxicity to yellowtails, three independent tests were run with three batches of fingerling to develop such a database. As brine water solution, reference test solutions were also renewed every 24 h and fingerlings were fed with brine shrimp nauplii for the duration of the test.

Water quality parameters (pH, conductivity, temperature, dissolved oxygen) were measured at test commencement and before and after the renewal of test solutions.

DATA ANALYSES:

The objective of the test series for brine water was to determine:

- the No Observed Effect Concentration (NOEC), where no statistical difference (P ≤ 0.05) was found between exposed and unexposed (or control) fish;
- the Lowest Observed Effect Concentration (LOEC), where the smallest statistical difference (P ≤ 0.05) was found between exposed and unexposed (or control) fish; and
- the median lethal concentration (LC50), the concentration of the brine water in solution that was estimated to be effective in producing 50% mortality in the exposed fish.

The 96 h LC50 was computed by Trimmed-Spearman Karber method of Hamilton *et al.* (1977; 1978). Statistical significance was determined at α = 0.05. Data were tested for normality and homogeneity of variance using Toxstat (1994). An analysis of variance (ANOVA) with Bonferroni (unequal replicates) or Dunnett tests (Toxstat, 1994). This information was used for the estimation of the LOEC and NOEC.

RESULTS:

The health of the fish fingerlings used for testing was determined using $CuCl_2$ as the reference toxicant. Control survival was also used for quality assurance. Both responses in the reference toxicant test and the control survival were within the criterion (Table 2).

Table 2. Quality Assurance/Quality Control for fish fingerlings exposed to reference toxicant, $CuCl_2$

Quality Assurance/Quality Control	Criterion	This Test	Criterion Met?
Control Survival	>80%	100%	Yes
Reference toxicant (CuCl ₂ , μ g/L)	435 ± 112	406	Yes

Average water quality parameters are given in Table 3. Brine water exhibited toxicity yellowtail fingerling, with a 96 h LC50 of 19%. There was no observable effect on fish fingerling survival at 12.5% dilution of brine water and the lowest observable dilution of brine to cause an effect was 25% (Table 4).

Water quality parameters	100	50	25	12.5	6.25
рН	7.69 (0.05)	7.57 (0.04)	7.55 (0.07)	7.43 (0.12)	7.55 (0.17)
Salinity (g/L)	84 (1)	60 (2)	54 (3)	45 (1)	43 (2)
DO (mg/L)	6.3 (0.4)	6.7 (0.3)	6.5 (0.5)	7.2 (0.3)	7.3 (0.4)
Temperature (°C)			20.2 (0.4)		

Table 3. Water quality parameters for toxicity tests with Brine water

^aStandard error in parenthesis, n=8.

Table 4. Summary of the 96 h toxicity of brine water to yellowtail kingfish fingerling

Endpoint	Brine water (%)
LC50	18.95 (16.58, 21.65) ^a
LOEC	25
NOEC	12.5

^aStandard error in parenthesis

CONCLUSIONS:

- Brine water sample was toxic to kingfish yellowtail fingerlings with an LC50 value of 19%.
- The no observable effect concentration was 12.5% and the lowest observable effect concentration was 25%.

RECOMMENDATION:

Chronic toxicity of brine should be assessed by conducting long-term exposures based on the standard US EPA protocol (USEPA 2002b). Physiological end-points such as growth, histopathological changes in fish gills can be used to assess chronic effects due to contaminants and high salinity of the brine.

References:

Hamilton MA, Russo RC and Thurston RV. 1977. Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. *Environ Sci Technol.* **11**: 714–719.

Hamilton MA, Russo RC and Thurston RV. 1978. Correction to trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. *Environ Sci Technol.* **12:** 417.

Toxstat. 1994. WEST, Inc. and Gulley, University of Wyoming (authors), Western EcoSystems Technology Inc., Cheyenne, WY

USEPA, U.S. Environmental Protection Agency, 2002a. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fifth Edition. U.S. Environmental Protection Agency Report. EPA-821-R-02-012. Washington, DC

USEPA, U.S. Environmental Protection Agency, 2002b. Short term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. U.S. Environmental Protection Agency Report EPA-821-R-02-013 EPA/600/4-85/ 014. Washington, DC

Test carried out by:

Test supervised by:

Hai Doan and Anu Kumar

. .

Anu Kumar

Anu Kumar

Test report prepared by:

Tel: (08 8303 8597)

Date:

10/07/06

APPENDIX 010.3

Effects of RO brine on the development of Giant Cuttlefish (*Sepia apama*) embryos (report by Geotechnical Services, 2006)

See overleaf for report.

EFFECTS OF RO BRINE ON THE DEVELOPMENT OF GIANT CUTTLEFISH (Sepia apama) EMBRYOS

Report ENV06-128

Prepared for BHP BILLITON

Prepared by Dr Jill Woodworth

NOVEMBER 2006

GEOTECHNICAL SERVICES PTY LTD

41-45 Fumace Road, Welshpool, Western Australia 6106 Telephone : (08) 9458 8877 Facsimile : (08) 9458 8857 Locked Bag 27, Welshpool, Western Australia 6986 ACN 050 543 194

Email: jill@geotechnical-services.com.au

Geotechnical Services

Contents

	Glossary	2
1.	Executive Summary	3
	1.1 Introduction	3
	1.2 Test Endpoints	3 3
	1.3 Protection Values	3
2.	Introduction	6
3.	RO Brine and Diluent Seawater	8
4.	Giant Cuttlefish Exposure Methodology	9
	4.1 Giant Cuttlefish Eggs	9
	4.2 Test Chambers	10
	4.3 Test Concentrations	10
	4.4 Maintenance	10
	4.5 Measurements	12
	4.6 Staging of Embryos Collected from Point Lowly	12
5.	Results	13
	5.1 Physiochemistry Results	13
	5.2 Day 0	13
	5.3 Days 30, 60, 90 Samplings	13
	5.4 Staging of Embryos Collected from Point Lowly	17
	5.5 Embryo Development	18
	5.6 Hatching	19
	5.7 Post Hatch	20
6.	Discussion	23
	6.1 Physiochemistry	23
	6.2 Day 30 Sampling	23
	6.3 Day 60 Sampling	23
	6.4 Day 90 Sampling	23
	6.5 Embryo Development	24
	6.6 Days to Hatch	24
_	6.7 Post Hatch	24
7.	Species Protection Levels	25
	7.1 Introduction	25
	7.2 Methodology	25
	7.3 Results	26
_	7.4 Discussion	27
8.	References	29
	Appendix 1 Summary Sheets for Toxicity Data	30
	Appendix 2 BurrliOZ Graphs	73
	Appendix 3 RO Brine Processing	77

GLOSSARY

EC50	Concentration that causes an effect on 50% of the population				
	Eg.				
	Growth: Concentration that results in 50% less growth when compared to controls Reproduction: Concentration that results in 50% less fecundity when compared to controls Germination: Concentration that results in 50% germination of zoospores Larval development: Concentration that results in 50% of larva deformed Calculated statistically				
IC50	Concentration that causes an inhibition of growth of 50% when compared with controls (Unicellular alga bioassay)				
	Calculated statistically				
EC/IC10	Concentration that causes an effect of 10% when compared with controls				
	Calculated statistically				
LOEC	Lowest Observed Effect Concentration				
	Function of concentration tested				
NOEC	No Observed Effect Concentration				
	Function of concentration tested				
%	Parts per thousand				

1. EXECUTIVE SUMMARY

1.1 Introduction

This report has been prepared by Geotechnical Services for Arup/HLA as part of the proposed BHP Billiton Olympic Dam mine expansion. A desalination plant is planned for Point Lowly, near Whyalla. The discharge of return water is planned to have a salinity of up to 78 ppt. The assessment of effluent from a prototype desalination plant was undertaken to determine its potential toxicity to the development and survival of the giant cuttlefish (*Sepia apama*) resident in Upper Spencer Gulf.

The Australian Giant Cuttlefish aggregates annually for breeding in the Point Lowly area and has become a major tourist attraction in South Australia, being visited by divers from all over world. This study was instigated as the potential impacts of the prototype desalination plant effluent (RO brine) on the local marine environment, in particular the spawning aggregation of the Australian giant cuttlefish were unknown. This document reports on the impacts of the RO brine on the development and growth of giant cuttlefish (*S. apama*) embryos and survival after hatch of the juveniles. A summary of the toxicity results of the exposure of the *S. apama* eggs and embryos are located in Table 1.1.

1.2 Test Endpoints

The most environmentally relevant endpoints for the 5 month exposure of the *S. apama* embryos were the:

- Embryo Development
- Number of Days to Hatch
- and Survival Post Hatch

The EC10 values generated from these endpoints and the at hatch data, post hatch data and stage data (In bold in Table 1.1) were used in the BurrliOZ (Campbell *et al.* 2000) statistics package to determine the level of RO dilution required to protect the giant cuttlefish embryos in the receiving ecosystem.

1.3 Protection Values

The Protection Values based on the EC10 data would theoretically protect X% of species from experiencing inhibitory impacts greater than 10%. Therefore, to protect 99% of the cuttlefish from experiencing inhibitory impacts greater than 10%, the RO brine would need to be diluted approximately 100 times (Table 1.2).

New Protection Values should be generated using results from the actual brine discharged from the desalination plant after commissioning of the plant.

The use of sub-lethal testing is recommended to remove the correction factors that are required when using LC50 data. Future testing should include lower test concentrations.

End Point	EC50	EC10	LOEC*	NOEC*
	%	%	%	%
Embryo	5.81	2.37	1.5	<1.5
Development				
Day 30	10.34	4.61	6.25	3.13
Stage				
Day 30	>100	>100	>100	100
Length				
Day 30	>100	>100	>100	100
Width				
Day 30	>100	>100	>100	100
Weight				
Day 60	6.61	3.16	6.25	3.13
Stage	100	100	4.0.0	400
Day 60	>100	>100	>100	100
Length	100	40.00	40.5	0.05
Day 60	>100	19.39	12.5	6.25
Width	400	00.07	40.5	0.05
Day 60	>100	20.87	12.5	6.25
Weight	2.50	0.00	4.5	.4 5
Day 90	2.56	0.66	1.5	<1.5
Stage	6.5	2.8	3.125	1.5
Day 90	0.0	2.0	3.125	1.5
Length Day 90	7.4	4.3	1.5	<1.5
Width	7.4	4.5	1.5	<1.5
Day 90	11.17	5.15	1.5	<1.5
Weight	11.17	0.10	1.5	<1.5
Days to	5.42	3.16	1.5	<1.5
Hatch	0.42	0.10	1.0	
Length at Hatch	7.51	6.51	6.25	3.125
			0.20	01120
Width at	7.42	6.24	6.25	3.125
Hatch		•		••••=•
Weight at Hatch	6.40	5.74	6.25	3.125
	-		_	_
Length 30 Days	7.18	6.30	3.125	1.5
Post Hatch				
Width 30 Days	7.10	6.18	1.5	<1.5
Post Hatch				
Weight 30 Days	7.38	6.24	6.25	3.125
Post Hatch				
Survival Post	4.06	1.86	12.5	6.25
Hatch				

Table 1.1 Summary of EC50, EC10. LOEC and NOEC Data

*Note: NOEC and LOEC are calculated by Dunnett's hypothesis test and are a function of the concentrations tested. These results do not assimilate data from all concentrations and, as such, should not be used for regulatory requirements.

Table 1.2 B	BurrliOZ Protection Lev	vels for Giant Cuttle	efish for RO Brine
-------------	-------------------------	-----------------------	--------------------

Protection Level	Protection Value %	Dilution Factor
99	0.97	103
95	1.89	53
90	2.52	40
80	3.35	30

2. INTRODUCTION

This report has been prepared by Geotechnical Services for Arup/HLA on behalf of BHP Billiton. The assessment of effluent from a prototype desalination plant was undertaken to determine its potential toxicity to the development and survival of the giant cuttlefish (*Sepia apama*) resident in Upper Spencer Gulf.

As part of the proposed BHP Billiton Olympic Dam mine expansion, a desalination plant located at Port Bonython, near Whyalla is planned in order to provide 120 ML⁻¹ per day of fresh water for the mine expansion and possibly also water for Yorke Peninsular communities currently reliant on Murray River and ground water. A discharge of 196 M. I⁻¹ per day of concentrated seawater up to 78 ppt is proposed.

The Australian Giant Cuttlefish aggregates annually for breeding in the Point Lowly area and has become a major tourist attraction in South Australia, being visited by divers from all over world. This study was instigated as the potential impacts of the prototype desalination plant effluent (RO brine) on the local marine environment, in particular the spawning aggregation of the Australian giant cuttlefish were unknown. This document reports on the impacts of the RO brine on the development and growth of giant cuttlefish (*S. apama*) embryos and survival after hatch of the juveniles

Toxicity testing was also undertaken on the RO brine by other organisations using a suite of locally relevant organisms or organisms that could be used as surrogates for local species. This suite included:

• The microalga, *Nitzschia closterium*, used in a 72-h growth rate inhibition test;

• The sea urchin, *Heliocidaris tuberculata*, used in a 72-h larval development test;

• The yellowtail kingfish, Seriola lalandi, used in a 96-h survival test;

• The macroalga, Hormisira banksii, used in a 72-h germination test;

• The oyster, *Saccostrea commercialis,* used in a 48-h larval development test, and;

• The prawn, *Penaeus monodon,* used in a 96-h survival test.

The results for this suite of bioassays are reported elsewhere and are not discussed in this report. The tests listed above are tests performed routinely with documented protocols and a large data base used for quality control. However, at present there are no recognised protocols for the use of giant cuttlefish for toxicity tests. Therefore, the data generated and presented in this report is experimental and there is no QA/QC data available. Geotech is a quality assured laboratory and operates under the ISO 9002 Quality Assurance System with many of our routine tests NATA registered. As such, the cuttlefish test was performed according to Geotech's in-house quality assurance and Geotech has confidence in the results generated from the study.

All data and information are proprietary of BHP Billiton and are regarded as highly confidential by all Geotech personnel.

Geotechnical Services has endeavoured to use techniques and equipment to achieve results and information as accurately as it possibly can. However, such equipment and techniques are not necessarily perfect. Therefore, Geotechnical Services shall not be held responsible or liable for the results of any actions taken on a basis of the information contained in this document. Moreover, this document should not be the sole reference when considering issues that may have commercial or environmental implications.

3. RO BRINE AND DILUENT SEAWATER

The prototype reverse osmosis (RO) brine was prepared by Arup/HLA for BHP Billiton on the 1st June 2006 and delivered to Geotech's Welshpool laboratory. The diluent seawater was collected from Point Lowly, South Australia. The RO brine was processed on site with 3.6 mg/l of NALCO PC-1020T antiscalant added to the seawater prior to processing which concentrated the antiscalant to 7.0 ppm. The RO Water Processing Report is located in Appendix 3. Both the RO brine and diluent seawater were transported in 1000 litre containers in a refrigerated truck at 4°C from South Australia to Perth, Western Australia. The RO brine and seawater were refrigerated at 4°C until use. Prior to use in the bioassays the seawater was filtered to 0.45 micron in 100 – 150 L batches as required and transported to Geotech's Fremantle Ecotoxicology Laboratory in 25 L HDPE containers. Brine sample were tested as received.

Job Number	ENV06 -128		
Contact Details	Arup/HLA and Partners for BHP Billiton		
Company			
Contact Person	Dr Emma Cronin		
Contact Phone Number	08 8104 8314		
Contact Address	Level 2 Optus Centre		
	431-439 King William St		
	Adelaide SA 5000		
Number of Samples	RO brine x 3 1000L	Seawater x 7	
	1000L		
Sample Type		water	
Date Collected	1 st June 2006		
Time Collected	NA		
Location Collected	Point Lowly, South Australia		
Sample Collected by	Dr Emma Cronin		
рН	RO Brine	Seawater	
	7.95	7.99	
Salinity	78 ppt	45 ppt	
Transport Conditions	Refrigerated Truck at 4°C		
	45		
Date of Arrival at	6 th June 2006		
Geotech			
Time of Arrival at	1:00 pm		
Geotech			
Sample Temperature on	9 °C		
Arrival			
Sample Received by	J. Woodworth		
Tests Required	Giant cuttlefish bioassay		

Table 3.1 Sample Information Sheet

4. GIANT CUTTLEFISH EXPOSURE METHODOLOGY

4.1 Giant Cuttlefish Eggs

S. apama eggs were collected over two days at Point Lowly by Dr Emma Cronin in the week beginning 5th June 2006. Dr Cronin transported the eggs in seawater in insulated containers to Fremantle on Thursday 8th June 2006. Approximately 450 eggs were delivered to Geotech's Fremantle laboratory. The eggs had an average weight of 4.81g and an average length 4.17 cm (Picture 4.1). Upon receipt at the laboratory 11 eggs were randomly allocated to each replicate. The 11 eggs were sampled according to Table 4.1.

Number of Eggs/ Embryos per Replicate	Time	Measurements Taken
2	Day 30	Egg length, width, weight and stage of development
2	Day 60	Egg length, width, weight and stage of development
2	Day 90	Egg length, width, weight and stage of development
2	At Hatch	Mantle length and width, weight
3	1 Month Post Hatch	Mantle length and width, weight

Table 4.1 Sampling procedure

Picture 4.1 Giant Cuttlefish Eggs Day 0

4.2 Test Chambers

Glass 5 litre vessels were used as test chambers for the exposure assay. The eggs were suspended in the test chamber by fishing line attached to wooden skewers with a slip knot around the attaching point of the eggs (Picture 4.2). Five litres of test solution were placed in each chamber prior to the addition of the eggs. Each chamber had aeration via an air stone with adjustable flow rate. A medium flow rate was used for embryo development.

4.3 Test Concentrations

The RO brine was diluted with filtered Point Lowly seawater to selected concentrations. The concentrations selected for this assay were: 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.5% and 0% RO brine. Each concentration consisted of 5 replicates (Picture 4.3).

4.4 Maintenance

The *S. apama* embryos were maintained in a temperature controlled laboratory with a photoperiod of 8 hours light and 16 hours dark until hatching when the photoperiod was changed to 12 hours light and 12 hours dark. The laboratory was maintained at 14.5 ± 0.25 °C for the duration of the test. This temperature was selected in preference to the 11 - 12 °C that the eggs would have been exposed to in their natural environment, to ensure that the embryos hatched with a 3 - 4 month period.

A 50% water exchange was performed daily to ensure high water quality was maintained. Water quality parameters were tested weekly on each chamber for the duration of the test.

After the embryos hatched the juveniles were placed in the same 5 litre containers with a layer of sand and coral rubble and PVC pipe for shelter with the same concentration of brine as their development (Picture 4.4). The juveniles were fed on *Artemia*, fish flesh, prawns and copepods. A 50% water exchange was performed daily

Picture 4.2 Test Chamber

Picture 4.3 Test Set-up

4.5 Measurements

At days 30, 60 and 90 two embryos from each replicate were sacrificed and the length, width, weight and stage of each were measured and recorded. The length and width were measured to 0.01 cm using Vernier calipers. The weight was measured to 0.01g and each embryo was staged using a staging guide (Cronin 2000). After the measurements were taken each embryo was fixed in 10% formalin in seawater.

Upon hatch the hatchling was anaesthetised in a saltwater ice bath after which, the mantle length and width was measured to 0.01 cm and the weight was measured to 0.01 g and recorded for 2 hatchlings. These hatchlings were then fixed in 10% formaldehyde in seawater. The remaining three hatchlings were maintained for one month after which the same measurements were taken.

The number of days to hatch was also recorded and survival post hatch was also recorded. All of the above data was used to calculate the EC50, EC10, LOEC and NOEC concentrations for the RO brine

Picture 4.4 Test Chamber for Juveniles

4.6 Staging of Embryos Collected from Point Lowly

On the 10th August 2006 approximately 20 embryos were collected from the same site as previous by Dr Emma Cronin. The stage of these embryos were assessed to determine how the stage of development compared with the embryos maintained in the laboratory. The embryos arrived at the laboratory on the 17th August and the temperature upon arrival was 16°C.

5. RESULTS

5.1 Physicochemistry Results

Water parameters were monitored and recorded weekly for all replicates. The temperature, salinity, pH and dissolved oxygen were monitored and the results are found in Table 5.1.

Table 5.1	Physicochem	Data from Giant	Cuttlefish Bioassay
-----------	-------------	-----------------	---------------------

Concentration %	рН	Temperature °C	DO ppm	Salinity ppt
0	8.08 ± 0.04	14.49 ± 0.25	3.95 ± 0.65	45.11 ± 0.29
1.5	8.10 ± 0.03	14.50 ± 0.20	3.64 ± 0.38	46.01 ± 0.06
3.1	8.11 ± 0.04	14.47 ± 0.19	3.47 ± 0.33	46.52 ± 0.10
6.25	8.11 ± 0.04	14.46 ± 0.19	3.32 ± 0.27	47.08 ± 0.24
12.5	8.12 ± 0.05	14.40 ± 0.25	3.26 ± 0.32	49.99 ± 0.06
25	8.13 ± 0.04	14.42 ± 0.23	3.18 ± 0.27	53.39 ± 0.88
50	8.13 ± 0.06	14.50 ± 0.24	3.12 ± 0.27	62.88 ± 1.38
100	8.13 ± 0.08	14.49 ± 0.23	3.06 ± 0.22	78.13 ± 0.33

5.2 Day 0

The weight $(4.81 \pm 0.51g)$ and length $(4.18 \pm 0.29 \text{ cm})$ of ten *S. apama* eggs were measured upon receipt at the laboratory.

5.3 Days 30, 60, 90 Samplings

The weight, length and width of two embryos from each replicate were measured and recorded on the 12th July 2006 for Day 30, the 8th August for Day 60 and the 6th September 2006 for Day 90. Each embryo was also assessed for development using the staging guide supplied by Dr Emma Cronin. After measurements were completed the embryos were placed in 10% formalin in seawater.

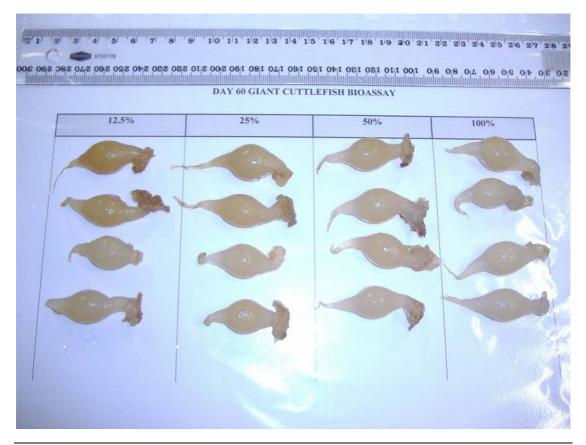
The results for Day 30 are found in Table 5.2. The results for Day 60 are found in Table 5.3. The results for Day 90 are found in Table 5.4. Photos 5.1 and 5.2 show embryos sampled on Day 30. Photos 5.3 and 5.4 show embryos sampled on Day 60. Photo 5.5 shows embryos at low concentrations sampled on day 90. All measurements were analyzed using a one way Anova in Excel. The measurements obtained from Day 30, 60 and 90 sampling were used to calculate the EC50, EC10, LOEC and NOEC values of the RO brine in the Tidepool Scientific Toxcalc statistics package developed for the

USEPA. These results are found in Table 5.5. Toxicity data summary sheets are found in Appendix 1.

Concentration	Length	Width	Weight	Stage
%	cm	cm	g	
	n =10	n = 10	n = 10	n = 10
0	3.90 ± 0.31	1.59 ± 0.10	4.00 ± 0.54	21.30 ± 2.98
1.5	3.99 ± 0.45	1.55 ± 0.13	3.81± 0.60	23.60 ± 2.50
3.1	3.72 ± 0.38	1.57 ± 0.09	3.53 ± 0.44	20.00± 1.89
6.25	3.92 ± 0.46	1.56 ± 0.12	3.93 ± 0.86	18.40 ± 0.84
12.5	3.75 ± 0.43	1.48 ± 0.09	3.45 ± 0.51	3.60 ± 7.59
25	4.24 ± 0.64	1.54 ± 0.11	3.79 ± 0.67	3.60 ± 7.59
50	3.81 ± 0.34	1.52 ± 0.08	3.69 ± 0.44	0.0 ± 0.0
100	3.86 ± 0.51	1.50 ± 0.10	3.61 ± 0.52	0.0 ± 0.0

Table 5.2 Day 30 Summary

Photo 5.1 Embryos from Low Concentrations Day 30


Table 5.3 Day 60 Summary

Concentration	Length	Width	Weight	Stage
%	cm	cm	g	
	n =10	n = 10	n = 10	n = 10
0	4.02 ± 0.25	1.78 ± 0.13	4.56 ± 1.17	27.20 ± 0.63
1.5	3.65 ± 0.54	1.67 ± 0.16	4.23 ± 0.91	26.00 ± 2.83
3.1	4.03 ± 0.33	1.72 ± 0.10	4.38 ± 0.54	24.10 ± 8.49
6.25	3.96 ± 0.25	1.73 ± 0.12	4.63 ± 0.58	22.30 ± 7.96
12.5	3.71 ± 0.33	1.50 ± 0.07	3.46 ± 0.43	0.0 ± 0.0
25	3.69 ± 0.42	1.54 ± 0.12	3.51 ± 0.52	0.0 ± 0.0
50	3.74 ± 0.58	1.50 ± 0.11	3.52 ± 0.76	0.0 ± 0.0
100	3.74 ± 0.60	1.51 ± 0.13	3.52 ± 0.59	0.0 ± 0.0

Photo 5.3 Embryos from Low Concentrations Day 60

Photo 5.4 Embryos from High Concentrations Day 60

Geotechnical Services

Concentration	Length	Width	Weight	Stage
%	cm	cm	g	
	n =10	n = 10	n = 10	n = 10
0	3.15 ± 0.51	2.12 ± 0.14	6.74 ± 1.11	29.80 ± 0.42
1.5	2.75 ± 0.69	1.78 ± 0.22	4.58 ± 1.52	14.8 ± 15.60
3.1	2.50 ± 0.66	1.96 ± 0.23	5.41 ± 1.83	20.30 ± 14.01
6.25	2.11 ± 0.25	1.52 ± 0.21	3.03 ± 1.20	7.40 ± 12.23
12.5	2.27 ± 0.16	1.68 ± 0.32	3.80 ± 0.45	0.0 ± 0.0

Table 5.4 Day 90 Summary

5.4 Staging of Embryos Collected from Point Lowly

The average stage of the embryos delivered to the laboratory on the 17^{th} August 2006 was 21.92 ± 6.91.

Photo 5.5 Embryos from Low Concentrations Day 90

End Point	EC50	EC10	LOEC	NOEC
	%	%	%	%
Day 30	10.34	4.61	6.25	3.13
Stage				
Day 30	>100	>100	>100	100
Length				
Day 30	>100	>100	>100	100
Width				
Day 30	>100	>100	>100	100
Weight				
Day 60	6.61	3.16	6.25	3.13
Stage				
Day 60	>100	>100	>100	100
Length				
Day 60	>100	19.39	12.5	6.25
Width				
Day 60	>100	20.87	12.5	6.25
Weight				
Day 90	2.56	0.66	1.5	<1.5
Stage				
Day 90	6.5	2.8	3.125	1.5
Length				
Day 90	7.4	4.3	1.5	<1.5
Width				
Day 90	11.17	5.15	1.5	<1.5
Weight				

Table 5.5 Toxicity Data for Days 30,60 and 90

5.5 Embryo Development

The number of developing embryos were determined in each replicate and the final number of developed embryos were used to calculate the EC50, EC10, LOEC and NOEC for Embryo Development. The results are in Table 5.6 and the toxicity results are in Table 5.7. The toxicity data summary sheet is found in Appendix 1.

Table 5.6 Embryo Development

Concentration %	Total Number	Embryos Developed
0	55	55
1.5	55	49
3.125	55	46
6.25	55	41
12.5	55	0
25	55	0
50	55	0
100	55	0

Table 5.7 Embryo Development Toxicity Data

End Point	EC50 %	EC10	LOEC %	NOEC %
	70	70	70	70
Embryo	5.81	2.37	1.5	<1.5
Development				

5.6 Hatching

The number of days to hatch were determined for the five remaining cuttlefish in each replicate (Table 5.8) and these were used to calculate the EC50, EC10, LOEC and NOEC values (Table 5.9). Two of the cuttlefish were measured for length and width of mantle and weight (Table 5.10). These values were used to calculate the EC50, EC10, LOEC and NOEC (Table 5.11). Toxicity data summary sheets are found in Appendix 1.

Table 5.8 Days to Hatch

Concentration/ Replicate	Hatchling	Hatchling 2	Hatchling 3	Hatchling 4	Hatchling 5
Replicate	Days	2 Days	Days	- Days	Days
0%					
1	108	109	110	110	112
2	108	109	112	114	116
3	99	99	112	114	120
4	100	103	104	115	116
5	100	101	102	102	103
1.5%					
1	115	115	116	117	NH
2	112	113	113	114	115
3	113	114	116	116	118
4	102	103	114	115	116
5	105	111	112	116	118
3.125%					
1	117	117	119	NH	NH
2	108	110	112	115	NH
3	107	114	115	115	NH
4	94	94	105	106	115
5	111	112	112	117	118
6.25					
1	116	118	120	120	125
2	114	116	118	NH	NH
3	115	116	118	118	120
4	119	120	NH	NH	NH
5	111	115	117	117	119

NH = No Hatch

Table 5.9 Toxicity Data for Days to Hatch

End Point	EC50	EC10	LOEC	NOEC
	%	%	%	%
Days to Hatch	5.42	3.16	1.5	<1.5

Table 5.10 Weight, Mantle Length and Width at Hatch

Concentration	Length cm n=10	Width cm n=10	Weight g n=10
0%	1.27 ± 0.11	1.05 ± 0.11	0.60 ± 0.12
1.5%	1.19 ± 0.11	1.04 ± 0.11	0.50 ± 0.17
3.125%	1.19 ± 0.10	1.03 ± 0.12	0.57 ± 0.18
6.25%	1.13 ± 0.06	0.94 ± 0.09	0.31 ± 0.11

Table 5.11 Toxicity Data at Hatch

End Point	EC50 %	EC10 %	LOEC %	NOEC %
Length at Hatch	7.51	6.51	6.25	3.125
Width at Hatch	7.42	6.24	6.25	3.125
Weight at Hatch	6.40	5.74	6.25	3.125

5.7 Post Hatch

The hatchlings were maintained for 30 days post hatch. Survival of the hatchlings was recorded (Table 5.12). On the 27th October the hatchlings were anaesthetized and the mantle length, mantle width and weight were measured and recorded (Table 5.13) (Photo 5.6). These data were used to calculate the EC50, EC10, LOEC and NOEC (Table 5.14). Toxicity data summary sheets are found in Appendix 1.

Concentration %	Total Number	Number live
0	15	12
1.5	15	14
3.125	15	6
6.25	15	5
12.5	15	0

Table 5.12 Post Hatch Survival

Table 5.13 Weight, Mantle Length and Width at Day 30 Post Hatch

Concentration	Length cm n=15	Width cm n=15	Weight g n=15
0%	1.38 ± 0.10	1.10 ± 0.09	0.63 ± 0.11
1.5%	1.32 ± 0.08	1.05 ± 0.08	0.61 ± 0.08
3.125%	1.29 ± 0.05	1.06 ± 0.05	0.58 ± 0.04
6.25%	1.22 ± 0.05	0.93 ± 0.02	0.52 ± 0.03

Table 5.14 Toxicity Data at Day 30 Post Hatch

End Point	EC50 %	EC10 %	LOEC %	NOEC %
Length at Day 30 Post Hatch	7.18	6.30	3.125	1.5
Width at Day 30 Post Hatch	7.11	6.18	1.5	<1.5
Weight at Day 30 Post Hatch	7.38	6.24	6.25	3.125
30 Day Post Hatch Survival	4.06	1.86	12.5	6.25

Geotechnical Services

Photo 5.6 Hatchlings 30 Days Post Hatch

6. DISCUSSION

6.1 Physicochemistry

The water parameters remained stable for the 21 week duration of the bioassay due to the frequent water changes. The salinity ranged from 45.11 for the control Spencer Gulf seawater to 78.13 for the RO brine. The temperature of the test was maintained at 14 ± 0.25 °C instead of the 11 - 12°C that would have been found in Spencer Gulf during winter. The reason for the increase in temperature was so that the test could finish in the required time frame. In their natural habitat the giant cuttlefish embryos take up to 5 months to hatch. This time frame was unrealistic for the test as the results were required mid November. The use of control embryos and embryos later collected from Spencer Gulf ensured that the higher temperature used in the test had no adverse impacts on the development and subsequent hatching of *S. apama*. Further, Palmegiano and D'Apote (1983) have shown that there are no interactive effects between salinity and temperature.

6.2 Day 30 Sampling

There were no significant differences between the length (P>0.05), width (P>0.05) and weight (P>0.05) of the eggs at day 30. However, there was a significant difference (P<0.05) between the stage data of the embryos at Day 30 for the different concentrations, with the 0% - 6.25% concentrations showing embryonic development and 12.5% - 100% showing minimal, if any, development. The toxicity data shows that a concentration of ~10% RO brine is sufficient to affect embryo development in 50% of exposed eggs. These results show that the stage of development is the most sensitive end point.

6.3 Day 60 Sampling

There was no significant difference between the length (P>0.05) of the eggs at Day 60, however, there was a trend towards shorter eggs at high concentrations. There were significant differences between widths (P<0.05) and weights (P<0.05) of eggs from different concentrations as the eggs became fatter and heavier as the embryos inside grew.

The stage of the embryos was significantly different (P<0.05) as embryos were developing in the eggs from 0% to 6.25% concentrations but not from the 12.5% to 100% concentrations. This is supported by the width and weight data. Again, at Day 60 the stage data is the most sensitive with an EC50 of 6.61%.

At this point the 25%, 50% and 100% treatments were terminated and all eggs fixed in a 10% formaldehyde in seawater solution.

6.4 Day 90 Sampling

The lengths, widths and weights of the eggs at day 90 were all significantly different (P<0.05) and were indicative of the growth of the embryos inside the eggs. Eggs became rounder and took up water as the embryos neared hatch. The staging data at Day 90 was again the most sensitive, with an EC50 of ~2.6%. However, the staging data is skewed as undeveloped embryos were

removed from the 1.5% treatment, resulting in a sample that was not representative. This anomaly has been rectified in the embryo development data which includes all 11 embryos from each replicate.

6.5 Embryo Development

The embryo development toxicity data was calculated by using data from all 11 embryos in each replicate. The EC50 of 5.8% shows that 50% of exposed embryos will develop at this concentration. The NOEC is < 1.5% which was the lowest concentration tested. In hindsight, it would have been useful to have used a concentration of 0.75% to obtain a NOEC. The embryo development test has the most environmentally relevant endpoint generated from this study, as it encompasses RO brine exposure during all the sensitive developmental life stages of *S. apama*.

6.6 Days to hatch

Not all embryos in all concentrations hatched, with 25/25 hatching in 0%, 24/25 hatching in 1.5%, 21/25 hatching in 3.125%, 20/25 hatching in 6.25% and 0/25 hatching in 12.5% (Table 5.8). The time to hatch ranged from 94 up to 125 days (3 months – 4 months). The embryos in the higher concentrations took significantly (P<0.05) longer to hatch than the control embryos. A concentration of ~5.4% resulted in a 50% delay in hatching. This delay in hatching of exposed embryos may have significant implications in the survival of the hatchlings. If conditions are not optimal as far as food availability, availability of shelter, presence or absence of predators or water temperature are concerned when *S. apama* hatch then the survival of the hatchlings will be compromised.

The weight and mantle length of *S. apama* at hatch was significantly different (P<0.05) with the hatchlings exposed to 6.25% RO brine showing approximately half the body weight of the controls. The toxicity data (Table 5.11) shows that the length, width and weight all had similar EC50 values of 6.4 - 7.5%.

6.7 Post Hatch

The mantle length, mantle width and weight (Table 5.13) had all increased slightly from the data at hatch and all were significantly different (P<0.05) between treatments. Again the EC50 data for these parameters were similar to each other ranging from 7.11 - 7.38% RO brine.

The survival post hatch showed that this is a critical life stage, as only 12 of the 15 controls survived to 30 days post hatch (Table 5.12). The EC50 of ~4% RO brine shows that survival post hatch is the most sensitive end point to *S. apama* exposed to the RO brine (Table 5.14). In this instance post hatch survival is a chronic test and is not categorised as an acute test as it is the result of a long term exposure over several life stages. Therefore, no acute to chronic ratio should be applied to this data.

7. SPECIES PROTECTION LEVELS

7.1 Introduction

The BurrliOZ (CSIRO 2000) is commonly used to determine ecosystem protection values. In the past the NOEC has been used to derive these values simply because NOEC data was readily available. However, using NOECs as valid test points and as regulatory endpoints has been extensively criticised because of it dependence on the concentrations used in the test and its variability (Chapman 2005). It has been suggested that "the NOEC is neither a consistent summary statistic nor an indicator of safe concentrations of toxic chemicals" (Crane and Newman 2000). Therefore, a point estimation is preferred that considers the dose response relationship and is preferable to hypothesis testing as is used in determining the NOEC (Chapman 2005). A point estimation of EC10 has been recommended and is used commonly throughout Australia (Dr M. Warne CSIRO, Pers Comm., Chapman 2005). Therefore, these Protection Values for giant cuttlefish have been calculated using the EC10 values.

7.2 Methodology

Following the protocol outlined in ANZECC (2000) interim 99%, 95%, 90% and 80% protection values were calculated using data from eleven chronic endpoints in the *S. apama* exposure. Values in Table 7.1 were placed in the BurrliOZ software to calculate a value designed to protect 99%, 95%, 90% and 80% of the *S. apama* from brine discharged from the proposed desalination plant at Point Lowly. The value calculated is an interim value, which will change when further testing is performed after commissioning of the plant and additional data becomes available.

12.2.a Statistical Methodology

The BurrliOZ software is designed to estimate the protecting concentrations of chemicals such that a given percentage of species will survive. The estimations of the protecting concentrations are computed by fitting a certain distribution to the input data. The distribution, called the Burr III distribution, is that required by the Environment Protection Authority. There are other distributions fitted to the data, the normal and the log-logistic distributions. However, these two latter distributions are provided only as a reference guide and are not used for the estimation of the protecting concentrations.

After the Burr III distribution has been fitted to the data, the protecting concentration (for preserving, for example, 90% of the species) is estimated using the estimated distribution parameters to compute the concentration such that the probability of there being a greater concentration (according to the fitted distribution) is 90%.

Once the protecting concentration has been computed, an estimate for the lower confidence limit of 50% can be computed. This value can be used as a very conservative (lower) estimate for the protecting concentration.

The EC10 values shown in Table 7.1 are representative of the important endpoints in each of the life stages exposed during the 5 month test. The Stage at Day 90 data was omitted due to skewing by the removal of dead embryos.

7.3 Results

End Point	EC10 %
Embryo	2.37
Development	
Day 30	4.61
Stage	
Day 60	3.16
Stage	
Days to	3.16
Hatch	
Length at Hatch	6.51
Width at Hatch	6.24
Weight at Hatch	5.74
Length 30 Days Post Hatch	6.30
Width 30 Days	6.18
Post Hatch	
Weight 30 Days	6.24
Post Hatch	
Survival Post	1.86
Hatch	

Table 7.1 EC10 Data used in BurrliOZ calculation

Protection Level	Protection Value %	Dilution Factor
99	0.97	103
95	1.89	53
90	2.52	40
80	3.35	30

7.4 Discussion

Due to the reasons discussed above the use of the Interim Protection Values derived from EC10s is recommended. The Protection Values based on EC10 data would theoretically protect X% of species from experiencing inhibitory impacts greater than 10%. Therefore, to protect 99% of the *S. apama* from experiencing inhibitory impacts greater than 10%, RO brine would need to be diluted approximately 100 times.

New Protection Values should be generated using results from the actual brine discharged from the desalination plant after completion.

The use of sub-lethal testing is always recommended to remove the correction factors that are required when using LC50 data.

7.4.1 Seawater Diluent

The seawater from Spencer Gulf that was used in this project had a salinity of 45 ppt, as measured by refractometer, which is higher than typically recorded at Point Lowly. This may have been due to a range of factors e.g. evaporation from containers during transport, or lack of precision in the instrument used to measure salinity, and may have been compounded by an initial salinity at the extreme of its natural range.

If the S. *apama* embryos are growing at the upper limit of their salinity tolerance at 45 ppt, then any increase in salinity may have a greater impact on them than if they were growing at a lower salinity within the range of salinities found at Point Lowly. Therefore, the dilution values calculated in Table 7.2 may be 2 - 3 times higher than actually required (based on recalculated EC50 data, Table 7.4). Table 7.3 shows the concentrations of RO brine that are required to meet the salinities used in this project with a diluent seawater of 42 ppt.

Table 7.3 Concentrations Tested

Original Concentrations Tested %	Adjusted Concentrations for Control = 42 ppt %	Salinity ppt
0	8.33	45
1.5	9.71	45.5
3.1	11.18	46
6.25	14.06	47
12.5	19.79	49.125
25	31.25	53.25
50	54.17	61.5
100	100	78

Table 7.4 Recalculated EC50 Results

End Point	EC50 % 42 ppt Diluent	EC50 % 45 ppt Diluent	Difference Factor
Days to Hatch	12.2	5.42	2.25
Post Hatch Survival	12.6	4.00	3.15
Embryo Development	14.4	5.81	2.5

8. REFERENCES

ANZECC and ARMCANZ (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand). 2000. *National water quality management strategy, Australian and New Zealand Guidelines for fresh and marine water quality.* ANZECC and ARMCANZ, Canberra, Australia.

Campbell E., Palmer M.J., Shao Q., Warne M. StJ. and Wilson D. 2000. BurrliOZ: A computer program for calculating toxicant trigger values for the ANZECC and ARMCANZ water quality guidelines. Perth, Western Australia, Australia.

Chapman P. M. 2005. Recommendations for whole effluent toxicity (WET) testing approaches for the Water Corporation of Western Australia. Draft Report. Golder Associates, North Vancouver, BC, Canada.

Crane M. and Newman M.C. 2000. What level of effect is a no observed effect? Environ. Toxicol. Chem. 19:516-519.

Cronin E.R. 2000. Morphology, respiration and energetics of the eggs of the giant cuttlefish, *Sepia apama*. PhD Thesis, University of Adelaide.

CSIRO 2000. http://www.cmis.csiro.au/Envir/burrlioz/

Palmegiano G.B. and D'Apote M.P. 1983. Combined effects of temperature and salinity on Cuttlefish (Sepia officinalis L.) hatching. Aquaculture, 35:259-264.

APPENDIX 1

SUMMARY SHEETS FOR TOXICITY DATA

Embryo Development

						Giant Cuttlefish I	Embrvo					
						Developme						
Start Date:	8/06/2006	6	Test ID:	ENV06-128	3			Sample I	D:	Brine RO		
End Date: Sample	13/10/200)6	Lab ID:	Freo				Sample ⁻	Гуре:	Brine		
Date: Comments:			Protocol:	Geotech W	I			Test Species:		Sepia apama		
Conc-%	1	2	3	4	5							
Control	1.0000	1.0000	1.0000	1.0000	1.0000							
1.5	0.8182	0.9091	0.9091	0.9091	0.9091							
3.125	0.8182	0.7273	0.8182	1.0000	0.8182							
6.25	0.8182	0.6364	0.9091	0.5455	0.8182							
12.5	0.0000	0.0000	0.0000	0.0000	0.0000							
25	0.0000	0.0000	0.0000	0.0000	0.0000							
50	0.0000	0.0000	0.0000	0.0000	0.0000							
100	0.0000	0.0000	0.0000	0.0000	0.0000							
					Transform: Arcsin Square					1-		
					Root				Rank	Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical	Resp	Number
Control	1.0000	1.0000	1.4195	1.4195	1.4195		0.000	5			0	55
*1.5	0.8909	0.8909	1.2377	1.1303	1.2645		4.850	5	15.00	17.00	6	55
3.125	0.8364	0.8364	1.1663	1.0213	1.4195		12.789	5	17.50	17.00	9	55

0.7455 1.2645 16.589 15.00 *6.25 0.7455 1.0559 0.8309 17.00 14 55 5 55 12.5 0.0000 0.0000 0.1513 0.1513 0.1513 0.000 5 55 25 0.0000 0.0000 0.1513 0.1513 0.1513 5 55 55 0.000 50 0.0000 0.0000 0.1513 0.1513 0.1513 0.000 5 55 55 100 0.0000 0.1513 0.1513 0.1513 0.000 5 55 55 0.0000 **Auxiliary Tests** Critical Kurt Statistic Skew Shapiro-Wilk's Test indicates normal distribution (p > 0.01) 0.92795 0.868 0.3631 1.31152 Equality of variance cannot be confirmed

Hypothesis 1	Test (1-tail.	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-			<1.5	1.5								
			_			Maximum Likelihood- Probit					_	
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P- value	Mu	Sigma	lter
Slope	3.28268	0.9079	0.94884	5.61652		0	42.6229	11.0705	4.4E- 08	0.76443	0.30463	7
Intercept	2.49061	0.76551	0.52279	4.45842								
TSCR							1.0 T			··· _		
Point	Probits	%	95% Fidu Limits	cial			0.9		((
EC01	2.674	1.137	0.01689	2.54948			0.8 -		- 11	1		
EC05	3.355	1.83385	0.08457	3.5203			9.7		- 8	/		
EC10	3.718	2.36611	0.19651	4.24586			1			/	1	
EC15	3.964	2.81	0.34316	4.87345			a 0.6 0.5 8 0.4		-NI			
EC20	4.158	3.22145	0.5289	5.49489			2 05 -		- 111			
EC25	4.326	3.62213	0.75832	6.15716			8 ₆₄ 1		111			
EC40	4.747	4.86695	1.74297	8.84656					1 85		1	
EC50	5.000	5.81344	2.64242	11.9722			0.3 -		/ {[
EC60	5.253	6.94401	3.68411	17.6181			0.2	/	' ((
EC75	5.674	9.33045	5.46776	39.2024			0.1		• 7 /			
EC80	5.842	10.491	6.17127	55.8016			-		\mathcal{I}]	
EC85	6.036	12.0271	6.99937	85.4993			0.0 4			in an	40000	
EC90	6.282	14.2834	8.07349	148.572			0.0	ri -	1	100	10000	
EC95	6.645	18.4291	9.77984	343.747								
EC99	7.326	29.724	13.5563	1713.97					Dose	1		
Significant he	terogeneity	detected (p	b = 4.41E-08	B)								

Day 30 Stage

					G	iant Cuttlefish Day 30 Stage						
Start Date:	8/06/2009		Test ID:	ENV06-128			Sample ID	:	BHP RO			
End Date: Sample	8/07/2006		Lab ID:	Freo			Sample Ty	pe:	Brine			
Date: Comments:			Protocol:	GEOTECH WI			Test Speci	es:	Sepia Apa	ma		
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control	0.9390	1.0000	0.8450	1.0000	0.9390	0.9860	1.0000	0.8450	1.0000	0.8450		
1.5	1.0000	1.0000	1.0000	0.9390	1.0000	1.0000	1.0000	1.0000	1.0000	0.8450		
3.13	0.8450	0.8450	0.9390	0.8920	0.9860	0.9390	0.8450	0.9860	0.9860	1.0000		
6.25	0.8450	0.8450	0.8450	0.9390	0.8450	0.8450	0.8450	0.9390	0.8450	0.8450		
12.5	0.0000	0.0000	0.0000	0.0000	0.8450	0.8450	0.0000	0.0000	0.0000	0.0000		
25	0.0000	0.0000	0.0000	0.0000	0.0000	0.8450	0.8450	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
				Trar	sform: Arcsin Square Root			Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		Resp	Number
Control	0.9399	1.0000	1.3676	1.1661	1.5208	11.614	10	•••••			60	100
1.5	0.9784	1.0410	1.4654	1.1661	1.5208	8.354	10	124.50	75.00		22	100
3.13	0.9263	0.9855	1.3254	1.1661	1.5208	10.385	10	95.00	75.00		74	100
*6.25	0.8638	0.9190	1.1972	1.1661	1.3212	5.462	10	75.00	75.00		140	100
*12.5	0.1690	0.1798	0.2732	0.0500	1.1661	172.226	10	58.00	75.00		832	100
*25	0.1690	0.1798	0.2732	0.0500	1.1661	172.226	10	58.00	75.00		832	100
50	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	10				1000	1000
100	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	10				1000	100
Auxiliary Tes	ts						Statistic		Critical		Skew	Kurt
Kolmogorov D	Test indicat	es non-no	ormal distrib	oution (p <= 0.01)			1.62766		1.035		2.15269	5.02664
- Partlatt's Tast	indicates un	oqual vari	ances (n -	1 03E-00)			47.3001		15.0863			

Geotechnical Services

Hypothesis [·]	Tost (1-tail	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-			3.13	6.25	4.42295	31.9489						
,,												
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	3.65284	0.87224	1.41068	5.895		0.06	357.535	11.0705	4.2E-75	1.01469	0.27376	5
Intercept	1.2935	0.95687	-1.1662	3.75322								
TSCR	0.03892	0.03509	-0.0513	0.12912			1.0 T			· · · ·		
			95% Fidu	cial			0.9		1	1		
Point	Probits	%	Limits						1		1	
EC01	2.674	2.38687	0.16305	4.79			0.8 -		†	• (
EC05	3.355	3.6677	0.48433	6.40033			0.7		- 11	/		
EC10	3.718	4.6116	0.85905	7.52475					<u> </u>	1	1	
EC15	3.964	5.38214	1.25809	8.43604			9 O.6 -		- 11		- 1	
EC20	4.158	6.08537	1.69613	9.27975			92005 92005 9204		- 111			
EC25	4.326	6.76147	2.18189	10.1155			5		- 7 11			
EC40	4.747	8.81724	3.99303	12.9568			204 -					
EC50	5.000	10.344	5.54469	15.5773			0.3		111			
EC60	5.253	12.1351	7.38265	19.531			4		1 11		I	
EC75	5.674	15.8248	10.6703	31.6767			0.2		/ //		1	
EC80	5.842	17.5829	11.9733	39.5847			0.1				1	
EC85	6.036	19.8803	13.4923	52.0958			-	/				
EC90	6.282	23.202	15.4366	74.7612			0.0 4	1 4	ere a second s	400	4000	
EC95	6.645	29.1731	18.4789	130.232			Q/		10	100	1000	
EC99	7.326	44.828	25.0926	380.669					Dose 9			

Significant heterogeneity detected (p = 4.17E-75)

Page 35 of 78

Day 30 Length

						Day 30 Len	gth						
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP			
End Date:	8/07/2006		Lab ID:	Freo				Sample Ty	pe:	RO Brine			
Sample Date:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ma		
Comments:													
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	1.0000	1.0000	1.0000	0.9130	1.0000		1.0000	1.0000	0.9210	0.8820	1.0000		
1.5	1.0000	1.0000	0.9820	1.0000	0.7510		1.0000	1.0000	0.9640	1.0000	0.9950		
3.13	0.9100	0.8740	1.0000	0.8330	1.0000		0.8770	1.0000	0.9410	0.9920	0.8740		
6.25	0.8620	0.8620	0.9080	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000		
12.5	0.8670	0.8670	0.8310	0.9740	0.9920		1.0000	1.0000	0.8230	1.0000	1.0000		
25	1.0000	0.9130	1.0000	1.0000	0.7380		1.0000	1.0000	1.0000	1.0000	1.0000		
50	0.8670	1.0000	0.9380	1.0000	1.0000		1.0000	0.8280	0.9280	1.0000	0.9950		
100	0.9490	0.8720	1.0000	0.8740	0.9950		0.9640	1.0000	1.0000	0.8820	0.8690		
				Trai	nsform: Arcsin Square					1-			
					Root				Rank	Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical		Resp	Number
Control	0.9716	1.0000	1.4423	1.2201	1.5208		8.835	10				29	1000
1.5	0.9692	0.9975	1.4489	1.0484	1.5208		10.262	10	103.00	74.00		32	1000
3.13	0.9301	0.9573	1.3413	1.1498	1.5208		11.414	10	81.50	74.00		71	1000
6.25	0.9632	0.9914	1.4288	1.1902	1.5208		10.451	10	101.50	74.00		37	1000
12.5	0.9354	0.9627	1.3652	1.1366	1.5208		12.646	10	87.00	74.00		65	1000
25	0.9651	0.9933	1.4471	1.0334	1.5208		11.411	10	108.50	74.00		35	1000
50	0.9556	0.9835	1.4063	1.1432	1.5208		10.764	10	96.50	74.00		44	1000
100	0.9405	0.9680	1.3619	1.2004	1.5208		10.669	10	84.00	74.00		61	1000
Auxiliary Tes	sts							Statistic		Critical		Skew	Kurt
Auxiliary Tes Kolmogorov D		tes non-no	rmal distrib	ution (p <= 0.01)				Statistic 2.50207		Critical 1.035		Skew -0.8815	Kurt -0.1859

Hypothesis T	est (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-0	One Rank T	est	100	>100		1						
						Maximum Likelihood- Probit						-
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	0.07597	0.22981	-0.5148	0.66672		0.029	32.7108	11.0705	4.3E-06	27.9159	13.1638	4
Intercept	2.87934	0.40693	1.8333	3.92538								
TSCR	0.02899	0.01357	-0.0059	0.06387			1.0 -				~	
			95% Fidu	cial			0.9					
Point	Probits	%	Limits								1	
EC01	2.674	0.00196					0.8			1	1	
EC05	3.355	1833825					0.7 -			{		
EC10	3.718	1.1E+11					asuodsa 80.5 9.4			r	1	
EC15	3.964	1.9E+14					<u>គ្គីត្រូវ</u>					
EC20	4.158	6.9E+16					N					
EC25	4.326	1.1E+19					20.4				1	
EC40	4.747	3.8E+24					0.3 -		1		(
EC50	5.000	8.2E+27					0.2		1		1	
EC60	5.253	1.8E+31					0.1					
EC75	5.674	6.2E+36					-	<u> </u>			1	
EC80	5.842	9.9E+38					0.0				TARMAN CONTRACT	
EC85	6.036	3.6E+41					0.0	01 1E+10	1E+23 1	E#36 1E#4	9 1E+62	
EC90	6.282	6.1E+44										
EC95	6.645	3.7E+49							-			
EC99	7.326	3.5E+58							Dose	5		

Significant heterogeneity detected (p = 4.30E-06)

Day 30 Width

					Gia	nt Cuttlefish Width	Day 30						
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	8/07/2006		Lab ID:	Freo				Sample Ty	pe:	Brine			
Date: Comments:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ima		
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	1.0000	1.0000	0.9810	0.9120	1.0000		1.0000	1.0000	1.0000	0.9810	0.9060		
1.5	0.9940	1.0000	0.9870	0.9870	0.7990		0.9120	0.8990	0.9940	1.0000	1.0000		
3.13	0.8990	0.9810	0.9870	0.9870	0.9750		0.8990	1.0000	0.9870	1.0000	1.0000		
6.25	0.9060	0.8930	0.9750	1.0000	1.0000		1.0000	1.0000	0.9120	0.9060	1.0000		
12.5	0.9060	0.9120	0.8990	0.9430	0.9940		0.9810	0.8240	0.8930	1.0000	0.9810		
25	0.6920	1.0000	0.9060	0.9120	0.8740		1.0000	1.0000	0.9810	1.0000	0.9120		
50	0.8870	0.9870	0.9120	1.0000	0.9940		0.9750	0.9940	0.9940	0.9060	0.8990		
100	0.7990	0.9940	0.9810	0.9810	0.9120		0.9940	0.9120	0.9120	0.9120	1.0000		
				Trans	form: Arcsin Square Root				Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%			Sum	Critical		Resp	Numbe
Control	0.9780	1.0000	1.4518	1.2592	1.5208	01/0	7.245	10	Oum	Unitedi		22	100
1.5	0.9572	0.9787	1.4085	1.1059	1.5208		10.413	10	93.50	74.00		43	100
3.13	0.9715	0.9934	1.4271	1.2474	1.5208		7.153	10	93.00	74.00		27	100
6.25	0.9592	0.9808	1.4041	1.2376	1.5208		9.375	10	94.50	74.00		40	100
12.5	0.9333	0.9543	1.3360	1.1379	1.5208		9.489	10	76.00	74.00		68	100
25	0.9277	0.9486	1.3504	0.9825	1.5208		13.517	10	89.50	74.00		73	100
50	0.9548	0.9763	1.3873	1.2280	1.5208		8.734	10	82.00	74.00		45	100
100	0.9397	0.9608	1.3557	1.1059	1.5208		10.106	10	82.00	74.00		62	100
Auxiliary Tes	ts							Statistic		Critical		Skew	Kurt
Kolmogorov D	Test indicat	es non-no	rmal distribu	ution (p <= 0.01)				1.62797		1.035		-0.6144	-0.4619
	indicates eq	ual varian	aaa (n 07	4)				4.37383		18.4753			

Hypothesis 1	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-	-One Rank T	est	100	>100		1						
_		_		L_		Maximum Likelihood- Probit						
Parameter	Value	SE		cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	0.21745	0.1634	-0.2026	0.63748		0.022	24.4556	11.0705	1.8E-04	9.79697	4.59868	4
Intercept	2.86961	0.27001	2.17552	3.5637								
TSCR	0.02155	0.01013	-0.0045	0.0476			1.0				~	
- • • •	D. I. K.	0/	95% Fidu	cial			0.9 -			1	1	
Point	Probits	%	Limits				0.8			/		
EC01	2.674	0.12556					-			/	1	
EC05	3.355	170.931					0.7		}		1	
EC10	3.718	8008.12					as 0.6 Suod 0.5 9.4				1	
EC15	3.964	107337					ີຂີຍສະ		/			
EC20	4.158	844555					0 04		/			
EC25	4.326	4956914					E 5.4		/		-	
EC40	4.747	4.3E+08					0.3 -		/		1	
EC50	5.000	6.3E+09					0.2 -				(
EC60	5.253	9.2E+10					0.1					
EC75	5.674	7.9E+12					-					
EC80	5.842	4.6E+13					0.0	4 40000	15,00 1	Esta dEst		
EC85	6.036	3.7E+14					0	1 10000	1E+09 1	E+14 1E+1	9 1E+24	
EC90	6.282	4.9E+15										
EC95	6.645	2.3E+17							Berry	8×		
EC99	7.326	3.1E+20							Dose	71		

Day 30 Weight

					Gia	nt Cuttlefish Weight	Day 30						
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	8/07/2006		Lab ID:	Freo				Sample Ty	pe:	Brine			
Date: Comments:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ima		
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	1.0000	1.0000	0.8500	0.8000	1.0000		0.9500	1.0000	1.0000	0.8500	1.0000		
1.5	0.9250	1.0000	0.9000	1.0000	0.6000		0.9000	0.9750	0.9250	1.0000	1.0000		
3.13	0.8500	0.7750	0.9000	0.7750	0.9000		0.7250	1.0000	0.8500	1.0000	0.9750		
6.25	0.6750	0.7500	0.7250	1.0000	1.0000		0.9500	1.0000	0.9750	1.0000	1.0000		
12.5	0.7500	0.7500	0.7500	0.9750	0.8500		0.9250	0.8750	0.7250	1.0000	0.9000		
25	1.0000	1.0000	0.8750	0.9250	0.5750		1.0000	0.8750	0.9250	1.0000	0.9500		
50	0.7500	0.9750	0.8250	1.0000	0.9750		0.8250	0.9250	0.9000	0.8250	0.9750		
100	0.6250	0.9250	0.9500	0.7750	0.9000		1.0000	0.9250	0.8750	0.9250	1.0000		
				Trans	form: Arcsin Square Root				Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical		Resp	Numbe
Control	0.9450	1.0000	1.3923	1.1071	1.5208	0170	12.638	10	•••••			55	100
1.5	0.9225	0.9762	1.3466	0.8861	1.5208		14.902	10	99.00	74.00		78	100
3.13	0.8750	0.9259	1.2470	1.0188	1.5208		14.598	10	83.00	74.00		126	100
6.25	0.9075	0.9603	1.3391	0.9642	1.5208		17.579	10	97.50	74.00		92	100
12.5	0.8500	0.8995	1.2018	1.0188	1.5208		14.214	10	77.00	74.00		150	100
25	0.9125	0.9656	1.3295	0.8607	1.5208		15.814	10	98.50	74.00		87	100
50	0.8975	0.9497	1.2764	1.0472	1.5208		12.386	10	83.00	74.00		104	100
100	0.8900	0.9418	1.2714	0.9117	1.5208		14.430	10	87.50	74.00		112	100
Auxiliary Tes	ts							Statistic		Critical		Skew	Kurt
Kolmogorov D	Test indicat	es non-no	rmal distribu	ution (p <= 0.01)				1.21379		1.035		-0.5159	-0.3389
Dortlott's Tost	indicates eq	ual varian	cas (n - 0.0)	6)				2.00884		18.4753			

Hypothesis T	est (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-0			100	>100		1						
_						Maximum Likelihood- Probit						-
Parameter	Value	SE		cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	0.05814	0.16179	-0.3578	0.47405		0.055	38.2275	11.0705	3.4E-07	28.5852	17.1996	3
Intercept	3.33803	0.27503	2.63104	4.04502								
TSCR	0.05494	0.01993	0.00372				1.0					
			95% Fidu	cial			0.9					
Point	Probits	%	Limits				0.8					
EC01	2.674	3.7E-12					14			1	1	
EC05	3.355	1.96966					0.7			/	4	
EC10	3.718	3491717					80.6				1	
EC15	3.964	5.7E+10					5.61					
EC20	4.158	1.3E+14										
EC25	4.326	9.6E+16					30.6 500 50.5 50.4		/		1	
EC40	4.747	1.7E+24					0.3 -		/		1	
EC50	5.000	3.8E+28					0.2		/			
EC60	5.253	8.8E+32					0.1				1	
EC75	5.674	1.5E+40						_ <u>_</u>			1	
EC80	5.842	1.2E+43					0.0			00) - 0-0-00000)	T-P-MILITS	
EC85	6.036	2.6E+46					1E-11	2 100000	1E+22 1E	E+39 1E+5	6 1E+73	
EC90	6.282	4.2E+50										
EC95	6.645	7.5E+56										
EC99	7.326	4E+68							Dose 9	1		

Significant heterogeneity detected (p = 3.40E-07)

Day 60 Stage

					Giar	nt Cuttlefish Day 60 Stage						
Start Date:	8/06/2009		Test ID:	ENV06-128			Sample ID	:	BHP RO			
End Date: Sample	8/08/2006		Lab ID:	Freo			Sample Ty	pe:	Brine			
Date:			Protocol:	GEOTECH WI			Test Speci	es:	Sepia Apa	ama		
Comments:												
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control	0.9930	0.9930	0.9930	0.9930	1.0000	0.9560	0.9930	0.9930	1.0000	1.0000		
1.5	0.9930	0.9930	0.9930	0.9930	0.9930	0.9930	0.6620	0.9930	0.9560	0.9930		
3.13	0.9930	0.9930	0.9190	0.9930	0.9930	0.9930	0.9930	0.9930	0.0000	0.9930		
6.25	0.9560	0.9190	0.9560	0.9190	0.9190	0.7720	0.9190	0.9190	0.9190	0.0000		
12.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
25	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
				Tra	ansform: Arcsin Square Root			Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		Resp	Numbe
Control	0.9914	1.0000	1.4844	1.3595	1.5208	3.145	10	Juli	United		10	100
1.5	0.9562	0.9645	1.4206	0.9504	1.4870	11.968	10	87.50	77.00		46	100
3.13	0.8863	0.8940	1.3228	0.0500	1.4870	34.156	10	87.00	77.00		116	100
*6.25	0.8198	0.8269	1.1535	0.0500	1.3595	34.294	10	56.00	77.00		179	100
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	10	00.00	11.00		1000	100
25	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	10				1000	100
						0.000	10				1000	100
50	0 0000	0 0000	0.0500	0 0500	0.0500							100
50 100	0.0000 0.0000	0.0000 0.0000	0.0500 0.0500	0.0500 0.0500	0.0500 0.0500	0.000	10				1000	100
100	0.0000						10		Critical			
100 Auxiliary Tes	0.0000	0.0000	0.0500						Critical 0.919		1000 Skew -3.4205	1000 Kurt 12.0088

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many			3.13	6.25	4.42295	31.9489						
					_	Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	3.98973	1.22109	0.85082	7.12864		0.01	850.257	11.0705	1.6E- 181	0.82043	0.25064	8
Intercept	1.72671	1.05831	-0.9938	4.44717		0.01	050.257	11.0705	101	0.02043	0.23004	0
TSCR	1.72071	1.05051	-0.9930	4.44717			1.0 T			••		
1001			95% Fidu	cial					<u>//</u>		1	
Point	Probits	%	Limits				0.9 -		<u> </u>	1		
EC01	2.674	1.72721	0.00592	3.70018			0.8 -		[{	(
EC05	3.355	2.55951	0.03627	4.762			0.7 -		- 117			
EC10	3.718	3.15658	0.09432	5.50401					- 117			
EC15	3.964	3.63625	0.17842	6.11384			8.0 s 8.0 s		- 111			
EC20	4.158	4.06895	0.29417	6.69047			805					
EC25	4.326	4.48097	0.44868	7.27778			2 04-					
EC40	4.747	5.71385	1.23699	9.4544					1 1		1	
EC50	5.000	6.61346	2.13435	11.8043			0,3		1 11		1	
EC60	5.253	7.65471	3.37209	16.0958			0.2 -		/ il			
EC75	5.674	9.76079	5.65663	34.3647			0.1		↓1			
EC80	5.842	10.7492	6.49629	49.6461					↓ /		1	
EC85	6.036	12.0283	7.41752	78.4491			0.0 4	the second second	40	4680	466606	
EC90	6.282	13.8561	8.52286	143.463			0.0	01 0.1	10	1000	100000	
EC95	6.645	17.0884	10.1363	362.587					Deces			
EC99	7.326	25.3228	13.3667	2166.94					Dose 5			

Significant heterogeneity detected (p = 1.55E-181)

Day 60 Length

					Gia	nt Cuttlefish Length	Day 60						
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	8/08/2006		Lab ID:	Freo				Sample Ty	pe:	Brine			
Date: Comments:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ima		
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	1.0000	1.0000	0.9750	1.0000	1.0000		1.0000	1.0000	1.0000	0.8930	0.8960		
1.5	1.0000	1.0000	0.8410	1.0000	1.0000		0.7660	0.7260	0.8080	0.8530	0.8980		
3.13	0.9450	1.0000	0.8480	0.9730	1.0000		1.0000	0.9300	1.0000	1.0000	1.0000		
6.25	1.0000	0.9630	1.0000	0.9750	1.0000		1.0000	0.9050	0.9900	0.8830	0.9750		
12.5	0.9300	1.0000	0.9430	1.0000	0.8560		0.8510	1.0000	0.8960	0.8510	0.8960		
25	0.9300	1.0000	0.8410	0.8530	1.0000		1.0000	0.8860	0.9680	0.8080	0.7740		
50	1.0000	0.8980	0.8180	1.0000	0.6390		1.0000	0.8580	1.0000	0.8980	0.9700		
100	0.8510	1.0000	1.0000	1.0000	0.9680		0.5550	1.0000	0.9000	0.8980	1.0000		
				Trans	form: Arcsin Square Root				Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical		Resp	Numbe
Control	0.9764	1.0000	1.4537	1.2376	1.5208	01/0	8.093	10	Cam	ontiour		23	100
1.5	0.8892	0.9107	1.2870	1.0199	1.5208		16.327	10	83.00	74.00		110	100
3.13	0.9696	0.9930	1.4338	1.1703	1.5208		8.781	10	100.00	74.00		31	100
6.25	0.9691	0.9925	1.4234	1.2217	1.5208		7.794	10	93.00	74.00		32	100
12.5	0.9223	0.9446	1.3211	1.1745	1.5208		11.138	10	81.50	74.00		77	100
25	0.9060	0.9279	1.3013	1.0754	1.5208		13.511	10	78.50	74.00		94	100
50	0.9081	0.9300	1.3212	0.9263	1.5208		15.708	10	87.00	74.00		91	100
100	0.9172	0.9394	1.3505	0.8405	1.5208		16.722	10	93.50	74.00		82	100
Auxiliary Tes	ts							Statistic		Critical		Skew	Kurt
Kolmogorov D	Test indicat	es non-no	rmal distribu	ution (p <= 0.01)				1.21618		1.035		-0.4901	-0.080
	indicates eq		(0.0	o)				9.29435		18.4753			

Hypothesis 1	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-	One Rank T	est	100	>100		1						
Parameter	Value	SE	95% Fidu	cial Limits	-	Maximum Likelihood- Probit Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	0.1132	0.20985	-0.4262	0.65263		0.023	84.6414	11.0705	9.0E-17	15.5051	8.83386	3
Intercept	3.24481	0.32912	2.39879	4.09083								-
TSCR	0.02321	0.01958	-0.0271	0.07354			1.0				~	
			95% Fidu				0.9				_	
Point	Probits	%	Limits								1	
EC01	2.674	9E-06					0.8			1	1	
EC05	3.355	9.43399					0.7 -			<i>[</i>	4	
EC10	3.718	15277.7					as 0.6 800 0.5 80 0.4		/	r	1	
EC15	3.964	2235620					ខ្ តី ១៩ -					
EC20	4.158	1.2E+08					N N N		/			
EC25	4.326	3.5E+09					2 0.4				I .	
EC40	4.747	1.8E+13					0.3 -		1		4	
EC50	5.000	3.2E+15					0.2		1		(
EC60	5.253	5.5E+17					0.1	•. /	/		1	
EC75	5.674	2.9E+21					-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
EC80	5.842	8.7E+22					0.0 4 1E-	06 1000	1E+12 1	E+21 1E+3	1E+39	
EC85	6.036	4.6E+24					10	0001 000	16712 1	E=21 1E=3	IL TOO	
EC90	6.282	6.7E+26										
EC95	6.645	1.1E+30							Dose	825.		
EC99	7.326	1.1E+36							Doze	21		
Significant he	terogeneity	detected (p	= 8.95E-17	")								

Day 60 Width

					Gia	nt Cuttlefish Egg Widt							
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	8/08/2006		Lab ID:	Freo				Sample Ty	pe:	Brine			
Date: Comments:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ma		
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	0.9780	0.9890	1.0000	0.9780	1.0000		0.9040	0.9160	0.9830	1.0000	0.9720		
1.5	0.8880	1.0000	0.9160	0.9940	1.0000		0.9150	0.8430	0.9040	0.8760	0.9940		
3.13	0.8990	0.9780	0.9040	0.9780	1.0000		0.9830	0.9890	0.9890	0.8820	0.9940		
6.25	1.0000	0.9100	0.9270	0.9040	1.0000		0.9040	0.9830	0.9890	1.0000	0.9160		
12.5	0.8820	0.9150	0.0803	0.8090	0.9040		0.8710	0.8150	0.8710	0.7920	0.8880		
25	0.8760	0.8930	0.7980	0.8710	0.8030		0.8150	0.9720	0.9780	0.8090	0.8200		
50	0.8930	0.8820	0.7920	0.8760	0.7080		0.9100	0.7980	0.8150	0.8820	0.8880		
100	0.8090	0.8880	0.8150	0.9660	0.8880		0.7190	0.8200	0.7920	0.9100	0.8800		
				Trans	form: Arcsin Square Root				Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical		Resp	Numbe
Control	0.9720	1.0000	1.4247	1.2558	1.5208	01/0	6.640	10	• • • •	entiour		28	100
1.5	0.9330	0.9599	1.3439	1.1634	1.5208		10.741	10	89.00	74.00		67	100
3.13	0.9596	0.9872	1.3953	1.2201	1.5208		7.949	10	97.50	74.00		41	100
6.25	0.9533	0.9808	1.3820	1.2558	1.5208		8.754	10	98.00	74.00		47	100
*12.5	0.7827	0.8053	1.1016	0.2873	1.2750		26.533	10	56.50	74.00		217	100
*25	0.8635	0.8884	1.2069	1.1047	1.4219		9.766	10	61.50	74.00		136	100
*50	0.8444	0.8687	1.1712	0.9999	1.2661		7.225	10	56.00	74.00		155	100
*100	0.8487	0.8731	1.1814	1.0121	1.3853		8.914	10	58.00	74.00		150	100
uxiliary Tes	ts							Statistic		Critical		Skew	Kurt
Kolmogorov D	Test indicat	es normal	distribution	(p > 0.01)				0.7905		1.035		-2.3986	12.812
- 	indicates un		n = 1	155 02)				23.9819		18.4753			

Hypothesis 1	Fest (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-	One Rank T	est	6.25	12.5	8.83883	16						
						Maximum Likelihood- Probit		_				_
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	0.42402	0.27196	-0.2751	1.12311		0.028	168.345	11.0705	1.7E-34	4.30993	2.35836	5
Intercept	3.17249	0.41751	2.09924	4.24574								
TSCR	0.02549	0.02877	-0.0485	0.09945			1.0 -					
			95% Fidu	cial			0.9			6		
Point	Probits	%	Limits				0.8					
EC01	2.674	0.06661					-			1	1	
EC05	3.355	2.6963					0.7 -			<i>f</i>	1	
EC10	3.718	19.3895					asuod 0.5 0.4			/	1	
EC15	3.964	73.3911					ຣັດຣ -		/			
EC20	4.158	211.388										
EC25	4.326	523.886					204				ļ	
EC40	4.747	5157.55					0.3 -				-	
EC50	5.000	20414					0.2 -	•			1	
EC60	5.253	80800					0.1 -	و	*			
EC75	5.674	795459									1	
EC80	5.842	1971397					0.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
EC85	6.036	5678212					0.1	61 10	10006	100000	0 1E+10	
EC90	6.282	2.1E+07										
EC95	6.645	1.5E+08										
EC99	7.326	6.3E+09							Dose	7		
Significant he	terogeneitv	detected (p	= 1.65E-34)								

Day 60 Weight

					Gia	ant Cuttlefish Egg Weigl							
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	8/08/2006		Lab ID:	Freo				Sample Ty	pe:	Brine			
Date: Comments:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ma		
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	0.4210	1.0000	1.0000	0.8990	1.0000		0.9980	0.8840	0.8450	1.0000	0.9980		
1.5	0.8620	1.0000	0.8990	1.0000	1.0000		0.7170	0.6890	0.7570	0.7790	1.0000		
3.13	0.8840	0.9960	0.7920	1.0000	1.0000		0.9470	1.0000	1.0000	0.7520	1.0000		
6.25	1.0000	0.9190	1.0000	0.8050	1.0000		0.9500	0.9340	1.0000	1.0000	0.9450		
12.5	0.8420	0.7700	0.5960	0.7650	0.7940		0.6620	0.8640	0.8330	0.6320	0.8270		
25	0.7370	0.8600	0.6640	0.7000	0.7570		0.7630	0.9690	0.9340	0.6510	0.6560		
50	0.9740	0.8490	0.7410	0.7700	0.4340		1.0000	0.6340	0.8030	0.6910	0.8110		
100	0.6580	0.8400	0.7700	0.9120	0.8090		0.4780	0.8110	0.7110	0.8570	0.8770		
				Trans	sform: Arcsin Square Root					1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	t-Stat	Critical	MSD	Resp	Numbe
Control	0.9045	1.0000	1.3478	0.7061	1.5261		19.995	10				96	100
1.5	0.8703	0.9622	1.2646	0.9792	1.5208		18.489	10	0.966	2.383	0.2052	129	100
3.13	0.9371	1.0360	1.3820	1.0495	1.5208		13.872	10	-0.397	2.383	0.2052	63	100
6.25	0.9553	1.0562	1.3990	1.1134	1.5208		10.226	10	-0.594	2.383	0.2052	46	100
*12.5	0.7585	0.8386	1.0633	0.8820	1.1931		10.306	10	3.304	2.383	0.2052	242	100
*25	0.7691	0.8503	1.0869	0.9388	1.3938		14.665	10	3.031	2.383	0.2052	231	100
*50	0.7707	0.8521	1.1062	0.7192	1.5208		20.739	10	2.806	2.383	0.2052	231	100
*100	0.7723	0.8538	1.0847	0.7634	1.2696		13.656	10	3.056	2.383	0.2052	227	100
Auxiliary Tes	ts							Statistic		Critical		Skew	Kurt
Kolmogorov D	Test indicat	es normal	distribution	(p > 0.01)				0.86886		1.035		-0.5512	0.7937
-			ces (p = 0.1					10.533		18.4753			

Hypothesis 1	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Tes	st		6.25	12.5	8.83883	16	0.1235	0.12985	0.21434	0.03706	2.4E-05	7, 72
						Maximum Likelihood-						
Devenueter	Value	05				Probit		Critical	Divalua		Ciauma	lter
Parameter	Value	SE		cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	0.66943	0.51418	-0.6523	1.99118		0.096	181.7	11.0705	2.3E-37	3.23385	1.4938	15
Intercept	2.83515	0.84503	0.66295	5.00736								
TSCR	0.08397	0.04915	-0.0424	0.2103			1.0					
			95% Fidu	cial			0.9					
Point	Probits	%	Limits)	
EC01	2.674	0.57379					0.8 -			{	l l	
EC05	3.355	5.9809					0.7 -			1	1	
EC10	3.718	20.8673								/	1	
EC15	3.964	48.487					2 vo 1		/	/		
EC20	4.158	94.7623					80.5		/			
EC25	4.326	168.382					as 0.6 Saud 5 ag		/			
EC40	4.747	716.803									}	
EC50	5.000	1713.36					0.3 -		- /			
EC60	5.253	4095.43					0.2				1	
EC75	5.674	17434.2					0.1	+	•••		1	
EC80	5.842	30978.8										
EC85	6.036	60544.5					0.0	····	C C F F COL	c c r coog c		
EC90	6.282	140680					0.	1 10	1000	100000	1000000	
EC95	6.645	490832									Q	
EC95	7.326	490832 5116235							Dose 9	ĥ.		
Significant he			0.005.05									

Significant heterogeneity detected (p = 2.32E-37)

Page 49 of 78

Day 90 Stage

					Gia	ant Cuttlefish Day 9 Stage)					
Start Date:	8/06/2009		Test ID:	ENV06-128			Sample I):	BHP RO			
End Date: Sample	8/09/2006		Lab ID:	Freo			Sample T	ype:	Brine			
Date: Comments:			Protocol:	GEOTECH WI			Test Spec	ies:	Sepia Apa	ima		
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.00	0 1.0000	0.9730	1.0000	0.9730		
1.5	0.0000	1.0000	0.0000	0.9730	0.0000	1.000	0.0000	1.0000	0.0000	0.9730		
3.13	0.9730	0.9730	0.9730	0.0000	0.0000	0.973	0.9730	0.9730	0.0000	0.9730		
6.25	0.0000	0.0000	0.0000	0.0000	0.0000	0.90	0.0000	0.6040	0.0000	0.9730		
12.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.0000	0.0000	0.0000	0.0000		
25	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000	0.00	0.0000	0.0000	0.0000	0.0000		
100	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000		
				Trans	orm: Arcsin Square Root			Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		Resp	Numbe
Control	0.9946	1.0000	1.4978	1.4057	1.5208	3.23	9 10				6	100
*1.5	0.4946	0.4973	0.7624	0.0500	1.5208	98.64	7 10	75.00	77.00		506	100
*3.13	0.6811	0.6848	0.9990	0.0500	1.4057	65.5	51 10	62.00	77.00		321	100
*6.25	0.2483	0.2496	0.3905	0.0500	1.4057	144.00	07 10	56.00	77.00		752	100
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.0	0 10				1000	100
25	0.0000	0.0000	0.0500	0.0500	0.0500	0.0	0 10				1000	100
50	0.0000	0.0000	0.0500	0.0500	0.0500	0.0	0 10				1000	100
100	0.0000	0.0000	0.0500	0.0500	0.0500	0.00	00 10				1000	100
uxiliary Tes	ts						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indicat	tes norma	I distributior	n (p > 0.01)			0.94238		0.919		-0.0826	-0.953
•	indicates un		. ,	- · · - - · · · · ·			35.8186		11.3449			

Hypothesis 1	Fest (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-			<1.5	1.5								
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
									1.6E-			-
Slope	2.18386	0.61997	0.59018	3.77754		0.006	554.229	11.0705	117	0.40821	0.45791	6
Intercept	4.10853	0.44752	2.95814	5.25893								
TSCR	0.00753	0.0287	-0.0662	0.08132			1.0 T			11 -		
Point	Probits	%	95% Fidu Limits	cial			0.9				(
EC01				0.92465			0.8			11		
	2.674	0.22027	7.2E-05	0.83465			0.7		/	•/	1	
EC05	3.355	0.45188	0.001	1.30199					· · · ·))	1)	
EC10	3.718	0.66279	0.00403	1.66483			ម្ពី ១.១ ។		- 11			
EC15	3.964	0.85826	0.01025	1.97728			80.6 800 800 800 800 800 800 800 800 800 80		/•			
EC20	4.158	1.05396	0.02141	2.27924			804 l		- / //			
EC25	4.326	1.25706	0.04006	2.58907					/ /		ļ	
EC40	4.747	1.95974	0.18656	3.71657			0.3		1 1		1	
EC50	5.000	2.55981	0.44533	4.88215			0.2 -		1 ()		(
EC60	5.253	3.34362	0.97177	7.01568			9.1	/	r = n		1	
EC75	5.674	5.21267	2.49894	18.2369			4	-			1	
EC80	5.842	6.21714	3.20564	30.2151			0.0 +	0.0024	64	40 4000	100000	
EC85	6.036	7.63477	4.0455	57.654			1E-1	0.001	0.1	10 1000	100000	
EC90	6.282	9.88637	5.14242	137.042								
EC95	6.645	14.5009	6.93933	522.948								
EC99	7.326	29.7478	11.3026	6946.02					Dose	5		

Significant heterogeneity detected (p = 1.56E-117)

Day 90 Length

						Day 90 Length			
Start Date:	8/06/2006		Test ID:	ENV06-128			Sample ID:	Effluent RO	
End Date: Sample	13/10/200	6	Lab ID:	Freo			Sample Type:	Brine	
Date:			Protocol:	Geotech WI			Test Species:	Sepia apama	
Comments:									
Conc-%	1	2	3	4	5				
Control	1.0000	1.0000	1.0000	1.0000	0.9810				
1.5	1.0000	1.0000	0.9650	1.0000	0.9140				
3.125	0.7590	0.6730	0.9080	0.9240	0.7750				
6.25	0.5050	0.6000	0.6600	0.6540	0.6730				
25	0.0000	0.0000	0.0000	0.0000	0.0000				
50	0.0000	0.0000	0.0000	0.0000	0.0000				

					Transform: Arcsin Square Root				1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Мах	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
Control	0.9962	1.0000	1.5031	1.4325	1.5208	2.626	5				2	500
1.5	0.9758	0.9795	1.4436	1.2732	1.5208	7.794	5	0.950	2.230	0.1396	13	500
*3.125	0.8078	0.8109	1.1301	0.9621	1.2915	12.512	5	5.958	2.230	0.1396	96	500
*6.25	0.6184	0.6208	0.9057	0.7904	0.9621	7.803	5	9.541	2.230	0.1396	192	500
25	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				500	500
50	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				500	500

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution ($p > 0.01$)	0.96224	0.868	-0.3209	-0.3554
Bartlett's Test indicates equal variances (p = 0.13)	5.5948	11.3449		

Hypothesis ⁻	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	di
Dunnett's Tes		,	1.5	3.125	2.16506	66.6667	0.03779	0.03796	0.39062	0.0098	1.2E-07	3, 1
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Ite
Slope	3.48619	0.53313	1.78953	5.18286		0.004	41.5931	7.81472	4.9E-09	0.81208	0.28685	7
Intercept	2.16892	0.42488	0.81677	3.52106								
TSCR	0.00729	0.01291	-0.0338	0.04835			1.0 -		,	• • ,		
			95% Fidu	cial			0.9		<u> </u>			
Point	Probits	%	Limits						- 11	1	1	
EC01	2.674	1.39567	0.3355	2.40014			0.8 -			(
EC05	3.355	2.1891	0.78191	3.3503			0.7		- 117	(
EC10	3.718	2.78277	1.21362	4.04829					- 11 1		1	
EC15	3.964	3.27181	1.61904	4.63836			9 <u>0.6</u> -				- 1	
EC20	4.158	3.72108	2.02082	5.20648			950005 950005 904		- 111			
EC25	4.326	4.15538	2.42648	5.79078			5		- 111			
EC40	4.747	5.48799	3.6855	7.90334			204 -		/ 			
EC50	5.000	6.48761	4.56488	9.89308			0.3 -		111			
EC60	5.253	7.66932	5.49808	12.7352			-		111		1	
EC75	5.674	10.1288	7.15581	20.2839			0.2		/ • / ·			
EC80	5.842	11.311	7.8624	24.6544			0.1	/	11			
EC85	6.036	12.8642	8.73251	31.1001			0.0					
EC90	6.282	15.1249	9.91262	41.8774			6.0 4	1 1 1	-	400	4000	
EC95	6.645	19.2267	11.8745	65.5639			Q.		10	100	1000	
EC99	7.326	30.157	16.4413	154.049					Dose %	-		

Significant heterogeneity detected (p = 4.89E-09)

Page 53 of 78

Day 90 Width

						Giant Cuttlefish Day 90 Width			
Start Date:	8/06/2006		Test ID:	ENV06-128			Sample ID:	Effluent RO	
End Date: Sample	13/10/200	6	Lab ID:	Freo			Sample Type:	Brine	
Date:			Protocol:	Geotech WI			Test Species:	Sepia apama	
Comments:	4	0	2		5	1			_
Conc-%		2	3	4	•				
Control	1.0000	1.0000	1.0000	0.9860	1.0000				
1.5	0.9670	0.9100	0.9060	0.9720	0.9060				
3.125	0.9860	0.9670	0.9060	0.9010	0.8870				
6.25	0.6040	0.6790	0.6840	0.5850	0.6750				
25	0.0000	0.0000	0.0000	0.0000	0.0000				
50	0.0000	0.0000	0.0000	0.0000	0.0000				

					Transform: Arcsin Square Root				1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Мах	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
Control	0.9972	1.0000	1.5071	1.4522	1.5208	2.035	5				1	500
*1.5	0.9322	0.9348	1.3151	1.2592	1.4027	5.595	5	4.464	2.230	0.0959	33	500
*3.125	0.9294	0.9320	1.3156	1.2280	1.4522	7.504	5	4.450	2.230	0.0959	34	500
*6.25	0.6454	0.6472	0.9335	0.8708	0.9738	5.247	5	13.335	2.230	0.0959	178	500
25	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				500	500
50	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				500	500

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution ($p > 0.01$)	0.91838	0.868	0.49359	-0.6431
Bartlett's Test indicates equal variances (p = 0.18)	4.87701	11.3449		

Hypothesis '	Toot /1 toil	0.05)	NOEC		ChV	TU	MSDu	MeDr	MSB	MSE	F-Prob	df
Hypothesis	• •	0.05)	NOEC	LOEC	Chv	10		MSDp		-		
Dunnett's Tes	St		<1.5	1.5			0.02122	0.0213	0.28922	0.00463	4.7E-09	3, 16
						Maximum Likelihood-						
						Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	5.53612	1.01588	2.30315	8.7691		0.002	13.6239	7.81472	3.5E-03	0.86955	0.18063	14
Intercept	0.18607	0.81704	-2.4141	2.78627								
TSCR	0.03753	0.01197	-0.0006	0.07564			1.0 T			5.1	+	
			95% Fidu	cial			0.9					
Point	Probits	%	Limits				0.5			11 1	1	
EC01	2.674	2.81408	0.8647	3.92157			0.8 -			11 1	(
EC05	3.355	3.73625	1.68432	4.75898			0.7			11 /		
EC10	3.718	4.3457	2.38564	5.31503							1	
EC15	3.964	4.81211	2.99716	5.76475			906 80005 804			11 (1	
EC20	4.158	5.21825	3.56725	6.19381			51			11 1		
EC25	4.326	5.5939	4.10671	6.64389			5			111		
EC40	4.747	6.66479	5.50466	8.43466			2 0.4 ·			111	Į į	
EC50	5.000	7.4054	6.24156	10.2423			0.3			7/		
EC60	5.253	8.22832	6.89822	12.7598			-))/	1	
EC75	5.674	9.80354	7.92901	18.8904			0.2			{{	{	
EC80	5.842	10.5093	8.34108	22.175			0.1			/		
EC85	6.036	11.3962	8.8326	26.7793			-		2 2			
EC90	6.282	12.6194	9.47468	34.0176			0.0 4	1-0-040-00	तर्स् कर्मात	cannot to a	00000	
EC95	6.645	14.6778	10.4875	48.6144			Q/	1	1	10	100	
EC99	7.326	19.4877	12.634	95.3915					Dose 9	6		
Significant ha												

Significant heterogeneity detected (p = 3.46E-03)

Day 90 Weight

					Gia	ant Cuttlefish Weight	Day 90						
Start Date:	8/06/2009		Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	8/09/2006		Lab ID:	Freo				Sample Ty	pe:	Brine			
Date:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ima		
Comments:		•	•	-	-	•		_	•		40		
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	0.7400	1.0000	1.0000	0.9600	0.9410		1.0000	0.9720	0.8780	1.0000	0.8740		
1.5	0.5120	0.9420	0.5880	0.8400	0.4090		1.0000	0.4540	0.6660	0.4850	0.8460		
3.13	1.0000	1.0000	0.9450	0.3650	0.7050		0.5770	1.0000	1.0000	0.5030	0.6740		
6.25	0.3150	0.2720	0.3840	0.4940	0.2310		0.5130	0.4170	0.4790	0.5360	0.8590		
12.5	0.5930	0.5280	0.6130	0.6510	0.6590		0.4570	0.5490	0.4810	0.5650	0.5370		
25	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
50	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
100	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
				Trans	form: Arcsin Square Root				Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical		Resp	Numbe
Control	0.9365	1.0000	1.3638	1.0357	1.5208	01/0	12.365	10	oum	ontiour		64	100
*1.5	0.6742	0.7199	1.0005	0.6939	1.5208		27.982	10	69.00	76.00		325	100
3.13	0.7769	0.8296	1.1677	0.6487	1.5208		29.990	10	91.00	76.00		225	100
*6.25	0.4500	0.4805	0.7366	0.5014	1.1859		26.066	10	56.00	76.00		550	100
*12.5	0.5633	0.6015	0.8494	0.7423	0.9472		7.997	10	55.00	76.00		436	100
25	0.0000	0.0000	0.0500	0.0500	0.0500		0.000	10				1000	100
50	0.0000	0.0000	0.0500	0.0500	0.0500		0.000	10				1000	100
100	0.0000	0.0000	0.0500	0.0500	0.0500		0.000	10				1000	100
Auxiliary Tes	ts							Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indicat	tes norma	l distributior	n (p > 0.01)				0.98164		0.93		0.1943	-0.092
•	indicates un			<i>`</i>				19.8813		13.2767			

Hypothesis [•]	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many	-One Rank	Fest	<1.5	1.5								
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
									3.0E-			
Slope	3.81134	1.55081	-0.1751	7.79782		0.064	557.582	11.0705	118	1.04803	0.26237	26
Intercept	1.0056	1.82396	-3.683	5.69421								
TSCR	0.2218	0.08525	0.00264	0.44095			1.0 1				• •	
			95% Fidu	cial			0.9				1	
Point	Probits	%	Limits				-			/	1	
EC01	2.674	2.7394					0.8 -			{		
EC05	3.355	4.13488					0.7			/	1	
EC10	3.718	5.14972								1	1	
EC15	3.964	5.97168					g 0.s -				1	
EC20	4.158	6.71754					5		· • /			
EC25	4.326	7.43125					and and and and and and and and and and					
EC40	4.747	9.58426					2 0.4 ·		(•		l l	
EC50	5.000	11.1694					0.3 -				1	
EC60	5.253	13.0167						+			1	
EC75	5.674	16.788					0.2 -		/			
EC80	5.842	18.5717					0.1	•	/			
EC85	6.036	20.8913							/]	
EC90	6.282	24.2258					9.0 4	\rightarrow				
EC95	6.645	30.1716					1		10		109	
EC99	7.326	45.5413							Dose 9	h		
Significant be			0.055.4	(0)								

Significant heterogeneity detected (p = 2.95E-118)

Days To Hatch

						Giant Cuttlefish Days t Hatch	0	
Start Date:	8/06/2006		Test ID:	ENV06-128			Sample ID:	Brine RO
End Date: Sample	13/10/200	6	Lab ID:	Freo			Sample Type:	Brine
Date: Comments:			Protocol:	GEOTECH WI			Test Species:	Sepia apama
Conc-%	1	2	3	4	5			
Control	0.8440	0.7330	0.8990	0.9660	1.0000)		
1.5	0.4100	0.6440	0.5330	0.8330	0.6990)		
3.125	0.2430	0.6100	0.5440	1.0000	0.6110)		
6.25	0.2880	0.2990	0.4210	0.1210	0.5110)		
12.5	0.0000	0.0000	0.0000	0.0000	0.0000)		

					Transform: Arcsin Square Root					1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Мах	CV%		Ν	t-Stat	Critical	MSD	Resp	Number
Control	0.8884	1.0000	1.2692	1.0278	1.5208	15.0	076	5				56	500
*1.5	0.6238	0.7022	0.9169	0.6949	1.1498	18.7	' 94	5	2.336	2.230	0.3363	189	500
*3.125	0.6016	0.6772	0.9319	0.5155	1.5208	39.1	77	5	2.237	2.230	0.3363	200	500
*6.25	0.3280	0.3692	0.6006	0.3553	0.7964	27.7	75	5	4.434	2.230	0.3363	336	500
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.0	000	5				500	500

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution ($p > 0.01$)	0.95244	0.868	0.71537	1.7825
Bartlett's Test indicates equal variances (p = 0.33)	3.44931	11.3449		

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Te	st		<1.5	1.5			0.26638	0.29216	0.37295	0.05685	0.00423	3, 16
_					_	Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	5.47728	2.1573	-3.8048	14.7594		0.112	61.2547	5.99148	5.0E-14	0.73378	0.18257	50
Intercept	0.9809	1.78541	-6.7011	8.66291								
TSCR	0.26273	0.0752	-0.0608	0.5863			1.0 -		•	,		
			95% Fidu	cial			0.9				1	
Point	Probits	%	Limits				-		1		1	
EC01	2.674	2.03727					0.8 -		((
EC05	3.355	2.71313					0.7		1		1	
EC10	3.718	3.16082							1		1	
EC15	3.964	3.5039					g 0.6 -		T		1	
EC20	4.158	3.80294					906 90005 904		1			
EC25	4.326	4.07974					8		/			
EC40	4.747	4.86992					Z 0.4 -		1		ļ	
EC50	5.000	5.41721					0.3 -	• *	1		1	
EC60	5.253	6.02601						Ŧ	/		1	
EC75	5.674	7.19315					0.2	1	ļ.		1	
EC80	5.842	7.71672					0.1	/			1	
EC85	6.036	8.37529					-					
EC90	6.282	9.28435					0.0 4		40			
EC95	6.645	10.8163					1		10		100	
EC99	7.326	14.4046							Dose 9	5		
Significant he			p = 5.00E-14	4)								

Significant heterogeneity detected (p = 5.00E-14)

Length at Hatch

						Giant Cuttlefish L at Hatch	.ength					
Start Date:	8/06/2006		Test ID:	ENV06-128				Sample ID	:	BHP RO		
End Date: Sample	13/10/200	6	Lab ID:	Freo				Sample Ty	/pe:	Brine		
Date:			Protocol:	GEOTECH WI				Test Speci	es:	Sepia Apa	ama	
Comments:												
Conc-%	1	2	3	4	5	6		7	8	9	10	
Control	0.8730	0.9440	1.0000	0.8810	1.0000		0.9760	1.0000	0.9760	1.0000	0.9830	
1.5	0.8570	0.8650	0.9750	0.9750	0.8890		0.8180	0.9990	0.8810	0.9910	1.0000	
3.125	0.8810	0.8730	1.0000	0.8260	1.0000		0.8490	0.9990	0.8890	0.9750	0.9830	
6.25	0.8812	0.8655	0.9750	0.8812	0.8890		0.8960	0.8570	0.8260	0.9760	0.8570	
12.5	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	

					Transform: Arcsin Square Root				1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Мах	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
Control	0.9633	1.0000	1.4111	1.2064	1.5208	8.654	10				37	1000
1.5	0.9250	0.9602	1.3317	1.1301	1.5392	11.658	10	1.307	2.137	0.1297	74	1000
3.125	0.9275	0.9628	1.3401	1.1405	1.5392	12.001	10	1.169	2.137	0.1297	72	1000
*6.25	0.8904	0.9243	1.2440	1.1405	1.4153	7.555	10	2.751	2.137	0.1297	108	1000
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	10				1000	1000

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.92713	0.919	0.03866	-1.2968
Bartlett's Test indicates equal variances (p = 0.40)	2.92091	11.3449		

Geotechnical Services

Final ReportV6 November 2006

Hypothesis T	est (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Tes	t		3.125	6.25	4.41942	32	0.05617	0.05763	0.04684	0.01843	0.07161	3, 36
_					-	Maximum Likelihood- Probit						
Parameter	Value	SE		cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	20.6267	9.03327	2.92151	38.3319		0.037	5.06294	5.99148	0.08	0.8756	0.04848	50
Intercept	-13.061	7.19401	-27.161	1.03953								
TSCR	0.061	0.00437	0.05244	0.06956			1.0 -		11 [•]	1		
			95% Fidu	cial			0.9		1	1		
Point	Probits	%	Limits							/	1	
EC01	2.674	5.79183	3.61067	6.02823			0.8					
EC05	3.355	6.24964	5.94287	6.52873			0.7		1 /			
EC10	3.718	6.50831	6.33832	8.33072) /		I	
EC15	3.964	6.68885	6.45357	10.0729			G 0.6					
EC20	4.158	6.83591	6.53742	11.7303			906 900 904					
EC25	4.326	6.96465	6.60769	13.3732			5					
EC40	4.747	7.29989	6.78342	18.6198			2 0.4					
EC50	5.000	7.50929	6.88976	22.7272			0.3		1			
EC60	5.253	7.72469	6.99714	27.7433			-				1	
EC75	5.674	8.09652	7.17849	38.653			0.2					
EC80	5.842	8.249	7.25156	44.0913			0.1		/			
EC85	6.036	8.43036	7.33757	51.4039			-	· • 1	r			
EC90	6.282	8.66422	7.44711	62.3528			0.0				4000	
EC95	6.645	9.02283	7.61229	83.0158			1		10	100	1000	
EC99	7.326	9.73603	7.93164	142.023					Dose 9			

Width at Hatch

							Giant Cuttlefish Wid Hatch	lth at				
Start Date:	8/06/2006		Test ID:	ENV06-128					Sample ID:	:	BHP RO	
End Date:	27/10/200	6	Lab ID:	Freo					Sample Ty	pe:	Brine	
Sample Date: Comments:			Protocol:	Geotech Worl	< Instructions				Test Speci	es:	Sepia apa	ima
Conc-%	1	2	3	4	5		6		7	8	9	10
Control	0.8850	1.0000	0.9990	1.0000		1.0000	1.	.0000	1.0000	1.0000	1.0000	
1.5	0.8660	0.9990	1.0000	0.9990		0.9990	0.	.8080	1.0000	0.8750	0.9890	1.0000
3.13	0.8850	0.8750	0.9040	0.8470		0.9990	0.	.8750				
6.25	0.8650	0.8460	0.8850	0.8460		0.8370	0.	.8270	0.8850	0.8460		
12.5	0.0000	0.0000	0.0000	0.0000		0.0000	0.	.0000	0.0000	0.0000	0.0000	0.0000
25	0.0000	0.0000	0.0000	0.0000		0.0000	0.	.0000	0.0000	0.0000	0.0000	0.0000

					Transform: Arcsin Square Root				Rank	1- Tailed	Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		Ν	Sum	Critical	Resp	Number
Control	0.9871	1.0000	1.4899	1.2248	1.5392	6.	.685	9			12	900
1.5	0.9535	0.9660	1.4168	1.1172	1.5392	12.	.025	10	95.00	73.00	45	1000
3.13	0.8975	0.9092	1.2679	1.1689	1.5392	10.	.711	6	31.00	29.00	62	600
*6.25	0.8546	0.8658	1.1805	1.1418	1.2248	2.	.634	8	37.00	49.00	115	800
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.	.000	10			1000	1000
25	0.0000	0.0000	0.0500	0.0500	0.0500	0.	.000	10			1000	1000

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution ($p > 0.01$)	0.91007	0.906	-0.7707	1.45365
Bartlett's Test indicates unequal variances (p = 1.88E-03)	14.9278	11.3449		

Geotechnical Services

Final ReportV6 November 2006

Hypothesis T	est (1-tail,	0.05)	NOEC	LOEC	ChV	τυ						
Wilcoxon Ran	k Sum Test		3.13	6.25	4.42295	31.9489						
						Maximum Likelihood-						
						Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	17.1563	8.71189	-10.569	44.8815		0.01333	41.2608	7.81472	5.8E-09	0.87026	0.05829	50
Intercept	-9.9305	6.96793	-32.106	12.2446								
TSCR	0.0476	0.01579	-0.0027	0.09786			1.0 _T		, +	•		
			95% Fidu	cial			0.9				1	
Point	Probits	%	Limits				0.3		1		1	
EC01	2.674	5.42832					0.8 -		ļ		(
EC05	3.355	5.94823					07					
EC10	3.718	6.24545									1	
EC15	3.964	6.45433					g 0.6 -		1		1	
EC20	4.158	6.62531					5.41		1			
EC25	4.326	6.7756					5					
EC40	4.747	7.16961					906 90005 8005 804		ļ		ļ	
EC50	5.000	7.41758					0.3		1			
EC60	5.253	7.67413					-				1	
EC75	5.674	8.12039					0.2		{			
EC80	5.842	8.30459					0.1		÷.			
EC85	6.036	8.52459						• •)]	
EC90	6.282	8.80969					0.0		1.1.1.1.1.1.1			
EC95	6.645	9.24989					1		10		100	
EC99	7.326	10.1358							Dose %			
Significant her			0 - 5 76E-0	<u>a)</u>								

Significant heterogeneity detected (p = 5.76E-09)

Weight at Hatch

						Giant Cuttlefish Weight at Hatch					
Start Date:	8/06/2006		Test ID:	ENV06-128			Sample ID	D:	BHP RO		
End Date: Sample	13/10/2006	6	Lab ID:	Freo			Sample T	ype:	Brine		
Date:			Protocol:	GEOTECH WI			Test Spec	ies:	Sepia Apa	ama	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
Control	0.7140	0.9460	1.0000	0.9960	1.0000	0.8970	0.6650	1.0000	1.0000	1.0000	
1.5	0.6310	0.6810	0.9130	1.0000	0.7140	0.3820	1.0000	0.4980	1.0000	1.0000	
3.125	0.9300	0.8470	1.0000	0.9630	1.0000	0.6970	1.0000	0.7800	0.9460	0.3650	
6.25	0.6810	0.6640	0.3320	0.4650	0.4980	0.4150	0.5310	0.3650	0.8970	0.3320	
12.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

					Transform: Arcsin Square Root				1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
Control	0.9218	1.0000	1.3652	0.9535	1.5208	16.468	10				78	1000
1.5	0.7819	0.8482	1.1699	0.6663	1.5208	28.995	10	1.639	2.137	0.2546	219	1000
3.125	0.8528	0.9251	1.2467	0.6487	1.5208	22.548	10	0.994	2.137	0.2546	146	1000
*6.25	0.5180	0.5619	0.8094	0.6141	1.2441	24.493	10	4.664	2.137	0.2546	481	1000
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	10				1000	1000

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.96054	0.919	-0.3838	-0.5044
Bartlett's Test indicates equal variances (p = 0.40)	2.92873	11.3449		

Geotechnical Services

Final ReportV6 November 2006

Hypothesis 1	Fest (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Tes	st		3.125	6.25	4.41942	32	0.15556	0.16233	0.57343	0.07098	3.0E-04	3, 36
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	27.5939	2727626	-1E+07	1.2E+07		0.078	40.4511	5.99148	1.6E-09	0.8059	0.03624	38
Intercept	-17.238	2170863	-9E+06	9340459								
TSCR	0.14767	0.02913	0.02233	0.273			1.0 -		. •			
			95% Fidu	cial			0.9 -					
Point	Probits	%	Limits						Ì		1	
EC01	2.674	5.26737					0.8 -		ł		4	
EC05	3.355	5.57559					0.7		1			
EC10	3.718	5.74721)		1	
EC15	3.964	5.86597					9 0.6 -					
EC20	4.158	5.96211					5 0.5 E					
EC25	4.326	6.04584					9.05 5000.5 80.4		+			
EC40	4.747	6.26209					2 0.4 -				1	
EC50	5.000	6.39588					0.3 -		- (1	
EC60	5.253	6.53253										
EC75	5.674	6.76618					0.2	•			1	
EC80	5.842	6.86121					0.1	· .	1		1	
EC85	6.036	6.97365						-	/			
EC90	6.282	7.11776					0.0		10		100	
EC95	6.645	7.33685					1		10		100	
EC99	7.326	7.76617							Dose	1		
Significant he	terogeneity	detected (p	= 1.64E-09	9)								

Survival Post Hatch

						30 Day Post Hatch Survival			
Start Date:	8/06/2006		Test ID:	ENV06-128			Sample ID:	BHP	
End Date: Sample	27/10/200	6	Lab ID:	Freo			Sample Type:	RO Brine	
Date:			Protocol:	Geotech WI			Test Species:	Sepia apama	
Comments:	4	2	2	4	5				
Conc-%		2	ు	4	•				
Control	0.6667	0.6667	0.6667	1.0000	1.0000				
1.5	0.6667	1.0000	1.0000	1.0000	1.0000				
3.125	0.6667	0.3333	1.0000	0.0000	0.0000				
6.25	0.6667	1.0000	0.0000	0.0000	0.0000				
12.5	0.0000	0.0000	0.0000	0.0000	0.0000				
25	0.0000	0.0000	0.0000	0.0000	0.0000				

					Transform: Arcsin Square Root				1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Мах	CV%	Ν	t-Stat	Critical	MSD	Resp	Number
Control	0.8000	1.0000	1.0844	0.9553	1.2780	16.297	5				3	15
1.5	0.9333	1.1667	1.2134	0.9553	1.2780	11.891	5	-0.606	2.230	0.4746	1	15
3.125	0.4000	0.5000	0.6869	0.2928	1.2780	62.493	5	1.868	2.230	0.4746	9	15
6.25	0.3333	0.4167	0.6224	0.2928	1.2780	74.781	5	2.171	2.230	0.4746	10	15
12.5	0.0000	0.0000	0.2928	0.2928	0.2928	0.000	5				15	15
25	0.0000	0.0000	0.2928	0.2928	0.2928	0.000	5				15	15

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.01)	0.93243	0.868	0.60856	-0.2336
Bartlett's Test indicates equal variances (p = 0.08)	6.68741	11.3449		

Geotechnical Services

Final ReportV6 November 2006

Hypothesis 1	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Tes	st		6.25	12.5	8.83883	16	0.45349	0.58031	0.42453	0.11323	0.03257	3, 16
		_				Maximum Likelihood- Probit				_		
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	3.79623	1.14004	1.56176	6.0307		0.2	5.20634	7.81472	0.16	0.60816	0.26342	17
Intercept	2.69127	0.84767	1.02984	4.35271								
TSCR	0.14461	0.08002	-0.0122	0.30145			1.0 1			+ •		
			95% Fidu	cial			0.9					
Point	Probits	%	Limits							111	1	
EC01	2.674	0.98937	0.07717	1.99532			0.8 -			- 11 ((
EC05	3.355	1.49581	0.20738	2.63076			0.7			111	1	
EC10	3.718	1.86457	0.34969	3.06218						111	1	
EC15	3.964	2.16345	0.49602	3.40262			g 0.6 -			/ / /	ſ	
EC20	4.158	2.4348	0.65323	3.70921			906 90005 8005 804			/ .		
EC25	4.326	2.69457	0.82528	4.00383			3			11		
EC40	4.747	3.47878	1.46406	4.93187			204 -			- { {	ļ	
EC50	5.000	4.05661	2.02865	5.69627			0.3 -		1	11		
EC60	5.253	4.73042	2.74203	6.74457			-]]		
EC75	5.674	6.10712	4.15449	9.7275			0.2			}		
EC80	5.842	6.75868	4.73764	11.6328			0.1			1	1	
EC85	6.036	7.6064	5.41135	14.6212			-	-	/].	/		
EC90	6.282	8.82568	6.25393	19.9402			0.0 4		-1-1-1111111 🕈		400	
EC95	6.645	11.0014	7.53277	32.4933			0.9	N 0.1	9	10	100	
EC99	7.326	16.6329	10.2285	84.7822					Dose ?	ĥ		

Length at 30 Days Post Hatch

						30 Day Post Hatch Length						
Start Date:	8/06/2006	6	Test ID:	ENV06-128		Longth	Sample ID):	BHP RO			
End Date: Sample	27/10/200	06	Lab ID:	Freo			Sample Ty	/pe:	Brine			
Date: Comments:			Protocol:	Geotech WI			Test Spec	ies:	Sepia apa	ima		
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control	0.9200	1.0000	1.0000	1.0000	0.9350	0.9560	0.9270	1.0000	0.9350	1.0000		
Control	1.0000	0.9050	1.0000	0.9200	1.0000							
1.5	0.9350	0.8200	0.9350	0.9420	0.9350	0.9350	0.9490	1.0000	0.9060	1.0000		
1.5	1.0000	0.9280	1.0000	0.9200	0.9560							
3.125	1.0000	0.9200	0.8550	0.9780	0.9420	0.9350	0.9050	0.9420	0.9280	0.9280		
3.125	0.9420	0.9050	0.9420	0.9130	0.9436							
6.25	0.9058	0.8190	0.9200	0.9130	0.8260	0.8120	0.8910	0.8480	0.8770	0.8690		
6.25	0.8180	0.8990	0.8400	0.8620	0.8840							
12.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
12.5	0.0000	0.0000	0.0000	0.0000	0.0000							
					Transform: Arcsin Square Root				1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	Number
Control	0.9665	1.0000	1.4183	1.2575	1.5208	8.132					50	1500
1.5	0.9441	0.9768	1.3560	1.1326	1.5208	8.470	15	1.814	2.104	0.0723	81	1500
*3.125	0.9319	0.9642	1.3164	1.1801	1.5208	5.842	15	2.968	2.104	0.0723	103	1500
*6.25	0.8656	0.8956	1.1984	1.1223	1.2840	4.544	15	6.404	2.104	0.0723	201	1500
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	15				1500	1500

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates normal distribution (p > 0.01)	0.80987	1.035	0.15887	-0.3124
Bartlett's Test indicates equal variances (p = 0.03)	9.33507	11.3449		

Hypothesis 1	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Tes			1.5	3.125	2.16506	66.6667	0.02659	0.02722	0.12868	0.00884	4.0E-07	3, 56
_						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	22.6789	131.909	-544.88	590.239		0.03333	8.57406	5.99148	0.01	0.85596	0.04409	50
Intercept	-14.412	104.984	-466.12	437.299								
TSCR	0.052	0.00685	0.02251	0.08149			1.0		, •			
			95% Fidu	cial			0.9 -		1			
Point	Probits	%	Limits						}			
EC01	2.674	5.66743					0.8 -		Į.		(
EC05	3.355	6.07346					0.7		1		1	
EC10	3.718	6.30167)		1	
EC15	3.964	6.46046					9 D.6 -					
EC20	4.158	6.58952					asuodsay					
EC25	4.326	6.70229					8		1			
EC40	4.747	6.99508					æ 0.4 -				- I	
EC50	5.000	7.17735					0.3 -				(
EC60	5.253	7.36436					0.2					
EC75	5.674	7.68608					-					
EC80	5.842	7.81762					0.1 -		†		(
EC85	6.036	7.97378					0.0	+ +	1			
EC90	6.282	8.17471					1000 1		10		100	
EC95	6.645	8.48187								NF.	DADACI	
EC99	7.326	9.08953							Dose	2		

Width at 30 Days Post Hatch

					30 Day	Post Hato	h Width						
Start Date:	8/06/2006	6	Test ID:	ENV06-128				Sample ID	:	BHP RO			
End Date: Sample	27/10/200)6	Lab ID:	Freo				Sample Ty	pe:	Brine			
Date:			Protocol:	Geotech WI				Test Speci	es:	Sepia apa	ima		
Comments:		-	-		_			_	-	-			
Conc-%	1	2	3	4	5	6		7	8	9	10		
Control	0.9900	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	0.9900	1.0000		
Control	1.0000	0.7270	1.0000	0.9820	1.0000								
1.5	0.9640	0.8460	0.8640	0.9090	0.8820		0.9900	0.9900	1.0000	0.8730	1.0000		
1.5	0.9900	1.0000	1.0000	0.9180	0.9820								
3.125	0.9820	0.9550	0.8900	1.0000	1.0000		1.0000	0.8360	0.9730	0.9820	0.9550		
3.125	1.0000	0.9730	0.9900	0.9550	1.0000								
6.25	0.8550	0.8640	0.8730	0.8550	0.8550		0.8450	0.8550	0.8360	0.8360	0.8550		
6.25	0.8180	0.8450	0.8270	0.8550	0.8550								
12.5	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
12.5	0.0000	0.0000	0.0000	0.0000	0.0000								
				1	Transform: Arcsin Square Root				Rank	1- Tailed		Number	Total
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%		N	Sum	Critical		Resp	Number
Control	0.9793	1.0000	1.4751	1.0210	1.5208	• • • •	8,702	15	•••••			31	1500
*1.5	0.9472	0.9673	1.3762	1.1675	1.5208		10.014	15	175.50	182.00		80	1500
*3.125	0.9661	0.9865	1.4144	1.1539	1.5208		7.828	15	180.50	182.00		50	1500
*6.25	0.8486	0.8666	1.1715	1.1301	1.2064		1.690	15	135.00	182.00		226	1500
12.5	0.0000	0.0000	0.0500	0.0500	0.0500		0.000	15				1500	1500

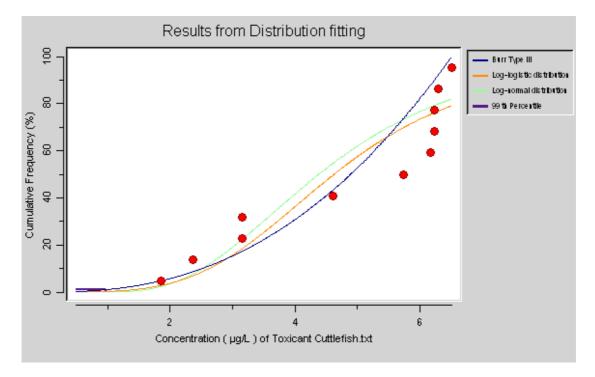
Auxiliary Tests	Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates non-normal distribution ($p \le 0.01$)	1.44699	1.035	-1.7549	4.84967
Bartlett's Test indicates unequal variances (p = 8.22E-08)	35.8096	11.3449		

Hypothesis	Test (1-tail,	0.05)	NOEC	LOEC	ChV	TU						
Steel's Many-One Rank Test		<1.5	1.5									
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	21.1395	80.5033	-325.24	367.517		0.02067	13.6606	5.99148	1.1E-03	0.85166	0.0473	50
Intercept	-13.004	64.0717	-288.68	262.675								
TSCR	0.03578	0.00724	0.00464	0.06691			1.0 -		, •			
			95% Fidu	cial			0.9		1			
Point	Probits	%	Limits						}		1	
EC01	2.674	5.5159					0.8 -		ļ		(
EC05	3.355	5.94093					0.7					
EC10	3.718	6.18073					1)		1	
EC15	3.964	6.34798					g 0.6 -		[1	
EC20	4.158	6.48412					5 os 1		ſ			
EC25	4.326	6.60324					asuodasa 90.05 90.05 90.4		1			
EC40	4.747	6.9132					204 -		ļ		ļ	
EC50	5.000	7.10663					0.3 -					
EC60	5.253	7.30547					-)			
EC75	5.674	7.64839					0.2		}			
EC80	5.842	7.78891					0.1		1		(
EC85	6.036	7.95595					-	• •	/			
EC90	6.282	8.17123					0.0 4		40		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
EC95	6.645	8.50106					1		10		100	
EC99	7.326	9.15611							Dose 9	5		
Significant he	eterogeneity	detected (p = 1.08E-0	3)								

Significant heterogeneity detected (p = 1.08E-03)

Weight at 30 Days Post Hatch

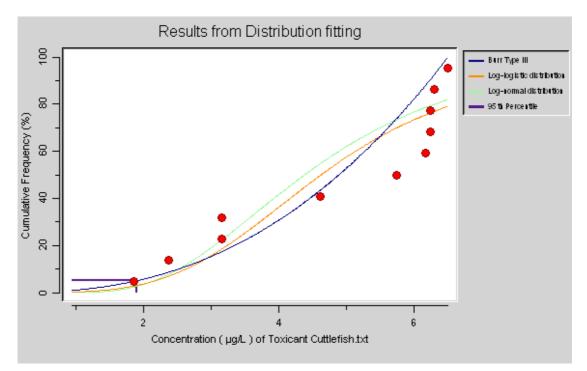
					:	30 Day Post Hatch Weight								
Start Date:	8/06/2006	/06/2006 Test ID:		ENV06-128 Sample ID:			BHP RO							
End Date: Sample	27/10/2006 Lab ID:		Freo		Sample Type:			Brine						
Date: Comments:			Protocol:	Geotech WI			Test Species:		Test Species: Sepia apama		Sepia apama			
Conc-%	1	2	3	4	5	6	7	8	9	10				
Control	0.9520	1.0000	1.0000	1.0000	0.8090	0.9520	0.9680	1.0000	0.9360	1.0000				
Control	1.0000	0.6350	0.8890	0.8250	1.0000									
1.5	0.9210	0.7620	0.8410	0.8090	1.0000	0.9680	0.9840	1.0000	0.8730	1.0000				
1.5	1.0000	0.9840	1.0000	0.9200	1.0000									
3.125	1.0000	0.9680	0.8250	0.9050	0.8730	0.9680	0.7940	0.9360	0.8890	0.8570				
3.125	0.9520	0.9050	0.9050	0.9365	0.9680									
6.25	0.8090	0.9680	0.9410	0.9050	0.7620	0.8090	0.7940	0.8090	0.8410	0.8250				
6.25	0.7780	0.8570	0.7930	0.7930	0.8250									
12.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000				
12.5	0.0000	0.0000	0.0000	0.0000	0.0000									
					Transform: Arcsin Square Root				1- Tailed		Number	Total		
Conc-%	Mean	N-Mean	Mean	Min	Мах	CV%	N	t-Stat	Critical	MSD	Resp	Number		
Control	0.9311	1.0000	1.3641	0.9221	1.5208	13.844	15				102	1500		
1.5	0.9375	1.0069	1.3680	1.0612	1.5208	12.222	15	-0.073	2.104	0.1119	95	1500		
3.125	0.9121	0.9796	1.2871	1.0997	1.5208	8.627	15	1.449	2.104	0.1119	131	1500		
*6.25	0.8339	0.8957	1.1593	1.0612	1.3909	8.122	15	3.853	2.104	0.1119	250	1500		
12.5	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	15				1500	1500		

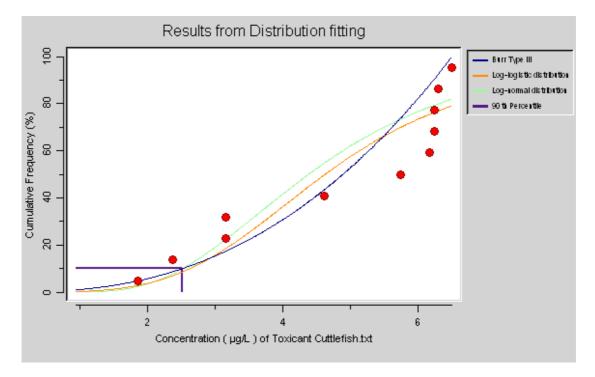

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Kolmogorov D Test indicates normal distribution (p > 0.01)	0.98763	1.035	-0.64	0.39723
Bartlett's Test indicates equal variances (p = 0.04)	8.39905	11.3449		

Hypothesis 1	Fest (1-tail.	0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Tes			3.125	6.25	4.41942	32	0.05598	0.05844	0.14296	0.0212	5.8E-04	3, 56
						Maximum Likelihood- Probit						
Parameter	Value	SE	95% Fidu	cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	Iter
Slope	17.6428	4.64575	-2.3463	37.6319		0.068	6.65806	5.99148	0.04	0.86815	0.05668	50
Intercept	-10.317	3.70739	-26.268	5.63506			1.0		· · · ·			
TSCR	0.07289	0.00707	0.04247	0.10331			0.9				1	
			95% Fidu	cial					j]	
Point	Probits	%	Limits				0.8 -		}			
EC01	2.674	5.44867					0.7		1			
EC05	3.355	5.9555)			
EC10	3.718	6.24468					80.6 -		J			
EC15	3.964	6.44768					906 90005 904					
EC20	4.158	6.61371					E C		ſ			
EC25	4.326	6.75956					204		}		ļ	
EC40	4.747	7.14149					0.3 -				1	
EC50	5.000	7.38157					4					
EC60	5.253	7.62972					0.2					
EC75	5.674	8.06082					0.1		+		(
EC80	5.842	8.23858					0.0		/			
EC85	6.036	8.45073					0.0 4		40	1 2 1 2	the second se	
EC90	6.282	8.72545					1		10		100	
EC95	6.645	9.14913							Dose %			
EC99	7.326	10.0002										

APPENDIX 2

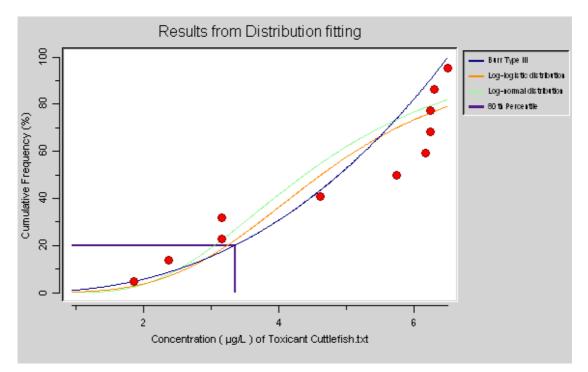
BURRLIOZ GRAPHS


Geotechnical Services


Graph 1. EC10 99% Protection Value for S. apama

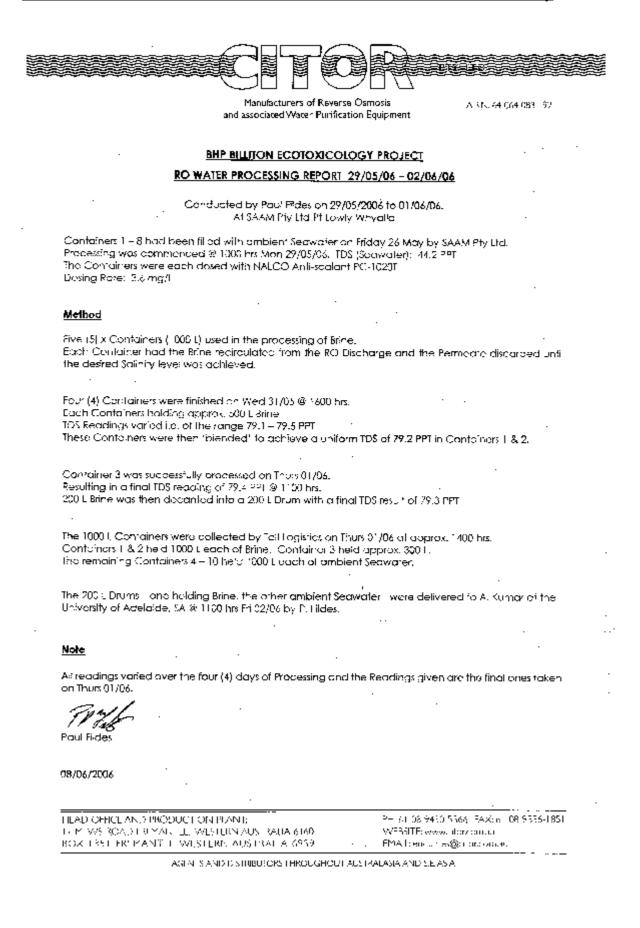
PC99 50% = 0.97 (501 Bootstrap Samples) Burr Type III distribution fitted to 11 observations

Graph 2. EC10 95% Protection Value for S. apama


PC95 50% = 1.89 (501 Bootstrap Samples) Burr Type III distribution fitted to 11 observations

Graph 3. EC10 90% Protection Value for S. apama

PC90 50% = 2.52 (501 Bootstrap Samples) Burr Type III distribution fitted to 11 observations


Graph 4. EC10 80% Protection Value for S. apama

PC80 50% = 3.35 (501 Bootstrap Samples) Burr Type III distribution fitted to 11 observations

APPENDIX 3

RO Water Processing Report

APPENDIX 010.4

The provision of reverse osmosis brine toxicity testing (report by Geotechnical Services, 2008)

See overleaf for report.

The Provision of Reverse Osmosis Brine Toxicity Testing

Prepared for

ARUP

Report ECX07-1805

Marine Toxicity Tests

18th August 2008

Prepared by

Dr Jill Woodworth

GEOTECHNICAL SERVICES PTY LTD

41-45 Fumace Road, Welshpool, Western Australia 6106 Telephone : (08) 9458 8877 Facsimile : (08) 9458 8857 Locked Bag 27, Welshpool DC, Western Australia 6986 ACN 050 543 194

Email: jill@geotechnical-services.com.au

Contents

Glossary	3
1. Executive Summary	4
2. Introduction	9
2.1 Selected WET Tests and Laboratory	9
2.2 Rationale of Selected WET Species	10
3. RO Brine and Diluent	13
4. Results	16
5. Species Protection Trigger Values	35
5.1 Introduction	35
5.2 Methodology	36
5.3 Results	36
5.4 Discussion	37
6. References	40
Appendix 1 Summary of Toxicity Test Methodologies	42
Appendix 2 Summary of Toxicity Test Data	52
Appendix 3 BurrliOZ Data	71

Glossary

EC50	Concentration that causes an effect on 50% of the population Eg. Growth: Concentration that results in 50% less growth when compared to controls Reproduction: Concentration that results in 50% less fecundity when compared to controls Germination: Concentration that results in 50% germination of zoospores Larval development: Concentration that results in 50% of larva deformed Calculated statistically
IC50	Concentration that causes an inhibition of growth of 50% when compared with controls (Unicellular alga bioassay) Calculated statistically
EC10 / IC10	Above except the result is a 10% impact on the test species
LOEC	Lowest Observed Effect Concentration
	Function of concentration tested
NOEC	No Observed Effect Concentration
	Function of concentration tested
‰ / ppt	Parts per thousand

1. Executive Summary

This report presents a study initiated by Arup/HLA on behalf of BHP Billiton to determine the toxicity of the reverse osmosis brine (RO brine) to be discharged into Spencer Gulf from a proposed desalination plant located at Point Lowly. The toxicity of the RO brine was assessed using species indigenous to, or representative of, the receiving ecosystem. The results from these toxicity tests were then used to determine the species protection values for the RO brine in Spencer Gulf.

The toxicity of the RO brine was assessed using the following tests some of which are NATA accredited (N) which are shown in Table 1.1. Selected results were used to calculate the species protection trigger values.

Category	Species	Test End Point	Exposure
Bacteria			
Microtox (N)	Vibrio fischeri	Growth	15 minutes
Microalgal (N)	Isochrysis		
	galbana	Growth inhibition	72 hours
Macroalgal			
Brown kelp(N)	Ecklonia radiata	Germination	72 hours
Mollusc	Crassostrea	Larval	
Pacific oyster	gigas	development	48 hours
Crustacean	Gladioferens		
Copepod (N)	imparipes	Reproduction	2 day pulse
Western king	Melicertus		
prawn	latisulcatus	Growth	21 days
(juvenile)			
Western king	Melicertus		
prawn (adult)	latisulcatus	Growth	28 days
Fish	Argyrosomus		
Mulloway	japonicus	Larval growth	7 days
Pink snapper	Pagrus auratus	Larval growth	7 days
(N)			
Yellowtail			
kingfish	Seriola lalandi	Larval growth	7 days
Cephalopod	Sepia apama	Embryo	4 months
		development	
Australian giant			
cuttlefish	Sepia apama	Days to hatch	4 months
	Sepia apama	Length at hatch	4 months
	Sepia apama	Weight at hatch	4 months
	Sepia apama	Width at hatch	4 months
	Sepia apama	Survival post hatch	5 months

Table 1.1 Tests Performed

Category	Species	Test End Point	Exposure
		Length post	5 months
	Sepia apama	hatch	
		Weight post	5 months
	Sepia apama	hatch	
	Sepia apama	Width post hatch	5 months

The EC/IC50, EC/IC10, NOEC and LOEC values for each test were calculated using the Toxcalc (Tidepool Scientific) statistics program and the results from the RO brine are summarised in Tables 1.2 and 1.3.

All toxicity tests, with the exception of the Pacific oyster, were undertaken at Geotechnical Services' (Geotech) Ecotoxicology Laboratory at Fremantle using filtered seawater obtained from Spencer Gulf as the dilution water (SA Control). The Pacific oyster test was performed by Ecotox Services in Sydney using RO brine and filtered Spencer Gulf seawater as the diluent as supplied by Geotech.

The yellowtail kingfish larvae were tested using filtered Rottnest Island seawater as the diluent due to poor quality eggs and salinity effects of the SA control in the first test. In the first test yellowtail kingfish eggs were transported from South Australia to Fremantle in 35 ppt salinity seawater. Upon hatch they were placed in the SA control seawater at 40 ppt and were unable to acclimatise to the higher salinity. This resulted in high mortality in the controls, thus confounding the test and rendering the test unable to meet its quality criteria. A second test was performed using control seawater of a similar salinity to that of the seawater that the yellowtail kingfish eggs were transported in.

Test	EC/IC50 %	EC/IC10 %	LOEC %	NOEC %
15 Minute Microtox	81 - >100	-	-	-
72 Hour Algal	>84.4	>84.4	>84.4	84.4
72 Hour Macroalgal	59.1	27.6	50.6	25.3
48 Hour Oyster	4.2	3.3	6.3	3.2
Copepod Reproduction 2 Day Pulse	14.1	10.9	21.1	10.5
21 Day Juvenile Prawn	75.5	53.9	101.3	50.6

Table 1.2 Summary of Toxicity Values for RO Brine

Table 1.2 cont Test	EC/IC50 %	EC/IC10 %	LOEC %	NOEC %
28 Day Adult Prawn	21.4	11.8	25.3	12.7
7 Day Larval Mulloway	15.8	11.6	1.6	<1.6
7 Day Larval Snapper	30.1	22.2	25.3	12.7
7 Day Larval Kingfish	16.4	11.1	6.3	3.2

Table 1.3 Cuttlefish Toxicity Results

End Point	2006 EC50 %	2006 EC10 %	2007 EC50 %	2007 EC10 %
Embryo Development	5.81	2.37	9.11	6.38
Days to Hatch	5.42	3.16	8.36	6.39
Length at Hatch	7.51	6.51	8.81	6.3*
Weight at Hatch	6.40	5.74	8.67	6.3*
Width at Hatch	7.42	6.24	8.94	6.3*
Length 30 Days Post Hatch	7.18	6.30	8.52	6.3*
Weight 30 Days Post Hatch	7.38	6.24	8.25	6.3*
Width 30 Days Post Hatch	7.10	6.18	8.25	6.3*
Survival Post Hatch	4.06	1.86	8.68	6.3*

* Toxcalc does not include the EC10 values when using the Trimmed Spearman-Karber non-parametric analysis. The NOEC value is used to replace the EC10 value.

The toxicity of the RO brine may have been masked in the microalgal test (Table 1.2) due to constituents acting as nutrients.

Table 1.4 shows all the concentrations that were used in each test for the WET tests. Concentrations vary due to different methodologies, small test volumes and the addition of food to several of the tests

Geotech has used a pulse exposure for the copepod reproduction assay which takes into account the fact that copepods are planktonic species that will drift through the plume in a short period.

The concentrations of RO brine used in the tests were calculated on the proposed salinity of 78 ppt. The salinity of the RO brine used in the tests was measured at 79 ppt. Therefore, the test concentrations were recalculated to concentrations equivalent to a brine salinity of 78 ppt where 79 ppt = 101.3% RO brine.

Test	Conc 1 %	Conc 2 %	Conc 3 %	Conc 4 %	Conc 5 %	Conc 6 %	Conc 7 %	Conc 8 %	Conc 9 %
Microtox	6.3	12.7	25.3	50.6	101.3				
Micro- algae	0.33	0.65	1.3	2.6	5.2	10.5	21.1	42.2	84.4
Macro- algae	0.79	1.6	3.2	6.3	12.7	25.3	50.6	101.3	
Oyster	0.79	1.6	6.3	12.7	25.3	50.6			
Copepod	0.7	1.3	2.6	5.25	10.5	21.1	42.2		
Fish	0.79	1.6	3.2	6.3	12.7	25.3	50.6	101.3	
Prawns	0.79	1.6	3.2	6.3	12.7	25.3	50.6	101.3	
Cuttle- fish	0.4	0.79	1.6	3.2	6.3	12.7	25.3	50.6	101.3

Table 1.4 Concentrations of RO Brine Tested

Protection Values

The EC10 results in Table 1.5 were used in the BurrliOZ statistics program (Campbell *et al.* 2000) to calculate the protection values at 99%, 95%, 90% and 80% species protection.

Test	EC/IC10 %	Test	EC/IC10 %
Microalgal		Kingfish	
	>84.4		11.1
Macroalgal		Mulloway	
	27.6		11.6
Oyster	3.3	Cuttlefish Post Hatch Survival	3.7*
Copepod		Adult	
2 Day Pulse	10.9	Prawn	11.8
Larval Snapper	22.2		

Table 1.5 EC10 Results Used to Calculate Species Protection Trigger Values

*Lowest geometric mean of 2006 and 2007 cuttlefish tests with adjustment factor of 2 to account for the toxicity being determined in 45 ppt diluent.

Table 1.6BurrliOZSpeciesProtectionTriggerValues

Protection Level	Protection Value % Brine	Dilution
99	1.76	57
95	3.13	32
90	4.20	24
80	5.96	17

Table 1.6 shows that a dilution factor of 57 is required to meet the 99% species protection level. The dilution factor calculated for the 99% species protection level using the EC10 values will theoretically result in only 1% of the exposed species showing a 10% reduction in growth or reproduction if those levels are exceeded outside the mixing zone.

2. Introduction

Geotechnical Services were requested by ARUP/HLA to study the environmental impacts of the RO brine produced by the proposed BHP Billiton desalination plant to be located at Point Lowly in Spencer Gulf. The aim of this project was to determine species protection trigger values for the site based on testing of indigenous species, or species representative of, the receiving temperate marine ecosystem.

As part of the proposed BHP Billiton Olympic Dam mine expansion, a desalination plant located at Point Lowly, 20 km north of Whyalla is planned in order to provide 120 ML per day of fresh water for the mine expansion and possibly also water for Eyre Peninsula communities currently reliant on Murray River and ground water. A discharge of 196 ML per day of concentrated seawater up to 78 ppt is proposed.

2.1 Selected WET Tests and Laboratory

All WET tests were performed at Geotechnical Services' (Geotech) Fremantle Ecotoxicology Laboratory with the exception of the Pacific oyster test which was performed by Ecotox Services based in Sydney. Most of the bioassays performed by Geotech are NATA accredited (N). As Geotech works to a Quality Management System and is a private company all protocols are commercial-in-confidence and are controlled documents, which precludes publication in a public document. However, summaries of the protocols have been included in this document in Appendix 1.

The toxicity of the RO brine was assessed using the following tests, listed in Table 2.1.

Category	Species	Test End Point	Exposure	
Bacteria				
Microtox (N)	Vibrio fischeri	Growth	15 minutes	
Microalgal (N)	Isochrysis galbana	Growth inhibition	72 hours	
Macroalgal				
Brown kelp(N)	Ecklonia radiata	Germination	72 hours	
Mollusc	Crassostrea	Larval		
Pacific oyster	gigas	development	48 hours	
Crustacean	Gladioferens			
Copepod (N)	imparipes	Reproduction	2 day pulse	
Western king	Melicertus			
prawn	latisulcatus	Growth	21 days	
(juvenile)				
Western king	Melicertus			
prawn (adult)	latisulcatus	Growth	28 days	

Table 2.1 Tests Performed

Category	Species	Test End Point	Exposure
Fish	Argyrosomus		
Mulloway	japonicus	Larval growth	7 days
Pink snapper			
(N)	Pagrus auratus	Larval growth	7 days
Yellowtail			
kingfish	Seriola lalandi	Larval growth	7 days
Cephalopod		Embryo	
	Sepia apama	development	4 months
Australian giant		Days to hatch	
cuttlefish	Sepia apama		4 months
	Sepia apama	Length at hatch	4 months
	Sepia apama	Weight at hatch	4 months
	Sepia apama	Width at hatch	4 months
		Length post	5 months
	Sepia apama	hatch	
		Weight post	5 months
	Sepia apama	hatch	
		Width post	5 months
	Sepia apama	hatch	
		Survival	
	Sepia apama	post hatch	5 months

2.2 Rationale of Selected WET tests

The use of living test organisms is the only reliable way to measure the potential biological impacts of a sample. For maximum relevance to the receiving ecosystem, the organisms selected for WET testing must be relevant to or indigenous to the receiving ecosystem or appropriate surrogates following ANZECC and ARMCANZ (2000). Geotech only performs chronic WET tests for calculating species protection trigger levels. Summaries of the following tests are located in Appendix 1.

2.2.1 Microtox

The 15 minute Microtox test is used by Geotech as a range finding test to ensure that the concentrations selected for the chronic bioassays will bracket the EC50. In this case it was used to establish the variability between batches and the stability of the RO brine. The marine bacteria *Vibrio fischeri* is a ubiquitous bacteria, found in marine ecosystems throughout the world. *V. fischeri* displays a high sensitivity to a broad range of chemicals and is used throughout the world for determining toxicity of water, soil and sediment samples.

2.2.2 Microalgae

Unicellular algae form the base of the food chain in the marine system. These algae are primary producers in the marine system and provide food for larval, juvenile and adult crustaceans and molluscs. The marine microalgal species *lsochrysis galbana* was selected as the microalgal species to assess the toxicity of the RO Brine. *lsochrysis* spp. has been commonly used in toxicity tests throughout Australia for the past 15 years and, therefore, a large amount of information is available (Evans *et al.* 2000).

2.2.3 Macroalgae

The marine macroalga *Ecklonia radiata* provides both food and habitat for a range of other organisms in near-shore coastal areas. *E. radiata* is common along the temperate southern Australian coast. Toxicity tests using *E. radiata* have been performed on marine discharges throughout temperate Australia for over 10 years (Bidwell *et al.* 1998, Burridge *et al.* 1999).

2.2.4 Copepod

Copepods are a major part of the marine food chain as they represent a first order consumer and they, in turn, provide food for larval fish and crustaceans. The estuarine copepod *Gladioferens imparipes* was selected to represent copepod species in the marine environment as it has been cultured in the laboratory for over 35 years and has been shown to reproduce successfully at salinities up to 60 ppt after acclimation (Rippingale and Hodgkin 1974). *G. imparipes* is common in estuaries throughout south-west Western Australia (Rippingale and Hodgkin 1974). Toxicity testing has been performed on this species for the last 15 years, therefore, a large amount of information is available (Evans *et al.* 2000).

As marine copepods are normally in the surface water and moved by the currents the amount of exposure that they will get to a RO brine plume will be minimal. The reproduction test is a worst case scenario where the copepods are exposed for the duration of their life. A pulse exposure test provides a more environmentally realistic representation of exposure risk to planktonic copepod species.

2.2.4 Oyster

The Pacific oyster, *Crassostrea gigas*, is a first order consumer, filtering bacteria, microalgae and other small particles from the water column. *C. gigas* is found in temperate waters throughout the world and Australia. *C. gigas* has been used in toxicity tests throughout the world since 1980 and methodology follows the ASTM E724-98 (ASTM 1998).

2.2.6 Larval Fish

The pink snapper, *Pagrus auratus*, yellowtail kingfish, *Seriola lalandi,* mulloway, *Argyrosomus japonicus*, are temperate marine fish commonly found associated with reefs throughout temperate and subtropical Australia. These fish species are commonly found in sheltered waters where they spawn in spring when the larvae and juveniles find appropriate habitat and food within the seagrass beds. Methodology for the larval fish growth tests

follows that of USEPA Method 1004.0 Sheepshead Minnow Larval Survival and Growth Test (USEPA. 2003b).

2.2.7 Western King Prawn

The western king prawn, *Melicertus latisulcatus,* is present along the west, south and east coasts of Australia, from Cape Leeuwin in Western Australia to Ballina in northern New South Wales. They also inhabit the gulfs and associated waters in South Australia west to Ceduna. There has been no sampling to determine if the distribution is continuous across the Great Australian Bight. Populations of western king prawns tend to occur in concentrated pockets which are often associated with hypersaline waters or marine embayments such as Shark Bay, Exmouth Gulf, the Gulf of Carpentaria, Gulf St Vincent and Spencer Gulf.

Juvenile and adult western king prawns have not previously been used in toxicity tests. The test methodology for this project was based on work performed by Sang and Fotedar (2004).

2.2.8 Australian Giant Cuttlefish

The Australian Giant Cuttlefish, *Sepia apama,* aggregates annually for breeding in the Point Lowly area and has become a major tourist attraction in South Australia, being visited by divers from all over world.

Testing was performed in 2006 to determine impacts on embryo development of the giant cuttlefish and the methodology developed by Geotech in 2006 was used for testing in 2007. This methodology is described in detail in Geotech's 2006 report "Effects of RO Brine on the Development of Giant Cuttlefish (*Sepia apama*) embryos Report ENV06-128".

This study was instigated to determine the potential impacts of the prototype desalination plant effluent (RO brine) on the local marine ecosystem, including the Australian giant cuttlefish, and to derive species protection trigger values for the discharge site.

3. RO Brine and Point Lowly Diluent

The RO brine and Point Lowly seawater were delivered to Geotech's Welshpool Laboratory on 5th June 2007. The RO brine was processed on site with 3.6 mg/l of NALCO PC-1020T antiscalant added to the seawater prior to processing which concentrated the antiscalant to 7.0 ppm. Salinity, temperature and pH were tested on arrival at the laboratory prior to testing. Sample details are given in Table 3.1. Both the RO brine and diluent seawater were transported in 1000 litre containers in a refrigerated truck at 4°C from South Australia to Perth, Western Australia. The RO brine and seawater were refrigerated at 4°C until use. Prior to use in the bioassays the seawater was filtered to 0.45 micron in 100 – 150 L batches as required and transported to Geotech's Fremantle Ecotoxicology Laboratory in 25 L HDPE containers. The RO brine sample was tested as received. Rottnest Island seawater was used in the yellowtail kingfish larval growth assay. The physicochemical data for the RO brine tests are shown in Table 3.3.

Contact Company	ARUP	
Contact Person	David Wiltshire	
Contact Phone	08 8104 8310	
Contact Address	Level 2 431 – 439 King William St Adelaide SA 5000	
Number of Samples	1	
Sample Type	RO brine and Point Lowly seawater	
Date Sampled	31 May 2007	
Location Collected	Point Lowly, South Australia	
Sampled by	Paul Fields	
Sample pH	Brine 8.04 Seawater 7.62	
Sample Salinity	Brine 79.2 ppt Seawater 39.9 ppt	
Transport Conditions	Transported at 4°C	
Date of Arrival at Geotech	5 th June 2007	
Time of Arrival at Geotech	3 pm	

Sample Temp on Arrival	4°C
Sample Received by	Ken Traynor
Tests Requested	Microtox Algal Growth Macroalgal Germination Mollusc Larval Development Copepod Reproduction Bioassay Larval Fish Growth Prawn Growth (Adult and Juvenile)
	Sardine Larval Growth Crab Larval Growth Cuttlefish Tests

Note: Crab and sardine larval growth tests were not performed due to mortalities of adult sardines and crab larvae.

Table 3.2 Rottnest Island Diluent

Concentration 78 ppt RO Brine %	DO ppm	Salinity ppt	рН
0	6.0	35.2	8.22
0.79	6.1	35.2	8.20
1.6	6.0	35.2	8.19
3.2	5.9	36.7	8.19
6.3	5.8	38.1	8.18
12.7	5.8	40.0	8.09
25.3	5.7	44.8	8.05
50.6	5.7	56.3	8.06
101.3	5.6	78.9	8.04

Table 3.3 Physicochemical Parameters for RO Brine Testing (n = 15)

Concentration 78 ppt RO Brine %	DO ppm	Salinity ppt	рН
0	5.8 ± 1.1	40.2 ± 0.8	8.07 ± 0.23
0.40	5.8 ± 1.1	40.8 ± 1.1	8.07 ± 0.24
0.79	5.8 ± 1.1	41.3 ± 1.0	8.06 ± 0.23
1.6	5.8 ± 1.1	41.8 ± 0.9	8.08 ± 0.21
3.2	5.8 ± 1.1	42.3 ± 0.9	8.08 ± 0.23
6.3	5.7 ± 1.2	43.5 ± 0.8	8.09 ± 0.21
12.7	5.0 ± 0.6	46.5 ± 1.2	8.09 ± 0.26
25.3	4.7 ± 0.6	52.1 ± 1.6	7.99 ± 0.33
50.6	4.3 ± 0.6	62.6 ± 1.8	8.01 ± 0.35
101.3	3.2 ± 0.1	79.2 ± 1.3	8.04 ± 0.20

The concentrations of RO brine used in the toxicity tests and calculations were based on the proposed salinity of 78 ppt. The salinity of the RO brine used in the tests was measured at 79 ppt. Therefore, the test concentrations were recalculated to concentrations equivalent to a brine salinity of 78 ppt where 79 ppt = 101.3% RO brine.

The RO brine was tested with Microtox on arrival and at 30 day intervals to determine the stability of the brine. A second batch of RO brine was produced on the 28th August 2007 by Citor. This was also tested with Microtox to monitor the toxicity over the duration of the tests. The Microtox results are shown in Table 3.4.

Date	Day	EC50
		%
13/06/07	Day 7 Batch 1	>100
12/07/07	Day 30 Batch 1	>100
16/08/07	Day 60 Batch 1	> 100
30/08/07	Day 1 Batch 2	83
06/09/07	Day 7 Batch 2	81
28/09/07	Day 30 Batch 2	81

Table 3.4 Microtox Results for RO Brine

The Microtox results in Table 3.4 showed that the toxicity of the RO brine from Batch 1 was stable until day 60. Batch 2 of the RO brine also showed stability over the testing period.

4. Results

The results for all the toxicity tests on the RO brine follow in this section and all raw data are shown in Appendix 2.

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 11 October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 19/06/07
Attn: David Wiltshire	Date Received: 19/06/07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 19/06/07
Mobile:	Test Finished: 22/06/07
Order No.: Contract	Test Temperature: 20.0 ± 1.0°C

Test Performed	Microalgal
Test Protocol	WIENV-45
Reference	Stauber et al. 1994
Test Species	Isochrysis galbana
Deviations from Protocol	Nil

Algal Test Results

Concentration	% Growth of Control
%	n = 4
SA Control	99.9 ± 6.0
0.33	101.0 ± 11.1
0.65	111.4 ± 5.8
1.3	123.5 ± 8.3
2.6	128.9 ± 12.4
5.2	150.7 ± 5.8
10.5	109.3 ± 7.3
21.1	112.5 ± 9.9
42.2	113.9 ± 10.9
84.4	109.9 ± 8.9

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	>84.4	>84.4	>84.4	84.4

Results apply to the sample in the condition as received by Geotech

Quality Assurance Limits for the Algal Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Copper	38.6 ppb	32.4 – 113 ppb	27.7 %

Authorised Signatory: Dr Jill Woodworth	^
filland	NATA
ິງ Laboratory Manager	$\mathbf{\vee}$

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 11th October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07/07
Attn: David Wiltshire	Date Received: 06/07/07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 06/07/07
Mobile:	Test Finished: 09/07/07
Order No.: Contract	Test Temperature: 20.0 ± 1.0°C

Test Performed	Macroalgal Germination
Test Protocol	WIENV-67
Reference	Burridge et al. 1999
Test Species	Ecklonia Radiata
Deviations from Protocol	Nil

Macroalgal Test Results

Concentration Tested	% Germination
%	n = 90
SA Control	92.2 ± 3.8
0.79	96.7 ± 5.8
1.6	90.0 ± 3.3
3.2	92.2 ± 5.1
6.3	88.8 ± 7.7
12.7	85.6 ± 8.4
25.3	90.0 ± 3.3
50.6	56.7 ± 3.4
101.3	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	59.1	27.6	50.6	25.3

Results apply to the sample in the condition as received by Geotech

Quality Assurance Limits for the Macroalgal Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Copper	202.6 ppb	44.6 – 205.2 ppb	32.1%

Authorised Signatory: Dr Jill Woodworth	^
follog d	NATA
J Laboratory Manager	ACCREDITED FOR
	TECHNICAL

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 12th October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 13 th June 2007
Attn: David Wiltshire	Date Received: 14 th June 2007
Level 2	Sampled By: D. Bourke
31 – 39 King William St	pH: 7.9 – 8.1
Adelaide SA 5000	Salinity: 39.9 -79
Phone No. 08 8104 8310	Test Started: 16 th June 2007
Mobile:	Test Finished: 19 th June 2007
Order No.: Contract	Test Temperature: 25°C

Test Performed	Pacific Oyster Larval Development
Test Protocol	ESA SOP 106
Reference	APHA (1998)
Test Species	Crassostrea gigas
Deviations from Protocol	Nil

Mussel Test Results

Concentration Tested	% Normal		
%	n = 120		
Laboratory Control	68.1 ± 7.7		
SA Control	67.0 ± 8.7		
0.79	68.1 ± 3.4		
1.6	65.9 ± 5.0		
3.2	61.4 ± 17.0		
6.3	0.0 ± 0.0		
12.7	0.0 ± 0.0		
25.3	0.0 ± 0.0		
50.6	0.0 ± 0.0		

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	4.22	3.27	6.3	3.2

Results apply to the sample in the condition as received by ESA

Quality Assurance Limits for the Mussel Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Copper	17.8 ppb	13.9 – 24.6 ppb	Not Stated

Authorised Signatory: Dr Jill Woodworth	
files	
Laboratory Manager	

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 11 October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 10/08/07
Attn: David Wiltshire	Date Received: 10/08/07
Level 2,	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 10/08/07
Mobile:	Test Finished: 08/09/07
Order No.: Contract	Test Temperature: 20.0 ± 1.0°C

Test Performed	Copepod Reproduction	
Test Protocol	WIENV-62	
Reference	USEPA 1002.0 Cladoceran 7 Day Reproduction Test	
Test Species	Gladioferens imparipes	
Deviations from Protocol	2 day pulse exposure	

Copepod Reproduction Test Results

Concentration Tested	Av. Neonates / female	Av. Production
%	n = 4	%
SA Control	42.2 ± 9.2	100 ± 21.8
0.7	55.7 ± 31.2	131.9 ± 73.9
1.3	40.5 ± 31.8	95.8 ± 75
2.6	44.0 ± 32.5	86.3 ± 95.4
5.25	36.5 ± 40.3	86.4 ± 95.4
10.5	37.5 ± 23.3	88.9 ± 55.0
21.1	0.0 ± 0.0	0.0 ± 0.0
42.2	0.0 ± 0.0	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	14.1	10.9	21.1	10.5

Results apply to the sample in the condition as received by Geotech

Quality Assurance Limits for the Copepod Reproduction Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Chromium	285 ppb	113 – 325 ppb	24%

Authorised Signatory: Dr Jill Woodworth	~
fillas d	NATA
J Laboratory Manager	\sim

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 16th October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 31 st July 2007
Attn: David Wiltshire	Date Received: 31 st July 2007
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 31 st July 2007
Mobile:	Test Finished: 7 th August 2007
Order No.: Contract	Test Temperature: 21.0 ± 1.0 °C

Test Performed	Fish Larval Growth
Test Protocol	WIENV-64
Reference	USEPA 1004.0 Larval Fish Growth Test
Test Species	Pagrus auratus
Deviations from Protocol	Nil

Larval Fish Test Results

		0/ 0
Concentration Tested	Av. Length (mm)	% Growth
%	n=30	n = 30
Initial	2.24 ± 0.07	
SA Control	3.24 ± 0.16	100.0 ± 15.7
0.79	3.17 ± 0.10	93.3 ± 10.5
1.6	3.21 ± 0.14	97.0 ± 14.2
3.2	3.24 ± 0.17	100.0 ± 16.9
6.3	3.25 ± 0.09	101.0 ± 9.0
12.7	3.18 ± 0.22	94.3 ± 22.1
25.3	2.98 ± 0.06	74.0 ± 5.5
50.6	0.0 ± 0.0	0.0 ± 0.0
101.3	0.0 ± 0.0	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	30.1	22.2	25.3	12.7

Results apply to the sample in the condition as received by Geotech

Quality Assurance Limits for the Larval Fish Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Chromium	3.37 ppm	2.29 – 3.77 ppm	12.1

Authorised Signatory: Dr Jill Woodworth	^
ftlast	NATA
Laboratory Manager	
	ACCREDITED FOR TECHNICAL COMPETENCE

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 18th December 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 13 th November 2007
Attn: David Wiltshire	Date Received: 13 th November 2007
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 35.2 – 79
Phone No. 08 8104 8310	Test Started: 13 th November 2007
Mobile:	Test Finished: 21 st November 2007
Order No.: Contract	Test Temperature: 21.0 ± 1.0°C

Test Performed	Fish Larval Growth	
Test Protocol	WIENV-64	
Reference	USEPA 1004.0 Larval Fish Growth Test	
Test Species	Yellowtail Kingfish	
Deviations from Protocol	Rottnest Island Seawater Diluent	

Larval Fish Test Results

Concentration Tested	Av. Length	% Growth
%	mm	n = 30
Initial	3.93 ± 0.09	
RI Control	4.45 ± 0.07	100 ± 12.7
0.79	4.31 ± 0.12	73.6 ± 22.6
1.6	4.31 ± 0.05	74.1 ± 8.9
3.2	4.32 ± 0.16	76.6 ± 29.9
6.3	4.25 ± 0.04	62.4 ± 8.6
12.7	4.25 ± 0.04	61.1 ± 6.7
25.3	3.89 ± 0.11	-6.5 ± 22.3
50.6	0.0 ± 0.0	0.0 ± 0.0
101.3	0.0 ± 0.0	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	16.4	11.1	6.3	3.2

Results apply to the sample in the condition as received by Geotech

Quality Assurance Limits for the Larval Fish Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Chromium	3.9ppm	2.3 – 3.9 ppm	13.0%

Authorised Signatory: Dr Jill Woodworth	
files	
Laboratory Manager	

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 12th October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 27 th October 2007
Attn: David Wiltshire	Date Received: 27 th October 2007
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 27 th October 2007
Mobile:	Test Finished: 3 rd November 2007
Order No.: Contract	Test Temperature: 21.0 ± 1.0°C

Test Performed	Fish Larval Growth
Test Protocol	WIENV-64
Reference	USEPA 1004.0 Larval Fish Growth Test
Test Species	Mulloway
Deviations from Protocol	Nil

Larval Fish Test Results

Concentration Tested	Av. Length	% Growth
%	mm	n = 30
Initial	2.34 ± 0.03	
SA Control	2.79 ± 0.08	101.5 ± 19.6
0.79	2.58 ± 0.04	52.4 ± 10.4
1.6	2.69 ± 0.04	77.6 ± 9.0
3.2	2.64 ± 0.04	67.9 ± 8.3
6.3	2.66 ± 0.03	71.8 ± 6.3
12.7	2.62 ± 0.05	63.5 ± 12.5
25.3	0.0 ± 0.0	0.0 ± 0.0
50.6	0.0 ± 0.0	0.0 ± 0.0
101.3	0.0 ± 0.0	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	15.8	11.6	1.6	<1.6

Results apply to the sample in the condition as received by Geotech

Quality Assurance Limits for the Larval Fish Toxicity Test.

	EC50	Cusum Chart Limits	Coefficient of Variation
Chromium	2.9 ppm	2.29 – 3.77 ppm	12.1%

Authorised Signatory: Dr Jill Woodworth	
files I	
Laboratory Manager	

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 16th October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 22 June 2007
Attn: David Wiltshire	Date Received: 22 June 2007
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 22 June 2007
Mobile:	Test Finished: 13 July 2007
Order No.: Contract	Test Temperature: 17.0 ± 1.0 °C

Test Performed	Juvenile Prawn Growth
Test Protocol	Appendix 1
Reference	Sang and Fotedar 2004
Test Species	Western King Prawn
Deviations from Protocol	NA

Juvenile Prawn Test Results

Concentration Tested %	Initial Weight (g) n = 30	21 Day Weight (g) n=30	% Growth n = 30
SA Control	0.239 ± 0.047	0.246 ± 0.062	102.4 ± 14.8
0.79	0.323 ± 0.020	0.333 ± 0.039	102.9 ± 5.8
1.6	0.228 ± 0.060	0.228 ± 0.069	100.0 ± 14.9
3.2	0.222 ± 0.038	0.222 ± 0.027	100.4 ± 7.1
6.3	0.287 ± 0.028	0.259 ± 0.044	91.1 ± 18.3
12.7	0.254 ± 0.019	0.262 ± 0.051	102.8 ± 15.7
25.3	0.282 ± 0.021	0.339 ± 0.045	119.7 ± 12.2
50.6	0.233 ± 0.037	0.243 ± 0.023	106.0 ± 21.7
101.3	0.271 ± 0.030	0.0 ± 0.0	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	75.5	53.9	101.3	50.6

Authorised Signatory: Dr Jill Woodworth	
filast	
Laboratory Manager	

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 16th October 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 17 July 2007
Attn: David Wiltshire	Date Received: 17 July 2007
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 17 July 2007
Mobile:	Test Finished: 14 August 2007
Order No.: Contract	Test Temperature: 17.0 ± 1.0 °C

Test Performed	Adult Prawn Growth
Test Protocol	Appendix 1
Reference	Sang and Fotedar 2004
Test Species	Western King Prawn
Deviations from Protocol	NA

Adult Prawn Test Results

Concentration	Initial Weight	Av. Weight	% Growth
Tested	(g)	(g)	n = 30
%	n = 30	n=30	
SA Control	28.3 ± 2.3	35.1 ± 0.4	100.3 ± 40.4
0.79	27.7 ± 9.0	32.8 ± 8.2	74.0 ± 11.9
1.6	23.1 ± 2.6	27.9 ± 3.6	74.8 ± 8.9
3.2	27.3 ± 1.9	30.8 ± 1.1	51.2 ± 11.3
6.3	33.5 ± 3.4	39.7 ± 3.7	92.1 ± 4.0
12.7	28.5 ± 0.5	32.1 ± 0.7	52.9 ± 9.6
25.3	30.5 ± 3.7	0.0 ± 0.0	0.0 ± 0.0
50.6	28.5 ± 3.5	0.0 ± 0.0	0.0 ± 0.0
101.3	32.0 ± 3.7	0.0 ± 0.0	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	21.4	11.8	25.3	12.7

Ecotoxicology Laboratory Test Report Report Date: 12th November 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Embryo Development Test Results

Concentration Tested	Embryo Development
%	n=11
SA Control	61.8 ± 7.6
0.4	67.2 ± 4.9
0.79	59.9 ± 8.1
1.6	59.9 ± 12.2
3.2	65.4 ± 14.9
6.3	56.3 ± 4.1
12.7	0.0 ± 0.0
25.3	0.0 ± 0.0
50.6	0.0 ± 0.0
101.3	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	9.1	6.4	12.7	6.3

Authorised Signatory: Dr Jill Woodworth	
ftlast	
Laboratory Manager	

Ecotoxicology Laboratory Test Report Report Date: 12th November 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 – 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Days to Hatch Test Results

Concentration Tested %	% Days to Hatch n=11
SA Control	95.5 ± 7.1
0.4	110.4 ± 1.5
0.79	96.8 ± 5.8
1.6	101.5 ± 5.9
3.2	101.3 ± 5.4
6.3	101.1 ± 5.7
12.7	0.0 ± 0.0
25.3	0.0 ± 0.0
50.6	0.0 ± 0.0
101.3	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.4	6.4	12.7	6.3

Authorised Signatory: Dr Jill Woodworth	
Authonsed Signatory. Dr Jill Woodworth	
tottood	
90000	
Laboratory Manager	

GEOTECHNICAL SERVICES Ecotoxicology Laboratory Test Report Report Date: 12th November 2007

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Length at Hatch Results

Concentration Tested %	Length at Hatch cm
	n=3
SA Control	1.27 ± 0.02
0.4	1.16 ± 0.05
0.79	1.27 ± 0.07
1.6	1.19 ± 0.03
3.2	1.23 ± 0.05
6.3	1.24 ± 0.04
12.7	0.0 ± 0.0
25.3	0.0 ± 0.0
50.6	0.0 ± 0.0
101.3	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.81	NC	12.7	6.3

NC = Not calculated by Toxcalc

Authorised Signatory: Dr Jill Woodworth	
ftod	
Laboratory Manager	

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Weight at Hatch Results

Concentration Tested	Weight at Hatch
%	g
	n=3
SA Control	0.66 ± 0.03
0.4	0.55 ± 0.04
0.79	0.60 ± 0.08
1.6	0.59 ± 0.06
3.2	0.62 ± 0.05
6.3	0.65 ± 0.10
12.7	0.0 ± 0.0
25.3	0.0 ± 0.0
50.6	0.0 ± 0.0
101.3	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.68	NC	12.7	6.3

NC = Not calculated by Toxcalc

Authorised Signatory: Dr Jill Woodworth	
ftod	
Laboratory Manager	

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine	
Client: ARUP	Date Sampled: 06/07 – 11/ 07	
Attn: David Wiltshire	Date Received: 06/07 – 11/ 07	
Level 2	Sampled By: D. Bourke	
431 – 439 King William St	pH: 8.1	
Adelaide SA 5000	Salinity: 39.9 – 79	
Phone No. 08 8104 8310	Test Started: 7 th June 2007	
Mobile:	Test Finished: 29 th October 2007	
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C	

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Width at Hatch Results

Concentration Tested	Width at Hatch
%	cm
	n=3
SA Control	0.99 ± 0.10
0.4	0.88 ± 0.09
0.79	0.99 ± 0.07
1.6	0.97 ± 0.07
3.2	1.01 ± 0.05
6.3	1.02 ± 0.08
12.7	0.0 ± 0.0
25.3	0.0 ± 0.0
50.6	0.0 ± 0.0
101.3	0.0 ± 0.0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.94	NC	12.7	6.3

NC = Not calculated by Toxcalc Results apply to the sample in the condition as received by Geotech

Authorised Signatory: Dr Jill Woodworth	
ftod	
Laboratory Manager	

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Post Hatch Length Results

Concentration Tested	Post Hatch Length	
%	cm	
	n=4	
SA Control	1.28 ± 0.05	
0.4	1.29 ± 0.04	
0.79	1.23 ± 0.05	
1.6	1.25 ± 0.05	
3.2	1.27 ± 0.08	
6.3	1.31 ± 0.11	
12.7	0.0 ± 0.0	
25.3	0.0 ± 0.0	
50.6	0.0 ± 0.0	
101.3	0.0 ± 0.0	

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.52	NC	12.7	6.3

NC = Not calculated by Toxcalc

Authorised Signatory: Dr Jill Woodworth	
ftod	
Laboratory Manager	

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Post Hatch Weight Results

Concentration Tested	Post Hatch Weight	
%	g	
	n=4	
SA Control	0.56 ± 0.05	
0.4	0.53 ± 0.06	
0.79	0.53 ± 0.04	
1.6	0.59 ± 0.06	
3.2	0.59 ± 0.03	
6.3	0.68 ± 0.14	
12.7	0.0 ± 0.0	
25.3	0.0 ± 0.0	
50.6	0.0 ± 0.0	
101.3	0.0 ± 0.0	

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.25	NC	12.7	6.3

NC = Not calculated by Toxcalc

Authorised Signatory: Dr Jill Woodworth	
ftod	
Laboratory Manager	

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Post Hatch Width Results

Concentration Tested	Post Hatch Width	
%	cm	
	n=4	
SA Control	0.93 ± 0.06	
0.4	0.94 ± 0.05	
0.79	0.87 ± 0.05	
1.6	0.87 ± 0.03	
3.2	0.91 ± 0.07	
6.3	0.97 ± 0.13	
12.7	0.0 ± 0.0	
25.3	0.0 ± 0.0	
50.6	0.0 ± 0.0	
101.3	0.0 ± 0.0	

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.25	NC	12.7	6.3

NC = Not calculated by Toxcalc

Authorised Signatory: Dr Jill Woodworth	
filas	
Laboratory Manager	

Sample Details

Lab ID No. ECX07-1805	Sample: RO Brine
Client: ARUP	Date Sampled: 06/07 – 11/ 07
Attn: David Wiltshire	Date Received: 06/07 - 11/ 07
Level 2	Sampled By: D. Bourke
431 – 439 King William St	pH: 8.1
Adelaide SA 5000	Salinity: 39.9 – 79
Phone No. 08 8104 8310	Test Started: 7 th June 2007
Mobile:	Test Finished: 29 th October 2007
Order No.: Contract	Test Temperature: 15.0 ± 0.5°C

Test Performed	Giant Cuttlefish
Test Protocol	Appendix 1
Reference	Geotech Report ENV06-128 Nov 2006
Test Species	Sepia apama
Deviations from Protocol	Nil

Post Hatch Survival Test Results

Concentration Tested %	No Dead	No Live	Total
SA Control	5	14	19
0.4	12	5	17
0.79	4	14	18
1.6	6	12	18
3.2	6	15	21
6.3	2	14	16
12.7	0	0	0
25.3	0	0	0
50.6	0	0	0
101.3	0	0	0

Sample	EC50	EC10	LOEC	NOEC
	%	%	%	%
RO Brine	8.7	NC	12.7	6.3

NC = Not Calculated by Toxcalc

Authorised Signatory: Dr Jill Woodworth	
gward	
Laboratory Manager	

5. Species Protection Trigger Values

5.1. Introduction

Following the protocol outlined in ANZECC and ARMCANZ (2000) 99%, 95%, 90% and 80% species protection trigger values were calculated using the EC10 data from nine chronic bioassays that were performed on species indigenous to, or surrogate to, the receiving ecosystem at Point Lowly. The EC10 data used in the BurrliOz statistics package are shown in Table 5.1.

It is important to note that the use of NOEC values is not recommended for the calculation of species protection trigger values, as has been done in the past when only NOEC values were available. This was pointed out in ANZECC and ARMCANZ (2000) which stated that methods used to derive the trigger values are not data specific as long as only one type of data is used. Therefore, trigger values could be derived using EC10 values if there were sufficient data (Warne 1998). ANZECC and ARMCANZ (2000) also suggest that the use of NOEC data be phased out as EC10 data becomes available.

The use of toxicity values that correspond to a fixed biological effect (eg an LC5 or EC10) that would be calculated using regression analysis is recommended. The NOEC is an inappropriate number to use for regulatory purposes for the reasons discussed in Chapman (2005). Problems with the use of NOEC and LOEC data revolve around the fact that these values are determined using hypothesis based statistical techniques. Specifically the problems are that:

- only tested concentrations can be NOEC or LOEC values (therefore the NOEC and LOEC are, to a large degree, affected by the concentrations used in the toxicity test),
- the NOEC title is misleading. A NOEC is the highest concentration used in a toxicity test that causes an effect not significantly different to the control(s). It therefore does not correspond to 'no effect'. Typically, the NOEC corresponds to a 10 to 30% effect (Hoekstra and Van Ewijk, 1993, Moore and Caux, 1997, USEPA, 1991).

Further, usually there is a high level of statistical uncertainty associated with the EC/IC5 values making these values inappropriate for use in the BurrliOZ statistics package for calculation of protection/dilution values (Chapman 2005).

The dilution factors calculated for the 99% species protection value using the EC10 values will theoretically result in only 1% of the exposed species showing a 10% reduction in growth or reproduction if those levels are exceeded outside the mixing zone.

Values in Table 5.1 were placed in the BurrliOZ software to calculate a trigger value designed to protect 99%, 95%, 90% and 80% of the species from

adverse effects during exposure to the RO brine plume from the proposed desalination plant. The trigger values calculated are shown in Table 5.2. The graph for the species protection trigger values is shown in Appendix 3.

5.2. Methodology

The BurrliOZ software was developed by the CSIRO Environmetrics Group for Environment Australia to implement ANZECC and ARMCANZ (2000) requirements to generate trigger values (ie the maximum concentration of a chemical that should permit the integrity and function of aquatic environments to be maintained) for local conditions within Australia. BurrliOZ uses a flexible family of distributions, the Burr Type III, to estimate the protecting concentrations of chemicals such that a given percentage of species will not be adversely affected (Campbell *et al.* 2000).

5.3. Results

Test	EC/IC10 %	Test	EC/IC10 %
Microalgal		Kingfish	
	84.4	Growth	11.1
Macroalgal		Mulloway	
	27.6	Growth	11.6
Oyster	3.3	Cuttlefish Post Hatch Survival	3.7*
Copepod Reproduction 2 Day Pulse	10.9	Adult Prawn Growth	11.8
Larval Snapper Growth	22.2		

Table5.1 EC10 Results Used to Calculate Species ProtectionTrigger Values

*Lowest geometric mean of 2006 and 2007 cuttlefish tests with adjustment factor of 2 to account for the toxicity being determined in 45 ppt diluent.

ARUP	REPORT	1

Protection Level	Protection Value % Brine	Dilution
99	1.76	57
95	3.13	32
90	4.20	24
80	5.96	17

Table 5.2 BurrliOZ Species Protection Trigger Levels

5.4 Discussion

5.4.1 Microalgal Test

The results from the microalgal tests show that the algae is probably using the RO brine as a nutrient source as there was increased growth in all concentrations of RO brine tested. This absence of any observed toxicity rendered the EC10 unable to be calculated. Therefore, the unbounded NOEC value of 84.4 was used in place of the EC10 to calculate the protection trigger values. This will result in a conservative calculation as the actual NOEC may be up to 100%.

5.4.2 Invertebrate Tests

The oyster larval development test was the most sensitive with an EC10 of 3.3 % (Table 1.1). The adult prawns were shown to be more sensitive to the RO brine than the juvenile prawns with EC10s of 11.8% and 53.9% respectively. The adult prawn EC10 was, therefore, used in the BurrliOZ program to calculate the species protection trigger values. The pulse exposure of the copepods provided a realistic measure of toxicity of the RO brine.

5.4.3 Fish Tests

Pink snapper, mulloway and yellowtail kingfish eggs were obtained from Challenger TAFE hatchery, Fremantle, Western Australia. The adult fish are maintained in seawater of 34 ppt. Eggs from each species were placed in test solutions to acclimatise for 24 hours prior to hatching. Unhatched eggs were removed from the test solutions. Due to the poor quality yellowtail kingfish eggs received from South Australia, eggs from Fremantle were used in a repeat test using Rottnest Island seawater as the diluent. The mulloway and yellowtail kingfish showed similar EC10 values with the pink snapper showing less sensitivity.

5.4.4 Cuttlefish Tests

The cuttlefish results shown in Table 1.2 show that there were slight variations between the 2006 and 2007 cuttlefish tests, probably due to the difference in diluent salinity, 45 ppt in 2006 and 39.9 ppt in 2007. The higher salinity of the diluent in the 2006 tests would account for the lower EC50 values obtained. In particular, the post hatch survival in the 2006 test showed low EC50 and EC10 values, 4.06% and 1.86% RO brine respectively. This could be directly attributed to the higher salinity as the 2007 test showed an EC50 of 8.68% and a NOEC of 6.3% RO brine.

However, the variations between 2007 and 2006 may also be due to the age of the embryos at the start of the test as the development of the 2007 embryos was slightly more advanced than the 2006 embryos at the start of the test. The quality of the embryos received in June 2007 was not as high as the embryos received in June 2006 as the embryos were small and discoloured with a low fertilisation rate (Table 5.3). The embryos received in 2006 were white and round in shape with a high fertilisation rate.

Concentration	2006	2007
	% Hatch	% Hatch
Control	100	61.8 ± 7.6
0.4	NT	67.2 ± 4.9
0.79	NT	59.9 ± 8.1
1.6	89.1	59.9 ± 12.2
3.2	83.6	65.4 ± 14.9
6.3	75.5	56.3 ± 4.1
12.7	0	0
25.3	0	0
50.6	0	0
101.3	0	0

Table 5.3 Percentage hatch

NT = Not Tested

Table 5.3 shows the % hatch for the cuttlefish that was related to the quality of the eggs and not to the concentration of brine and may be a result of low fertilisation rate. It is important to note that the test concentrations from 6.3% and below had hatch rates that were not significantly different from the controls. Due to the low hatch rate, the Day 60 and Day 90 data were not measured as was done in 2006. The Day 30 data was recorded but was confounded by the quality of the eggs. As all the parameters measured were calculated on the response of the controls to the RO brine and the number of hatchings was taken into account for all calculations, the hatch rate, though low, did not confound the results. However, as discussed in Warne (2008), neither the 2006 or 2007 tests were ideal. Therefore the results were combined in this report to select an appropriate value to use in the species protection calculations.

Following the ANZECC and ARMCANZ (2000) procedures for selecting toxicity values where there are several toxicity values for different endpoints

as in the case of the cuttlefish tests, the endpoint with the lowest geometric mean is taken to represent the species. The lowest geometric mean EC10 value of 1.86% RO brine was the post hatch survival in the 2006 cuttlefish test. This value was given an adjustment factor of 2 to correct the EC10 value to account for the toxicity being determined in diluent water with a salinity of 45 ppt rather than the normal 42 ppt at Point Lowly (Warne 2007). This resulted in a value of 3.7 representing the cuttlefish in the species protection calculations. This value is more conservative than the EC10s of 6.3 -6.4% obtained in the 2007 tests where the diluent salinity was 39.9 ppt and which may have underestimated the toxicity of the brine in the receiving water.

5.4.5 Chronic Tests

As, in all the chronic tests performed, all test organisms in the various test concentrations are compared with the controls, only the toxic effect of the RO brine is assessed. In this suite of tests the salinity effects were not assessed.

The EC10 results of the range of species tested showed a good distribution fit (Appendix 3). Based on these results the species tested are appropriate for calculating the species protection values using the BurrliOZ statistics package, as a wide range of sensitivities resulted. These results can be refined with further testing, if required.

The results listed in Table 5.2 show the concentrations of RO brine in the water column that will meet the species protection trigger level for 99%, 95%, 90% and 80% species protection levels and the dilutions required to meet those concentrations.

6. References

ANZECC and ARMCANZ. (Australian and New Zealand Environment and Concervation Council and Agriculture and Resource Management Council of Australia and New Zealand). 2000. National water quality management strategy, Australian and New Zealand guidelines for fresh and marine water quality. ANZECC and ARMCANZ, Canberra, Australia.

ASTM E724-98. 1998. Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs ASTM International.

Bidwell J.R., Wheeler K.W. and Burridge T.R 1998. Toxicant effects on the zoospore stage of the marine macroalga *Ecklonia radiata*. Marine Ecology Series. 163:259-265.

Burridge T.R., Karistianos M. and Bidwell J. 1999. The use of aquatic macrophyte ecotoxicological assays in monitoring coastal effluent discharges in southern Australia. Marine Pollution Bulletin 39(1-12):89-96

Campbell E., Palmer M.J., Shao Q., Warne M. StJ. and Wilson D. 2000. BurrliOZ: A computer program for calculating toxicant trigger values for the ANZECC and ARMCANZ water quality guidelines. Perth, Western Australia, Australia.

Chapman P. M. 2005. Recommendations for whole effluent toxicity (WET) testing approaches for the Water Corporation of Western Australia. Draft Report. Golder Associates, North Vancouver, BC, Canada.

Evans L., Tsvetnenko Y. and Woodworth J. 2000. Improving the precision of ecotoxicity testing protocols for crude oil and drilling fluids. MERIWA Project No. M290. Report No. 220. 169 pp.

Hoekstra J.A and Van Ewijk P.H. 1993. Alternatives for the no-observed effect level. Environmental Toxicology and Chemistry. 12:187-194

Moore D.R.J. and Caux P.Y. 1997. Estimating low toxic effects. Environmental Toxicology and Chemistry. 16:794-801

Rippingale R.J. and Hodgkin E.P. 1974. Predation effects on the distribution of a copepod. Australian Journal of Marine and Freshwater Research. 25:81-91.

Stauber J.L. Tsai J., Vaughn G.T., Peterson S.M. and Brockbank C.I. 1994. Algae as indicators of toxicity of the effluent from bleached eucalypt kraft pulp mills. National Pulp Mills Research Program. Technical Report No. 3. CSIRO, Canberra 146 pp. Sang H.M. and Fotedar R. 2004. Growth, survival, haemolymph osmolality and organosomatic indices of the western king prawn (*Melicertus latisulcatus*) reared at different salinities. Aquaculture 234:601-614.

USEPA (United States Environmental Protection Agency). 1994. Technical support document for water quality based toxics control. Report No. EPA 505/2-90-001. Washington DC. USA.

USEPA. 2003a. Short-term methods for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. Washington DC. USA.

USEPA. 2003b. Short-term methods for estimating the chronic toxicity of effluents and receiving water to marine and estuarine organisms. Washington DC. USA.

Warne M. StJ, 1998. Critical review of methods to derive water quality guidelines for toxicants and a proposal for a new framework. Supervising Scientists Report 135, Supervising Scientist Canberra, ACT, Australia.

Warne M. StJ. 2007. Reassessment of the derivation of a single dilution factor for the saline brine discharge from a proposed desalination plant. For Olympic Dam EIS. CSIRO Land and Water Science Report 18/07.

Warne M. StJ. 2008. Review of the Geotechnical Services Report "The provision of reverse osmosis brine toxicity testing. Marine toxicity tests." CSIRO Land and Water Science Report 01/08.

APPENDIX 1

Summary of Toxicity Test Methodologies

Summary 1.1 Test Conditions for the Microtox 15 Minute Cellular Activity Test

Test type	Static
Test organism	Marine bacteria Vibrio fischeri
Source of organisms	SDI Reagent Freeze Dried
Age of test organisms	Newly reconstituted reagent
Salinity	30 (control) - 79 ppt
Temperature	15 ± 0.5 °C
Test chamber size	3.0 mL
Test solution volume	1.0 mL
Volume of bacteria per test	10µL
chamber	
No of replicates per concentration	3
Dilution water	SDI Diluent
Salinity adjustment	Not required
Test concentrations	101.3, 50.6, 25.3, 12.7, 6.3 and 0%
Test duration	15 Minutes
Endpoints	Cellular activity as measured by luminescence output
Test acceptability criteria	Phenol Reference Toxicant EC50
	between Cusum Chart limits
Quality assurance	All SDI products are to be used
	before they reach their expiry date.

Summary 1.2 Test Conditions for the Unicellular Algal Growth Test

Test type	Static
Test organism	Isochrysis galbana (Tahitian isolate)
Source of test organism	Laboratory Culture
Age of test organisms	5 day old culture
Salinity	39.9 – 79 ppt
Temperature	20 ± 1.0 °C
Light	Ambient laboratory illumination
Photoperiod	12 hour light / 12 hour dark
Test chamber size	3.2 mL
Test solution volume	3 mL
Renewal of test solutions	nil
Volume of algae per test chamber	500 μL
No of replicates per concentration	4
Dilution water	Point Lowly filtered seawater
Test concentrations	0, 0.33, 0.65, 1.3, 2.6, 5.2, 10.5, 21.1, 42.2 and 84.4 %
Test duration	72 Hours
Endpoints	Inhibition of growth when compared with controls
Test acceptability criteria	Reference Toxicant EC50 between
	Cusum Chart limits

Summary 1.3 Test Conditions for the Macroalgae Germination Test

Test type	Static
Test organism	Ecklonia radiata
Age of test organisms	Newly released gametes
Source of test organisms	Point Peron
Date collected	6 th July 2007
Salinity	39.9 - 79 ppt
Temperature	20 ± 1.0 °C
Light	Ambient laboratory illumination
Photoperiod	12 hour light / 12 hour dark
Test chamber size	25 mL
Test solution volume	20 mL
Renewal of test solutions	nil
No zygotes per test chamber	Minimum of 100
No of replicates per concentration	4
Dilution water	Point Lowly filtered seawater
Test concentrations	0, 0.79, 1.6, 3.2, 6.3, 12.7, 25.3, 50.6, 101.3%
Test duration	72 hours
Endpoints	Number of zygotes with germination tubes
Test acceptability criteria	80% or greater germination in the
	controls and Reference Toxicant
	EC50 between Cusum Chart limits

Summary 1.4 Test Conditions for the Pacific Oyster Larval Development Test

Test type	Static
Species tested	Pacific oyster: Crassostrea gigas
Age of test organisms	Fertilized zygotes
Source of test organisms	Shellfish Culture, Tasmania
Salinity	39.9 - 79 ppt
Temperature	25 ± 0.5 °C
Light	Ambient laboratory illumination
Photoperiod	12 hour light / 12 hour dark
Test chamber size	3.5 mL
Test solution volume	3 mL
Renewal of test solutions	nil
No zygotes/larvae per test chamber	Minimum of 100
No of replicates per concentration	4
Dilution water	Point Lowly filtered seawater
Test concentrations	<i>0, 0.</i> 79, 1.6, 3.2, 6.3, 12.7, 25.3, 50.6%
Test duration	48 hours
Endpoints	Percentage of normal larvae
Test acceptability criteria	80% or greater normal larvae in the
	controls and Reference Toxicant
	EC50 between Cusum Chart limits

Summary 1.5 Test Conditions for the Copepod Reproduction 28 Day Test

Test type	Static Renewal
Test organism	Gladioferens imparipes
Age of test organisms	Newly hatched neonates (<24 hrs
	old)
Source of test organisms	Laboratory culture
Salinity	39.9 - 79 ppt
Temperature	20.0 ± 1.0 °C
Light	Ambient laboratory illumination
Photoperiod	12 hour light / 12 hour dark
Test chamber size	3.2 mL
Test solution volume	3 mL
Renewal of test solutions	100 % / day
No Adults per test chamber	2
No of replicates per concentration	4-6
Source of food	Isochrysis galbana
Feeding regime	Fed 0.5 mL algae once/day
Cleaning	Siphon daily prior to test solution renewal and feeding
Aeration	None
Dilution water	Point Lowly filtered seawater
Test concentrations	0, 0.7, 1.3, 2.6, 5.25, 10.5, 21.1 and 42.2 %
Test duration	28 Days
Endpoints	Number of neonates produced by female copepod per spawn
Test acceptability criteria	80% or greater survival in the controls
	and Reference Toxicant EC50
	between Cusum Chart limits

Summary 1.6 Test Conditions for the 7 Day Larval Fish Growth Test

Test type	Static
Test organism	Pink snapper: Pagrus auratus
	Mulloway: Argyrosomus japonicus.
	Yellowtail kingfish: Seriola lalandi
Source of species	Challenger TAFE, Fremantle, WA
Salinity	39.9 – 79 ppt
Salinity of yellowtail kingfish	35 - 79 ppt
Temperature	21 ± 1.0 °C
Light	Ambient laboratory illumination
Photoperiod	12 hour light / 12 hour dark
Test chamber size	500 mL
Test solution volume	400 mL
Renewal of test solutions	Nil
Age of test organisms	Newly hatched larvae (<24 hrs old)
No larvae per test chamber	20
No of replicates per concentration	3
No larvae per concentration	60
Source of food	Rotifers
Feeding regime	Fed once/day @ 40 / mL from day 3
Aeration	None
Dilution water	Point Lowly filtered seawater
Dilution water for yellowtail	Rottnest Island filtered seawater
kingfish	
Test concentrations	0,0.79, 1.6, 3.2, 6.3, 12.7, 25.3, 50.6
	and 101.3%
Test duration	7 Days
Endpoints	Growth – measured as total length
Test acceptability criteria	80% or greater survival in the controls
	and Reference Toxicant EC50
	between Cusum Chart limits

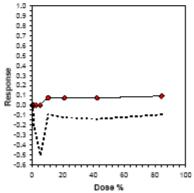
Summary 1.7 Test Conditions for the Adult Prawn Growth Chronic Toxicity Test

Test organism	Western King Prawn
rest organism	Melicertus latisulcatus
Source of organism	Spencer Gulf
Source of organism	Spencer Gui
Reference	Sang and Fotedar 2004
Kelerence	
Source of diluent	Spencer Gulf
Test type	Static renewal
Test duration	30 Days
Test end-points	Growth as wet weight
	, v
Test temperature	17.0 ± 1.0°C
Test salinity (Controls)	Ambient Spencer Gulf – 39.9 ppt
, , ,	
Test chamber size / volume	100 Litres
Number of replicates	3
Number of treatments	9
Actual brine concentrations	0%, 0.79, 1.6, 3.2, 6.3, 12.7, 25.3, 50.6, 101.3%
Number of organisms	10 in each treatment
Total number in treatment	30
Food requirements	6% body weight mussel meat once per day
Test acceptability criteria	80% survival in controls

Summary 1.8 Test Conditions for the Juvenile Prawn Growth Chronic Toxicity Test

Test species	Western King Drown
Test species	Western King Prawn
	Melicertus latisulcatus
Source of organism	Spencer Gulf
Source of diluent	Spencer Gulf
Reference	Sang and Fotedar 2004
Test type	Static renewal
Test duration	21 Days
Test end-points	Growth as wet weight
Test temperature	17.0 ± 1.0°C
Test salinity (Controls)	Ambient Spencer Gulf – 39.9 ppt
Test chamber size / volume	100 Litres
Number of replicates	3
Number of treatments	9
Actual brine concentrations	0%, 0.79, 1.6, 3.2, 6.3, 12.7, 25.3, 50.6, 101.3%
Number of organisms	10 in each treatment
Total number in treatment	30
Food requirements	6% body weight mussel meat once per day
Test acceptability criteria	80% survival in controls

Summary 1.9 Test Conditions for the Giant Cuttlefish Test

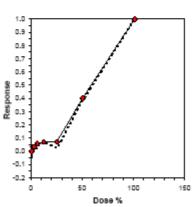

Test organism	
	Giant Cuttlefish Sepia apama
Source of organisms	Point Lowly
Age of test organisms	Newly laid eggs
Test type	Static Renewal
Salinity	39.9 – 79 ppt
Temperature	15.0 ± 0.5 °C
Light	Shaded laboratory illumination
Photoperiod	8 hour muted light / 16 hour dark then in
	October change to
	12 hour muted light / 12 hour dark
Test chamber size	5 L
Test solution volume	5 L
Renewal of test solutions	50% Daily
Number of embryos per test	11
chamber	
No of replicates per	5
concentration	
Dilution water	Spencer Gulf
Test concentrations	0%, 0.4, 0.79, 1.6, 3.2, 6.3, 12.7, 25.3, 50.6, 101.3%
Test duration	5 Months
Endpoints (where possible depending on age of eggs at collection)	Time to hatch Length, weight and width at hatch compared to controls Embryo development Survival and growth post hatch
Test acceptability criteria	<20% mortality in controls

APPENDIX 2

Summary of Toxicity Test Data

				Phyto	plankton	Test-Grow	vth-Absorb	ance			
Start Date:	19/06/2007		Test ID:	ECX07-180	5		Sample ID	c .	Brine		
End Date:	22/06/2007		Lab ID:	Freo			Sample Ty	pe:	SA Desalir	nation Plant	t
Sample Date: Comments:	18/05/2007		Protocol:	Geotech WI	ENV-45		Test Spec	les:	Isochrysis	sp.	
Conc-%	1	2	3	4							
Control		0.1028	0.0957	0.1071							
0.66		0.1100	0.0871	0.1100							
1.3		0.1320	0.1120	0.1250							
2.6		0.1270	0.1150								
5.3		0.1420	0.1550								
10.55		0.1110	0.1040								
21.1		0.1140	0.1000	0.1110							
42.2		0.1100	0.1050	0.1100							
84.4		0.1080	0.1030								
04.4	0.1220	0.1000	0.1020	Transform	a: Hatran	oformod			1-Talled		180
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean
Control		1.0000	0.1000		0.1071	6.036					0.1205
0.66		1.0108	0.1011	0.0871	0.1100	10.996		-0.165	2.513	0.0164	0.120
1.3		1.2278	0.1228	0.1120	0.1320	6.763		-3.486	2.513		0.120
2.6		1.2853	0.1285		0.1450	9.626		-4.366	2.513		0.1205
5.3		1.5029	0.1503		0.1550	3.933		-7.695			0.120
10.55		1.0878	0.1088		0.1180	6.689		-1.343	2.513		0.1110
21.1		1.1228	0.1123		0.1240	8.800		-1.879	2.513		0.1110
42.2		1.1378	0.1138		0.1300	9,747		-2.108	2.513		0.1116
84.4		1.0928	0.1093	0.1020	0.1220	8.097		-1.420	2.513		0.1093
Auxiliary Tests							Statistic		Critical		Skew
		s normal di	stribution (p > 0.01)			0.964404		0.912		0.298186
Snapiro-Wilk's I							2.872124		20.09016		
		al variances	5 (p = 0.94)			2.072124		20.09010		
Snapiro-Wilk's Bartiett's Test ir Hypothesis Te	ndicates equa		s (p = 0.94 NOEC) LOEC	ChV	τu	MSDu	MSDp	MSB	MSE	F-Prob

			LI	inear interpolati	on (200 Resamples)
Point	%	SD	95% CL(Exp)	Skew	
IC05	8.8456				
IC10	>84.4				
IC15	>84.4				1.0 _
IC20	>84.4				0.9
IC25	>84.4				0.8
IC40	>84.4				0.7
IC50	>84.4				0.6
					0.5
					8 0.4



Page 1

ToxCalc v5.0.23

					Propo	rtion Germ	Inated				
Start Date:	6/07/2007		Test ID:	ECX07-180)5		Sample ID	1	Brine		
End Date:	9/07/2007	1	Lab ID:	Freo			Sample Ty	pe:	SA Desalir	nation Plant	
Sample Date: Comments:	18/05/2007		Protocol:	Geotech W	IENV-67		Test Speci	es:	Ecklonia ra	adiata	
Conc-%	1	2	3								
Control		0.9000	0.9000								
0.79		1.0000	0.9000								
1.6		0.9333	0.8667								
3.2	0.9667	0.9333	0.8667								
6.3	0.9333	0.9333	0.8000								
12.7	0.7667	0.8667	0.9333								
25.3	0.8667	0.9333	0.9000								
50.6	0.5667	0.6000	0.5333								
101.3	0.0000	0.0000	0.0000								
		_		Transform:					1-Tailed		laot
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean
Control		1.0000	1.2951	1.2490	1.3872		-				0.9444
0.79		1.0482	1.4026	1.2490	1.4794	9.481	3	-1.416		0.1943	0.9444
1.6		0.9759	1.2519	1.1970	1.3096	4.503	3	0.569	2.560	0.1943	0.9111
3.2		1.0000	1.2979	1.1970	1.3872	7.368	3	-0.038	2.560	0.1943	0.9111
6.3	0.8889	0.9639	1.2421	1.1071	1.3096	9.412	3	0.698	2.560	0.1943	0.8889
12.7	0.8556	0.9277	1.1911	1.0667	1.3096	10.208	3	1.370	2.560	0.1943	0.8778
25.3	0.9000	0.9759	1.2519	1.1970	1.3096	4.503	3	0.569	2.560	0.1943	0.8778
*50.6	0.5667	0.6145	0.8524	0.8188	0.8861	3.949	3	5.833	2.560	0.1943	0.5667
101.3	0.0000	0.0000	0.0914	0.0914	0.0914	0.000	3				0.0000
Auxiliary Tests	3						Statistic		Critical		Skew
Shapiro-Wilk's T	Test Indicate	s normal di	stribution (p > 0.01)			0.945487		0.884		-0.45766
Bartiett's Test In							4.32944		18.47532		
Hypothesis Te	st (1-tali, 0.0)5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test			25.3	50.6	35.7796	3.952569	0.131009	0.141495	0.078641	0.008642	1.4E-04
						plation (20	0 Resampl	les)			
Point	%	SD	95% C		Skew						
IC05	5.138	8.709	0.000	50.805	1.3444						
IC10	27.559	7.429	0.000	33.613	-1.6753						
IC15	31.399	1.720	23.585	37.052	-0.2641		^{1.0} Ţ				
IC20	35.239	1.549	28.262	40.362	-0.2004		0.9			1	
IC25	39.079	1.429	32.869	44.165	-0.0865		0.8			6	
IC40	50.600	1.465	44.980	56.515	0.2100		0.7		, f		
IC50	59.050	1.338	52.936	63.979	-0.0645		0.6		کم ا		

ToxCalc v5.0.23

Page 1

Start Date:				Ovster Larv	/al Develo	pment Te:	st-Proporti	on Norma	1		
otant Date.	14/06/2007		Test ID:	ECX07-180			Sample ID		Brine		
End Date:	17/06/2007		Lab ID:	Freo			Sample Ty		SA Desalir	nation Plant	
Sample Date:	18/05/2007		Protocol:	ESA SOP 1	06		Test Speci		CR-Crasso	ostrea gigas	
Comments:											
Conc-%	1	2	3	4							
Contro	0.6532	0.6081	0.7883	0.6757							
Diluent Contro	0.5856	0.7207	0.7658	0.6081							
0.79	0.6532	0.6982	0.7207	0.6532							
1.6	0.6081	0.7207	0.6306	0.6757							
3.2	0.3604	0.7207	0.6982	0.6757							
6.3	0.0100	0.0200	0.0100	0.0200							
12.7	0.0000	0.0000	0.0000	0.0000							
25.3	0.0000	0.0000	0.0000	0.0000							
50.6	0.0000	0.0000	0.0000	0.0000							
101.3	0.0000	0.0000	0.0000	0.0000							
				Transform:					1-Talled		Number
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Contro		1.0168	0.9733	0.8944	1.0927	8.716	4				
Diluent Contro		1.0000		0.8714	1.0656	9.725	4				131
0.79		1.0168		0.9411	1.0140	3.743	4	-0.151	2.360	0.1560	128
1.6		0.9832		0.8944	1.0140	5.598	4	0.207	2.360	0.1560	136
3.2		0.9160		0.6439	1.0140	19.256	4	0.883	2.360	0.1560	154
*6.3		0.0224	0.1210	0.1002	0.1419	19.906	4	12.713	2.360	0.1560	394
12.7		0.0000	0.0500	0.0500	0.0500	0.000	4				400
25.3	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400
50.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400
101.3		0.0000	0.0500	0.0500	0.0500	0.000	4				400
Auxiliary Tests							Statistic		Critical		Skew
Shapiro-Wilk's			,	•			0.88445		0.868		-1.50534
Bartlett's Test Ir							11.8899		13.2767		
The control mea					0.51/	TU	0.188807	1000	2.446914	1405	F. Deeb
Hypothesis Te Dunnett's Test	8t (1-tall, 0.t	15)	NOEC	LOEC	ChV 4.489989	31.25	MSDu 0.152393	MSDp 0.22666	MSB 0.546988	MSE	F-Prob 3.5E-09
Dunneus rest									0.340900		3.3E-U9
			3.2	6.3	4.403505	01.20				0.008739	
			3.2	0.3						0.008739	
	Value	ßF				n Likelihoo	d-Probit				Sigma
Parameter	Value 11 52634	SE	95% Fidu	ali Limits		n Likelihoo Control	od-Probit Chi-Sq	Critical	P-value	Mu	Sigma
Parameter Slope	11.52634	1.062579	95% Fidu 9.443683	ciai Limite 13.60899		n Likelihoo	d-Probit				
Parameter Slope Intercept	11.52634 -2.2062	1.062579 0.757022	95% Fidu 9.443683 -3.68996	iai Limits 13.60899 -0.72243		n Likelihoo Control	d-Probit Chi-Sq 0.365603	Critical	P-value	Mu	
Parameter Slope Intercept TSCR	11.52634 -2.2062 0.329167	1.062579 0.757022 0.013565	95% Fiduo 9.443683 -3.68996 0.302579	13.60899 -0.72243 0.355755		n Likelihoo Control	0d-Probit Chi-Sq 0.365603	Critical	P-value	Mu	
Parameter Slope Intercept	11.52634 -2.2062	1.062579 0.757022	95% Fidu 9.443683 -3.68996 0.302579 95% Fidu	13.60899 -0.72243 0.355755		n Likelihoo Control	d-Probit Chi-Sq 0.365603	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point	11.52634 -2.2062 0.329167 Probits 2.674	1.062579 0.757022 0.013565 % 2.650727	95% Fidu 9.443683 -3.68996 0.302579 95% Fidu	cial Limits 13.60899 -0.72243 0.355755 cial Limits 2.974942		n Likelihoo Control	0d-Probit Chi-Sq 0.365603	Critical	P-value	Mu	
Parameter Siope Intercept TSCR Point EC01	11.52634 -2.2062 0.329167 Probits 2.674 3.355	1.062579 0.757022 0.013565 % 2.650727 3.037316	95% Fidue 9.443683 -3.68996 0.302579 95% Fidue 2.257201	cial Limits 13.60899 -0.72243 0.355755 cial Limits 2.974942		n Likelihoo Control	0d-Probit Chi-Sq 0.365603 1.0 0.9 0.9	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05	11.52634 -2.2062 0.329167 Probits 2.674 3.355	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948	95% Fidue 9.443683 -3.68996 0.302579 95% Fidue 2.257201 2.657722 2.897979	cial Limits 13.60899 -0.72243 0.355755 cial Limits 2.974942 3.347957 3.56747		n Likelihoo Control	0d-Probit Chi-Sq 0.365603 1.0 0.9 0.9 0.8 0.8	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10	11.52634 -2.2052 0.329167 Probits 2.674 3.355 3.718 3.964	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851	95% Fiduo 9.443683 -3.68996 0.302579 95% Fiduo 2.257201 2.657722	2131 Limits 13.60899 -0.72243 0.35755 2131 Limits 2.974942 3.347957 3.56747 3.724766		n Likelihoo Control	0d-Probit Chi-Sq 0.365603 1.0 0.9 0.9 0.8 0.8	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	11.52634 -2.2052 0.329167 Probits 2.674 3.355 3.718 3.964	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962	95% Fidue 9.443683 -3.68996 0.302579 95% Fidue 2.257201 2.657722 2.897979 3.071312	2131 Limits 13.60899 -0.72243 0.355755 2131 Limits 2.974942 3.347957 3.56747 3.724766 3.855555		n Likelihoo Control	0d-Probit Chi-Sq 0.365603 1.0 0.9 0.9 0.8 0.8	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	11.52634 -2.2052 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962 3.68703	95% Fidue 9.443683 -3.68996 0.302579 95% Fidue 2.657720 2.657729 3.071312 3.215732 3.344407	Limits 13.60899 -0.72243 0.355755 clai Limits 2.974942 3.347957 3.56747 3.724766 3.855555 3.972156		n Likelihoo Control	0d-Probit Chi-Sq 0.365603 1.0 0.9 0.9 0.8 0.8	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC15 EC20	11.52634 -2.2052 0.329167 Probits 2.674 3.355 3.718 3.954 4.158 4.326 4.747	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962 3.68703 4.010644	95% Fiduo 9.443683 -3.68996 0.302579 95% Fiduo 2.257201 2.657722 2.897979 3.071312 3.215732	Limits 13.60899 -0.72243 0.355755 Lai Limits 2.974942 3.347957 3.56747 3.724766 3.855555 3.972156 4.286078		n Likelihoo Control	0d-Probit Chi-Sq 0.365603 1.0 0.9 0.9	Critical	P-value	Mu	
Parameter Siope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40	11.52634 -2.2052 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962 3.68703 4.010644	95% Fidux 9.443683 -3.68996 0.302579 95% Fidux 2.257201 2.657722 2.897979 3.071312 3.215732 3.344407 3.688301 3.908493	Limits 13.60899 -0.72243 0.355755 Lai Limits 2.974942 3.347957 3.56747 3.724766 3.855555 3.972156 4.286078		n Likelihoo Control	d-Probit Chi-sq 0.365603 1.0 0.9 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.5	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50	11.52634 -2.2062 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962 3.68703 4.010644 4.218848 4.437862	95% Fidux 9.443683 -3.68996 0.302579 95% Fidux 2.257201 2.657722 2.897979 3.071312 3.215732 3.344407 3.688301 3.908493	cial Limits 13.60899 -0.72243 0.355755 cial Limits 2.974942 3.347957 3.56747 3.724766 3.85555 3.972156 4.286078 4.490765 4.709424		n Likelihoo Control	d-Probit <u>Chi-sq</u> 0.365603 1.0 0.9 0.3 0.7 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50	11.52634 -2.2062 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.68703 4.010644 4.218848 4.437862 4.827376	95% Fidur 9.443683 -3.68996 0.302579 95% Fidur 2.257201 2.657722 3.371312 3.215732 3.344407 3.688301 3.908493 4.13614 4.538569	Iai Limits 13.60899 -0.72243 0.355755 Iai Limits 2.974942 3.347957 3.56747 3.724766 3.85555 3.972156 4.490765 4.709424 5.109675		n Likelihoo Control	d-Probit Chi-sq 0.365603 1.0 0.9 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.5	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50 EC50	11.52634 -2.2062 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962 3.68703 4.010644 4.218848 4.437862 4.827376 4.991271	95% Fidur 9.443683 -3.68996 0.302579 95% Fidur 2.257201 2.897979 3.071312 3.215732 3.344407 3.688301 3.908493 4.13814 4.538569 4.703119	Islai Limits 13.60899 -0.72243 0.355755 Ial Limits 2.974942 3.347957 3.56747 3.724766 3.855555 3.972156 4.490765 4.709424 5.109675 5.283318		n Likelihoo Control	d-Probit Chi-sq 0.365603 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC15 EC20 EC25 EC40 EC50 EC60 EC75 EC80 EC80 EC85	11.52634 -2.2062 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429851 3.565962 3.68703 4.010544 4.218848 4.437862 4.827376 4.991271 5.189346	95% Fidur 9.443683 -3.68996 0.302579 95% Fidur 2.257201 2.657722 2.897979 3.071312 3.215732 3.344407 3.668301 3.908493 4.13814 4.538589 4.703119 4.898375	Limits 13.60899 -0.72243 0.355755 clai Limits 2.974942 3.47957 3.56747 3.724766 3.855555 3.972156 4.286078 4.490765 5.109424 5.109424 5.109475 5.283318 5.497744		n Likelihoo Control	d-Probit Chi-Sq 0.365603 0.8 0.8 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Critical	P-value	Mu	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC50	11.52634 -2.2062 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	1.062579 0.757022 0.013565 % 3.2650727 3.037316 3.265948 3.429851 3.365942 3.68703 4.010644 4.218848 4.437662 4.827376 4.991271 5.189346 5.189346 5.189346	95% Fidur 9.443683 -3.68996 0.302579 95% Fidur 2.257201 2.897979 3.071312 3.215732 3.344407 3.688301 3.908493 4.13814 4.538569 4.703119	Limits 13.60899 -0.72243 0.355755 clai Limits 2.974942 3.347957 3.56756 3.85555 3.972156 4.286078 4.286078 4.286078 5.109424 5.1097744 5.497784 5.497784 5.787431		n Likelihoo Control	d-Probit Chi-sq 0.365603 0.9 0.8 0.8 0.8 0.8 0.7 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Critical 12.59158	P-value	Mu 0.625194	
Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC40 EC50 EC60 EC75 EC80 EC85 EC90	11.52634 -2.2062 0.329167 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	1.062579 0.757022 0.013565 % 2.650727 3.037316 3.265948 3.429551 3.565962 3.68703 4.010644 4.218848 4.437862 4.827376 4.991271 5.189346 5.189346	95% Fidur 9.443683 -3.68966 0.302579 95% Fidur 2.2577201 2.257722 3.2457722 3.245732 3.34407 3.071312 3.245732 3.34407 3.668301 4.13814 4.538589 4.703119 4.298375 5.148941	Imits 13.60899 -0.72243 0.355755 Iai Limits 2.974942 3.347957 3.56747 3.724766 3.855555 3.972156 4.280078 4.490765 4.709424 5.109675 5.283318 5.497744 5.787431 6.260831		n Likelihoo Control	d-Probit Chi-Sq 0.365603 0.8 0.8 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Critical	P-value	Mu 0.625194	

Reviewed by:_____

ToxCalc v5.0.23

Page 1

					Copepo	d Reprod	uction				
Start Date:	10/08/2007		Test ID:	ECX07-180			Sample ID		SA Brine		
End Date:	8/09/2007		Lab ID:	Freo			Sample Ty	pe:	SA Desalir	nation Plant	Discharg
Sample Date:	10/08/2007		Protocol:	GEOTECH	WIENV-62		Test Speci	-		ns imparipe	-
Comments:											
Conc-%	1	2	3	4							
Control	0.9230	0.7340	1.0000	1.0000							
0.66	1.0000	1.0000	0.9700	0.5200							
1.3	0.4260	1.0000									
2.7	1.0000	0.5000									
5.25	0.1890	1.0000									
10.5	1.0000	0.5000									
21.1	0.0300	0.0200	0.0100	0.0000							
42.2	0.0000	0.0000	0.0000	0.0000							
				Transform:	Arcein Sq	uare Root			1-Talled		Number
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Control	0.9143	1.0000	1.3400	1.0289	1.5208	17.484	4				35
0.66	0.8725	0.9543	1.3109	0.8054	1.5208	26.092	4	0.106	2.746	0.7552	51
1.3	0.7130	0.7799	1.1160	0.7111	1.5208	51.302	2	0.665	2.746	0.9249	57
2.7	0.7500	0.8203	1.1531	0.7854	1.5208	45.096	2	0.555	2.746	0.9249	50
5.25	0.5945	0.6503	0.9853	0.4498	1.5208	76.866	2	1.053	2.746	0.9249	81
10.5	0.7500	0.8203	1.1531	0.7854	1.5208	45.096	2	0.555	2.746	0.9249	50
*21.1	0.0150	0.0164	0.1165	0.0500	0.1741	46.067	4	4.449	2.746	0.7552	394
42.2	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	4				400
Auxiliary Tests	1						Statistic		Critical		Skew
Auxillary Tests Shapiro-Wilk's T		s normal d	istribution (p > 0.01)			Statistic 0.946041		Critical 0.868		
Shapiro-Wilk's T Bartiett's Test In	rest indicate idicates equ	al variance	s (p = 0.14)			0.946041 9.756529		0.868 16.81187		-0.22585
Shapiro-Wilk's T Bartlett's Test in Hypothesis Tes	Fest Indicate Idicates equ st (1-tall, 0.0	al variance	s (p = 0.14 NOEC	LOEC	ChV	ти	0.946041 9.756529 MSDu	MSDp	0.868 16.81187 MSB	MSE	-0.22585 F-Prob
Shapiro-Wilk's T Bartiett's Test In	Fest Indicate Idicates equ st (1-tall, 0.0	al variance	s (p = 0.14)	ChV 14.88456	TU 9.52381	0.946041 9.756529		0.868 16.81187 MSB	MSE 0.151262	-0.22585 F-Prob
Shapiro-Wilk's T Bartlett's Test in Hypothesis Tes	Fest Indicate Idicates equ st (1-tall, 0.0	al variance	s (p = 0.14 NOEC	LOEC	14.88456		0.946041 9.756529 MSDu 0.64289		0.868 16.81187 MSB		-0.22585 F-Prob
Shapiro-Wilk's T Bartiett's Test in Hypothesis Tes Bonferroni t Tes Parameter	Fest Indicate Idicates equi st (1-tail, 0.0 st Value	al variance 15) SE	s (p = 0.14 NOEC 10.5 95% Fiduo	LOEC 21.1	14.88456	9.52381	0.946041 9.756529 MSDu 0.64289 od-Probit Chi-Sq	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob
Shapiro-Wilk's T Bartiett's Test in Hypothesis Tes Bonferroni t Tes	Test Indicate idicates equi st (1-tail, 0.0 st Value 11.80204	al varlance 15) SE 4.616473	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496	LOEC 21.1	14.88456	9.52381	0.946041 9.756529 MSDu 0.64289 od-Probit Chi-Sq	0.678382	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test in Hypothesis Test Bonferroni t Tes Parameter Siope Intercept	Test Indicate Idicates equ at (1-tail, 0.0 t Value 11.80204 -8.54678	al variance 15) 8E 4.616473 5.802415	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623	LOEC 21.1 23.66904 6.368782	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-Sq 81.34926	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test in Hypothesis Test Bonferroni t Tes Parameter Siope Intercept TSCR	Test Indicate Indicates equi st (1-tail, 0.0 t Value 11.80204 -8.54678 0.195714	SE 4.616473 5.802415 0.042771	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 od-Probit Chi-Sq	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point	Test Indicate idicates equi at (1-tail, 0.0 it Value 11.80204 -8.54678 0.195714 Probits	SE 4.616473 5.802415 0.042771 %	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-Sq 81.34926	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Siope Intercept TSCR Point EC01	Test Indicate idicates equi st (1-tail, 0.0 t Value 11.80204 -8.54678 0.195714 Probits 2.674	sE 4.616473 5.802415 0.042771 % 8.927287	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 od-Probit Chi-Sq 81.34926	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Siope Intercept TSCR Point EC01 EC05	Test Indicate idicates equi at (1-tail, 0.0 it Value 11.80204 -8.54678 0.195714 Probits 2.674 3.355	sE 4.616473 5.802415 0.042771 % 8.927287 10.19679	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 od-Probit Chi-Sq 81.34926	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Ter Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10	Test Indicate idicates equi- at (1-tail, 0.0 it Value 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718	sE 4.616473 5.802415 0.042771 % 8.927287 10.19679 10.94577	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 od-Probit Chi-Sq 81.34926	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15	rest indicate dicates equi st (1-tail, 0.0 it 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.954	sE 4.616473 5.802415 0.042771 % 8.927287 10.19679 10.94577 11.48194	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 0d-Probit Chi-Sq 81.34926 1.0 0.8 0.8 0.8	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC15 EC20	rest indicate dicates equi at (1-tail, 0.0 t 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.964 4.158	al variance (5) 8E 4.616473 5.802415 0.042771 % 8.927287 10.19679 10.94577 11.48194 11.92675	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 0d-Probit Chi-Sq 81.34926 1.0 0.8 0.8 0.8	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25	Test Indicate Idicates equi at (1-tail, 0.0 t 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.964 4.158 4.326	se 4.616473 5.802415 0.042415 0.042415 0.042417 10.19679 10.94577 11.48194 11.92675 12.32206	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 0d-Probit Chi-Sq 81.34926 1.0 0.8 0.8 0.8	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Siope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC20	Test Indicate Idicates equi at (1-tail, 0.0 it 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.954 4.158 4.326 4.747	se 4.616473 5.802415 0.0427287 10.19679 10.94577 11.92675 12.32206 13.37726	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 0d-Probit Chi-Sq 81.34926 1.0 0.8 0.8 0.8	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Tes Bonferroni t Tes Siope Intercept TSCR Point EC01 EC15 EC10 EC15 EC20 EC25 EC20 EC25 EC40 EC50	Test Indicate idicates equi- st (1-tail, 0.0) it Value 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000	se 4.616473 5.802415 0.042771 % 8.927287 10.19679 10.94577 11.48194 11.92675 12.32206 13.37726 14.05509	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-Sq 81.34926 1.0 0.9 0.8 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.5	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC10 EC25 EC20 EC25 EC40 EC50 EC50 EC50 EC50 EC50 EC50	rest indicate dicates equi at (1-tail, 0.0 tt 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.954 4.158 4.326 4.326 4.326 5.000 5.253	se 4.616473 5.802415 0.042771 10.9657 10.94577 11.48194 11.92675 13.37726 14.0509 14.76726	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 0d-Probit Chi-Sq 81.34926 1.0 0.8 0.8 0.8	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC10 EC15 EC20 EC25 EC40 EC25 EC40 EC50 EC50 EC50 EC50 EC60 EC75	rest indicate dicates equi at (1-tail, 0.0 t 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.954 4.158 4.326 4.747 5.000 5.253 5.674	se 4.616473 5.802415 0.042771 0.94277 10.19679 10.94577 11.48194 11.48194 11.48194 11.48509 14.05509 14.05509 14.76726 16.03186	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-Sq 81.34926 1.0 0.9 0.8 0.9 0.8 0.7 0.5 0.5 0.5 0.5 0.5 0.5	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC20 EC25 EC20 EC25 EC40 EC50 EC50 EC50 EC50 EC75 EC80	Test Indicate Idicates equi- at (1-tail, 0.0 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842	se 4.616473 5.802415 0.042771 0.042771 10.9579 10.94577 11.92675 12.32206 13.37726 14.05509 14.76726 16.03186 16.05363	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-sq 81.34926 1.0 0.9 0.8 0.9 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.4 0.3 0.3	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC05 EC10 EC25 EC20 EC25 EC20 EC25 EC40 EC50 EC50 EC60 EC75 EC80 EC85	Test Indicate Idicates equi at (1-tail, 0.0 It 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036	se 4.616473 5.802415 0.04274 8.927287 10.19679 10.94577 11.92675 12.32206 13.37726 14.05509 14.76726 16.03186 16.56328 17.20488	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-Sq 81.34926 1.0 0.9 0.9 0.9 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.3 0.3	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartlett's Test In Hypothesis Test Bonferroni I Tes Siope Intercept TSCR Point EC01 EC05 EC10 EC15 EC20 EC25 EC40 EC55 EC40 EC55 EC40 EC55 EC50 EC50 EC55 EC55	Test Indicate dicates equi st (1-tail, 0.0 tit 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.964 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282	se 4.616473 5.802415 0.04271 % 9.927287 10.19679 10.94577 11.48194 11.92675 12.32206 13.37726 14.05509 14.76726 16.03186 16.56323 17.20488 18.04766	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-sq 81.34926 1.0 0.9 0.8 0.9 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.4 0.3 0.3	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002 Sigma
Shapiro-Wilk's T Bartiett's Test In Hypothesis Test Bonferroni t Tes Parameter Slope Intercept TSCR Point EC01 EC05 EC10 EC05 EC10 EC25 EC20 EC25 EC20 EC25 EC40 EC50 EC50 EC60 EC75 EC80 EC85	rest indicate dicates equi at (1-tail, 0.0 t 11.80204 -8.54678 0.195714 Probits 2.674 3.355 3.718 3.954 4.158 4.326 4.158 4.326 4.747 5.000 5.253 5.674 5.842 6.036 6.282 6.645	se 4.616473 5.802415 0.04274 8.927287 10.19679 10.94577 11.92675 12.32206 13.37726 14.05509 14.76726 16.03186 16.56328 17.20488	s (p = 0.14 NOEC 10.5 95% Fiduo -0.06496 -23.4623 0.085769	LOEC 21.1 23.66904 6.368782 0.305659	14.88456	9.52381 Likelihoo Control	0.946041 9.756529 MSDu 0.64289 d-Probit Chi-Sq 81.34926 1.0 0.9 0.8 0.8 0.8 0.7 80.6 50.5 90.4 0.3 0.2 0.3 0.2 0.3 0.2 0.3	0.678382 Critical	0.868 16.81187 MSB 0.681921 P-value	0.151262 Mu	-0.22585 F-Prob 0.011002

Page 1

ToxCalc v5.0.23

Reviewed by:_____

Sind Date:	Juvenile Prawn Growth Test 22/06/2007 Test ID: ECX07-1805 Sample ID: Brine										
Start Date:					5						
End Date:	13/07/2007		Lab ID:	Freo			Sample Ty	-		ation Plant	
Sample Date: Comments:	18/05/2007		Protocol:	Geotech Wi			Test Speci	es:	Western Ki	ng Prawn	
Conc-%	1	2	3								
Control	1.0000	1.0000	0.8730								
0.79	1.0000	0.9700	1.0000								
1.6	1.0000	1.0000	0.8330								
3.2	0.9340	1.0000	1.0000								
6.3	0.8310	1.0000	0.7810								
12.7	1.0000	0.8530	1.0000								
25.3	1.0000	1.0000	1.0000								
50.6	1.0000	1.0000	0.8100								
101.3	0.0200	0.0300	0.0100								
				Transform:					1-Talled		18
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean
Control		1.0000	1.4160	1.2064	1.5208	12.818	3				0.973
0.79		1.0338	1.4794	1.3967	1.5208	4.842	3	-0.467	2.580	0.3502	0.973
1.6		0.9861	1.3971	1.1498	1.5208	15.330	3	0.139	2.580	0.3502	0.960
3.2		1.0212	1.4508	1.3110	1.5208	8.349	3	-0.257	2.580	0.3502	0.960
6.3		0.9092	1.2506	1.0838	1.5208	18.882	3	1.219	2.580	0.3502	0.940
12.7		0.9930	1.4063	1.1773	1.5208	14.101	3	0.071	2.580	0.3502	0.940
25.3		1.0442	1.5208	1.5208	1.5208	0.000	3	-0.772	2.580	0.3502	0.940
		0.9781	1.3871	1.1198	1.5208	16.691	3	0.213	2.580	0.3502	0.936
50.6								0.411	2 5 6 7	0.3502	0.020
*101.3	0.0200	0.0209	0.1387	0.1002	0.1741	26.717	3	9.411	2.580	0.0002	
"101.3 Auxiliary Tests	0.0200	0.0209			0.1741	26./1/	Statistic	9.411	Critical	0.3502	Skew
*101.3 Auxiliary Tests Shapiro-Wilk's T	0.0200 est indicates	0.0209 s normal d	stribution (0.1741	26./1/		9,411		0.0002	Skew
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of varia	0.0200 est indicates	0.0209 s normal d se confirm	istribution (ed	p > 0.01)			Statistic 0.933948		Critical 0.894		Skew -0.4724
"101.3 Auxillary Tests Shapiro-Wilk's T Equality of varia Hypothesis Tes	0.0200 est indicates	0.0209 s normal d se confirm	istribution (ed NOEC	p > 0.01) LOEC	ChV	TU	Statistic 0.933948 MSDu	MSDp	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of varia	0.0200 est indicates	0.0209 s normal d se confirm	istribution (ed	p > 0.01) LOEC 101.3	ChV 71.59455	TU 1.976285	Statistic 0.933948 MSDu 0.210267	MSDp 0.215387	Critical 0.894		Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of varia Hypothesis Test Dunnett's Test	0.0200 est indicates nce cannot t st (1-tall, 0.0	0.0209 s normal d se confirm 5)	stribution (ed NOEC 50.6	p > 0.01) LOEC 101.3 Line	ChV 71.59455 ear interpo	TU	Statistic 0.933948 MSDu 0.210267	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxillary Tests Shapiro-Wilk's T Equality of varia Hypothesis Tes Dunnett's Test Point	0.0200 fest indicates nce cannot t at (1-tail, 0.0	0.0209 normal d e confirm 5) SD	istribution (ed NOEC 50.6 95% C	p > 0.01) LOEC 101.3 Line L(Exp)	ChV 71.59455 9ar Interpo Skew	TU 1.976285	Statistic 0.933948 MSDu 0.210267	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxillary Tests Shapiro-Wilk's T Equality of varia Hypothesis Test Dunnett's Test Point ICO5	0.0200 fest indicates nce cannot t at (1-tail, 0.0 % 51.264	0.0209 normal d e confirm 5) SD 21.474	istribution (ed NOEC 50.6 95% C 0.000	p > 0.01) LOEC 101.3 Line L(Exp) 55.305	ChV 71.59455 ear Interpo Skew -0.3695	TU 1.976285	Statistic 0.933948 MSDu 0.210267	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
^{1101.3} Auxiliary Tests Shapiro-Wilk's T Equality of varial Hypothesis Test Dunnett's Test Point IC05 IC10	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.254 53.955	0.0209 s normal d be confirm 5) sp 21.474 6.772	stribution (ed NOEC 50.6 95% C 0.000 16.520	p > 0.01) LOEC 101.3 Lin∉ L(Exp) 55.305 57.779	ChV 71.59455 ear Interpo Skew -0.3695 -4.0061	TU 1.976285	Statistic 0.933948 MSDu 0.210267 D Resampl	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
101.3 Auxiliary Tests Shapiro-Wilk's T Equality of varias Hypothesis Test Dunnett's Test Dunnett's Test Point IC05 IC10 IC15	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647	0.0209 s normal d be confirm 5) sp 21.474 6.772 2.357	stribution (ed 50.6 95% C 0.000 16.520 44.413	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254	ChV 71.59455 ear Interpo Skew -0.3695 -4.0061 -2.2269	TU 1.976285	Statistic 0.933948 MSDU 0.210267 0 Resampl	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
101.3 Auxiliary Tests Shapiro-Wilk's T Equality of varia Hypothesis Tes Dunnett's Test Point ICO5 ICC0 ICC10 ICC15 ICC20	0.0200 fest indicates noe cannot t at (1-tail, 0.0 % 51.264 53.955 56.647 59.339	0.0209 normal d e confirm 5) SD 21.474 6.772 2.357 1.899	stribution (ed 50.6 35% C 0.000 16.520 44.413 47.906	p > 0.01) LOEC 101.3 LInt L(Exp) 55.305 57.779 60.254 62.728	ChV 71.59455 ear Interpo Skew -0.3695 -4.0061 -2.2269 -1.1360	TU 1.976285	Statistic 0.933948 MSDu 0.210267 D Resampl	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxillary Tests Shapiro-Wilk's T Equality of varia Hypothesis Test Dunnett's Test Point IC05 IC10 IC15 IC10 IC20 IC25	0.0200 est indicates nce cannot t at (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031	0.0209 s normal d se confirm 5) SD 21.474 6.772 2.357 1.899 1.776	stribution (ed NOEC 50.6 95% C 95% C 16.520 44.413 47.906 51.308	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202	ChV 71.59455 ear Interpo 8kew -0.3695 -4.0061 -2.2269 -1.1360 -1.1327	TU 1.976285	Statistic 0.933948 MSDU 0.210267 0 Resampl	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 est indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 0 Resampl	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of varial Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 est indicates nce cannot t at (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031	0.0209 s normal d se confirm 5) SD 21.474 6.772 2.357 1.899 1.776	stribution (ed NOEC 50.6 95% C 95% C 16.520 44.413 47.906 51.308	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202	ChV 71.59455 ear Interpo 8kew -0.3695 -4.0061 -2.2269 -1.1360 -1.1327	TU 1.976285	Statistic 0.933948 MSDu 0.210267 0 Resampl 0.8 0.9 0.8 0.7	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxillary Tests Shapiro-Wilk's T Equality of varia Hypothesis Test Dunnett's Test Point IC05 IC10 IC15 IC10 IC20 IC25	0.0200 est indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 Resampl 1.0 0.9 0.8 0.7 0.6	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 Resampl 1.0 0.9 0.8 0.7 0.6	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 Resampl 1.0 0.9 0.8 0.7 0.6	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 D Resampl 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 0 Resampl 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 D Resampl 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 0 Resampl 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 D Resampl 1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.1	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDU 0.210267 0.8esampl 1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MSDp 0.215387	Critical 0.894 MSB	MSE	Skew -0.4724 F-Prob
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDu 0.210267 0 Resampl 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	MSDp 0.215387	Critical 0.894 MSB 0.55851	MSE 0.02763	Skew -0.47241 F-Prob 1.7E-07
"101.3 Auxiliary Tests Shapiro-Wilk's T Equality of variai Hypothesis Test Dunnett's Test Dunnett's Test Cons IC05 IC10 IC15 IC20 IC25 IC20 IC25 IC40	0.0200 rest indicates nce cannot t st (1-tail, 0.0 % 51.264 53.955 56.647 59.339 62.031 70.106	0.0209 s normal d se confirm 5) 21.474 6.772 2.357 1.899 1.776 1.409	stribution (ed 50.6 95% C 0.000 16.520 44.413 47.906 51.308 61.515	p > 0.01) LOEC 101.3 Line L(Exp) 55.305 57.779 60.254 62.728 65.202 72.625	ChV 71.59455 ear Interpo -0.3695 -4.0061 -2.2269 -1.1360 -1.1327 -1.1170	TU 1.976285	Statistic 0.933948 MSDU 0.210267 0.8esampl 1.0 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MSDp 0.215387	Critical 0.894 MSB	MSE 0.02763	

ToxCalc v5.0.23

Page 1

					Adul	t Prawn Gr	owth				
Start Date:	17/07/2007	,	Test ID:	ECX07-180	5		Sample ID	0	Brine		
End Date:	14/08/2007	,	Lab ID:	Freo			Sample Ty	pe:	SA Desalir	nation Plant	
Sample Date:	18/05/2007	,	Protocol:	Geotech W	I		Test Speci	es:	Western K	ing Prawn	
Comments:											
Conc-%	1	2	3								
Control		0.6880									
0.79		0.6620									
1.6		0.7060									
3.2		0.5480									
12.7		0.5440									
25.3		0.0000									
50.6		0.0000									
101.3	0.0000	0.0000	0.0000								
				Transform:	Arcein So	uare Roof	t		1-Talled		Numbe
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Control	0.8503	1.0000	1.2302	0.9781	1.5208	22.221	3				. 4
0.79	0.7403	0.8706	1.0448	0.9504	1.2125	13.931	3	0.987	2.500	0.4692	7
1.6	0.7477	0.8793	1.0493	0.9771	1.1731	10.265	3	0.964	2.500	0.4692	7
3.2	0.5120	0.6021	0.7973	0.6694	0.8891	14.331	3	2.306	2.500	0.4692	14
12.7	0.5293	0.6225	0.8150	0.7111	0.9045	11.963	3	2.212	2.500	0.4692	14
*25.3	0.3233	0.3802	0.5300	0.0500	0.8891	81.589	3	3.731	2.500	0.4692	20
50.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	3				30
101.3	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	3				30
Auxiliary Tests							Statistic		Critical		Skew
Shapiro-Wilk's T		s normal d	listribution /	n > 0.01			0.961414		0.858		-0.4668
Bartlett's Test In							6.585877		15.08632		-0.4000
Hypothesis Tea			NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test			12.7	25.3						0.052843	
					Maximur	n Likelihoo					
Parameter	Value	SE		cial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma
Slope	5.005438			9.402359		0.15	80.54761	11.07048	6.5E-16	1.329482	0.19978
Intercept				4.630592							
TSCR			0.162499				1.0 T			~ _	
Point	Probits	%		cial Limits			0.9 -		- 1		
EC01				14.35326			0.8				
EC05		10.02002		17.29284			-			1	
EC10			0.027777				0.7			1	
EC15 EC20			0.069182				\$ 0.6 -		/†	1	
EC20 EC25	4.100			22.0577 23.37398			5 . <u>.</u> .		- 74		
EC25 EC40				25.57590			as 0.6 0.5 0.4		- /		
			2.897527				₽ ^{0,4}		<u>/• </u>		
EC50 EC60				32.1748 40.21262			0.3 -		/ /		
EC60 EC75				40.21262 87.58822			0.2		/ 1		
EC/5 EC80			16.11581				-		ا 👞 ا		
EC85				264.8789			0.1		- ~ //		
EC90				204.0709			0.0		·····		
		30.00472								-	00 10000
		45 50891					0.000	0.01	1	100 100	10000
EC95 EC95	6.645		30.63409	2297.937 28671.25			0.000	01 0.01	1	100 100	10000

ToxCalc v5.0.23

Significant heterogeneity detected (p = 6.45E-16)

Page 1

Final Report V3 ECX07-1805

					Larv	al Fish Gro	owth					
Start Date:	13/11/2007	,	Test ID:	est ID: ECX07-1805 Sample ID: SA Desalin				nation Plant				
End Date:	21/11/2007	7 Lab ID: Freo					Sample Ty	pe:	e Brine			
Sample Date:	28/08/2007	,	Protocol:	GEOTECH	I WIENV62		Test Speci	es: Yellowtall Kingfish				
Comments:												
Conc-%	1	2	3									
Control		1.0000	0.8610									
0.79		0.4980										
1.6		0.8000										
3.2		0.9820	0.4230									
6.3		0.5510										
12.7		0.6320										
25.3		0.0000										
50.6	0.0000	0.0000	0.0000									
				Transform	: Arcein So	uare Roof	t		1-Talled		Number	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	
Control	0.9537	1.0000	1.4101	1.1887	1.5208	13.595	3				14	
0.79		0.7714	1.0614	0.7834	1.3407	26.256	3	1.971	2.530	0.4476	75	
1.6	0.7410	0.7770	1.0403	0.9263	1.1071	9.540	3	2.090	2.530	0.4476	78	
3.2	0.7653	0.8025	1.1262	0.7081	1.4362	33.379	3	1.604	2.530	0.4476	7	
*6.3	0.6237	0.6540	0.9119	0.8365	1.0121	9.912	3	2.816	2.530	0.4476	11	
*12.7	0.6113	0.6410	0.8983	0.8214	0.9546	7.675	3	2.892	2.530	0.4476	11	
*25.3		0.0629	0.1794	0.0500	0.4381	124.911	3	6.956	2.530	0.4476	28	
50.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	3				30	
Auxiliary Tests							Statistic		Critical		Skew	
Shapiro-Wilk's T		s normal d	listribution (p > 0.01)			0.97188		0.873		-0.34911	
Bartlett's Test In			,				7.012969		16.81187			
Hypothesis Tea			NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
Dunnett's Test			3.2	6.3	4.489989	31.25	0.301016	0.308925	0.430588	0.046958	3.4E-04	
					Masterio	n Likelihoo	d Droblé					
Parameter	Value	SE	95% Fiduo	stal Limita	Maximur	Control	Chi-Sq	Critical	P-value	Mu	Sigma	
Slope		1.582755		11.56713				11.07048	1.7E-06	1.215096	0.133359	
Intercept			-9.29732									
TSCR			0.161465	0.3106			1.0 T			,	- • - 1	
PoInt	Probits	%	95% Fiduo	al Limits	•					- /		
EC01	2.674	8.032594	2.828396	11.24898	•		0.9 -			<i> </i>	/	
EC05	3.355	9.902376	4.417433	13.03435			0.8 -					
EC10	3.718	11.07106	5.584808	14.14425			0.7			- 111		
EC15	3.964	11.93653	6.528522	14.97712						- 111		
EC:20	4.158	12.67237	7.378399	15.70075			as 0.6 0.5 0.4			- 111		
EC25	4.326	13.33971	8.18192	16.37583			§ 0.5			- 11		
EC40	4.747	15.18133	10.51089	18.39126			5			- 115		
EC:50	5.000	16.40952	12.09166	19.93107			£ ^{20,4}			- (d)		
EC60	5.253	17.73708	13.74571	21.85824			0.3 -			<u>-</u> ĭ		
EC75	5.674	20.18578	16.45921	26.33698					• • •	111		
EC80	5.842	21.24878	17.48011	28.68182			0.2 -		• •	1 11		
EC85	6.036	22.5587	18.62596	31.89126			0.1 -			/ //		
EC90	6.282	24.32219	20.01655	36.73298			0.0					
EC95	6.645	27.19271	22.02804	45.79291			0.0 +		1 1	10	100	
EC99			25.86579						Dose			
Significant heter	rogeneity de	tected (p -	1.68E-06)		-				D036	/6		

EC99 7.326 33.52248 25.86579 70.57559 Significant heterogeneity detected (p = 1.68E-06)

Page 1

ToxCalc v5.0.23

					Mullows	ay Larval	Growth						
Start Date:	27/10/2007	,	Test ID:	ECX07-180			Sample ID	:	RO Brine				
End Date:	3/11/2007		Lab ID:	Freo			Sample Type:			SA Desalination Plant			
Sample Date:	27/10/2007	,	Protocol:	GEOTECH	WIENV -64	1	Test Spec	es:	Mulloway				
Comments:													
Conc-%	1	2	3										
Control	0.8790	0.9270	1.0000										
1.6	0.8100	0.6740	0.8460										
3.2	0.7740	0.6140	0.6500										
6.3	0.7670	0.6470	0.7390										
12.7		0.6880	0.4920										
25.3		0.0200	0.0300										
50.6		0.0000	0.0000										
				Transform:					1-Tailed		Number		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp		
Control		1.0000	1.3445		1.5208	11.754	_				19		
*1.6		0.8304	1.0835	0.9631	1.1675	9.869	3	3.011	2.500	0.2167	67		
*3.2		0.7263	0.9712		1.0754	9.489	3	4.306	2.500	0.2167	97		
*6.3	0.7177	0.7673	1.0121	0.9346	1.0671	6.821	3	3.835	2.500	0.2167	84		
*12.7	0.6347	0.6785	0.9244	0.7774	1.0177	13.937	3	4.846	2.500	0.2167	110		
*25.3	0.0200	0.0214	0.1387	0.1002	0.1741	26.717	3	13.909	2.500	0.2167	294		
50.6	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	3				300		
Auxiliary Tests							Statistic		Critical		Skew		
Shapiro-Wilk's T	Fest Indicate	s normal d	listribution (p > 0.01)			0.974794		0.858		0.032906		
Bartiett's Test In	dicates equ	al variance	s (p = 0.63				3.436978		15.08632				
Hypothesis Te	st (1-tall, 0.0	05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob		
Dunnett's Test			<1.6	1.6			0.133416	0.140488	0.49686	0.011273	2.6E-07		
					Maximum	Likeliho	od-Probit						
Parameter	Value	SE	95% Fiduo	cial Limits	in a sin an	Control	Chi-Sq	Critical	P-value	Mu	Sigma		
Slope	9.491399	1.799764	4.494442	14.48836		0.063333	23.38187	9.487728	1.1E-04	1.19798	0.105359		
Intercept	-6.3705	2.203633	-12.4888	-0.25222									
TSCR	0.222456	0.029041	0.141825	0.303087			1.0 T				•		
PoInt	Probits	%	95% Fiduo	cial Limits						17.0			
EC01	2.674	8.971792	4.28476	11.6552			0.9 -			11.7			
EC05	3.355	10.58475	5.987017	13.17964			0.8 -			HI			
EC10	3.718	11.55999	7.127479	14.12822						111 -			
EC15		12.26825		14.84379			0.7			Π –			
EC20			8.745895				esuodsag 0.4			11 -			
EC25			9.426792				ë			01			
EC40	4,747		11.27121				÷			Π			
EC50			12.43232				₽° 0.4 -		+	11			
EC60			13.59223				0.3		- I.	N I			
EC75			15,44566				u.s 1	•	_ _ [11			
EC80	5.842		16.14659				0.2 -		•/	11			
EC85			16.94149				0.1	•	11	7			
EC90			17.91639				u. 1		11	1			
							0.0		 	· · · ·			
EC95 EC99			19.33473	37.13513			1		10		100		

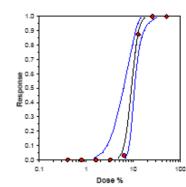
EC99 7.326 27.73834 22.01558 51.53008 Significant heterogeneity detected (p = 1.06E-04)

ToxCalc v5.0.23

Reviewed by:_____

Dose %

Page 1


					Larv	al Fish Gro	owth					
Start Date:	31/07/2007		Test ID:	ECX07-18					Brine			
End Date:	7/08/2007		Lab ID:	Freo			Sample Ty	pe:				
Sample Date:	18/05/2007		Protocol:	Geotech W	IENV-62		Test Speci	es:	Pink Snap	per		
Comments:												
Conc-%	1	2	3									
Control		0.9600	1.0000									
0.79		0.8900	0.9400									
1.6		0.9100	1.0000									
3.2		1.0000	1.0000									
6.3		0.9900	1.0000									
12.7		1.0000	0.9500									
25.3		0.7400										
50.6		0.0100	0.0100									
101.3	0.0000	0.0000	0.0000		. A secolar O				4 Talled		Number	
Conc-%	Mean	N-Mean	Mean	Transform: Min	Max	CV%	N	t-Stat	1-Talled Critical	MSD	Number Resp	
Control		1.0000	1,4703	1.3694	1.5208	5.943	3	Cotat	onuoai	MOD	4	
0.79		0.9459	1.3176	1.2327	1.3967	6.234	3	1.892	2.560	0.2066	20	
1.6		0.9730	1.3945	1.2661	1.5208	9,132	3	0.939	2.560	0.2066	12	
3.2		0.9899		1.3030	1.5208	8.681	3	0.274	2.560	0.2066	7	
6.3		1.0101	1.5041	1.4706	1.5208	1.925	3	-0.418	2.560	0.2066	1	
12.7		0.9459	1.3464	1.1731	1.5208	12.912	3	1.536	2.560	0.2066	20	
*25.3		0.7500	1.0358	1.0244	1.0472	1.101	3	5.384	2.560	0.2066	78	
*50.6		0.0135	0.1141	0.1002	0.1419	21,120	3	16.804	2.560	0.2066	296	
101.3		0.0000	0.0500	0.0500	0.0500	0.000	3	10.004	2.000	0.2000	300	
Auxiliary Tests			0.0000	0.0100	0.0000	0.000	Statistic		Critical		Skew	
Shapiro-Wilk's 1		s normal d	istribution (D > 0.01)			0.95956		0.884		-0.27065	
Bartiett's Test In							13.64201		18.47532			
Hypothesis Te			NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
Dunnett's Test			12.7	25.3	17.92512	7.874016	0.081317	0.082143	0.645561	0.009772	1.3E-10	
					Maximur	n Likelihoo						
Parameter	Value	SE	95% Fiduo			Control	Chi-Sq	Critical	P-value	Mu	Sigma	
Slope	9.715673			13.40106		0.013333	27.45901	12.59158	1.2E-04	1.478022	0.102926	
Intercept			-14.7293	-3.9906								
TSCR			0.012653				^{1.0} T			<u>.</u>		
Point	Probits	%	95% Fiduo				0.9 -			- #/		
EC01			12.49667				0.8			8		
EC05			16.05208				0.8			N.		
EC10 EC15	3.718		18.27897				0.7 -			- W		
EC15 EC20			21.25175				a n 6			11		
EC25		25.62116		28.26263			e			8		
EC40			25.44873				asuod 0.5 680 0.5 880 0.4			1		
EC50			27.21724				\$ 0.4					
EC60		31.92257		36.63439			1			0		
EC75			31.70557				0.3 -			1		
EC80		36.69837		42.20039			0.2 -			М		
EC85			34.08425				0.1			И		
EC90			35.72452				0.1	٠.	. 🚽	1		
EC95			38.23032				0.0 +		· • • • • • · · · · · · · · · · · · · ·			
EC99		52.17525		77.20388			0.1	1	10	100	1000	
									Dose '			

ToxCalc v5.0.23

EC99 7.326 52.17525 43.2599 77.20388 Significant heterogeneity detected (p = 1.19E-04)

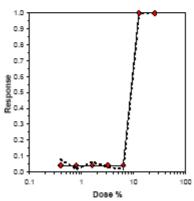
Page 1

					Embr	yo Develop	oment					
Start Date:	7/06/2007		Test ID:	ECX07-18	05		Sample ID	-	RO Brine			
End Date:	29/10/2007	,	Lab ID:	Freo			Sample Ty	pe: SA Desalination Plant				
Sample Date:	7/06/2007		Protocol:	GEOTECH	I WI		Test Speci	es:	Glant Cutt	lefish		
Comments:												
Conc-%	1	2	3	4	5							
Control		0.6364	0.7273	0.3636	0.5455							
0.4		0.6364	0.6364	0.7273	0.7273							
0.79		0.5455	0.5455	0.6364	0.7273							
1.6		0.5455	0.5455	0.5455	0.5455							
3.2		0.5455	0.6364	0.5455	0.9091							
6.3		0.5455	0.6364	0.5455	0.5455							
12.7		0.0000	0.0909	0.0909	0.0909							
25.3		0.0000	0.0000	0.0000	0.0000							
50.6	0.0000	0.0000	0.0000	0.0000	0.0000							
					: Arcein So				1-Talled		Number	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	
Control		1.0000	0.8693	0.6473	1.0213	16.243	5				23	
0.4		1.1563	0.9626	0.9235	1.0213	5.566	5	-1.327	2.409	0.1694	18	
0.79		1.0313	0.8875	0.8309	1.0213	9.563	5	-0.259	2.409		22	
1.6		1.0313	0.8908	0.8309	1.1303	15.030	5	-0.305	2.409	0.1694	22	
3.2		1.1250	0.9547	0.8309	1.2645	18.780	5	-1.214	2.409		19	
6.3		0.9688	0.8494	0.8309	0.9235	4.875	5	0.283	2.409		24	
*12.7		0.1250	0.2753	0.1513	0.3063	25.171	5	8.444	2.409	0.1694	51	
25.3		0.0000	0.1513	0.1513	0.1513	0.000	5				55	
50.6		0.0000	0.1513	0.1513	0.1513	0.000	5				55	
Auxiliary Tests							Statistic		Critical		Skew	
Shapiro-Wilk's T			,	•			0.918927		0.91		0.980486	
Bartlett's Test In					051/	τυ	11.3993	Man	16.81187	MOE	F-Prob	
Hypothesis Ter Dunnett's Test	st (1-tall, 0.t	19)	NOEC 6.3	LOEC 12.7	ChV 8.944831		MSDu	MSDp 0.288974	MSB 0.000740	MSE	1.0E-09	
Dunneus rest			0.5	12.7	0.944031	10.07002	0.100022	0.2009/4	0.209/49	0.012371	1.02-09	
					Maximur	n Likelihoo	d-Probit					
Parameter	Value	SE	95% Fiduo	al Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	
Slope	8.280412	2.4054	3.565829	12.995		0.418182	1.086491	12.59158	0.98	0.959731	0.120767	
Intercept	-2.94697	2.553904	-7.95262	2.058681								
TSCR	0.378294	0.029225	0.321013	0.435576			1.0 T				-	
PoInt	Probits	%	95% Fiduo	al Limits			0.9			- 117		
EC01	2.674	4.772935	1.446115	6.725312			0.5			- M		
EC05	3.355	5.768827	2.233245	7.630267			0.8 -			H		
EC10	3.718	6.382082	2.811743	8.172255			0.7			- 10		
EC15	3.964	6.832263	3.281789	8.566634						-DI		
EC:20	4.158	7.212593	3.708314	8.899566			8 0.6 -			118		
EC25	4.326	7.555712	4.115567	9.201255			50.5			18		
EC40	4.747	8.494454	5.330428	10.0468			asuod 0.5 0.4			111		
EC:50	5.000	9.11447	6.200497	10.63917			in 0.4 −			110		
EC60	5.253	9.779742	7.170633	11.33238			0.3 -			/ ((
EC75	5.674	10.9948	8.91828	12.88578					/	11		
EC80	5.842	11.51785	9.604606	13.72915			0.2		- 1	11		
EC85	6.036	12.15901	10.36028	14.94089			0.1 -			11		
EC90	6.282	13.01669	11.22702	16.86889						/4		
EC95	6.645	14.40043	12.37636	20.63477			0.0 +		1	10	100	
EC99	7.326	17.40513	14.37529	31.12698			0.1				100	
					•				Dose	76		

Page 1

ToxCalc v5.0.23

Reviewed by:


					Da	ays to Hato	h					
Start Date:	7/06/2007		Test ID:	ECX07-18			Sample ID	c	RO Brine			
End Date:	29/10/2007	,	Lab ID: Freo				Sample Type:			SA Desalination Plant		
Sample Date:	7/06/2007		Protocol: GEOTECH WI				Test Spec	es:	Glant Cuttlefish			
Comments:												
Conc-%	1	2	3	4	5							
Control	1.0000	0.7730	0.5350	1.0000	1.0000							
0.79	0.7140	1.0000	1.0000	0.5760	1.0000							
1.6		1.0000	0.4520	0.3540	0.8280							
3.2	1.0000	0.5010	0.4010	0.8940	0.7260							
6.3	0.5910	0.5590	0.9800	1.0000	0.4200							
12.7		0.0200	0.0300	0.0200	0.0100							
25.3	0.0000	0.0000	0.0000	0.0000	0.0000							
				Transform	: Arcein So	uare Roof			1-Tailed		Number	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	
Control		1.0000	1.2914	0.8204	1.5208	25.296	5		et aread		70	
0.79		0.9958	1.2861	0.8617	1.5208	25.300	5	0.026	2.360	0.4699	71	
1.6		0.8073	1.0407	0.6372	1.5208	34.352	5	1.259	2.360	0.4699	153	
3.2		0.8175	1.0504	0.6857	1.5208	32.302	5	1.210	2.360	0.4699	148	
6.3		0.8240	1.0752	0.7051	1.5208	34.586	5	1.085	2.360	0.4699	145	
*12.7		0.0209	0.1316	0.1002	0.1741	24.000	5	5.824	2.360	0.4699	491	
25.3		0.0000	0.0500	0.0500	0.0500	0.000	5				500	
Auxiliary Tests Shapiro-Wilk's T Bartiett's Test in	Test Indicate						Statistic 0.940128 13.57006		Critical 0.9 15.08632		Skew -0.01911	
Hypothesis Te	st (1-tall, 0.0	05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
Dunnett's Test			6.3	12.7	8.944831	15.87302	0.38793	0.419864	0.928078	0.099132	4.7E-05	
					Maximun	n Likelihoo						
Parameter	Value	SE	95% Fidu			Control	Chi-Sq	Critical	P-value	Mu	Sigma	
Slope		2.726511		18.54961		0.14	55.44713	9.487728	2.6E-11	0.922248	0.091078	
Intercept			-12.5905									
TSCR			0.125088				1.0 T			19 2	·	
Point EC01	Probits	%	1.174615	al Limits			0.9 -			- 11 7		
EC05			1.830941				0.8			111		
EC10			2.311048							H		
EC15	3.964		2.698082				0.7 -			H		
EC15 EC20		7.008002		8.952142			¢ 0.6			111 -		
EC25		7.257988		9.235236			as 0.6 0.5 20 0.4			111 -		
EC40			4.329926				80.5-			$t \parallel =$		
EC40		8.360794		10.71798			₿ 0.4 -					
EC:50			5.687638				1		/	11		
EC75			5.00/030				0.3 -		/	11		
EC/5 EC80		9.031104		14.25602			0.2 -		• 🖌	4)		
EC85		10.39068		14.25602			0.1		1	1		
EC90			8.466002							11		
							0.0		~~	1 1		
EC95												
EC95 EC99			9.201037	21.44602 32 26449			0.1		1 Dose	10	100	

Significant heterogeneity detected (p = 2.62E-11)

Page 1

ToxCalc v5.0.23

				Length at Hatch								
Start Date:	7/06/2007		Test ID:	Ecx07-180	5		Sample ID:			RO Brine		
End Date:	29/10/2007		Lab ID:	Freo Sample T			/pe:	t				
Sample Date: Comments:	6/06/2007		Protocol: GEOTECH			Test Species:			Glant Cuttlefish			
Conc-%	1	2	3	4	5							
Control	0.9850	1.0000	1.0000	0.9800	1.0000							
0.4	0.9150	0.9150	0.9280	0.8490	0.9540							
0.79	0.9150	1.0000	1.0000	1.0000	0.9670							
1.6	0.9280	0.9410	0.9020	0.9150	0.9670							
3.2	0.9800	0.9670	0.9150	1.0000	0.9540							
6.3	0.9930	0.9930	0.9800	0.9280	0.9930							
12.7	0.0000	0.0000	0.0000	0.0000	0.0000							
25.3	0.0000	0.0000	0.0000	0.0000	0.0000							
				Transform	: Arcein Se	quare Roo	t		1-Talled		Number	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp	
Control	0.9930	1.0000	1.4878	1.4289	1.5208	3.064	5					
"0.4	0.9122	0.9186	1.2751	1.1717	1.3546	5.202	5	4.315	2.360	0.1164	43	
0.79	0.9764	0.9833	1.4451	1.2750	1.5208	7.688	5	0.867	2.360	0.1164	1	
*1.6	0.9306	0.9372	1.3080	1.2524	1.3881	4.007	5	3.647	2.360	0.1164	3	
3.2	0.9632	0.9700	1.3935	1.2750	1.5208	6.523	5	1.914	2.360	0.1164	19	
6.3	0.9774	0.9843	1.4378	1.2991	1.4870	5.669	5	1.014	2.360	0.1164	13	
12.7	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				50	
25.3	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				50	
Auxiliary Tests	1						Statistic		Critical		Skew	
Shapiro-Wilk's T	Fest Indicates	s normal d	istribution (p > 0.01)			0.956087		0.9		-0.63911	
Bartiett's Test In	idicates equa	al variance	s (p = 0.55)			3.962947		15.08632			
Hypothesis Te	st (1-tall, 0.0	15)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	
Dunnett's Test			6.3	12.7	8.944831	15.87302	0.032342	0.032565	0.034828	0.006079	0.001289	
					Trimmed	1 Spearma	n-Karber					
Trim Level	EC:50	95%	5 CL									
0.0%												
5.0%	8.8141	8.7552	8.8733									

Page 1

10.0%

20.0%

Auto-4.0%

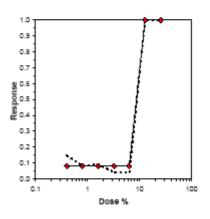
8.8141

8.8141

8.8141

8.7552

8.7552 8.7552 8.8733

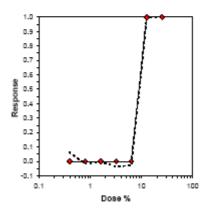

8.8733

8.8733

ToxCalc v5.0.23

Start Date: 7/06/2007 End Date: 29/10/2007 Sample Date: 6/06/2007 Comments: Conc-% Conc-% 1 Conc-% 1 Conc-% 1 Conc-% 1 Control 0.9840 1.0000 0.4 0.8160 0.9030 0.79 0.7400 1.0000 1.6 0.9230 0.8980 3.2 1.0000 0.8570 6.3 1.0000 0.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 "0.4 0.8382 1.0000 "0.4 0.8383 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000			We	light at Ha	tch				
Sample Date: 6/06/2007 Comments: Control 0.9840 1.0000 0.4 0.8160 0.9030 0.790 0.7400 1.0000 0.79 0.7400 1.0000 0.8160 0.9030 0.8980 3.2 1.0000 0.8570 0.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 Control 0.9832 1.0000 0.0000 '0.4 0.8368 0.8511 0.9070 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 AuxIllary Tests Stapiro-Wilk's Test Indicates normal d Bartlett's Test Indicates qual variance Hypothesis Test (1-tail, 0.05) Dunnett's Test	Test ID:	Ecx07-180	5		Sample ID	C	RO Brine		
Control 1 2 Control 0.9840 1.0000 0.4 0.8160 0.9030 0.79 0.7400 1.0000 1.5 0.9230 0.8980 3.2 1.0000 0.8570 6.3 1.0000 1.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 °0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.942 0.9603 °0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.942 0.9603 3.2 0.9414 0.9575 6.3 0.9420 0.9000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000	Lab ID:	Freo			Sample Ty	/pe:	SA Desalir	nation Plant	
Conc-% 1 2 Control 0.9840 1.0000 0.4 0.8160 0.9030 0.79 0.7400 1.0000 1.6 0.9230 0.8960 3.2 1.0000 0.8570 6.3 1.0000 0.6000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 "0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 1.2.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test Indicates normal d Bartiett's Test Indicates equal variance	Protocol:	GEOTECH	WI		Test Spec	les:	Glant Cutt	lefish	
Control 0.9840 1.0000 0.4 0.8160 0.9030 0.79 0.7400 1.0000 1.6 0.9230 0.8980 3.2 1.0000 1.6 0.3 1.0000 0.870 6.3 1.0000 0.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 "0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 1.2.7 0.0000 0.0000 25.3 0.0000 0.0000 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
0.4 0.8160 0.9030 0.79 0.7400 1.0000 1.6 0.9230 0.8960 3.2 1.0000 0.8570 6.3 1.0000 0.0000 25.3 0.0000 0.0000 *0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.9832 1.0000 *0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 <	3	4	5						
0.79 0.7400 1.0000 1.6 0.9230 0.8960 3.2 1.0000 0.870 6.3 1.0000 1.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 °0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.942 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 3.2 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 <t< td=""><td>0.9690</td><td>0.9640</td><td>0.9990</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.9690	0.9640	0.9990						
1.6 0.9230 0.8980 3.2 1.0000 0.8570 6.3 1.0000 1.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 10.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9420 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test Indicates equal variance Hypothesis Test (1-tall, 0.05) Dunnett's Test	0.8670	0.7610	0.8370						
3.2 1.0000 0.8570 6.3 1.0000 1.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 Auxilliary Tests Shapiro-Wilk's Test indicates normal d Bartieft's Test indicates equal variance Hypothesis Test Dounnett's Test 0.05)	0.9430	1.0000	0.8270						
6.3 1.0000 1.0000 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 "0.4 0.9832 1.0000 "0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test indicates normal d Bartieft's Test indicates equal variance typothesis Test (1-tail, 0.05) Dunnett's Test Dunnett's Test	0.7460	0.9030	0.9890						
12.7 0.0000 0.0000 25.3 0.0000 0.0000 Conc-% Mean N-Mean Control 0.9832 1.0000 "0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test Indicates normal d Bartiett's Test Indicates equal variance typothesis Test (1-tall, 0.05) Dunnett's Test Dunnett's Test	0.9690	0.9990	0.8820						
25.3 0.0000 0.0000 Conc-% Mean N-Mean Control 0.9832 1.0000 *0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test Indicates normal d Bartlett's Test Indicates equal variance Hypothesis Test Journett's Test Dunnett's Test	1.0000	0.7210	1.0000						
Conc-% Mean N-Mean Control 0.9832 1.0000 '0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9422 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test Indicates normal d Bartiett's Test Indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test State	0.0000	0.0000	0.0000						
Control 0.9832 1.0000 *0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Teets Shapiro-Wilk's Test indicates normal d Bartlett's Test indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test Output	0.0000	0.0000	0.0000						
Control 0.9832 1.0000 *0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Teets Shapiro-Wilk's Test indicates normal d Bartlett's Test indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test Output	Transform: Arcsin S						1-Talled		Number
"0.4 0.8368 0.8511 0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9422 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxilliary Tests Shapiro-Wilk's Test Indicates normal d Bartiett's Test Indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test Output	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
0.79 0.9020 0.9174 1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Tests Shapiro-Wilk's Test indicates normal d Bartiett's Test indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test	1.4555	5 1.3799	1.5392	4.968	5				9
1.6 0.8918 0.9070 3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxiliary Tests 0.0000 0.0000 Shapiro-Wilk's Test indicates normal d 0.artiett's Test indicates equal variance Hypothesis Test (1-tail, 0.05) 0.005)	1.1588	3 1.0600	1.2541	6.302	5	2.872	2.360	0.2438	8
3.2 0.9414 0.9575 6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxiliary Tests 3.2 3.2 Shapiro-Wilk's Test Indicates normal d 3.3 3.3 Hypothesis Test Indicates equal variance 4.4 4.4 Hypothesis Test 1.4 1.0.05 1.4	1.3098	3 1.0357	1.5208	16.760	5	1.411	2.360	0.2438	4
6.3 0.9442 0.9603 12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxillary Teets 3 3 Shapiro-Wilk's Test Indicates normal d 3 3 Bartlett's Test Indicates equal variance 4 4 Hypothesis Test 1 1 1 Dunnett's Test 5 1 1 1	1.2595	5 1.0426	1.4657	11.955	5	1.897	2.360	0.2438	5
12.7 0.0000 0.0000 25.3 0.0000 0.0000 Auxiliary Tests Shapiro-Wilk's Test Indicates normal d Bartiett's Test Indicates equal variance dypothesis Test (1-tail, 0.05) Dunnett's Test	1.3714	1.1830	1.5392	12.056	5	0.815	2.360	0.2438	2
25.3 0.0000 0.0000 Auxiliary Tests Shapiro-Wilk's Test indicates normal d Bartiett's Test indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test	1.4195	5 1.0143	1.5208	15.956	5	0.349	2.360	0.2438	2
Auxiliary Tests Shapiro-Wilk's Test indicates normal d Bartiett's Test indicates equal variance Hypothesis Test (1-tail, 0.05) Dunnett's Test	0.0500	0.0500	0.0500	0.000	5				50
Shapiro-Ŵilk's Test Indicates normal d Bartiett's Test Indicates equal variance Typothesis Test (1-tail, 0.05) Dunnett's Test	0.0500	0.0500	0.0500	0.000	5				50
Bartiett's Test Indicates equal variance Hypothesis Test (1-tall, 0.05) Dunnett's Test					Statistic		Critical		Skew
Hypothesis Test (1-tail, 0.05) Dunnett's Test	istribution	(p > 0.01)			0.945973		0.9		-0.81379
Dunnett's Test	s (p = 0.12				7.773679		15.08632		
	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob
Trim Laura E050 057	6.3	12.7	8.944831	15.87302	0.110248	0.111726	0.060137	0.026677	0.081523
Trim Lavel EOE0 053			Trimmed	l Spearma	n-Karber				
Trim Level EC50 95%	6 CL								

Trim Level	EC50	95%	CL	
0.0%				
5.0%				
10.0%	8.6769	8.5902	8.7644	
20.0%	8.6769	8.5902	8.7644	
Auto-8.0%	8.6769	8.5902	8.7644	


ToxCalc v5.0.23

Reviewed by:_____

					w	idth at Hat	ch				
Start Date:	7/06/2007		Test ID:	Ecx07-180	5		Sample ID	0	RO Brine		
End Date:	29/10/2007		Lab ID:	Freo			Sample Ty	pe:	SA Desalin	ation Plant	
Sample Date: Comments:	6/06/2007		Protocol:	GEOTECH	I WI		Test Speci	es:	Glant Cuttle	efish	
Conc-%	1	2	3	4	5						
Control	0.9120	1.0000	0.8940	0.9830	1.0000						
0.4	0.8270	0.8340	0.9790	0.8270	1.0000						
0.79	0.9280	1.0000	1.0000	1.0000	0.9280						
1.6	0.9450	1.0000	0.8780	0.9790	1.0000						
3.2	1.0000	1.0000	0.9460	1.0000	1.0000						
6.3	1.0000	1.0000	1.0000	0.9120	1.0000						
12.7	0.0000	0.0000	0.0000	0.0000	0.0000						
25.3	0.0000	0.0000	0.0000	0.0000	0.0000						
Transform: Arcsin Square Root									1-Talled		Numbe
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Control		1.0000	1.3981			9.704					2
0.4	0.8934	0.9328	1.2762	1.1418	1.5208	14.332	5	1.469	2.360	0.1958	5
0.79	0.9712	1.0140	1.4321	1.2991	1.5208	8.477	5	-0.410	2.360	0.1958	1
1.6	0.9604	1.0027	1.4030	1.2140	1.5208	9.342	5	-0.059	2.360	0.1958	2
3.2	0.9892	1.0328	1.4839	1.3363	1.5208	5.561	5	-1.034	2.360	0.1958	
6.3	0.9824	1.0257	1.4705	1.2696	1.5208	7.638	5	-0.874	2.360	0.1958	
12.7	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				50
25.3	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				50
Auxiliary Tests							Statistic		Critical		Skew
Shapiro-Wilk's T	est indicate:	s normal d	istribution ((p > 0.01)			0.906819		0.9		-0.1795
Bartiett's Test In	dicates equa	al variance	s (p = 0.79	9			2.404161		15.08632		
Hypothesis Te	st (1-tall, 0.0	5)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prot
Dunnett's Test			6.3	12.7	8.944831	15.87302	0.100201	0.103251	0.027706	0.0172	0.19531
						phical Met					

Trim Level 0.0% EC50 8.9448

8.9448

Page 1

ToxCalc v5.0.23

Reviewed by:_____

					Cuttiefish	Post Hate	ch Length			
Start Date:	7/06/2007		Test ID:	ECX07-18			Sample ID:		RO Brine 78	8 ppt
End Date:	29/10/2007	,	Lab ID:	Freo			Sample Typ	pe:	SA Desalina	ation Plant
Sample Date:	6/06/2007		Protocol:	GEOTECH	I WI		Test Specie	25:	Sepla apam	a
Comments:										
Conc-%	1	2	3	4	5					
Contro	1.0000	1.0000	1.0000							
0.4		0.9760	0.9760							
0.79	9 0.9110	0.9630	1.0000	0.9370	1.0000					
1.6	5 0.9890	1.0000	0.9630							
3.2	2 0.9760	1.0000	1.0000	1.0000	0.9040					
6.3		1.0000	1.0000							
12.7		0.0000	0.0000	0.0000	0.0000					
25.3	0.0000	0.0000	0.0000	0.0000	0.0000					
				Transform	: Arcein So	uara Real		Rank	1-Talled	Number
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Resp
Contro		1.0000	1.4609			5.752		van	ornoon	8
0.4		1.0065	1.4786			3.909		29.50	16.00	4
0.79		0.9778	1.4007			8.297		23.00		19
1.6		0.9862				6.169		23.50		15
3.2		0.9919	1,4467			8.024		27.50		12
6.3		0.9929				9.056		29.00		12
12.7		0.0000	0.0500			0.000				500
25.3		0.0000	0.0500			0.000				500
Auxiliary Tests							Statistic		Critical	Skew
Shapiro-Wilk's					.01)		0.895297		0.9	-0.90829
Bartlett's Test In							2.931538		15.08632	
Hypothesis Te			NOEC	LOEC	ChV	TU				
Steel's Many-O	ne Rank Tes	st.	6.3	12.7	8.944831	15.87302				
					Trimmed	Spearma	n-Karber			
Trim Level	EC:50	95%								
0.0%	8.5289	8.3928	8.6673							
5.0%	8.8901	8.8527	8.9277							
10.0%	8.8901	8.8527	8.9277				1.0 T			
20.0%	8.8901	8.8527	8.9277				0.9			1
Auto-0.0%	8.5289	8.3928	8.6673				0.8			
							-			1
							0.7			
							0.6 -			- F - F
							2 o.s -			1
							8			1
							asuod say			
							[™] 0.3 -			1
							- 1			F

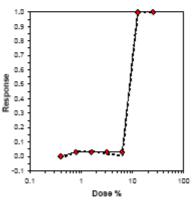
ToxCalc v5.0.23

0.2 0.1 0.0

0.1

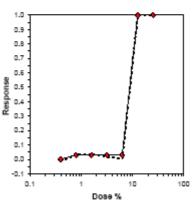
Reviewed by:_____

10


Dose %

1

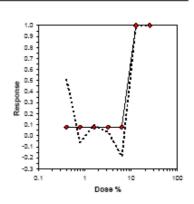
100


					Cuttiefisi	n Post Hate	ch Weight				
Start Date:	7/06/2007		Test ID:	ECX07-18	05		Sample ID	c	RO Brine 7	78 ppt	
End Date:	29/10/2007		Lab ID:	Freo			Sample Ty	pe:	SA Desalir	nation Plant	t
Sample Date: Comments:	6/06/2007		Protocol:	GEOTECH	HWI		Test Spec	les:	Sepla apai	ma	
Conc-%	1	2	3	4	5						
Control	0.8870	1.0000	1.0000	0.9670	1.0000						
0.4		0.9540	1.0000	0.9890							
0.79	1.0000	0.8600	0.9670	0.9670	0.9030						
1.6		0.9320	1.0000	0.9140	0.9320						
3.2	0.9410	1.0000	1.0000	1.0000	0.8320						
6.3	0.8600	0.9680	1.0000	1.0000	1.0000						
12.7		0.0000	0.0000	0.0000	0.0000						
25.3	0.0000	0.0000	0.0000	0.0000	0.0000						
					: Arcein Se				1-Talled		Number
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Control	0.9708	1.0000	1.4357	1.2280	1.5208	9.023	5				14
0.4	0.9848	1.0144	1.4589	1.3546	1.5208	4.758	5	-0.287	2.360	0.1911	8
0.79	0.9394	0.9677	1.3477	1.1873	1.5208	9.655	5	1.087	2.360	0.1911	30
1.6		0.9685	1.3395	1.2732		7.638	5	1.188	2.360	0.1911	31
3.2		0.9833	1.4072	1.1485		11.908		0.351			23
6.3		0.9946	1.4281	1.1873		10.215		0.093	2.360	0.1911	17
12.7		0.0000	0.0500	0.0500		0.000	-				500
25.3	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				500
Auxiliary Tests	1						Statistic		Critical		Skew
Shapiro-Wilk's T	Fest Indicate:	s normal di	istribution (p > 0.01)			0.937458		0.9		-0.63523
Bartlett's Test In							2.983577		15.08632		
Hypothesis Ter	st (1-tall, 0.0	15)	NOEC	LOEC	ChV	τu	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test			6.3	12.7	8.944831	15.87302	0.084552	0.086114	0.011932	0.016393	0.609369
					Trimmed	1 Spearma	n-Karber				
Trim Level	EC:50	95%									
0.0%		8.0819	8.4254								
5.0%		8.8018	8.9009								
10.0%		8.8018	8.9009				^{1.0}]				
20.0%		8.8018	8.9009				0.9				
Auto-0.0%	8.2519	8.0819	8.4254		-		0.8			ł	1

ToxCalc v5.0.23

Reviewed by:____

					Cuttlefis	h Post Hat	ch Width				
Start Date:	7/06/2007		Test ID:	ECX07-18	05		Sample ID	c .	RO Brine 7	78 ppt	
End Date:	29/10/2007		Lab ID:	Freo			Sample Ty	/pe:	SA Desalir	nation Plant	t
Sample Date: Comments:	6/06/2007		Protocol:	GEOTECH	H WI		Test Spec	les:	Sepla apai	ma	
Conc-%	1	2	3	4	5						
Control	0.8870	1.0000	1.0000	0.9670	1.0000						
0.4		0.9540	1.0000	0.9890	1.0000						
0.79		0.8600	0.9670	0.9670	0.9030						
1.6		0.9320	1.0000	0.9140	0.9320						
3.2		1.0000	1.0000	1.0000	0.8320						
6.3	0.8600	0.9680	1.0000	1.0000	1.0000						
12.7	0.0000	0.0000	0.0000	0.0000	0.0000						
25.3	0.0000	0.0000	0.0000	0.0000	0.0000						
				Transform	: Arcein Se	quare Roo	t		1-Tailed		Number
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Control	0.9708	1.0000	1.4357	1.2280	1.5208	9.023	5				14
0.4	0.9848	1.0144	1.4589	1.3546	1.5208	4.758	5	-0.287	2.360	0.1911	8
0.79	0.9394	0.9677	1.3477	1.1873	1.5208	9.655	5	1.087	2.360	0.1911	30
1.6	0.9402	0.9685	1.3395	1.2732	1.5208	7.638	5	1.188	2.360	0.1911	31
3.2	0.9546	0.9833	1.4072	1.1485	1.5208	11.908	5	0.351	2.360	0.1911	23
6.3	0.9656	0.9946	1.4281	1.1873	1.5208	10.215	5	0.093	2.360	0.1911	17
12.7		0.0000	0.0500	0.0500	0.0500	0.000	5				500
25.3	0.0000	0.0000	0.0500	0.0500	0.0500	0.000	5				500
Auxiliary Tests	3						Statistic		Critical		Skew
Shapiro-Wilk's T	Test Indicate:	s normal di	stribution (p > 0.01)			0.937458		0.9		-0.63523
Bartiett's Test In							2.983577		15.08632		
Hypothesis Te	st (1-tali, 0.0)5)	NOEC	LOEC	ChV	ΤU	MSDu	MSDp	MSB	MSE	F-Prob
Dunnett's Test			6.3	12.7	8.944831	15.87302	0.084552	0.086114	0.011932	0.016393	0.609369
					Trimmed	1 Spearma	n-Karber				
Trim Level	EC50	95%									
0.0%		8.0819	8.4254								
5.0%		8.8018	8.9009								
10.0%		8.8018	8.9009				^{1.0} T				
20.0%		8.8018	8.9009				0.9			1	
Auto-0.0%	8.2519	8.0819	8.4254				0.8			ł	

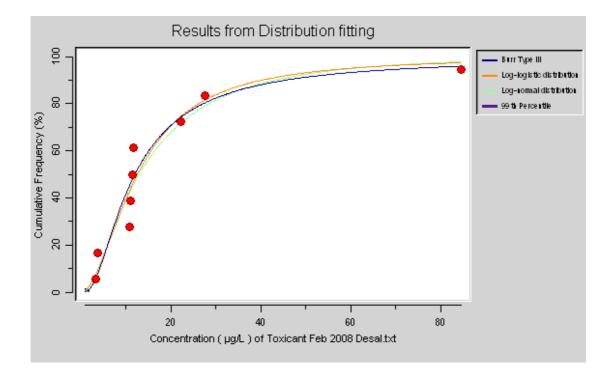


ToxCalc v5.0.23

Reviewed by:____

					Cuttlefish	Post Hatc	n survivai				
Start Date:	7/06/2007		Test ID:	ECX07-180	5		Sample ID		RO Brine		
End Date:	29/10/2007		Lab ID:	Freo			Sample Ty	pe:	SA Desalli	nation Plant	t
Sample Date: Comments:	7/06/2007		Protocol:	Geotech W	I		Test Speci	es:	Sepia apa	ma	
Conc-%	1	2	3	4	5						
Control	0.7500	0.7500	1.0000	0.6667	0.3333						
0.4	0.2500	0.2500	0.2500	0.4000	0.6000						
0.79	1.0000	0.6667	0.6667	0.7500	0.8000						
1.6	0.5000	1.0000	0.6667	0.3333	1.0000						
3.2	0.5000	1.0000	0.7500	0.3333	0.8571						
6.3	1.0000	1.0000	0.7500	1.0000	0.6667						
12.7	0.0000	0.0000	0.0000	0.0000	0.0000						
25.3	0.0000	0.0000	0.0000	0.0000	0.0000						
Transform: Arcein Square Root 1-Tailed N									Numbe		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Resp
Control	0.7000	1.0000	1.0021	0.6155	1.3453	26.094	5				
°D.4	0.3500	0.5000	0.6283	0.5236	0.8861	25.480	5	2.645	2.360	0.3334	
0.79	0.7767	1.1095	1.0686	0.9553	1.2780	12.506	5	-0.471	2.360	0.3334	
1.6	0.7000	1.0000	0.9824	0.6155	1.2780	30.061	5	0.139	2.360	0.3334	
3.2	0.6881	0.9830	0.9818	0.6155	1.2780	28.138	5	0.143	2.360	0.3334	
6.3	0.8833	1.2619	1.1673	0.9553	1.2780	13.278	5	-1.169	2.360	0.3334	
12.7	0.0000	0.0000	0.2527	0.2527	0.2527	0.000	5				
25.3	0.0000	0.0000	0.2527	0.2527	0.2527	0.000	5				:
Auxiliary Tests							Statistic		Critical		Skew
Shapiro-Wilk's T	est indicate	s normal di	stribution (p > 0.01)			0.957893		0.9		-0.1412
Bartiett's Test In	dicates equa	al variance	s (p = 0.53)			4.108651		15.08632		
Hypothesis Tea	st (1-tall, 0.0	15)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prol
Dunnett's Test			6.3	12.7	8.944831	15.87302	0.325663	0.458695	0.166689	0.049906	0.01977
					Trimmed						

Trim Level	EC50	95%	CL
0.0%			
5.0%			
10.0%	8.6840	8.2174	9.1771
20.0%	8.6840	8.2174	9.1771
Auto-7.8%	8.6840	8.2174	9.1771


ToxCalc v5.0.23

Reviewed by:_____

Appendix 3

BURRLIOZ Data

BurrliOZ Results ECX07-1805 ARUP RO Brine **Species Protection Trigger Values**

PC99 50% = 1.76 (501 Bootstrap Samples) Burr Type III Distribution fitted to 9 observations

PC95 50% = 3.13 (501 Bootstrap Samples) Burr Type III Distribution fitted to 9 observations

 $PC90\ 50\% = 4.20\ (501\ Bootstrap\ Samples)$ Burr Type III Distribution fitted to 9 observations

 $PC80\ 50\% = 5.96\ (501\ Bootstrap\ Samples)$ Burr Type III Distribution fitted to 9 observations

APPENDIX 010.5

Selection of species and other factors that affect dilution factors for saline brine discharge from the proposed desalination plant at Point Lowly, South Australia (report by Dr Michael Warne, CSIRO)

See overleaf for report.

Selection of species and other factors that affect dilution factors for saline brine discharge from the proposed desalination plant at Point Lowly, South Australia.

Michael Warne CLW Report 09/08 August 2008

www.csiro.au

Copyright and Disclaimer

© 2008 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important Disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

CONTENTS

EXECUTIVE SUMMARY
BACKGROUND
TYPES OF WET TESTING
SELECTION OF SPECIES USED TO DERIVE THE DILUTION FACTOR
Do the test species have regional relevance?8
Were the toxicity tests conducted in water similar to that of Point Lowly? 9
What is the effect of a lack of test species acclimation on toxicity? 11
Did the tests meet appropriate quality assurance and quality control criteria?
Were the test species exposed to the toxicant for the same duration? 12
RECOMMENDED SPECIES FOR THE CALCULATION OF DILUTION FACTORS AND THE RATIONALE
DERIVATION OF DILUTION FACTORS
COMPARISON WITH THE SPECIES USED FOR THE WA DESALINATION PLANT
CONCLUSIONS 19
REFERENCES
APPENDIX 1 - USE OF EC10 AND/OR NOEC TOXICITY DATA

EXECUTIVE SUMMARY

Fifteen organisms were tested and evaluated as part of the Environmental Impact Statement for the proposed desalination plant at Point Lowly for their appropriateness to calculate dilution factors for the saline brine. This report provides an assessment of all the WET results, and the species protection values presented here use the most appropriate dataset available and thus supercede all previous values.

Seven of the tested fifteen species comprise the best dataset; being the unicellular alga *Isochrysis galbana*, the macroalga *Ecklonia radiata*, the Western King Prawn *Melicertus latisulcatus*, the Pacific Oyster *Crassostrea gigas*, the Pink Snapper *Pagrus auratus*, the Mulloway *Argyrosomus japonicus* and the Giant Cuttlefish *Sepia apama*.

A second dataset which retained the previous species but added the macroalga *Hormosira banksii*, the copepod *Gladioferens imparipes* and the fish *Seriola lalandi* was also evaluated as this maximized the number of test species but contained toxicity data from a mixture of exposure durations from acute to chronic tests and included data derived using diluent water with different salinities.

The chosen list of species contains more species belonging to more taxonomic groups than the minimum required by the Australian and New Zealand water quality guidelines and used in the evaluation of the Western Australia desalination plant. Therefore there will be greater confidence in the dilution factors being derived for the proposed desalination plant at Point Lowly than for the WA plant.

Use of the best dataset (i.e. that comprising the first seven species listed above) resulted in a concentration that should protect 99% of species (PC99) of 2.35% saline brine and a dilution factor of 45 at 40 ppt diluent salinity. The corresponding values for the second best dataset (i.e. that comprising the additional three species) are 2.48% saline brine and a dilution factor of 41 respectively. The best dataset is recommended for use, even though it contained fewer species than the second best dataset, because all the toxicity data it contains are based upon sub-chronic or chronic exposure, all tests were conducted at one salinity (i.e. 40 ppt) and it results in a more conservative (larger) dilution factor.

A dilution factor of 45 would theoretically protect 99% of marine species typical of Upper Spencer Gulf from experiencing a sub-chronic toxic effect of greater than 10% in receiving water with a salinity of 40 ppt. However, this salinity corresponds to the low end of the range of salinities reported at Point Lowly (i.e. 39 - 42 ppt) and it may therefore underestimate the dilution factor required when the receiving water has a salinity of 42 ppt. The one toxicity value available measured at a higher salinity (i.e. 45 ppt) was for the Giant Cuttlefish. To protect this species from experiencing a sub-chronic effect of greater than 10% a dilution factor of 55 is required. It was therefore decided to calculate the concentration of saline brine and the corresponding dilution factor that would protect 100% of species in receiving water with a salinity of 40 ppt.

A concentration of 1.23% saline brine and a dilution of 85 would theoretically protect 100% of marine species typical of Upper Spencer Gulf from experiencing a sub-chronic toxic effect of greater than 10% in seawater with a salinity of 40 ppt. In addition, this dilution factor would result in less than a 3% reduction in post-hatch survival of the Giant Cuttlefish in seawater with a salinity of 45 ppt. As 45 ppt is greater than that experienced at Point Lowly, the reduction in post-hatch survival of the Giant Cuttlefish in seawater with the maximum salinity experienced at Point Lowly (i.e. 42 ppt) would be less than 3%.

ARUP/ENSR informed the author of this report that the minimum dilution factor that will be achieved at the Giant Cuttlefish breeding site closest to the discharge point is 116. Such a dilution factor would protect 100% of species in seawater with a salinity of 40 ppt with a considerable margin of safety. In addition, it would cause less than a 1% reduction in post-hatch survival of the Giant Cuttlefish in seawater with a salinity of 45 ppt at the breeding site closest to the point of discharge and therefore an even lower effect in seawater with a salinity of 42 ppt.

Uncertainty remains over the exact dilution factor needed to protect marine species typical of the Upper Spencer Gulf from sub-chronic effects associated with the discharge of saline brine from the proposed desalination plant into receiving water with a salinity of 42 ppt. This has arisen because the WET tests were generally conducted at 40 ppt rather than at the maximum recorded values at Point Lowly (i.e. 42 ppt) and the test organisms were not acclimatised to test conditions for the typical duration. The magnitude of the effect of these two factors on the species protection values is not known, however the effects that they have on toxicity counteract each other. Electing to protect 100% of species in seawater with a salinity of 40 ppt attempts to overcome this uncertainty. The best way to overcome this would be to conduct additional sub-chronic or chronic WET tests using diluent water with a salinity of 42 ppt or at a salinity of 43 ppt if it is desired to be more conservative.

BACKGROUND

Dr Warne (CSIRO) was approached by ARUP/ENSR to review two years of studies undertaken as part of the Environmental Impact Statement for the proposed desalination plant at Point Lowly, South Australia and to provide his expert opinion on a number of issues related to the toxicity tests. Specifically, it was requested that the following issues be addressed:

- 1. which species should be used to derive dilution factors;
- how do the species tested for this project compare with those undertaken for the Western Australia desalination plant;
- 3. what role if any could a lack of test species acclimation have on the toxicity results;
- what effect if any could the use of diluent water with different salinities have on the toxicity results;
- 5. what effect does exposure duration have on toxicity data;
- 6. whether it is possible to combine EC10 and NOEC type toxicity data to derive dilution factors; and
- 7. to derive a set of dilution factors to protect 99% of species and provide information on how these were derived.

The following report addresses each of these issues. The reports that present the two years of data reviewed are provided in Appendices O10.2 to O10.4.

TYPES OF WET TESTING

There are two different approaches that can be used to conduct direct toxicity assessment (DTA) which is also called whole effluent toxicity testing (WET).

- to use generic species that occur in that environmental media. For example, a WET test at Point Lowly would use species that occur within Australian marine waters. This is also called the Standard DTA approach (Van Dam and Chapman, 2001).
- 2. **to use endemic organisms** that actually occur in the ecosystem that is being assessed. For example, a WET test at Point Lowly would use species that are found in the marine waters around Point Lowly or closely related organisms. This is also called the Site-specific DTA approach (Van Dam and Chapman, 2001).

There are strengths and limitations to both approaches.

The key limitations of the generic species approach are that:

- the resulting toxicity data may not be relevant to the particular ecosystem being considered – as the species tested may not be present or closely related species may not be present; and
- usually the dilution water is not from the particular ecosystem and therefore sitespecific characteristics of the water can not be taken into account.

The strength of this approach is that toxicity data for many generic species are often available and therefore there is greater confidence in the outcomes as more species can be tested.

The limitations of the endemic species approach are that:

- toxicity tests may be not already be developed for endemic species and developing tests takes considerable time and money;
- generally, toxicity data is generated for the minimum acceptable number of species for the desired purpose.

The effect of the above limitations is decreasing as the number of species that have been used in DTA increases (e.g. Van Dam and Chapman, 2001). An excellent review of the status of DTA within Australia and New Zealand is the work by Van Dam and Chapman (2001).

The strength of the endemic species approach is that the toxicity data are directly relevant to the particular ecosystem being studied.

I believe that it is generally accepted within ecotoxicology that the second approach (i.e. to use endemic organisms) is the preferred approach providing toxicity data are available for a similar number of species and taxonomic groups of organisms. Van Dam and Chapman (2001) state that:

"For the purposes of Australian water managers, who generally oversee specific geographical regions and are concerned with local water quality, site-specific DTA is likely to be the most appropriate approach."

This is the certainly the approach recommended for conducting DTA by the Australian and New Zealand guidelines for marine and fresh water quality (ANZECC and ARMCANZ, 2000).

Overall, the early toxicity testing undertaken to assess the toxicity of the saline brine for Point Lowly followed the generic species approach with the exception of the Giant Cuttlefish *Sepia apama*. The species used were (Geotechnical Services, 2006a), *S. apama, Penaeus monodon* – crustacean; *Seriola lalandi* – fish; *Nitzschia closterium* – diatom; *Hormosira* banksii – brown macroalga; *Heliocidaris tuberculata* – echinoid; and *Saccostrea commercialis* – bivalve (Hydrobiology, 2006). The use of the above generic organisms caused some problems mainly as they were acclimated to normal salinity marine water (i.e. 33 ppt), while the salinity of the Point Lowly region varies between 39 and 42. At the salinities encountered at Point Lowly, two of the tested species (i.e. the Sydney rock oyster and the sea urchin) died in salinities that occur naturally at Point Lowly – thus highlighting their unsuitability as test organisms. Also, neither of these species was endemic to the Point Lowly region. Given the above, I recommended that it would be desirable to conduct further toxicity tests, preferably using species found in Spencer Gulf, to increase the number of species for which there are toxicity data and to increase the relevance of the resulting dilution factors.

As a result of my previous recommendation subsequent toxicity testing has been undertaken to follow the endemic species approach (see Appendix O10.4). A list of all the species that have been used to determine the toxicity of saline brine and whether they are endemic to the Upper Spencer Gulf (where Point Lowly is located) is presented in Table 1. The information on the distribution of species was provided by ARUP/ENSR.

SELECTION OF SPECIES USED TO DERIVE THE DILUTION FACTOR

A series of criteria were used to determine the most appropriate species to be used in deriving dilution factors. These were:

- are the test species relevant to the region being examined?
- were the species tested in water with similar physicochemical conditions as at Point Lowly?
- did the tests meet appropriate quality assurance and quality control criteria?
- were the test species exposed to the toxicant for the same duration (e.g. chronic, sub-chronic or acute)?

Another consideration is that the method used to derive the dilution factors becomes more reliable and more representative as the number of species for which there is toxicity data

increases. The Australian and New Zealand water quality guidelines (ANZECC and ARMCANZ, 2000) recommend using chronic tests for a minimum of five species representing four taxonomic groups in order to derive a high reliability trigger value.

Finally, it is important to adopt a pragmatic approach to WET testing (Chapman et al., 2001; van Dam and Chapman, 2001). For example, it will rarely be possible to generate regionally relevant toxicity data for more than five species due to time and cost considerations. However, the limited number of species is offset against the much greater environmental relevance of the toxicity data to the site being considered.

Table 1. Information on the test organisms used in the whole effluent toxicity testing of saline brine for the Point Lowly desalination plant.

Species	Present in USG	Notes	Phase [*]
Microalga - Nitzschia closterium	Yes	Widely distributed in Australian waters	1
Microalga - <i>Isochrysis galbana</i>	Genus yes, species unknown		2
Microalga - <i>Ecklonia radiata</i>	No	Widely distributed throughout SA waters	2
Macroalga - Hormosira banksii	Yes	Widely distributed throughout SA waters	1
Copepod - Gladioferens imparipes	Unknown		2
Tiger Prawn - Penaeus monodon	No		1
Western King Prawn - Melicertus Iatisulcatus	Yes		2
Blue Swimmer Crab - Portunus pelagicus	Yes		2
Pacific Oyster - Crassostrea gigas	Yes	In aquaculture	2
Sydney Rock Oyster - Saccostrea commercialis	No		1
Sea urchin - Heliocidaris tuberculata	No	Distributed on rocky reefs from Southern Queensland to central New South Wales	1
Yellowtail Kingfish - S <i>eriola lalandi</i>	Yes	Also an important aquaculture species	1 & 2
Snapper - Pagrus auratus	Yes		2
Mulloway - Argyrosomus japonicus	Yes		2
Australian Giant Cuttlefish - Sepia apama	Yes	Important breeding habitat at Point Lowly	1 & 2

*Phases 1 and 2 refer to testing conducted in 2006 and 2007 respectively.

Do the test species have regional relevance?

Based on the occurrence of the test organisms within the Upper Spencer Gulf (USG) toxicity data for the following nine species could be used: *Nitzschia closterium*; *Hormosira banksii*;

Melicertus latisulcatus; Portunus pelagicus; Crassostrea gigas; Seriola lalandi; Pagrus auratus; Argyrosomus japonicus; Sepia apama. Based on unidentified members of the same genus of algae being present in the Upper Spencer Gulf *Isochrysis galbana* could also be used. *Ecklonia radiata,* as far as it is known, does not occur in the Upper Spencer Gulf, but it is widely distributed throughout South Australian waters so it could also be used.

In terms of the regional relevance, the copepod *Gladioferens imparipes* could also be considered for use in determining dilution factors. While it is not clear that this particular species is present in the Upper Spencer Gulf it still has regional relevance. The reasons for this are that:

- it is an herbivorous calanoid copepod (Rippingale and Hodgkin, 1974) found in south-western Australian marine waters and copepods in general play important roles in coastal marine ecosystems (e.g. Willis, 1999) as they take in energy through the consumption of phytoplankton and algae transfer energy to higher trophic levels by being consumed by birds, fishes and mammals; and
- 2. copepods are planktonic crustaceans. Thus while they are motile they generally move with the surrounding water. All crustacea spend at least the early part of their life as plankton and move with the movement of the water however for most macrocrustaceans (e.g. barnacles, crabs, lobsters) only the early lifestages (which are generally the more sensitive lifestages) are planktonic. Therefore, it is argued that copepods are appropriate indicators of the early life stages of crustaceans. There definitely are crustaceans present in Upper Spencer Gulf.

Therefore 12 species were suitable for use as endemic organisms.

Were the toxicity tests conducted in water similar to that of Point Lowly?

According to information provided by ARUP/ENSR the salinity of the water at Point Lowly ranges from 39 to 42 ppt. The salinity of the diluent used for the recommended test species from the previous section are presented in Table 2.

As salinity can act as a toxicant it is likely that the toxicity data for at least some of the recommended test species will underestimate and some overestimate the toxicity measured using 42 ppt diluent water.

Recommended test species	Salinity of diluent water (ppt)
Isochrysis galbana	39.9
Ecklonia radiata	39.9
Hormosira banksii	37
Gladioferens imparipes	39.9
Melicertus latisulcatus	39.9
Crassostrea gigas	39.9
Seriola lalandi (phase I and II)	40 and 35
Pagrus auratus	39.9
Argyrosomus japonicus	39.9
Sepia apama (phase I and II)	45 and 40

Table 2. The salinity of the diluent water used in the toxicity tests for the species that have been recommended for use in deriving the dilution factors for the saline brine.

The toxicity tests conducted by Geotechnical Services (Appendix O10.3) showed that the salinity of the diluent water affected the toxicity to *S. apama*. They recalculated the toxicity of the saline brine at 42 ppt and found that it was 2 - 3.2 fold higher (i.e. the EC50 values were 2-3.2 times smaller) at 45 ppt (i.e. the salinity of the diluent water) than at 42 ppt (i.e. the upper end of the range of salinities found at Point Lowly). However, there is evidence in the WET toxicity data from both the Perth and proposed Point Lowly desalination plants that the toxicity is not caused exclusively by the salinity of the brine. This being the case, it is not possible to correctly adjust the toxicity of the saline brine solely in terms of salinity. The *S. apama* toxicity tests conducted in phase II were conducted using diluent water with a salinity of 39.9 ppt (Geotechnical Services; see Appendix O10.4) which is essentially identical to the lower end of the range of salinities at Point Lowly (i.e. 40 ppt). Therefore the toxicity results for *S. apama* from phase II are the more appropriate for deriving dilution factors when assessed in terms of the water being similar to that at Point Lowly.

Hydrobiology (see Appendix O10.2) conducted WET testing but did not adjust their toxicity values to salinities other than 36 ppt (as Geotechnical Services did). However, for five of the six species salinity controls were conducted (the exception was Kingfish). The effect of increasing salinity was not consistent for all species. For some species (i.e. *Heliocidaris tuberculata, Nitzschia closterium, Peneaus monodon,* and *Saccostrea commercialis),* increased salinity increased toxicity, while for others (i.e. *Hormosira banksii, Seriola lalandi*), increased salinity had no statistically significant effect ($p \le 0.05$) within the range of salinities

reported as occurring in the Spencer Gulf (Geotechnical Services; see Appendix O10.3), but above this range toxicity increased with increased salinity. There is, therefore, the potential that the toxicity values for *H. tuberculata*, *N. closterium*, *P. monodon* and *S. commercialis* from phase I underestimate the toxicity of the saline brine at Point Lowly. Therefore, all four of these species should not be included in the derivation of the dilution factors as they underestimate the toxicity of the saline brine at 40 - 42 ppt.

For the Yellowtail kingfish *(S. lalandi)* toxicity results were generated in both phase I and II and resulted in very similar values. From phase I the no observed effect concentration (NOEC) was 12.5% saline brine. The phase II test yielded a concentration that causes a 10% effect (EC10) of 11.1% saline brine. However neither of these tests was ideal. The phase I test was conducted at 40 ppt but the exposure was acute (96 hour exposure of larvae) while for phase II the exposure was sub-chronic but it was conducted at 35 ppt (see Appendices O10.2 and O10.4). Neither is ideal, but *S. lalandi* data from both phase I and II could both be used to derive dilution factors.

What is the effect of a lack of test species acclimation on toxicity?

Countering the potential underestimation discussed in the previous section, is the fact that the test organisms used in the WET testing were either not acclimated to the test conditions or were not acclimatised for the usual duration (i.e. 2 to 7 days). Acclimation is routinely conducted when organisms are collected from the wild and subsequently used in toxicity tests or there are marked changes in experimental conditions. The test organisms that were included in the best dataset to calculate the dilution factors were all conducted in water with a salinity of 40 ppt. These organisms, with the exception of the cuttlefish and the adult prawns, therefore were all transferred from normal marine water with a salinity of approximately 35-36 ppt to water with a salinity of 40 ppt. Not acclimatising the test organisms would correspond to organisms moving instantaneously from regions where the background salinity occurs into the desalination plant discharge zone and then remaining there for the duration of the toxicity test. This exposure scenario is not likely to occur and the resulting toxicity data are most likely to overestimate the actual toxicity. As such not acclimatising the organisms is a conservative approach. It is not possible to estimate the extent of this overestimation of the toxicity given the data currently available.

Did the tests meet appropriate quality assurance and quality control criteria?

Portunus pelagicus (Blue Swimmer Crab) can not be used as the test failed due to excessive mortality in the controls.

The percentage hatch of S. apama in the phase II toxicity tests was not optimal (i.e. values for the control was 61.8% while values for the 0.4 to 6.3% saline brine treatments ranged from 56.3 to 67.2%) (Appendix O10.4) and was much less than that reported for the phase I toxicity tests (i.e. 100% hatch in the control and 75.5 to 89.1% for the 0.4 to 6.3% saline brine treatments). Generally, standardised toxicity tests have a set of validation criteria on which it is determined whether the test is of suitable quality or not and should therefore be accepted or rejected. A key validation criterion is always a stated level of toxic effect for the control generally permitting a maximum effect of 10 - 20%. The permitted variation in the per cent effect reflects the innate variability of the test species. The toxicity test for S. apama is not standardised and therefore I am not aware that it has such a validation criteria, however, it is unlikely that any validation criterion would permit a 40% effect. We therefore have the situation where the S. apama results from phase I with their greater per cent hatch in the control are more reliable, but they were measured at 45 ppt and thus may overestimate the toxicity at 40 - 42 ppt. The results from phase II are less reliable but were measured in diluent water with a salinity of 40 ppt and thus within the range of measured salinities at Point Lowly. Thus neither dataset is ideal but both provide useful data.

Were the test species exposed to the toxicant for the same duration?

Acute and chronic toxicity data were not combined to derive the Australian and New Zealand water quality guidelines as they would have different statistical distributions (ANZECC and ARMCANZ, 2000; Warne, 2001). The toxicity tests for the species recommended so far to derive dilution factors are all classed as either chronic (i.e. *Nitzschia closterium*) or sub-chronic toxicity tests with the exception of the *G. imparipes* and phase I *S. lalandi* tests which are acute. Sub-chronic tests are not strictly chronic tests, which require a prolonged exposure of the test organisms to the toxicant. But generally, sub-chronic tests are markedly more sensitive (i.e. they can detect toxicity at considerably lower concentrations) than acute toxicity tests because they expose sensitive early life-stages of the test organisms. For the purposes of deriving water quality guidelines and dilution factors, sub-chronic data can be treated as chronic estimates of toxicity.

If the *G. imparipes* and/or *S. lalandi* acute toxicity data are to be used to derive dilution factors, then it would mean that both acute and chronic data were being combined. This is not appropriate as stated in the Australian and New Zealand water quality guidelines (ANZECC and ARMCANZ, 2000). It might be possible to use a default assessment factor to convert the acute values to chronic values but the magnitude of these is arbitrary and there is little scientific basis for this (Warne, 1998). It is the author's opinion that it would be preferable to only use sub-chronic or chronic toxicity data rather than use estimates of chronic toxicity.

RECOMMENDED SPECIES FOR THE CALCULATION OF DILUTION FACTORS AND THE RATIONALE

There are a number of limitations associated with some of the WET data which have been discussed in the preceding text. These revolve around the fact that some of the WET tests were conducted using diluent water with salinity outside the range found at Point Lowly and that some of the WET tests only use acute exposure. It is the author's strong opinion that the most internally consistent dataset which permits the largest number of species should be used to derive the dilution factors. By internally consistent it is meant that:

- toxicity data for only one type of exposure (i.e. chronic or acute) and
- data determined using diluent water with salinity within the range of Point Lowly (i.e. 40 42 ppt)

should be used to derive the dilution factors.

Based on this, the best dataset was that using chronic toxicity data measured in diluent water with a salinity of 40 ppt (Table 3). A discussion on the whether EC10 and NOEC data are equivalent and can be combined to derive dilution factors is provided in Appendix 1 of this report. The toxicity data for *S. apama* from phase II was included despite being of questionable quality, as it was conducted in diluent water with a salinity of 40 ppt.

The second best dataset was considered to be that which permitted the most species to be used to derive the dilution factors even if some acute, chronic, and values measured in different salinity diluent water were combined (Table 3). In addition to the chronic toxicity values measured at 40 ppt the best toxicity values for *H. banksii*, *G. imparipes* and *S. lalandi* were included in the second best dataset. In the case of *S. lalandi* both toxicity values from phase I and II are not ideal (see previous explanation) and therefore the most conservative value (i.e. 11.1) was used which also happens to be the chronic toxicity value for *S. lalandi*.

H. banksii was included as it has regional relevance and the toxicity data from salinity controls shows that there was no difference in the toxicity measured within the range 37 to 45 ppt. Therefore the toxicity of the saline brine measured in dilutent water with a salinity of 37 ppt could be used to estimate the toxicity when tested in diluent water with a salinity of 42 ppt. The acute EC10 value for *G. imparipes* was included due to regional relevance. The organisms and toxicity values presented in Table 3 are those recommended for the derivation of concentrations that should protect 99% of species (PC99) and dilution factors.

Table 3. The specie	es and the toxicity val	lues for the two	preferred	datasets	to be used	for
deriving the dilution	factors.					
T ()	- ·	5040		1 /0/ 1	• •	1

Test species	Taxonomic group	EC10 and NOEC values (% brine)	
		Best dataset	2 nd best dataset
H. banksii	Macroalga		16 ^ª
l. galbana	Diatom	84.4	84.4
E. radiata	Macroalga	27.6	27.6
C. gigas	Bivalve	3.3	3.3
G. imparipes	Crustacean		10.9 ^b
P. auratus	Fish	22.2	22.2
S. lalandi	Fish		10.6 ^c
A. japonicus	Fish	11.6	11.6
M. latisulcatus	Crustacean	11.8	7.5 ^d
S. apama	Cephalopod	6.3	6.3

^a the NOEC for *H. banksii* was measured in diluent water with a salinity of 37 ppt.

^b the EC10 for *G. imparipes* is an acute toxicity value.

^c the EC10 value for *S. lalandi* was measured in diluent water with a salinity of 35 ppt and calculated by the author using data generated by Geotechnical Services (Appendix O10.4).

^d the EC10 value for *M. latisulcatus* was calculated by the author using data generated by Geotechnical Services (Appendix O10.4).

The best dataset contains toxicity data for seven species that belong to six taxonomic groups of organisms. The second best dataset contains toxicity data for ten species that belong to six taxonomic groups of organisms. Thus both datasets exceed the minimum data requirements of the BurrliOZ method (Campbell et al., 2000) and the Australian and New Zealand water quality guidelines (ANZECC and ARMCANZ, 2000) (i.e. at least five species that belong to at least four taxonomic groups of organisms).

DERIVATION OF DILUTION FACTORS

It is appropriate that the level of protection at Point Lowly be a PC99 (i.e. theoretically protecting 99% of species) given the close proximity of the breeding ground of the Giant Cuttlefish (*S. apama*). Therefore only the PC99 and the corresponding dilution factors are presented in the following text. The PC99 and dilution factor for the best dataset are 2.35% saline brine and 45 (rounded up from 42.6) respectively. The corresponding values for the second best dataset are 2.48% saline brine and 41 (rounded up from 40.3) respectively. It is worth noting that the PC99 and dilution factors derived using the best dataset (even though they are based on toxicity data for fewer species) are more conservative (i.e. requiring a greater dilution of brine) than those derived using the second best dataset. Therefore, in order to be conservative the PC99 and dilution factor for the best dataset are preferred.

If the PC99 and dilution factor for the best dataset are achieved then theoretically 99% of marine organisms typical of Upper Spencer Gulf will be protected from experiencing subchronic toxic effects of greater than 10% caused by the discharge of saline brine into water with a salinity of 40 ppt. It is important to note however, that the salinity that this PC99 value and dilution factor is based on is at the lower end of the range of salinites experienced at Point Lowly. Therefore, it is possible that the PC99 and dilution factor are underestimated compared to those that would be derived using toxicity data generated using diluent water with a salinity of 42 ppt (the upper range of salinities reached at Point Lowly).

There is toxicity data for the Giant Cuttlefish conducted in diluent water with a salinity of 45 ppt (a higher salinity than that experienced at Point Lowly). The most sensitive endpoint measured at 45 ppt was post-hatch survival which resulted in a chronic EC10 of 1.86% saline brine. The saline brine would need to be diluted by a factor of 55 (rounded up from 53.8) in order to ensure that the Giant Cuttlefish would not experience more than a 10% reduction in post-hatch survival in seawater with a salinity of 45 ppt. As this salinity is greater than that experienced at Point Lowly, the dilution factor of 55 is likely to exceed that needed to provide the same level of protection to the Giant Cuttlefish in seawater with a salinity of 42 ppt.

It was decided to protect all species (i.e. 100% of marine species typical of Upper Spencer Gulf). Using the best dataset recommended previously, the first concentration of saline brine that BurrliOZ states would protect 100% of species is 1.23%. This corresponds to a dilution factor of 85 (rounded up from 81.3). This dilution factor should theoretically protect 100% of

marine species typical of Upper Spencer Gulf from experiencing sub-chronic toxic effects of greater than 10% caused by the discharge of saline brine into water with a salinity of 40 ppt.

Due to the close proximity of the Giant Cuttlefish's breeding ground to the proposed discharge site, it was decided to ascertain what level of protection a dilution factor of 85 would provide based on the lowest toxicity value for that species. The concentration of 1.23% saline brine lay between the EC1 and EC5 values (Appendix O10.3). To determine the per cent effect that 1.23% saline brine will have to the most sensitive endpoint of the Giant Cuttlefish, the concentrations of saline brine were plotted against the per cent reduction in post-hatch survival values (Appendix 09.3) and regressed (Figure 1).

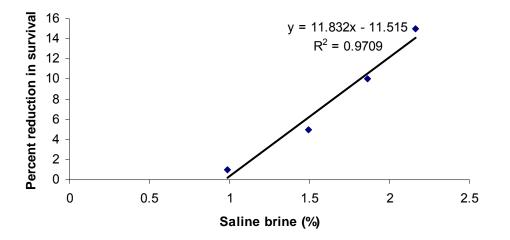


Figure 1. Plot of percent saline brine in seawater at 40ppt against the percent reduction in post-hatch survival of the Giant Cuttlefish (*Sepia apama*) and the regression line and equation for this data.

The resulting regression equation could predict approximately 97% of the variation in toxicity (i.e. $R^2 = 0.971$) and therefore accurately fits the data. By substituting the value of 1.23% into the regression equation (Fig. 1) it was determined that this would cause a 2.89% reduction in post-hatch survival of the Giant Cuttlefish. Therefore if a dilution factor of 85 is achieved then:

theoretically 100% of marine species typical of Upper Spencer Gulf would be protected from experiencing sub-chronic toxic effects of greater than 10% in sea water with a salinity of 40 ppt; and there would be less than a 3% reduction in post-hatch survival of the Giant Cuttlefish in seawater with a salinity of 45 ppt.

As 45 ppt is greater than that experienced at Point Lowly, the reduction in post-hatch survival of the Giant Cuttlefish in seawater with the maximum salinity experienced at Point Lowly (i.e. 42 ppt) would be less than 3%. With the toxicity data available it is not possible to provide a more accurate estimate of the per cent reduction in post-hatch survival that would be experienced by the Giant Cuttlefish at 42 ppt.

The level of protection that is provided by adopting a dilution factor of 85 is higher than the highest level of protection offered in the Australian and New Zealand water quality guidelines (ANZECC and ARMCANZ, 2000) (i.e. 100% of species compared to 99% of species). This increased level of protection increases the required dilution factor from 45 to 85.

The last step in the derivation of the Australian and New Zealand water quality guidelines was to ground-truth the trigger values (Warne, 2001) and if necessary to adjust the trigger values downwards by manipulating the calculations or the data in various ways (e.g. by increasing the level of protection from 95% to 99% or using a larger assessment factor (AF)). This was done by comparing the trigger values to all the raw toxicity data paying particular attention to field-based, mesocosm or microcosm toxicity data.

This ground-truthing step was conducted for the present report. The PC100 value for the best dataset was compared to all the toxicity data that had been generated by the WET testing (i.e. Appendices O10.2 to O10.4). The lowest toxicity value derived by the WET testing was an EC10 value of 1.86% saline brine for *S. apama*. The endpoint measured by this toxicity value was survival of young post hatching – which is a very relevant endpoint given the close proximity of the Giant Cuttlefish breeding ground to the proposed site of the desalination plant. However, this toxicity value was determined using diluent water with a salinity of 45 ppt, which is greater than the salinity range at Point Lowly and therefore the value most probably overestimates the toxicity that would occur at Point Lowly. Nonetheless the preferred PC100 value for the best dataset (i.e. 1.18% saline brine) is lower than the lowest toxicity value measured (i.e. 1.86% saline brine).

The author has been informed by ARUP/ENSR that the lowest dilution factor of the saline brine that would be achieved at the Giant Cuttlefish breeding site closest to the discharge point will be 116. This corresponds to a saline brine concentration of 0.86%. Using the regression equation presented earlier, 0.86% saline brine would have no effect on post-hatch

survival. However, the relationship below the 1% reduction in post-hatch survival may not conform to the relationship observed above this level (Figure 1). A reasonably conservative approach would be to assume there is a linear relationship between the control and the 1% effect level. By making this assumption the following equation is obtained

% reduction in survival = $0.989 \times \%$ saline brine (R² = 1)

Using this regression equation 0.86% saline brine would cause a 0.85% reduction in posthatch survival in seawater with a salinity of 45 ppt.

Thus, if a 116 fold dilution of the saline brine is achieved at the closest Giant Cuttlefish breeding site to the discharge point then the largest effect on the endpdoints that were measured for the Giant Cuttlefish would be a less than 1% reduction in post-hatch survival.

COMPARISON WITH THE SPECIES USED FOR THE WA DESALINATION PLANT

The species that were used to assess the saline brine from the Perth Seawater Desalination Plant into Cockburn sound were: the marine bacteria *Vibrio fischeri*; the macroalga *Ecklonia radiata*; the blue mussel *Mytilis edulis*; the unicellular algae *Nitzschia closterium* and *Isochrysis sp*; the copepod *Gladioferens imparipes*; and the Pink Snapper *Pagrus auratus* (Geotechnical Services, 2006, 2007a, 2007b). The *V. fischeri* was only used to determine the range of concentrations to be used for the other species and was not used in the calculations of the dilution factors (Geotechnical Services, 2006). Thus only five species that belonged to five different taxonomic groups were used to derive the dilution factors. This meets the minimum data requirements to use the BurrliOZ species sensitivity distribution method and to derive a trigger value in accordance with the Australian and New Zealand water quality guidelines (ANZECC and ARMCANZ, 2000).

In comparison, it is recommended that toxicity data for ten species that belong to seven different taxonomic groups be used to derive the dilution factors for the proposed Point Lowly desalination plant study. These also meet the minimum data requirements of the Australian and New Zealand water quality guidelines (ANZECC and ARMCANZ, 2000). There should be greater confidence in the dilution factors calculated for Point Lowly than for the WA desalination plant as toxicity data for more species and more taxonomic groups is being used. The inclusion of toxicity data for *S. apama* in the derivation is very important and

appropriate as there is a breeding ground located close to the proposed desalination plant site.

CONCLUSIONS

A series of whole effluent toxicity tests have been conducted over two years by two organisations. Different subsets of these species have been combined in various reports to produce a range of species protection values and dilution factors (refer Appendices O10.2 to O10.4). This report provides an assessment of all the WET results, and the species protection values presented here use the most appropriate dataset available and thus supercede all previous values.

The suite of organisms tested as part of the Environmental Impact Statement for the proposed desalination plant at Point Lowly were evaluated for their appropriateness to calculate dilution factors for the saline brine effluent. The best possible dataset is based solely on sub-chronic and chronic toxicity data measured in diluent water with a salinity of 40 ppt. Based on this the recommended species are *Isochrysis galbana, Ecklonia radiata, Melicertus latisulcatus, Crassostrea gigas, Pagrus auratus, Argyrosomus japonicus* and *Sepia apama.* However, a second dataset which retained the previous species but added *Hormosira banksii, Gladioferens imparipes* and *S. lalandi* was also evaluated as this maximized the number of test species. Both datasets contain more species belonging to more taxonomic groups than that used in the evaluation of the Western Australia desalination plant and exceed the minimum data requirements of the Australian and New Zealand water quality guidelines. Therefore there will be greater confidence in the dilution factors being derived for the proposed desalination plant being examined in this report than for the WA plant.

Use of the best dataset in BurrliOZ yielded a concentration that should protect 99% of species (PC99) of 2.35% saline brine and a dilution factor of 45. The corresponding values for the second best dataset are 2.48% and 41 respectively. The best dataset yielded larger dilution factors then the second dataset, and it is therefore recommended for deriving dilution factors. If the PC99 and dilution factor for the best dataset are achieved then theoretically 99% of marine organisms typical of Upper Spencer Gulf will be protected from experiencing sub-chronic toxic effects of greater than 10% caused by the discharge of saline brine into water with a salinity of 40 ppt.

The salinity of seawater at Point Lowly ranges from 39 to 42 ppt. Therefore the dilution factor derived for seawater with a salinity of 40 ppt may underestimate that required at 42 ppt. A toxicity value for the Giant Cuttlefish tested in seawater with a salinity of 45 ppt was available. To protect the Giant Cuttlefish at this salinity from sub-chronic effects of greater than 10% would require a dilution factor of 55. Therefore it was decided to protect 100% of marine species typical of Upper Spencer Gulf in seawater with a salinity of 40 ppt from sub-chronic toxic effects larger than 10%. This is achieved by a dilution factor of 85. In addition, this dilution would lead to the Giant Cuttlefish experiencing less than a 3% reduction in post-hatch survival of in seawater with a salinity of 45 ppt.

As 45 ppt is greater than that experienced at Point Lowly, the reduction in post-hatch survival of the Giant Cuttlefish in seawater with the maximum salinity experienced at Point Lowly (i.e. 42 ppt) would be less than 3%.

ARUP/ENSR informed the author of this report that the minimum dilution factor that will be achieved at the Giant Cuttlefish breeding site closest to the discharge point is 116. Such a dilution factor would protect 100% of species in seawater with a salinity of 40 ppt with a considerable margin of safety. In addition, it would cause less than a 1% reduction in post-hatch survival of the Giant Cuttlefish in seawater with a salinity of 45 ppt at the breeding site closest to the discharge point and therefore an even lower effect in seawater with a salinity of 42 ppt.

Uncertainty remains over the exact dilution factor needed to protect marine species typical of the Upper Spencer Gulf from sub-chronic effects associated with the discharge of saline brine from the proposed desalination plant into receiving water with a salinity of 42 ppt. This has arisen because the WET testing data were generally conducted at 40 ppt. Electing to protect 100% of species in seawater with a salinity of 40 ppt addresses some of this uncertainty. The best way to overcome this would be to conduct additional chronic WET tests using diluent water with a salinity of 42 ppt or at a salinity of 43 ppt if it is desired to be more conservative.

REFERENCES

ANZECC and ARMCANZ (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand) 2000. National water quality management strategy, Australian and New Zealand Guidelines for fresh and marine water quality. ANZECC and ARMCANZ, Canberra, Australia.

Campbell E, Palmer MJ, Shao Q, Warne MStJ, Wilson D. 2000. BurrliOZ: A computer program for calculating toxicant trigger values for the ANZECC and ARMCANZ water quality guidelines. Perth, Western Australia, Australia.

Chapman JC, Warne MStJ and Patra RWR. 2001. Considerations when applying the revised toxicant guidelines. *Australasian Journal of Ecotoxicology*, 7, 157–174.

Chapman PM, Cardwell RS & Chapman PF 1996. A warning: NOECs are inappropriate for regulatory use. *Environmental Toxicology and Chemistry*, 15, 77–79.

Geotechnical Services. 2006. The provision of water quality monitoring services for Cockburn Sound (WET testing only). Simulated and RO brine. Report ENV05-214 and ENV05-389. 89p.

Geotechnical Services. 2007a. The provision of water quality monitoring services for Cockburn Sound (WET testing only). Simulated and RO brine. Report ENV06-289. 75p.

Geotechnical Services. 2007b. The provision of water quality monitoring services for Cockburn Sound (WET testing only). Simulated and RO brine. Report ECX07-0811. 76p.

Hoekstra JA and Van Ewijk PH. 1993. Alternatives for the no-observed effect level. *Environmental Toxicology and Chemistry*, 12, 187–194.

Moore DRJ and Caux PY. 1997. Estimating low toxic effects. *Environmental Toxicology and Chemistry*, 16, 794–801.

Newman MC. 2008. "What exactly are you inferring?" A closer look at hypothesis testing. *Environmental Toxicology and Chemistry*, 27, 1013-1019.

Noppert F, Van der Hoeven N and Leopold A 1994. How to measure no effect? Towards a new measure of chronic toxicity in ecotoxicology. Netherlands Working Group on Statistics and Ecotoxicology, Delft, The Netherlands.

Rippingale RJ and Hodgkin EP. 1974. Population growth of a calanoid copepod *Gladioferens imparipes. Australian Journal of Marine and Freshwater Research*, 25, 351–360.

Stephan CE, Mount DI, Hansen DJ, Gentile JH, Chapman GA and Brungs WA. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. USEPA Report No. PB-85-227049. USEPA, Washington DC, USA.

USEPA (United States Environmental Protection Agency). 1991. Technical support document for water quality-based toxics control. Report No. EPA 505/2-90-001. Washington, DC.

Van Dam RA and Chapman JC. 2001. Direct toxicity assessment (DTA) for water quality guidelines in Australia and New Zealand. *Australasian Journal of Ecotoxicology*, 7, 175–198.

Warne MStJ. 1998. Critical review of methods to derive water quality guidelines for toxicants and a proposal for a new framework. Supervising Scientist Report 135, Supervising Scientist, Canberra, ACT, Australia. ISBN 0 642 24338 7. 82p.

Warne MStJ. 2001. Derivation of the ANZECC and ARMCANZ Water Quality Guidelines for Toxicants. *Australasian Journal of Ecotoxicology*, 7, 123–136.

Warne MStJ. *In prep.* No more NOEC and LOEC data should be generated: If any are, they should be rejected. To be submitted to the *Australasian Journal of Ecotoxicology*.

Willis K. 1999. Acute and chronic bioassays with New Zealand freshwater copepods using pentachlorophenol. *Environmental Toxicology and Chemistry*, 18, 2580–2586.

APPENDIX 1 - USE OF EC10 AND/OR NOEC TOXICITY DATA

The current Australian and New Zealand Water Quality Guidelines use no observed effect concentration (NOEC) data to derive high reliability Trigger Values (TVs) but EC/LC50 toxicity data to derive moderate and both classes of low reliability TVs (ANZECC & ARMCANZ, 2000; Warne, 2001). The relative merits of NOEC and lowest observed effect concentration (LOEC) toxicity data (which are collectively called hypothesis-based toxicity values) have been discussed in the literature. Critics of NOEC data such as Hoekstra and Van Ewijk (1993), Noppert et al. (1994) and Chapman et al. (1996) feel that such data should not be used for regulatory purposes. They prefer point estimates of toxicity such as the concentration that is lethal to 5% of a population (i.e. LC5) or the concentration that causes a 10% effect (i.e. EC10). The problems with the use of NOEC and LOEC data are that:

- only tested concentrations can be NOEC or LOEC values (therefore such values are somewhat predetermined by the concentrations used in the toxicity test);
- the term NOEC is misleading. A NOEC is the highest concentration used in a toxicity test that causes an effect not significantly different to the control(s). It therefore does not correspond to 'no effect'. Typically, the NOEC corresponds to a 10 to 30% effect (Moore and Caux, 1997; USEPA, 1991 and Hoekstra and Van Ewijk, 1993);
- this measure of toxicity can easily be manipulated and does not encourage high quality work. For instance, less rigorous procedures would increase the variability between replicates. This in turn, would increase the size of the difference needed between the treatment and control means in order for a statistically significant difference to be found (i.e. the NOEC value is likely to increase).
- a problem related to the third dot point is that TVs derived using this data do not have as clear a definition as those derived using EC10 data. The TVs based on NOECs would theoretically protect X% of species from experiencing statistically significant inhibitory impacts. The TVs based on EC10 data would theoretically protect X% of species from experiencing inhibitory impacts greater than 10%.

An example of the problems that can arise with using hypothesis-based toxicity data compared to point estimates is provided by the toxicity data for saline brine to the Mulloway. For that species the NOEC is < 1.6% saline brine while the EC10 is 11.56% brine. The hypothesis based method compared the values for each treatment to the control and found that the first treatment (i.e. 1.6% brine) was significantly different to the control – hence the NOEC became < 1.6% brine. However, the concentration response curve is unusual – in that there is a marked difference between the control and the lowest treatment but then with

subsequent increases in the brine content there was very little increase in toxic effect until above 12.7% brine at which point all growth essentially stopped. This tends to indicate that there was possibly another toxicant present in the diluent water which caused this initial low level effect. So the point estimates of toxicity were calculated using the growth rate of the first treatment as the starting point from which the toxicity values were determined.

Despite the above problems NOEC data were recommended in preference to toxicity data such as EC10 values in the Australian and New Zealand guidelines (ANZECC and ARMCANZ, 2000) for the following reasons:

- there was a general lack of EC10 type data in the scientific literature; and
- there are large amounts of NOEC data available in the literature.

However, the Australian and New Zealand WQGs (ANZECC & ARMCANZ, 2000) point out that the methods used to derive the trigger values are not data specific. Thus, TVs could be derived using EC10 values if there was sufficient data. In fact, these same documents suggested that the use of NOEC data "be phased out" as EC10 type data become available (ANZECC & ARMCANZ, 2000; Warne, 1998).

Just this year NOEC and LOEC type data and the hypothesis-based statistical methods used to derive them have come under further attack. Newman (2008) has written a scathing article which reveals that the methods used to derive the NOEC and LOEC are statistically flawed and that these methods should be replaced 'whenever possible' by confidence interval-based methods. Warne (in prep) also argues strongly that NOEC and LOEC data should not be generated from now on and that any that is generated should be rejected by regulators and journals.

Contact Us Phone: 1300 363 400 +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

Your CSIRO

Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills for building prosperity, growth, health and sustainability. It serves governments, industries, business and communities across the nation.