ASSESS THE RISKS ## ESTABLISH THE CONSEQUENCE OR SEVERITY & ASSIGN A RATING OF LEVEL 1 TO 5 | Consequence | Environmental Impact | | | | |-------------|---|--|--|--| | Level 1 | Limited damage to minimal area of low significance | | | | | Level 2 | Minor effcts on biological or physical environment | | | | | Level 3 | Moderate short term effects but not affecting eco-system | | | | | Level 4 | Serious medium term environmental effects | | | | | Level 5 | Very serious long term environmental impairment of eco-system | | | | # ESTABLISH THE PROBABILITY FACTOR OF THE EVENT | Description | Frequency Examples | | | | |---|--|--|--|--| | Happens often | More than 1 event per month | | | | | Could easily happen | More than 1 event per year | | | | | Could happen and has occurred here or elsewhere | 1 event per 1 to 10 years | | | | | Hasn't happened yet but could | 1 event per 10 to 100 years (e.g. within a single mine life) | | | | | Conceivable, but only in extreme circumstances | Less than 1 event per 100 years (e.g. within life of BMA) | | | | ## USING THE MATRIX BELOW DETERMINE THE RISK CATEGORY | | | CONSEQUENCE SEVERITY | | | | | |--------------------|--------------|----------------------|----------|----------|---------|---------| | | | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | | | Happens | High | High | Extreme | Extreme | Extreme | | | Could easily | Moderate | High | High | Extreme | Extreme | | œ | happen | | | | | | | PROBABILITY FACTOR | Could | Low | Moderate | High | Extreme | Extreme | | | happen and | | | | | | | | has occurred | | | | | | | | here or | | | | | | | | Hasn't | Low | Low | Moderate | High | Extreme | | ÀE | happened yet | | | | | | | 8 | but could | | | | | | | Ř | Conceivable, | Low | Low | Moderate | High | High | | | but only in | | | | | | | | extreme | | | | | | | | circumstance | | | | | | Prepared for BMA May 2009 #### Water Management Failure Assessment | vvater ivianagement i ali | Water Management Failure Assessment | | | | | | | | | | |--|--|-------------|--|-------------|--|--------------|--|-------------|--|--| | Aspect | Impacts | Consequence | Probability
Factor | Risk Rating | Mitigation Measures | Consequence | Probability
Factor | Risk Rating | Comments/Information Gaps | | | Erosion and Sediment
Mobilisation | Sediment from earth moving and stockpiling can enter surface water runoff during rainfall events or blown by wind and discharge to watercourses leading to deleterious effects or water quality and aquatic habitats. | Level 2 | Could easily
happen | High | Appropriate design (erosion and scour protection) for sections of pipelir crossing active floodplain and main channel: Stormwater management (development, implementation and maintenance of plan), to include: Erosion control and energy dissipation, watercourse stabilisation i.e., matting, forpa and gabions; Stormwater controls and upstream treatment, i.e., infiltration devices an vegetation filters; Stabilisation techniques, i.e., revegetation; Construction to occur in dry season; Crossings to be at right angles to direction of flow; Stockpiling of topsoil located away from watercourses; Vehicle wash bay to be located away from watercourses; Minimise vegetation disturbance; | | Hasn't happened
yet but could | Low | Construction timeline | | | Pollution | Oily waste water (from miscellaneous plant and equipment wash water); Contaminated runoff from chemical storage areas; Potentially contaminated drainage from fuel oil storage areas; Oil-filled transformer yard area and general wash down water. Diesel and other petroleumbased fuels and tubricants used by excavation and construction machiney. Environmental and public health and safety issue. | Level 3 | Could happen
and has
occurred here
or elsewhere | High | Chemical and fuel storage areas to be appropriately bunded;
Spill cleanup kits in accordance with Astralian Standards (AS1940 and AS3780) to be located in convenient locations, i.e. work vehicles;
Refuelling to occur in bunded areas;
Should a spill occur, ensure it is contained and does not enter drainage
lines or watercourses;
Follow all other operational procedures. | Level 3 | Hasn't happened
yet but could | Moderate | SpIII/Emergency Response Procedures | | | Works adjacent to/within
drainage lines and
watercourses | Haul road crossing and creek
diversion construction at
watercourse crossings and
vehicle access crossings can
alter flow characteristics. | Level 2 | Could easily happen | High | Diversion of watercourse either by low flow diversion or coffer dam with
pumping construction activities that will affect existing drainage channel
and control measures must only be carried out affer suitable stormwate
management infrastructure has been implemented onsite;
Minimal disturbance by heavy earth moving equipment
Vehicle crossings should be adequately designed for a range of flow
conditions, including under road drainage | S
Level 2 | Hasn't happened
yet but could | Low | Construction Stormwater Management
Plan | | | Flooding | Possibility of rainfall event
causing:
- mining pit inundation; and
- damage to infrastructure (haul
roads, mine infrastructure area,
etc). | Level 3 | Could happen
and has
occurred here
or elsewhere | High | If practical avoid major construction during wet season and try and work
outside the flood plant. However if not possible, make sure a flood
assessment has been conducted.
Stormwater management eg drainage diversions and bunding;
Emergency response procedures and flood forecasting. | Level 3 | Conceivable, but only in extreme circumstances | Moderate | Emergency Response Procedures | | | Lack of water supply | Inadequate dust suppression, | Level 3 | Could easily happen | High | Develop, implement and maintain Water Supply Strategy and
Emergency Plan | Level 3 | Conceivable, but
only in extreme | Moderate | Water supply source for construction | | | Commissioning | soil compaction and wash down | | паррап | | Emergency Fian | | circumstances | | | | | Disposal of water | Improper disposal of water used
in hydrostatic testing - impact
surrounding environment and
receiving waters (erosion) | Level 2 | Could happen
and has
occurred here
or elsewhere | Moderate | Water management/disposal procedures. | Level 2 | Conceivable, but
only in extreme
circumstances | Low | | | | Pipeline failure | Discharge of water to environment | Level 2 | Hasn't
happened yet
but could | Low | Hydrostatic testing procedure | Level 2 | Conceivable, but
only in extreme
circumstances | Low | | | | Operation | - | | | | | | | | | | | Erosion and Sediment
Mobilisation | Permanent structures and
minor earth disturbance can
result in localised erosion and
sediment mobilisation leading to
deleterious effects on water
quality and aquatic habitats. | Level 2 | Could happen
and has
occurred here
or elsewhere | Moderate | Stormwater management to include: - Localised erosion control and energy dissipation measures; - Stabilisation techniques, i.e., revegetation; - Routine inspection and maintenance of existing erosion and sediment control measures. | Level 2 | Hasn't happened
yet but could | Low | | | | Incomplete rehabilitation | Erosion and movement of
sediment. Turbid and sediment
laden runoff into watercourses. | Level 2 | Could easily
happen | High | Develop, implement and maintain Rehabilitation Plan | Level 2 | Hasn't happened
yet but could | Low | | | | Pollution | Diesel and other petroleum-
based fuels and lubricants used
by operational vehicles and
machinery entering
watercourses. | Level 2 | Hasn't
happened yet
but could | Low | Chemical and fuel storage areas to be appropriately bunder.
Spill cleanup kits in accordance with Australian Standards (AS1940 and
AS3780) to be located in convenient locations, i.e. work vehicles;
Refuelling to occur in bunded areas;
Should a spill occur, ensure it is contained and does not enter drainage
lines or watercourses;
Follow all other operational procedures. | Level 2 | Conceivable, but
only in extreme
circumstances | Low | | | | Non-compliant discharge | Discharge of mine water exceeding environmental authority limits (i.e. above background water quality) resulting in environmental impact on receiving waters, ecceystem and downstream landholders. | Level 3 | Could happen
and has
occurred here
or elsewhere | High | Operational water balance model - kept up to date. Monitoring equipment with telemetry system on creeks, dams. Flexible water management system. Monitoring and maintenance of dams and water management infrastructure (e.g. pumps and pipelines). Separation of clean and dirty water systems. Treatment of poor quality mine water. | Level 3 | Hasn't happened
yet but could | Moderate | | | | Flooding | Possibility of rainfall event
causing:
- mining pit inundation; and
- damage to infrastructure (haul
roads, mine infrastructure area,
etc). | Level 3 | Could happen
and has
occurred here
or elsewhere | High | Minimise catchment contributing to mining pits and regular monitoring of
levees and bunds to protect mining pits;
Monitoring and maintenance of erosion and sediment control features;
Appropriate design of water management infrastructure;
Emergency Response Procedures and flood forecasting. | Level 3 | Hasn't happened
yet but could | Moderate | Emergency Response Procedures | | | Water Supply | Insufficient water supply to mee
preparation plant and water
demand requirements. | Level 3 | Hasn't
happened yet
but could | Moderate | Operational water balance model - kept up to date. Water management strategy to include: -Efficient usage of water within preparation plant and industrial area; - Maximise reuse of water around the mine. | Level 3 | Conceivable, but
only in extreme
circumstances | Moderate | | | Prepared for BMA May 2009