Future steel and coke industry trends

Dr Neil J. Bristow Chief Analyst, Carbon Steel Materials

Intertec European Coke Conference, Düsseldorf Tuesday, 11th April 2006

Disclaimer

The views expressed here contain information derived from publicly available sources that have not been independently verified. No representation or warranty is made as to the accuracy, completeness or reliability of the information. Any forward looking information in this presentation has been prepared on the basis of a number of assumptions which may prove to be incorrect. This presentation should not be relied upon as a recommendation or forecast by BHP Billiton.

Nothing in this release should be construed as either an offer to sell or a solicitation of an offer to buy or sell shares in any jurisdiction.

Presentation outline

- Background steel industry trends
- Critical issues for the global steel industry
 - Future structure of China's steel industry
 - Consolidation
 - Future Blast furnace trends
- Implications for coke
- Recent studies to understand coke its reactions & performance
- Summary and Conclusions

The world has changed

But the need for coke and hard coking coal remains

Areas where the world has changed.....

- Industry structure consolidation; the new wave
- Regional consolidation moves global
- Price volatility industry consensus; potential to be lower
- Increased market "power" re customers (flat products)
- Current high profitability in the steel industry continues
- Raw materials too early to be definite, but potential move to higher quality seaborne raw materials

Areas where the world has not changed

- New phase of strong demand growth BRICS
- China driving major uplifts
- Technology trends BF still king
- Planned new capacity SE Asia, Brazil, India etc
- Drive for higher productivity = high quality RM's esp coke
- Environmental conditions
- Raw materials the benefits of high quality esp coke

bhpbilliton

The global steel industry continues to power on

Global steel growth rates have picked up a gear

	CAGR (%)	Comments
1970 – 1975	1.6	First oil shock, ending of Japan steel boom
1975 – 1980	2.2	Steady global recovery from oil shock
1980 – 1985	0.1	Second oil shock, recession, reduction in steel intensity
1985 – 1990	1.4	Strong steel efficiency drive
1990 – 1995	-0.5	Fall of Berlin wall, collapse of USSR, continued steel efficiency gains
1995 – 2000	2.4	Slow CIS recovery, signs of emerging China
2000 - 2005	5.9	China takeoff, US/EU recession then recovery, emerging steel demand SE Asia

Source: IISI

China remains the main driver of this growth

bhpbilliton

Steel 2005; 2 worlds – balanced & uncontrolled growth

- Market sentiment roller coaster strong, weak and strengthening again
- China responsible for global increase world ex China –ve growth in 2005
- Demand led by China, contribution from SE Asia: growing +ve signs US, Europe later
- Chinese production remains buoyant strong steel and stronger pig iron growth

The China effect

Source: IISI, BHP Billiton

Changing trends emerged during the year

bhpbilliton

Annualised steel and pig iron production trends

Source: IISI

Massive steel de-stocking during 2005

Inventories (Jan '99 = 100)

Successful price stabilisation – current prices turning up

Source: CRU, China – Shanghai spot

Profitability remained very strong

PROFITABILITY	E	BITDA Margir	1 %	Pre-Tax Margin %		ROIC (EBIT) %			
	2004	2005	2006E	2004	2005	2006E	2004	2005	2006E
BlueScope*	18.0	18.9	11.5	14.0	17.1	8.2	24.3	34.3	14.6
OneSteel ^{†*}	9.7	9.5	10.7	5.8	5.2	6.9	13.9	14.8	15.6
Australasia (Mkt cap wgtd ave)	15.0	16.2	11.0	10.7	13.4	7.4	20.4	28.6	14.7
JFE Holdings	17.8	23.1	23.0	7.5	10.8	16.1	12.7	24.8	25.0
Nippon Steel*	13.9	18.0	19.0	2.5	10.9	13.6	8.6	17.1	21.2
Sumitomo Met Ind.	15.4	21.2	23.9	3.6	13.7	18.9	6.4	13.8	23.5
Tokyo Steel	13.0	34.2	30.7	8.2	31.6	26.8	18.9	136.4	100.5
Japan (Mkt cap wgtd ave)	15.2	20.5	20.7	5.0	11.9	14.8	10.3	25.1	24.8
Baosteel (G)	38.6	22.2	15.9	23.2	13.9	8.2	33.6	28.1	15.8
Maanshan I&S	22.7	17.2	13.2	15.2	11.8	7.0	22.2	18.4	9.6
Wuhan Steel	30.6	25.3	25.0	22.1	19.4	19.2	48.1	38.7	39.8
China Steel	40.6	36.8	25.5	38.6	35.4	24.4	55.2	57.4	31.7
POSCO	32.8	34.1	25.8	26.4	24.7	17.6	45.3	48.7	25.1
Asia (Mkt cap wgtd ave)	34.4	28.9	22.7	26.7	23.0	16.5	42.3	41.5	24.7
CSN*	47.0	46.5	45.7	28.6	28.9	27.3	30.0	33.3	29.2
Usiminas	45.2	42.4	34.4	36.2	38.2	28.2	49.2	46.1	25.3
Mechel*	24.4	19.3	20.1	42.5	14.1	14.7	52.4	28.9	25.0
Severstal*	32.3	27.0	21.8	28.4	22.0	15.2	59.6	40.7	23.8
Novolipetsk*	54.3	46.8	41.1	52.1	41.3	44.9	106.2	67.6	51.2
Evraz*	33.6	28.4	23.6	28.1	24.6	19.9	86.4	48.4	35.0
Tata Steel	25.6	35.5	35.5	23.5	34.7	32.6	25.5	48.9	42.9
Emerging markets (Mkt cap wgtd ave)	37.3	35.4	30.7	32.9	29.3	25.7	54.4	47.6	33.5
Arcelor*	15.2	17.3	13.3	10.5	13.3	9.9	23.3	25.1	18.8
Corus	10.0	10.1	8.6	6.1	5.7	4.9	16.7	17.7	14.5
SSAB	20.6	23.7	19.9	19.4	20.4	16.4	28.4	38.5	31.6
ThyssenKrupp Group*	8.1	8.2	7.8	4.0	4.4	4.2	7.6	9.0	7.5
Europe (Mkt cap wgtd ave)	12.6	15.8	12.1	8.3	11.8	8.6	17.4	23.1	17.2
Nucor	19.5	19.7	18.7	15.9	16.7	15.9	55.1	60.8	61.1
US Steel	14.1	12.8	11.4	10.5	9.4	8.1	91.6	64.9	40.6
North America (Mkt cap wgtd ave)	19.3	19.5	19.1	15.4	16.0	16.0	63.0	56.6	52.3
Carbon Steel Sector (Mkt cap wgtd ave)	24.7	24.8	21.5	18.2	19.0	16.5	34.2	36.7	28.1

Source: UBS

*: Company report from full year

bhpbilliton

Summary – background steel industry trends

- Strong steel growth phase continues led by China
- Industry highly successful, current steel prices maintained at historically high levels
- Industry profitability currently very strong
- Consolidation benefits
- Widening differentials between global and Chinese steel prices

Future critical issues for the steel industry

1. Future structure of China's steel industry

2. Consolidation

3. Future blast furnace trends

Demand driven by construction, infrastructure & machinery

China per capita steel consumption still below Asian standards

Per Capita Steel Consumption Comparision Between China's Tier I Cities in 2005 & Global Major developed Countries

Source: China Metallurgical Planning and Research Institute, IISI, BHPBilliton

Coastal provinces are the key steel consumers in China

Shanghai 688 Beijing Zhejiang Jiangsu Tier I Tianjin Guangdong Liaoning Shangdong Fujian Hébei Chongqing Hubei 268 Heilongjiang Jilin Hunan Henan Tier II Shaanxi Anhui Sichuan Shanxi Jiangxi Guizhou Yunnan Guangxi Hainan Xinjiang Qinghai Inner Tier III Ningxia Gansu Tibet 0 100 200 300 400 500 600 700 800

Source: China Metallurgical Industry Planning & Research Institute, BHPBilliton

Kg/Capita

bhpbilliton

China steel industry is very fragmented

Source: CISA

Top 10 steel mills only account for 35.4% of total in 2005

Top 18 Steel Mills With Crude Steel Production of 5+ MT in 2005

Source: CISA

bhpbilliton

China's new steel policy 2005

- Objective
 - Competitiveness of China Iron & Steel Industry to be improved significantly
 - Top 10 steel mills should account for > 50% of total by 2010, and 70% by 2020
- Technology & equipment upgrade policy
 - Outdated processes, equipments and techniques; highly pollutant, raw material & energy consumption and low efficiency to be phased out
 - Pollutant discharge and efficiency standards raised
- Foreign investment policy
 - In general, foreign companies are not allowed to acquire a controlling stake in Chinese steel makers, especially medium and large ones
 - No greenfield project is allowed
 - Advanced technology with intellectual property is needed

Source: NDRC

Plans and Implications

- Industry structure optimization policy
 - Steel mills, especially big ones, are supported to grow through M&A
- Industry layout improvement policy
 - Steel mills encouraged to relocate or build greenfield plant in coastal or along Yangtze River areas to take advantage of markets and overseas raw materials
 - Inland steel mills should cap the capacity based on the available ores in line with the local markets and the mineral resources
 - Those steel mills locate in provincial capital and tourism cities are not allowed to expand capacity of iron-making & steel-making
- Raw materials policy
 - International cooperation with the overseas mineral resources should be enhanced

Consolidation targets

The Weight of China's Top 10 Steel Mills

Source: CISA

Target 100Mt pig iron closed.....but will take time

	Sintering	Iron-Making	Steel-Making
Phase Out	\leq 30 M ²	BF ≤ 300 M3	$\mathrm{BOF}\leqslant$ 20 Mt $\mathrm{EAF}\leqslant$ 20 Mt
Brownfield	≥ 180 M ²	BF ≥ 1000 M ³	BOF \geq 120 Mt EAF \geq 70 Mt
Deep Port Greenfield	≥ 180 M²	BF ≥ 3000 M ³	BOF \geq 200 Mt Crude steel Capacity \geq 8 Mt MIn
Source: NDRC	;		bhp billiton

Consolidation increased in 2005 more underway

Implications of future structure of Chinese steel industry

- Consolidated more profitable industry
- Larger capacity, more efficient BF production
- Rising higher quality flat product production

Overall implications likely to see rising demand for higher quality coke made with increasing quantities of higher quality hard coking coals

Steel industry consolidation

Consolidation will improve market conditions and profitability

The steel industry remains fragmented, despite M&A activity

Market share	2000	Current
(% global steel output)		
Top 5	16%	19%
Тор 10	23%	28%

2005 Crude Steel Production (mt)

	Mittal*	68 5.1%
	Arcelor	47 3.5%
	POSCO	36 2.7%
	Nippon	33 2.5%
	JFE	33 2.4%
	Baosteel	28 2.1%
Thys	senKrupp	23 1.7%
	US Steel	21 1.6%
	Nucor	20 1.5%
	Corus	19 1.4%

Consolidation:

- has increased slightly (+3 and +5 percentage points for the top 5 and 10 steel producers respectively from 2000 to 2005)
- favoured by strong cash flows and increasing desire to escape sluggish and expensive home markets (Europe, US)
- 'hot spots' in the US, E. Europe, CIS and China
- currently appears to be enabling improved production control - aligning demand with supply

Source: IISI, Metal Bulletin, BHP Billiton

* Mittal data includes ISG (16.1mt) and Kryvorozhstal (7.7 mt)

Further consolidation directions:

Regional consolidation:

- China, with government support but low foreign involvement (ownership limited to minority stakes)
- CIS: further consolidation, especially as focus shifts from raw material acquisitions
- Smaller acquisitions between second tier producers in Europe and North America

Global / Cross-regional consolidation:

- Mergers between groups (competition issues?): catalyst for rapid consolidation
- Russian mills going global
- Acquisitions in Latin America, Middle East, Ukraine (partly driven by captive raw materials)

Product consolidation:

- Focus on flat products
- Limited in long products: Ample opportunity but disincentives

Steel industry consolidation

Regional consolidation: CIS, China and Brazil; Europe and N. America

Regional consolidation: likely to result in more benefits than global consolidation:

- Operations are strongly linked (both customer and supply side) to regional markets
- Most products sourced regionally with some global support, even though ~20% of steel production is aimed at global customers onpolition

Source: Company reports and news coverage; World Steel Dynamics

Steel industry consolidation

Fragmented industry now consolidating – regional impact

Source: IISI, Metal Bulletin, BHPBilliton

Note growth in Chinese steel has countered global consolidation impacts – although regional consolidation has occurred

bhpbilliton

Even after recent mergers, industry concentration is low

Global market share of top 3 producers, 2005e

Source: CRU Analysis, Deutsche Bank

Steel industry consolidation

Flat products is relatively consolidated, unlike long products

Flat Products

Source: CRU

- High regional consolidation in W. Europe, USA, Japan
- Scope for consolidation in:
 - China: flat product consolidation has fallen
 - North America (limited scope)
 - Western European plate capacity

- Significant consolidation is unlikely: the rationale is less compelling:
 - local markets,
 - low barriers to entry
 - low economies of scale
- Consolidation isolated:
 - Beams and structural products
 - Gerdau, CELSA, Nucor and Mittal

Arcelor & Mittal Steel Plant Locations

Mittal Steel Plants

- Major player in NAFTA market, Eastern Europe, Africa and Kazakhstan
- Limited in Western Europe in production and distribution, no presence in South America
- Annual production capacity of Steel of 70 Mtpa

Arcelor Plants

- Major player in Western Europe, South America
- Minor operations in North America, Eastern Europe, Asia
- Arcelor has decided to turn their external growth efforts to countries such as Brazil, Russia, India, China, Eastern Europe and Turkey.
- Production of 47 Mtpa of steel in 2005

Atlantic share ~20%

Global share 10-11%

Source: Public sources, BHP Billiton

Steel industry consolidation

Mittal is vertically integrated using high levels of domestic coal

	IRON ORE		COKING COAL		
	MITTAL	ARCELOR	MITTAL	ARCELOR	
Brazil (Fines)	20%	54%			
Brazil (Pellets)		10%			
Australia		6%	10%	49%	
CIS	9%		13%		
Canadian	13%			12%	
Mauritania		11%			
Sweden		5%			
Own/ Dom Mines / Strategic LT Contr	54%	3%	76%		
USA				24%	
South Africa				6%	
Poland				5%	
Others	4%	10%	1%	4%	

Source: Mittal, Public sources, BHP Billiton

About 50% of iron ore and 70% of coking coal consumed by Mittal are supplied by own resources or sources outside the "seaborne" markets generally lower quality than seaborne supplied materials

Steel industry consolidation

Mittal Mining Operations:

Summary steel consolidation - implications

- Steel industry will continue to consolidate
- Moving from regional to global industry players
- Flat product will continue to lead consolidation

Overall implications likely to see more profitable steel industry operating more efficiently requiring high quality coke likely to be made with increasing quantities of higher quality hard coking coals

Blast furnace – trends in operating philosophy/practice

Most modern EU-15 Blast Furnaces operate at less than design productivity of 2.5 t/d/m3, further improvements will be made

European Survey 2003 Blast Furnace Productivity

BF technology changes will be delayed to well after 2013.

The BF's domination of virgin iron unit production will remain

	Yr 2000	Yr 2015	Yr 2025
Virgin Iron Units (Mt)	450	870	1300
Blast Furnace (Mt)	400	800	1120
Other (MT)	50	70	180

Source: Hatch

ULCOS (Ultra Low CO₂ Steelmaking) program likely impact after 2025

- Step 1 (2005–10) exploring wide range of steelmaking concepts
- Including future BF concepts •
 - O_2 blast
 - **Biomass/plastics injection**
 - Top gas recycling with CO₂ removal

storage

CO,

Partly reduced ore

& biomass

со,

removal

Biomass or

hydrogen rich gases

ESTEP

bhpbilliton

Exported

gas

CO₂ sequestration

Blast Furnace - future evolution

- Outlook for the BF
 - Decline in no = higher productivity
 - Expanded campaign life >20 years
 - Shorter down periods
 - Higher PCI, O₂, lower fuel rates
 - More stable operations
 - Enhanced computer models and control, value-in-use
 - Enlargement during relines
 - New hearth designs

Summary future BF trends and implications

- BF will remain the main source of iron for steelmaking
- Longer lived, high productivity & efficiency future for the BF
- Size will increase as MBF's move to larger >3000m³

Overall implications likely to see more productive, efficient BF operations requiring high quality coke likely to be made with increasing quantities of higher quality hard coking coals

What happens if you use poor quality.....

Blast Furnaces must be looked after!

Overall implications for coke in the new world

- Current trends:-
 - China's future, growth and structure
 - Industry consolidation
 - Future BF trends
- All lead to the conclusion that
 - Coke will remain vitally important to steelmaking
 - Coke quality trends are likely to be for higher quality
 - Coke ovens are a valuable asset
 - Implications are for continue requirements for HQHCC

Understanding coke reactions and performance

- Are traditional methods for assessing coke still relevant
- BF operations have changed and will continue
- Coke characterisation tests developed 20 years ago!!
 - Cold strength probably OK
 - Hot strength(CSR) generally useful

- New techniques/evaluations for the new world????
- Role of coking coals in making coke

Simulating coke conditions in the blast furnace

Does CSR adequately account for high temperature coke properties?

High temperature coke reaction furnace (HTCRF)

Figure 2. High Temperature Coke Reaction Furnace (HTCRF)

- 1. Up to 200g coke
- 2. 1600°C Sample temperatures
- 3. $N_{2'}$ CO₂, CO, H₂ controlled atmospheres
- 4. Programmable gas-temperature regimes

More realistic BF Conditions vs CSR and CRI

Key Findings

- 1. CRI/CSR indices similar, but there is less differentiation between cokes under the blast furnace profile. CSR and CRI overestimate the differences in cokes
- 2. Strength indices show different behaviour between CSR and BF profile. The drop at high rank is likely due to thermal damage (as shown in nitrogen data)
- 3. High rank coals increase fines when 100% of battery feed, but do not appear generate increased fines when present in blends.

Source: BHP Billiton

Different parts of the blast furnace

Key Findings

- 1. Coke behaviour depends on where you are in the BF.
- 2. At the centre, thermal effects predominate.
- 3. At the walls (and most likely the mid radial locations, chemical attack via CO₂ becomes much more significant).
- 4. Similar, non-additive behaviour MV/LV blend.

Source: BHP Billiton

New methods for looking at coke structure

X-ray computer tomography (CT) is a non-destructive imaging technique that has been applied extensively in medical and engineering fields to visualise internal features of humans and objects

X-ray micro-tomography (XRMT) is based on the same essential principles of X-ray absorption as standard X-ray CT but differs in sample transport and in size of the X-ray source

X-Ray Micro Tomography (XRMT)-Effect of gasification on coke structure

Sification on coke structure Use High Ten (HTCR) furnation

Coke A. Lower rank blend slot oven coke

Coke B. Conventional slot oven coke

Coke C. Non-recovery oven coke

Coke wall

Coke pores

Recent studies of coke its reactions & performance

Use High Temperature Coke Reaction (HTCR) furnace & XRMT to study the change in coke microstructure through the BF.

- Coke microstructures showed significant difference between the effects of
- CSR conditions &
- a typical BF gas-temperature profile
- CSR reaction penetrated deep into the coke lump for all cokes studied
- BF profile resulted in reaction confined to lump surface.

Coke made from higher rank coals showed a more limited change in coke microstructure.

US LV v Aust LV Coals – Effect on coke strength

Source: BHP Billiton

Measurement of oven wall pressure (OWP)

- Moveable wall pilot coke ovens provide a direct measurement of OWP
 - Research Coke Oven at Newcastle completed over 750 experiments since 1994

Standard Conditions				
Moisture	5%			
Bulk density	825kgm ⁻³ (db) box charge			
Grind	85% minus 3.35mm			
Heating	Simulation of Australian slot ovens			

Oven wall pressure studies

Source: BHP Billiton

Oven wall failure

And the end of the road

Summary

- The global steel industry remains firmly in the "new world" led by China
- Future trends in China, industry consolidation and changing BF practices all suggest the need for higher coke quality
- Traditional techniques to characterise coke lack the precision to provide superior BF performance
- OWP remains an important parameter esp. with aging ovens
- High quality Australian hard coking coals esp. low vols will remain a core part of current and future coke blends

bhpbilliton

